diff options
author | kinitrupti | 2017-05-12 18:53:46 +0530 |
---|---|---|
committer | kinitrupti | 2017-05-12 18:53:46 +0530 |
commit | 6279fa19ac6e2a4087df2e6fe985430ecc2c2d5d (patch) | |
tree | 22789c9dbe468dae6697dcd12d8e97de4bcf94a2 /Applied_Physics_by_P._K._Palanisamy/Chapter4_1.ipynb | |
parent | d36fc3b8f88cc3108ffff6151e376b619b9abb01 (diff) | |
download | Python-Textbook-Companions-6279fa19ac6e2a4087df2e6fe985430ecc2c2d5d.tar.gz Python-Textbook-Companions-6279fa19ac6e2a4087df2e6fe985430ecc2c2d5d.tar.bz2 Python-Textbook-Companions-6279fa19ac6e2a4087df2e6fe985430ecc2c2d5d.zip |
Removed duplicates
Diffstat (limited to 'Applied_Physics_by_P._K._Palanisamy/Chapter4_1.ipynb')
-rwxr-xr-x | Applied_Physics_by_P._K._Palanisamy/Chapter4_1.ipynb | 390 |
1 files changed, 390 insertions, 0 deletions
diff --git a/Applied_Physics_by_P._K._Palanisamy/Chapter4_1.ipynb b/Applied_Physics_by_P._K._Palanisamy/Chapter4_1.ipynb new file mode 100755 index 00000000..d55516d5 --- /dev/null +++ b/Applied_Physics_by_P._K._Palanisamy/Chapter4_1.ipynb @@ -0,0 +1,390 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:7ccac901d3d7a8c9dde630e169f5e7e52a039a9eb5d4b37586cb97d5a7fe1fca"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "4: Electron Theory of Metals"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.1, Page number 4.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "rho_s = 10.5*10**3 #density of silver(kg/m^3)\n",
+ "NA = 6.02*10**26 #avagadro number(per k-mol)\n",
+ "MA = 107.9 #atomic weight of silver\n",
+ "sigma = 6.8*10**7; #conductivity of silver(ohm-1 m-1)\n",
+ "e = 1.6*10**-19\n",
+ "\n",
+ "#Calculation\n",
+ "n = rho_s*NA/MA #molar volume of silver\n",
+ "mew = sigma/(n*e) #mobility of electrons(m^2/Vs)\n",
+ "mew = mew*10**2\n",
+ "mew = math.ceil(mew*10**4)/10**4; #rounding off to 4 decimals\n",
+ "\n",
+ "#Result\n",
+ "print \"density of electrons in silver is\",round(n/1e28,2),\"*10^28\"\n",
+ "print \"mobility of electrons is\",mew,\"*10**-2 m**2/Vs\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "density of electrons in silver is 5.86 *10^28\n",
+ "mobility of electrons is 0.7255 *10**-2 m**2/Vs\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.2, Page number 4.6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "d = 8.92*10**3 #density(kg/m^3)\n",
+ "e = 1.6*10**-19\n",
+ "m = 9.1*10**-31 #mass of electron(kg)\n",
+ "N = 6.02*10**26 #avagadro's number(per k-mol)\n",
+ "AW = 63.5 #atomic weight\n",
+ "rho = 1.73*10**-8 #resistivity of copper, ohm-m\n",
+ "\n",
+ "#Calculation\n",
+ "n = d*N/AW #number of cu atoms(per m^3)\n",
+ "mew = 1/(rho*n*e) #mobility of electrons(m/Vs)\n",
+ "mew = mew*10**2\n",
+ "mew = math.ceil(mew*10**4)/10**4; #rounding off to 4 decimals\n",
+ "tow = m/(n*e**2*rho) #relaxation time(s)\n",
+ "\n",
+ "#Result\n",
+ "print \"mobility of electrons is\",round(mew,3),\"*10**-2 m/Vs\"\n",
+ "print \"relaxation time is\",round(tow/1e-14,3),\"*10^-14 sec\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "mobility of electrons is 0.427 *10**-2 m/Vs\n",
+ "relaxation time is 2.43 *10^-14 sec\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.3, Page number 4.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "rho = 1.54*10**-8 #resistivity(ohm-m)\n",
+ "n = 5.8*10**28 #conduction electrons(per m^3)\n",
+ "m = 9.108*10**-31 #mass of electron(kg)\n",
+ "e = 1.602*10**-19\n",
+ "\n",
+ "#Calculation\n",
+ "tow = m/(n*(e**2)*rho) #relaxation time(sec)\n",
+ "\n",
+ "#Result\n",
+ "print \"relaxation time of conduction electrons is\",round(tow/1e-14,2),\"*10^-14 sec\" "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "relaxation time of conduction electrons is 3.97 *10^-14 sec\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.4, Page number 4.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "R = 0.06 #resistance(ohm)\n",
+ "D = 5 #length of Al wire(m)\n",
+ "e = 1.602*10**-19\n",
+ "rho = 2.7*10**-8 #resistivity of Al(ohm-m)\n",
+ "MA = 26.98 #atomic weight\n",
+ "NA = 6.025*10**26 #avagadro number(k/mol)\n",
+ "rho_s = 2.7*10**3 #density(kg/m^3)\n",
+ "I = 15 #current(A)\n",
+ "\n",
+ "#Calculation\n",
+ "n = 3*rho_s*NA/MA #free electron concentration(electrons/m^3)\n",
+ "mew = 1/(n*e*rho) #mobility(m/Vs)\n",
+ "E = I*R/D #electric field(V/m)\n",
+ "vd = mew*E #drift velocity(m/s)\n",
+ "vd = vd*10**3\n",
+ "mew = mew*10**3\n",
+ "mew = math.ceil(mew*10**4)/10**4; #rounding off to 4 decimals\n",
+ "vd = math.ceil(vd*10**4)/10**4; #rounding off to 4 decimals\n",
+ "\n",
+ "#Result\n",
+ "print \"free electron concentration is\",round(n/1e29,4),\"*10^29 electrons/m^2\"\n",
+ "print \"mobility is\",round(mew,3),\"*10^-3 m/Vs\"\n",
+ "print \"drift velocity is\",round(vd,2),\"*10^-3 m/s\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "free electron concentration is 1.8088 *10^29 electrons/m^2\n",
+ "mobility is 1.278 *10^-3 m/Vs\n",
+ "drift velocity is 0.23 *10^-3 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.5, Page number 4.13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n1 = 1\n",
+ "n2 = 1\n",
+ "n3 = 1 #for lowest energy\n",
+ "h = 6.62*10**-34 #planck's constant(Js)\n",
+ "e = 1.6*10**-19\n",
+ "m = 9.1*10**-31 #mass of electron(kg)\n",
+ "L = 0.1 #side of box(nm)\n",
+ "\n",
+ "#Calculation\n",
+ "L = L*10**-9 #side of box(m)\n",
+ "E1 = (h**2)*(n1**2+n2**2+n3**2)/(8*m*L**2) #lowest energy(J)\n",
+ "E1 = E1/e #lowest energy(eV)\n",
+ "E1 = math.ceil(E1*10)/10 #rounding off to 1 decimal\n",
+ "\n",
+ "#Result\n",
+ "print \"lowest energy of electron is\",E1,\"eV\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "lowest energy of electron is 112.9 eV\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.6, Page number 4.14"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Calculation\n",
+ "#Fermi function F(E) = 1/(1+exp((E-Ef)/(kT)))\n",
+ "#given E-Ef = kT. therefore F(E) = 1/(1+exp(1))\n",
+ "F_E = 1/(1+math.exp(1))\n",
+ "F_E = math.ceil(F_E*10**3)/10**3; #rounding off to 3 decimals\n",
+ "\n",
+ "#Result\n",
+ "print \"fermi function is\",F_E"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "fermi function is 0.269\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.7, Page number 4.14"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "F_E = 10 #probability in percent\n",
+ "k = 1.38*10**-23\n",
+ "EF = 5.5 #fermi energy(eV)\n",
+ "\n",
+ "#Calculation\n",
+ "E = EF+(EF/100) #energy(eV)\n",
+ "X = E-EF #E-EF(eV)\n",
+ "X = X*e #E-EF(J)\n",
+ "T = X/(k*math.log(F_E-1)) #temperature(K)\n",
+ "T = math.ceil(T*10**2)/10**2 #rounding off to 2 decimals\n",
+ "\n",
+ "#Result\n",
+ "print \"temperature is\",round(T,1),\"K\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "temperature is 290.2 K\n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.8, Page number 4.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "F_E = 0.01 #probability in percent\n",
+ "k = 1.38*10**-23\n",
+ "e = 1.6*10**-19\n",
+ "#let E-EF be X\n",
+ "X = 0.5 #E-EF(eV)\n",
+ "\n",
+ "#Calculation\n",
+ "kT = X/(2.303*math.log10((1-F_E)*100)) #value of kT(eV)\n",
+ "T = kT*e/k #temperature(K)\n",
+ "T = math.ceil(T*10)/10 #rounding off to 1 decimal\n",
+ "\n",
+ "#Result\n",
+ "print \"temperature is\",T,\"K\"\n",
+ "print \"answer given in the book is wrong by a decimal point\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "temperature is 1261.4 K\n",
+ "answer given in the book is wrong by a decimal point\n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file |