summaryrefslogtreecommitdiff
path: root/Applied_Physics_by_P._K._Palanisamy/Chapter3_1.ipynb
diff options
context:
space:
mode:
authorkinitrupti2017-05-12 18:53:46 +0530
committerkinitrupti2017-05-12 18:53:46 +0530
commit6279fa19ac6e2a4087df2e6fe985430ecc2c2d5d (patch)
tree22789c9dbe468dae6697dcd12d8e97de4bcf94a2 /Applied_Physics_by_P._K._Palanisamy/Chapter3_1.ipynb
parentd36fc3b8f88cc3108ffff6151e376b619b9abb01 (diff)
downloadPython-Textbook-Companions-6279fa19ac6e2a4087df2e6fe985430ecc2c2d5d.tar.gz
Python-Textbook-Companions-6279fa19ac6e2a4087df2e6fe985430ecc2c2d5d.tar.bz2
Python-Textbook-Companions-6279fa19ac6e2a4087df2e6fe985430ecc2c2d5d.zip
Removed duplicates
Diffstat (limited to 'Applied_Physics_by_P._K._Palanisamy/Chapter3_1.ipynb')
-rwxr-xr-xApplied_Physics_by_P._K._Palanisamy/Chapter3_1.ipynb586
1 files changed, 586 insertions, 0 deletions
diff --git a/Applied_Physics_by_P._K._Palanisamy/Chapter3_1.ipynb b/Applied_Physics_by_P._K._Palanisamy/Chapter3_1.ipynb
new file mode 100755
index 00000000..afe7637e
--- /dev/null
+++ b/Applied_Physics_by_P._K._Palanisamy/Chapter3_1.ipynb
@@ -0,0 +1,586 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:50d61ee8fa972cdf457beff8302930b51b8d1018696b3dbcc148db2d3f471c34"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "3: Principles of Quantum Mechanics"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 3.1, Page number 3.12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "c = 3*10**8 #velocity of light(m/sec)\n",
+ "m = 1.67*10**-27 #mass of proton(kg)\n",
+ "h = 6.626*10**-34 #planck's constant\n",
+ "\n",
+ "#Calculation\n",
+ "v = (1/10)*c #velocity of proton(m/sec)\n",
+ "lamda = h/(m*v) #de Broglie wavelength(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"de Broglie wavelength of proton is\",round(lamda/1e-14,3),\"*10^-14 m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "de Broglie wavelength of proton is 1.323 *10^-14 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 3.2, Page number 3.12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "V = 400 #potential(V)\n",
+ "\n",
+ "#Calculation\n",
+ "lamda = 12.26/math.sqrt(V) #de Broglie wavelength(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"de Broglie wavelength of electron is\",lamda,\"angstrom\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "de Broglie wavelength of electron is 0.613 angstrom\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 3.3, Page number 3.13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "m = 1.674*10**-27 #mass of neutron(kg)\n",
+ "h = 6.626*10**-34 #planck's constant\n",
+ "e = 1.6*10**-19\n",
+ "KE = 0.025 #kinetic energy(eV)\n",
+ "\n",
+ "#Calculation\n",
+ "E = KE*e #kinetic energy(J)\n",
+ "lamda = h/math.sqrt(2*m*E) #de Broglie wavelength(m)\n",
+ "lamda_nm = lamda*10**9 #de Broglie wavelength(nm)\n",
+ "lamda_nm = math.ceil(lamda_nm*10**4)/10**4 #rounding off to 4 decimals\n",
+ "\n",
+ "#Result\n",
+ "print \"de Broglie wavelength is\",lamda_nm,\"nm\" "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "de Broglie wavelength is 0.1811 nm\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 3.4, Page number 3.14"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "V = 1600 #potential(V)\n",
+ "\n",
+ "#Calculation\n",
+ "lamda = 12.26/math.sqrt(V) #de Broglie wavelength(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"de Broglie wavelength of electron is\",lamda,\"angstrom\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "de Broglie wavelength of electron is 0.3065 angstrom\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 3.5, Page number 3.18"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "delta_x = 0.2 #electron distance(angstrom)\n",
+ "h = 6.626*10**-34 #planck's constant\n",
+ "\n",
+ "#Calculation\n",
+ "delta_x = delta_x*10**-10 #electron distance(m)\n",
+ "delta_p = h/(2*math.pi*delta_x) #uncertainity in momentum(kg.m/s)\n",
+ "\n",
+ "#Result\n",
+ "print \"uncertainity in momentum is\",round(delta_p/1e-24,3),\"*10^-24 kg m/s\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " uncertainity in momentum is 5.273 *10^-24 kg m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 3.6, Page number 3.27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n1 = 1\n",
+ "n2 = 1\n",
+ "n3 = 1 #for lowest energy\n",
+ "e = 1.6*10**-19\n",
+ "h = 6.62*10**-34 #planck's constant\n",
+ "m = 9.1*10**-31 #mass of electron(kg)\n",
+ "L = 0.1 #side of box(nm)\n",
+ "\n",
+ "#Calculation\n",
+ "L = L*10**-9 #side of box(m)\n",
+ "E1 = h**2*(n1**2+n2**2+n3**2)/(8*m*L**2) #lowest energy(J)\n",
+ "E1 = E1/e #lowest energy(eV)\n",
+ "E1 = math.ceil(E1*10)/10 #rounding off to 1 decimal\n",
+ "\n",
+ "#Result\n",
+ "print \"lowest energy of electron is\",E1,\"eV\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "lowest energy of electron is 112.9 eV\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 3.7, Page number 3.27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n1 = 1\n",
+ "n2 = 1\n",
+ "n3 = 2 #for level next to the lowest\n",
+ "e = 1.6*10**-19\n",
+ "h = 6.62*10**-34 #planck's constant\n",
+ "m = 9.1*10**-31 #mass of electron(kg)\n",
+ "L = 0.1 #side of box(nm)\n",
+ "\n",
+ "#Calculation\n",
+ "L = L*10**-9 #side of box(m)\n",
+ "E1 = h**2*(n1**2+n2**2+n3**2)/(8*m*L**2) #lowest energy(J)\n",
+ "E1 = E1/e #lowest energy(eV)\n",
+ "E1 = math.ceil(E1*10**2)/10**2 #rounding off to 2 decimals\n",
+ "\n",
+ "#Result\n",
+ "print \"energy of electron is\",E1,\"eV\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "energy of electron is 225.75 eV\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 3.8, Page number 3.28"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "m = 9.1*10**-31 #mass of electron(kg)\n",
+ "h = 6.626*10**-34 #planck's constant\n",
+ "e = 1.6*10**-19\n",
+ "E = 2000 #energy(eV)\n",
+ "\n",
+ "#Calculation\n",
+ "E = E*e #energy(J)\n",
+ "lamda = h/math.sqrt(2*m*E) #wavelength(m)\n",
+ "lamda_nm = lamda*10**9 #velength(nm)\n",
+ "lamda_nm = math.ceil(lamda_nm*10**4)/10**4 #rounding off to 4 decimals\n",
+ "\n",
+ "#Result\n",
+ "print \"wavelength is\",lamda_nm,\"nm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "wavelength is 0.0275 nm\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 3.9, Page number 3.28"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n = 1 #for minimum energy\n",
+ "h = 6.626*10**-34 #planck's constant(J sec)\n",
+ "m = 9.91*10**-31 #mass of electron(kg)\n",
+ "L = 4*10**-10 #side of box(m)\n",
+ "\n",
+ "#Calculation\n",
+ "E1 = ((h**2)*(n**2))/(8*m*(L**2)) #lowest energy(J)\n",
+ "E1 = E1*10**18;\n",
+ "E1 = math.ceil(E1*10**4)/10**4 #rounding off to 4 decimals\n",
+ "\n",
+ "#Result\n",
+ "print \"energy of electron is\",E1,\"*10**-18 J\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "energy of electron is 0.3462 *10**-18 J\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 3.10, Page number 3.29"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n1 = 1 #for ground state\n",
+ "n2 = 2 #for 1st excited state\n",
+ "n3 = 3 #for 2nd excited state\n",
+ "h = 6.626*10**-34 #planck's constant(J sec)\n",
+ "m = 9.1*10**-31 #mass of electron(kg)\n",
+ "L = 1*10**-10 #width(m)\n",
+ "\n",
+ "#Calculation\n",
+ "E1 = h**2*n1**2/(8*m*L**2) #energy in ground state(J)\n",
+ "E2 = n2**2*E1 #energy in 1st excited state(J)\n",
+ "E3 = n3**2*E1 #energy in 2nd excited state(J)\n",
+ "\n",
+ "#Result\n",
+ "print \"energy in ground state is\",round(E1/1e-18,3),\"*10^-18 J\"\n",
+ "print \"energy in 1st excited state is\",round(E2/1e-17,3),\"*10^-17 J\"\n",
+ "print \"energy in 2nd excited state is\",round(E3/1e-17,3),\"*10^-17 J\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "energy in ground state is 6.031 *10^-18 J\n",
+ "energy in 1st excited state is 2.412 *10^-17 J\n",
+ "energy in 2nd excited state is 5.428 *10^-17 J\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 3.11, Page number 3.30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "h = 6.626*10**-34 #planck's constant(J sec)\n",
+ "m = 9.1*10**-31 #mass of electron(kg)\n",
+ "e = 1.6*10**-19\n",
+ "lamda = 1.66*10**-10 #wavelength(m)\n",
+ "\n",
+ "#Calculation\n",
+ "v = h/(m*lamda) #velocity of electron(m/sec)\n",
+ "v_km = v*10**-3 #velocity of electron(km/sec)\n",
+ "KE = (1/2)*m*v**2 #kinetic energy(J)\n",
+ "KE_eV = KE/e #kinetic energy(eV)\n",
+ "KE_eV = math.ceil(KE_eV*10**3)/10**3 #rounding off to 3 decimals\n",
+ "\n",
+ "#Result\n",
+ "print \"velocity of electron is\",int(v_km),\"km/sec\"\n",
+ "print \"kinetic energy of electron is\",KE_eV,\"eV\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "velocity of electron is 4386 km/sec\n",
+ "kinetic energy of electron is 54.714 eV\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 3.12, Page number 3.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "V = 15 #potential(kV)\n",
+ "\n",
+ "#Calculation\n",
+ "V = V*10**3 #potential(V)\n",
+ "lamda = 12.26/math.sqrt(V) #de Broglie wavelength(angstrom)\n",
+ "lamda = math.ceil(lamda*100)/100 #rounding off to 2 decimals\n",
+ "\n",
+ "#Result\n",
+ "print \"wavelength of electron waves is\",lamda,\"angstrom\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "wavelength of electron waves is 0.11 angstrom\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 3.13, Page number 3.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "V = 344 #potential(V)\n",
+ "n = 1 #for 1st reflection maximum\n",
+ "theta = 60 #glancing angle(degrees)\n",
+ "\n",
+ "#Calculation\n",
+ "lamda = 12.26/math.sqrt(V) #de Broglie wavelength(angstrom)\n",
+ "lamda_m = lamda*10**-10 #de Broglie wavelength(m)\n",
+ "theta = theta*math.pi/180 ##glancing angle(radians)\n",
+ "d = n*lamda_m/(2*math.sin(theta)) #interatomic spacing(m)\n",
+ "d = d*10**10 #interatomic spacing(angstrom)\n",
+ "d = math.ceil(d*10**5)/10**5 #rounding off to 5 decimals\n",
+ "\n",
+ "#Result\n",
+ "print \"interatomic spacing of crystal is\",d,\"angstrom\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "interatomic spacing of crystal is 0.38164 angstrom\n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file