summaryrefslogtreecommitdiff
path: root/Applied_Physics_II_by_H_J_Sawant/Chapter_3.ipynb
diff options
context:
space:
mode:
authorThomas Stephen Lee2015-09-04 22:04:10 +0530
committerThomas Stephen Lee2015-09-04 22:04:10 +0530
commit41f1f72e9502f5c3de6ca16b303803dfcf1df594 (patch)
treef4bf726a3e3ce5d7d9ee3781cbacfe3116115a2c /Applied_Physics_II_by_H_J_Sawant/Chapter_3.ipynb
parent9c9779ba21b9bedde88e1e8216f9e3b4f8650b0e (diff)
downloadPython-Textbook-Companions-41f1f72e9502f5c3de6ca16b303803dfcf1df594.tar.gz
Python-Textbook-Companions-41f1f72e9502f5c3de6ca16b303803dfcf1df594.tar.bz2
Python-Textbook-Companions-41f1f72e9502f5c3de6ca16b303803dfcf1df594.zip
add/remove/update books
Diffstat (limited to 'Applied_Physics_II_by_H_J_Sawant/Chapter_3.ipynb')
-rwxr-xr-xApplied_Physics_II_by_H_J_Sawant/Chapter_3.ipynb779
1 files changed, 779 insertions, 0 deletions
diff --git a/Applied_Physics_II_by_H_J_Sawant/Chapter_3.ipynb b/Applied_Physics_II_by_H_J_Sawant/Chapter_3.ipynb
new file mode 100755
index 00000000..61c99435
--- /dev/null
+++ b/Applied_Physics_II_by_H_J_Sawant/Chapter_3.ipynb
@@ -0,0 +1,779 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 3: Fibre Optics"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.3.1, Page number 3-6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "n1 = 1.54 #refractive index of core\n",
+ "NA = 0.5 #numerical aperture\n",
+ "\n",
+ "#Calculation\n",
+ "n2 = math.sqrt(n1**2-NA**2)\n",
+ "\n",
+ "#Result\n",
+ "print \"Refractive index of cladding is\",round(n2,2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Refractive index of cladding is 1.46\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.3.2, Page number 3-6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "n2 = 1.59 #refractive index of cladding\n",
+ "NA = 0.2 #numerical aperture\n",
+ "n0 = 1.33\n",
+ "\n",
+ "#Calculation\n",
+ "n1 = (math.sqrt(n2**2-NA**2))\n",
+ "theta_o = (math.asin((math.sqrt(n2**2-n1**2)/n0)))*180/math.pi\n",
+ "\n",
+ "#Result\n",
+ "print \"Refractive index of core is\",n2\n",
+ "print \"Acceptance angle =\",round(theta_o,2),\"degrees\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Refractive index of core is 1.59\n",
+ "Acceptance angle = 8.65 degrees\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.3.3, Page number 3-6\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "n1 = 1.49 #refractive index of core\n",
+ "n2 = 1.44 #refractive index of cladding\n",
+ "\n",
+ "#Calculation\n",
+ "NA = math.sqrt(n1**2-n2**2)\n",
+ "\n",
+ "theta_o = math.degrees(math.asin(NA))\n",
+ "\n",
+ "#Result\n",
+ "print \"Numerical Aperture =\",round(NA,5)\n",
+ "print \"Acceptance angle =\",round(theta_o,2),\"degrees\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Numerical Aperture = 0.38275\n",
+ "Acceptance angle = 22.5 degrees\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.3.4, Page number 3-7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "n1 = 1.6 #refractive index of core\n",
+ "n2 = 1.3 #refractive index of cladding\n",
+ "\n",
+ "#Calculation\n",
+ "theta_c = math.degrees(math.asin(n2/n1))\n",
+ "\n",
+ "theta_o = math.degrees(math.asin(math.sqrt(n1**2-n2**2)))\n",
+ "AC = 2*theta_o\n",
+ "\n",
+ "#Result\n",
+ "print \"Critical angle =\",round(theta_c,2),\"degrees\"\n",
+ "print \"Value of angle of acceptance cone =\",round(AC,3),\"degrees\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Critical angle = 54.34 degrees\n",
+ "Value of angle of acceptance cone = 137.731 degrees\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.3.5, Page number 3-7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "n1 = 1.4 #refractive index of core\n",
+ "theta_o = 30 #acceptance angle(degrees)\n",
+ "\n",
+ "#Calculation\n",
+ "n2 = math.sqrt(n1**2-math.sin(math.radians(theta_o))**2)\n",
+ "\n",
+ "#Result\n",
+ "print \"Refractive index of cladding is\",round(n2,4)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Refractive index of cladding is 1.3077\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.3.6, Page number 3-8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration\n",
+ "n1 = 1.563 #refractive index of core\n",
+ "n2 = 1.498 #refractive index of cladding\n",
+ "\n",
+ "#Calculation\n",
+ "delta = (n1-n2)/n1\n",
+ "\n",
+ "#Result\n",
+ "print \"Fractional index change =\",round(delta,4)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Fractional index change = 0.0416\n"
+ ]
+ }
+ ],
+ "prompt_number": 26
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.3.7, Page number 3-8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration\n",
+ "n1 = 1.50 #refractive index of cladding\n",
+ "theta_c = 90-5 #critical angle(degrees)\n",
+ "\n",
+ "#Calculation\n",
+ "n2 = math.sin(theta_c*math.pi/180)*n1\n",
+ "\n",
+ "#Result\n",
+ "print \"The maximum index of refraction allowed for cladding is\",round(n2,4)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The maximum index of refraction allowed for cladding is 1.4943\n"
+ ]
+ }
+ ],
+ "prompt_number": 28
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.3.8, Page number 3-8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration\n",
+ "n1 = 1.33 #refractive index \n",
+ "theta_o = 30 #acceptance angle in air\n",
+ "\n",
+ "#Calculations\n",
+ "theta_0 = math.degrees(math.asin(math.sin(theta_o*math.pi/180)/n1))\n",
+ "\n",
+ "#Result\n",
+ "print \"Acceptance angle =\",round(theta_0,2),\"degrees\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Acceptance angle = 22.08 degrees\n"
+ ]
+ }
+ ],
+ "prompt_number": 36
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.4.1, Page number 3-10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "n1 = 1.52 #refractive index of core\n",
+ "n2 = 1.5189 #refractive index of cladding\n",
+ "d = 29*10**-6 #core diameter(m)\n",
+ "lamda = 1.3*10**-6 #wavelength(m)\n",
+ "\n",
+ "#Calculation\n",
+ "V = (math.pi*d*math.sqrt(n1**2-n2**2))/lamda\n",
+ "\n",
+ "N = V**2/2\n",
+ "\n",
+ "#Results\n",
+ "print \"Normalized frequency =\",round(V,3)\n",
+ "print \"Number of modes =\",round(N)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Normalized frequency = 4.052\n",
+ "Number of modes = 8.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 40
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.4.2, Page number 3-10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "n1 = 1.47 #refractive index of core\n",
+ "n2 = 1.46 #refractive index of cladding\n",
+ "lamda = 1300*10**-9 #wavelength(nm)\n",
+ "V = 2.405 #for single mode fibre\n",
+ "\n",
+ "#Calculation\n",
+ "d = (V*lamda)/(math.pi*math.sqrt(n1**2-n2**2))\n",
+ "r = d/2\n",
+ "\n",
+ "#Result\n",
+ "print \"Radius =\",round(r/1e-6,3),\"um\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Radius = 2.907 um\n"
+ ]
+ }
+ ],
+ "prompt_number": 48
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.4.3, Page number 3-11"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "n1 = 1.48 #refractive index of core\n",
+ "delta = 0.055 #relative RI\n",
+ "lamda = 1 #wavelength(um)\n",
+ "r = 50 #core radius(um)\n",
+ "\n",
+ "#Calculations\n",
+ "n2 = -((delta*n1)-n1)\n",
+ "\n",
+ "NA = math.sqrt(n1**2-n2**2)\n",
+ "\n",
+ "theta_o = math.degrees(math.asin(NA))\n",
+ "\n",
+ "V = (math.pi*2*r*NA)/lamda\n",
+ "\n",
+ "N = V**2/2\n",
+ "\n",
+ "#Results\n",
+ "print \"Refractive index of cladding =\",n2\n",
+ "print \"NA =\",round(NA,3)\n",
+ "print \"Acceptance angle =\",round(theta_o,2),\"degrees\"\n",
+ "print \"Normalized frequency =\",round(V,3)\n",
+ "print \"Number of modes =\",round(N) #Answer differs due to rounding off in 'V'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Refractive index of cladding = 1.3986\n",
+ "NA = 0.484\n",
+ "Acceptance angle = 28.95 degrees\n",
+ "Normalized frequency = 152.073\n",
+ "Number of modes = 11563.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.4.4, Page number 3-12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "n1 = 1.45 #refractive index of core\n",
+ "n2 = 1.448 #refractive index of cladding\n",
+ "lamda = 1*10**-6 #wavelength(m)\n",
+ "d = 6*10**-6 #core diameter(m)\n",
+ "\n",
+ "#Calculations\n",
+ "#Case i\n",
+ "theta_c = math.degrees(math.asin(n2/n1))\n",
+ "\n",
+ "#Case ii\n",
+ "theta_o = math.degrees(math.asin(math.sqrt(n1**2-n2**2)))\n",
+ "\n",
+ "#Case iii\n",
+ "NA = math.sqrt(n1**2-n2**2)\n",
+ "N = (math.pi**2*d**2*NA**2)/(2*lamda**2)\n",
+ "\n",
+ "#Results\n",
+ "print \"Critical angle =\",round(theta_c),\"degrees\"\n",
+ "print \"Acceptance angle =\",round(theta_o,3),\"degrees\"\n",
+ "print \"Number of modes =\",round(N)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Critical angle = 87.0 degrees\n",
+ "Acceptance angle = 4.366 degrees\n",
+ "Number of modes = 1.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.4.5, Page number 3-12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "n1 = 1.50 #refractive index of core\n",
+ "n2 = 1.48 #refractive index of cladding\n",
+ "lamda = 1*10**-6 #wavelength(m)\n",
+ "d = 2*50*10**-6 #core diameter(m)\n",
+ "\n",
+ "#Calculations\n",
+ "NA = math.sqrt(n1**2-n2**2)\n",
+ "N = (math.pi**2*d**2*NA**2)/(2*lamda**2)\n",
+ "\n",
+ "#Result\n",
+ "print \"Number of modes =\",round(N)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Number of modes = 2941.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.4.6, Page number 3-13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "n1 = 1.55 #refractive index of core\n",
+ "n2 = 1.50 #refractive index of cladding\n",
+ "lamda = 1400*10**-9 #wavelength(m)\n",
+ "d = 40*10**-6 #core diameter(m)\n",
+ "\n",
+ "#Calculations\n",
+ "NA = math.sqrt(n1**2-n2**2)\n",
+ "\n",
+ "delta = (n1-n2)/n1\n",
+ "\n",
+ "V = (math.pi*d*NA)/lamda\n",
+ "\n",
+ "#Results\n",
+ "print \"NA =\",round(NA,4)\n",
+ "print \"Fractional index change =\",round(delta,5)\n",
+ "print \"V-number =\",round(V,2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "NA = 0.3905\n",
+ "Fractional index change = 0.03226\n",
+ "V-number = 35.05\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.6.1, Page number 3-17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "Pout = 0.3 #output power(mW)\n",
+ "Pin = 1 #input power(mW)\n",
+ "L = 0.1 #fibre length(km)\n",
+ "\n",
+ "#Calculation\n",
+ "a = (-10/L)*math.log10(Pout/Pin)\n",
+ "\n",
+ "#Result\n",
+ "print \"Attenuation =\",round(a,2),\"dB/km\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Attenuation = 52.29 dB/km\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.6.2, Page number 3-18"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "Pin = 9 #input power(mW)\n",
+ "L = 3 #fibre length(km)\n",
+ "a = 1.5 #loss(dB/km)\n",
+ "\n",
+ "#Calculation\n",
+ "Pl = a*L\n",
+ "Pout = Pin*10**(-Pl/10)\n",
+ "\n",
+ "#Result\n",
+ "print \"Output power =\",round(Pout,3),\"uW\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Output power = 3.193 uW\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.6.3, Page number 3-18"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration\n",
+ "a = 2.2 #attenuation(dB/km)\n",
+ "l1 = 2 #km\n",
+ "l2 = 6 #km\n",
+ "from sympy import * \n",
+ "Pin = symbols('Pin')\n",
+ "\n",
+ "#Calculations\n",
+ "#For 2km,\n",
+ "Pl1 = a*l1\n",
+ "Po1 = Pin*round(10**(-Pl1/10),3)\n",
+ "\n",
+ "#For 6km,\n",
+ "Pl2 = a*l2\n",
+ "Po2 = Pin*round(10**(-Pl2/10),3)\n",
+ "\n",
+ "#Results\n",
+ "print \"After 2 km, Pout =\",Po1\n",
+ "print \"After 6 km, Pout =\",Po2"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "After 2 km, Pout = 0.363*Pin\n",
+ "After 6 km, Pout = 0.048*Pin\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.6.4, Page number 3-19"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration\n",
+ "Pout = 7.5 #output power(mW)\n",
+ "Pin = 8.6 #input power(mW)\n",
+ "L = 0.5 #fibre length(km)\n",
+ "\n",
+ "#Calculation\n",
+ "Pl = -10*math.log10(Pout/Pin)\n",
+ "a = Pl/L\n",
+ "\n",
+ "#Result\n",
+ "print \"Loss specification =\",round(a,4),\"dB/km\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Loss specification = 1.1887 dB/km\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file