summaryrefslogtreecommitdiff
path: root/Applied_Physics_II_by_H_J_Sawant/Chapter_1.ipynb
diff options
context:
space:
mode:
authorThomas Stephen Lee2015-09-04 22:04:10 +0530
committerThomas Stephen Lee2015-09-04 22:04:10 +0530
commit41f1f72e9502f5c3de6ca16b303803dfcf1df594 (patch)
treef4bf726a3e3ce5d7d9ee3781cbacfe3116115a2c /Applied_Physics_II_by_H_J_Sawant/Chapter_1.ipynb
parent9c9779ba21b9bedde88e1e8216f9e3b4f8650b0e (diff)
downloadPython-Textbook-Companions-41f1f72e9502f5c3de6ca16b303803dfcf1df594.tar.gz
Python-Textbook-Companions-41f1f72e9502f5c3de6ca16b303803dfcf1df594.tar.bz2
Python-Textbook-Companions-41f1f72e9502f5c3de6ca16b303803dfcf1df594.zip
add/remove/update books
Diffstat (limited to 'Applied_Physics_II_by_H_J_Sawant/Chapter_1.ipynb')
-rwxr-xr-xApplied_Physics_II_by_H_J_Sawant/Chapter_1.ipynb1108
1 files changed, 1108 insertions, 0 deletions
diff --git a/Applied_Physics_II_by_H_J_Sawant/Chapter_1.ipynb b/Applied_Physics_II_by_H_J_Sawant/Chapter_1.ipynb
new file mode 100755
index 00000000..c6e00369
--- /dev/null
+++ b/Applied_Physics_II_by_H_J_Sawant/Chapter_1.ipynb
@@ -0,0 +1,1108 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 1: Interference of Light"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.2.1, Page number 1-11"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "i = 45 #angle of incidence(degrees)\n",
+ "t = 4*10**-5 #thickness of film(cm)\n",
+ "u = 1.2\n",
+ "\n",
+ "#Calculations & Result\n",
+ "r = math.degrees(math.asin(math.sin(i*math.pi/180)/u))\n",
+ "for n in range(1,4):\n",
+ " lamda = (2*u*t*math.cos(r*math.pi/180))/n\n",
+ " print \"For n = %d, wavelength = %.2f A\"%(n,lamda/10**-8)\n",
+ "print \"Since the visible range of wavelengths lie between 4000 to 7000 A, none of the obtained wavelengths lie in this range\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "For n = 1, wavelength = 7756.29 A\n",
+ "For n = 2, wavelength = 3878.14 A\n",
+ "For n = 3, wavelength = 2585.43 A\n",
+ "Since the visible range of wavelengths lie between 4000 to 7000 A, none of the obtained wavelengths lie in this range\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.2.2, Page number 1-12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "r = 90 #angle of refraction(degrees)\n",
+ "t = 5*10**-5 #thickness of film(cm)\n",
+ "u = 1.33\n",
+ "\n",
+ "#Calculations & Result\n",
+ "for n in range(1,4):\n",
+ " lamda = (4*u*t*int(math.cos(math.radians(90))))/((2*n)-1)\n",
+ " print \"For n = %d, wavelength = %.2f A\"%(n,lamda)\n",
+ "print \"Since the visible range of wavelengths lie between 4000 to 7000 A, none of the obtained wavelengths do not lie in this range\"\n",
+ "\n",
+ "print \"\\nPlease note: Since r=90, cos(r)=0\\nHence, the answers given in the textbook are incorrect\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "For n = 1, wavelength = 0.00 A\n",
+ "For n = 2, wavelength = 0.00 A\n",
+ "For n = 3, wavelength = 0.00 A\n",
+ "Since the visible range of wavelengths lie between 4000 to 7000 A, none of the obtained wavelengths do not lie in this range\n",
+ "\n",
+ "Please note: Since r=90, cos(r)=0\n",
+ "Hence, the answers given in the textbook are incorrect\n"
+ ]
+ }
+ ],
+ "prompt_number": 33
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.2.3, Page number 1-12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "i = 45 #angle of incidence(degrees)\n",
+ "t = 1.5*10**-4 #thickness of film(cm)\n",
+ "lamda = 5*10**-5 #wavelength(cm)\n",
+ "u = 4./3. #refractive index\n",
+ "\n",
+ "#Calculations\n",
+ "r = math.degrees(math.asin(math.sin(i*math.pi/180)/u))\n",
+ "n = (2*u*t*math.cos(r*math.pi/180))/lamda\n",
+ "\n",
+ "#Result\n",
+ "print \"The order of interfernce is %.2f, close to 7\"%n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The order of interfernce is 6.78, close to 7\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.2.4, Pae number 1-13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "i = 45 #angle of incidence(degrees)\n",
+ "lamda = 5896*10**-8 #wavelength(cm)\n",
+ "u = 1.33 #refractive index\n",
+ "n = 1\n",
+ "\n",
+ "#Calculations\n",
+ "r = math.degrees(math.asin(math.sin(i*math.pi/180)/u))\n",
+ "t = ((2*n-1)*lamda)/(2*u*math.cos(r*math.pi/180)*2)\n",
+ "\n",
+ "#Result\n",
+ "print \"The required thickness is\",round((t/1E-5),2),\"*10^-5 cm\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The required thickness is 1.31 *10^-5 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.2.5, Page number 1-14"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "lamda1 = 7000 #wavelength(A)\n",
+ "lamda2 = 5000 #wavelength(A)\n",
+ "u = 1.3 #R.I. of oil\n",
+ "\n",
+ "#Calculations\n",
+ "'''\n",
+ "2utcosr = (2n-1)7000/2 ----(1)\n",
+ "2utcosr = (2n+1)5000/2 ----(2)\n",
+ "Divinding (1) by (2), we get the following expression\n",
+ "1 = (2n+1)5000\n",
+ " -----------\n",
+ " (2n-1)7000\n",
+ "Solving the above expression, we get,\n",
+ "'''\n",
+ "n = 12000/4000\n",
+ "t = ((2*n-1)*lamda)/(2*u*math.cos(r*math.pi/180)*2)\n",
+ "\n",
+ "#Result\n",
+ "print \"The required thickness is\",round((t/1E-5),4),\"*10^-5 cm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The required thickness is 6.6936 *10^-5 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.2.6, Page number 1-15"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "i = 30 #angle of incidence(degrees)\n",
+ "lamda = 5890*10**-8 #wavelength(cm)\n",
+ "u = 1.46 #refractive index\n",
+ "n = 8\n",
+ "\n",
+ "#Calculations\n",
+ "r = math.degrees(math.asin(math.sin(i*math.pi/180)/u))\n",
+ "t = (n*lamda)/(2*u*math.cos(r*math.pi/180))\n",
+ "\n",
+ "#Result\n",
+ "print \"The required thickness is\",round((t/1E-4),3),\"*10^-4 cm\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The required thickness is 1.718 *10^-4 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.2.7, Page number 1-15"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "r = 60 #angle of refraction(degrees)\n",
+ "lamda = 5890*10**-8 #wavelength(cm)\n",
+ "u = 1.5 #refractive index\n",
+ "n = 1 #for minimumm thickness\n",
+ "\n",
+ "#Calculations\n",
+ "#For r = 60\n",
+ "t1 = (n*lamda)/(2*u*math.cos(r*math.pi/180))\n",
+ "\n",
+ "#For normal incidence \n",
+ "r = 0\n",
+ "t2 = (n*lamda)/(2*u*math.cos(r*math.pi/180))\n",
+ "\n",
+ "#Result\n",
+ "print \"For r = 60, the required thickness is\",round((t1/1E-5),2),\"*10^-5 cm\"\n",
+ "print \"For r = 0, the required thickness is\",round((t2/1E-5),2),\"*10^-5 cm\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "For r = 60, the required thickness is 3.93 *10^-5 cm\n",
+ "For r = 0, the required thickness is 1.96 *10^-5 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.2.8, Page number 1-16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "r = 0 #for normal incidence(degrees)\n",
+ "lamda = 5.5*10**-5 #wavelength(cm)\n",
+ "n = 1 #for minimumm thickness\n",
+ "A = 10**4 #area(cm^2)\n",
+ "V = 0.2 #volume(cc)\n",
+ "\n",
+ "#Calculations\n",
+ "t = V/A\n",
+ "#for nth dark band,\n",
+ "u = (n*lamda)/(2*t*math.cos(r*math.pi/180))\n",
+ "\n",
+ "#Result\n",
+ "print \"Refractive index =\",u"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Refractive index = 1.375\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.2.9, Page number 1-17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "r = 60 #angle of incidence(degrees)\n",
+ "t = 2*10**-7 #thickness of film(cm)\n",
+ "u = 1.2\n",
+ "\n",
+ "#Calculations & Result\n",
+ "for n in range(1,4):\n",
+ " lamda = (4*u*t*math.cos(r*math.pi/180))/(2*n-1)\n",
+ " print \"For n = %d, wavelength = %.2f A\"%(n,lamda/10**-10)\n",
+ "print \"Since the visible range of wavelengths lie between 4000 to 7000 A, the wavelength in the visible spectrum is 4800 A\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "For n = 1, wavelength = 4800.00 A\n",
+ "For n = 2, wavelength = 1600.00 A\n",
+ "For n = 3, wavelength = 960.00 A\n",
+ "Since the visible range of wavelengths lie between 4000 to 7000 A, the wavelength in the visible spectrum is 4800 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.3.1, Page number 1-21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration \n",
+ "a = 40. #angle(sec)\n",
+ "lamda = 1.2 #distance between fringes(cm)\n",
+ "alpha = 10 #no. of fringes\n",
+ "\n",
+ "#Calculations\n",
+ "Bair = lamda/alpha #cm\n",
+ "alpha = (a*math.pi)/(3600*180) #radians\n",
+ "lamda = 2*alpha*Bair\n",
+ "\n",
+ "#Result\n",
+ "print \"Wavelength of monochromatic light =\",round((lamda/1E-8),1),\"A\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Wavelength of monochromatic light = 4654.2 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.3.2, Page number 1-22"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration \n",
+ "lamda = 5893*10**-8 #wavelength(cm)\n",
+ "u = 1.52 #refractive index\n",
+ "B = 0.1 #fringe spacing(cm)\n",
+ "\n",
+ "#Calculations\n",
+ "alpha = (lamda/(2*u*B))*180*3600/math.pi #seconds\n",
+ "\n",
+ "#Result\n",
+ "print \"Angle of wedge =\",round(alpha,2),\"secs\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Angle of wedge = 39.98 secs\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.3.3, Page number 1-22"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration \n",
+ "u = 1.4 #refractive index\n",
+ "B = 0.25 #fringe spacing(cm)\n",
+ "a = 20 #angle(secs)\n",
+ "\n",
+ "#Calculations\n",
+ "alpha = (a*math.pi)/(3600*180) #radians\n",
+ "lamda = 2*u*alpha*B\n",
+ "\n",
+ "#Result\n",
+ "print \"Wavelength of light =\",round((lamda/1E-8),2),\"A\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Wavelength of light = 6787.39 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.3.4, Page number 1-23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration \n",
+ "u = 1.5 #refractive index\n",
+ "lamda = 5.82*10**-5 #wavelength(cm)\n",
+ "a = 20 #angle(secs)\n",
+ "\n",
+ "#Calculations\n",
+ "alpha = (a*math.pi)/(3600*180) #radians\n",
+ "B = lamda/(2*u*alpha)\n",
+ "N = 1/B\n",
+ "\n",
+ "#Result\n",
+ "print \"Number of interfernce fronges pr cm is\",round(N)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Number of interfernce fronges pr cm is 5.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.3.5, Page number 1-24"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration \n",
+ "u = 1 #refractive index for air film\n",
+ "lamda = 6*10**-5 #wavelength(cm)\n",
+ "B = 1./10 #distance between fringes(cm)\n",
+ "\n",
+ "#Calculations\n",
+ "alpha = lamda/(2*u*B) #radians\n",
+ "d = alpha*10\n",
+ "\n",
+ "#Result\n",
+ "print \"Daimeter of wire =\",d,\"cm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Daimeter of wire = 0.003 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.3.6, Page number 1-24"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "alpha = 0.01*10**-1/10 #angle(radians)\n",
+ "u = 1 #refractive index for air film\n",
+ "lamda = 5900*10**-10 #wavlength(m)\n",
+ "\n",
+ "#Calculation\n",
+ "B = lamda/(2*u*alpha)\n",
+ "\n",
+ "#Result\n",
+ "print \"Seperation between fringes is\",B/10**-3,\"mm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Seperation between fringes is 2.95 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 26
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.4.1, Page number 1-32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration \n",
+ "n = 40\n",
+ "\n",
+ "#Calculation\n",
+ "#Equating the equation 4*R*n*lamda=4*4R*n*lamda, we get\n",
+ "\n",
+ "N = (4*4*n)/4\n",
+ "\n",
+ "#result\n",
+ "print \"Ring number =\",N"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Ring number = 160\n"
+ ]
+ }
+ ],
+ "prompt_number": 27
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.4.2, Page number 1-32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration \n",
+ "n = 10\n",
+ "Dn = 0.5 #diameter of dark ring(cm)\n",
+ "lamda = 5*10**-5 #waelength(cm)\n",
+ "\n",
+ "#Calculations\n",
+ "R = Dn**2/(4*n*lamda)\n",
+ "\n",
+ "#Result\n",
+ "print \"Radius of curvature =\",R,\"cm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Radius of curvature = 125.0 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 28
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.4.3, Page number 1-33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration \n",
+ "n = 5\n",
+ "p = 10\n",
+ "D5 = 0.336 #diameter of 5th ring(cm)\n",
+ "lamda = 5890*10**-8 #waelength(cm)\n",
+ "D15 = 0.59 #diameter of 15th ringcm\n",
+ "\n",
+ "#Calculations\n",
+ "R = (D15**2-D5**2)/(4*p*lamda)\n",
+ "\n",
+ "#Result\n",
+ "print \"Radius of curvature =\",round(R,2),\"cm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Radius of curvature = 99.83 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 34
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.4.4, Page number 1-33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Varaible declaration\n",
+ "Dn = 0.42 #diameter of dark ring(cm)\n",
+ "p = 8 \n",
+ "R = 200 #radius of curvature(cm)\n",
+ "Dn8 = 0.7 #diameter of (n+8)th ring(cm)\n",
+ "\n",
+ "#Calculations\n",
+ "lamda = (Dn8**2-Dn**2)/(4*R*p)\n",
+ "\n",
+ "#Result\n",
+ "print \"Wavelength =\",lamda/1E-8,\"A\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Wavelength = 4900.0 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 36
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.4.5, Page number 1-34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Varaible declaration\n",
+ "Dn = 0.218 #cm\n",
+ "Dn10 = 0.451 #cm\n",
+ "lamda = 5893*10**-8 #wavelength(cm)\n",
+ "R = 90 #radius of curvature(cm)\n",
+ "p = 10\n",
+ "\n",
+ "#Calculation\n",
+ "u = (4*p*lamda*R)/(Dn10**2-Dn**2)\n",
+ "\n",
+ "#Result\n",
+ "print \"Refractive index =\",round(u,3)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Refractive index = 1.361\n"
+ ]
+ }
+ ],
+ "prompt_number": 37
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.4.6, Page number 1-34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Varaible declaration\n",
+ "D5 = 0.42 #diameter of dark ring(cm)\n",
+ "\n",
+ "#Calculations\n",
+ "'''\n",
+ "For 5th dark ring,\n",
+ "D5^2 = 20*R*lamda -----1\n",
+ "\n",
+ "For 10th dark ring,\n",
+ "D10^2 = 40*R*lamda -----2\n",
+ "\n",
+ "Substituting 1 in 2,\n",
+ "'''\n",
+ "\n",
+ "D10 = math.sqrt((40*D5**2)/20)\n",
+ "\n",
+ "#Result\n",
+ "print \"Diameter of the 10th dark ring =\",round(D10,3),\"cm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Diameter of the 10th dark ring = 0.594 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 35
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.4.7, Page number 1-35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Varaible declaration\n",
+ "lamda_n = 6000 #wavelength of nth ring(A)\n",
+ "lamda_n1 = 5000 #wavelength for (n+1)th ring(cm)\n",
+ "\n",
+ "#Calculations\n",
+ "'''\n",
+ "Dn^2 = 4*R*n*lamda_n ---1\n",
+ "\n",
+ "Dn+1^2 = 4*R(n+1)*lamda_n1 ---2\n",
+ "\n",
+ "Equating 1 and 2, we get,\n",
+ "'''\n",
+ "\n",
+ "n = 5\n",
+ "R = 2\n",
+ "Dn = math.sqrt(4*R*n*lamda_n*10**-8)\n",
+ "\n",
+ "#Result\n",
+ "print \"Diameter =\",round(Dn,3),\"cm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Diameter = 0.049 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 42
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.4.8, Page number 1-35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Varaible declaration\n",
+ "Dair = 2.3 #diameter of ring in air(cm)\n",
+ "Dliq = 2 #diameter of ring in liquid(cm)\n",
+ "\n",
+ "#Calculations\n",
+ "u = Dair**2/Dliq**2\n",
+ "\n",
+ "#Result\n",
+ "print \"Refractive index =\",u"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Refractive index = 1.3225\n"
+ ]
+ }
+ ],
+ "prompt_number": 43
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.4.11, Page number 1-37"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "D4 = 0.4 #diameter of 4th ring(cm)\n",
+ "D12 = 0.7 #diameter of 12th ring(cm)\n",
+ "\n",
+ "#Calculations\n",
+ "'''\n",
+ "For D4, \n",
+ "D4 = math.sqrt(4R*4*lamda)\n",
+ "'''\n",
+ "rt_Rl = 0.1\n",
+ "R = 80 \n",
+ "\n",
+ "#For D20,\n",
+ "D20 = math.sqrt(R)*rt_Rl\n",
+ "\n",
+ "#Result\n",
+ "print \"Diameter of 20th ring =\",round(D20,3),\"cm\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Diameter of 20th ring = 0.894 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 46
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.4.12, Page number 1-36"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration \n",
+ "n = 5\n",
+ "p = 10\n",
+ "D5 = 0.336 #diameter of 5th ring(cm)\n",
+ "D15 = 0.590 #diameter of 15th ring(cm)\n",
+ "R = 100 #radius of curvature(cm)\n",
+ "\n",
+ "#Calculations\n",
+ "lamda = (D15**2-D5**2)/(4*R*p)\n",
+ "\n",
+ "#Result\n",
+ "print \"Wavlength =\",lamda/1E-8,\"A\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Wavlength = 5880.1 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 50
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.7.1, Page number 1-42"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration\n",
+ "lamda = 560 #wavelength(nm)\n",
+ "u = 2 #refractive index\n",
+ "\n",
+ "#Calculations\n",
+ "lamda_dash = lamda/u\n",
+ "t = lamda_dash/4\n",
+ "\n",
+ "#Result\n",
+ "print \"Thickness of film =\",t,\"nm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Thickness of film = 70 nm\n"
+ ]
+ }
+ ],
+ "prompt_number": 55
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.7.2, Page number 1-42"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration\n",
+ "lamda = 6000 #wavelength(E)\n",
+ "u = 1.2 #refractive index\n",
+ "\n",
+ "#Calculations\n",
+ "lamda_dash = lamda/u\n",
+ "t = lamda_dash/4\n",
+ "\n",
+ "#Result\n",
+ "print \"Thickness of film =\",t,\"A\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Thickness of film = 1250.0 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 56
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file