summaryrefslogtreecommitdiff
path: root/Applied_Physics_II/Chapter_2.ipynb
diff options
context:
space:
mode:
authorJovina Dsouza2014-07-07 16:34:28 +0530
committerJovina Dsouza2014-07-07 16:34:28 +0530
commitfffcc90da91b66ee607066d410b57f34024bd1de (patch)
tree7b8011d61013305e0bf7794a275706abd1fdb0d3 /Applied_Physics_II/Chapter_2.ipynb
parent299711403e92ffa94a643fbd960c6f879639302c (diff)
downloadPython-Textbook-Companions-fffcc90da91b66ee607066d410b57f34024bd1de.tar.gz
Python-Textbook-Companions-fffcc90da91b66ee607066d410b57f34024bd1de.tar.bz2
Python-Textbook-Companions-fffcc90da91b66ee607066d410b57f34024bd1de.zip
adding book
Diffstat (limited to 'Applied_Physics_II/Chapter_2.ipynb')
-rwxr-xr-xApplied_Physics_II/Chapter_2.ipynb1000
1 files changed, 1000 insertions, 0 deletions
diff --git a/Applied_Physics_II/Chapter_2.ipynb b/Applied_Physics_II/Chapter_2.ipynb
new file mode 100755
index 00000000..ae487344
--- /dev/null
+++ b/Applied_Physics_II/Chapter_2.ipynb
@@ -0,0 +1,1000 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 2: Diffraction of Light"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2.1, Page number 2-10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "theta = 30 #angle(degrees)\n",
+ "n = 1 \n",
+ "lamda = 6500*10**-8 #wavelength(cm)\n",
+ "\n",
+ "#Calculations\n",
+ "a = (n*lamda)/math.sin(theta*math.pi/180)\n",
+ "\n",
+ "#Result\n",
+ "print \"a =\",a/1e-4,\"*10^-4 cm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "a = 1.3 *10^-4 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2.2, Page number 2-10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "a = 6*10**-4 #width of slit(cm)\n",
+ "n = 1 #first order\n",
+ "lamda = 6000*10**-8 #wavelength(cm)\n",
+ "\n",
+ "#Calculations\n",
+ "def deg_to_dms(deg):\n",
+ " d = int(deg)\n",
+ " md = abs(deg - d) * 60\n",
+ " m = int(md)\n",
+ " sd = (md - m) * 60\n",
+ " sd=round(sd,2)\n",
+ " return [d, m, sd]\n",
+ "\n",
+ "theta = (math.asin((n*lamda)/a))*180/math.pi\n",
+ "d = 2*theta #angular seperation\n",
+ "\n",
+ "#Result\n",
+ "print \"Angular seperation between the 1st order minima is\",deg_to_dms(d)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Angular seperation between the 1st order minima is [11, 28, 42.03]\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2.3, Page number 2-11"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "n1 = 2 #for second minimum\n",
+ "n2 = 3 #for third minimum\n",
+ "lamda = 4000 #wavelength(A)\n",
+ "\n",
+ "#Calculations\n",
+ "'''For 2nd order,\n",
+ "a sin0 = n1*lamda\n",
+ "\n",
+ "For 3rd order,\n",
+ "a sin0 = n2*lamda'''\n",
+ "\n",
+ "lamda = (n2*lamda)/n1\n",
+ "\n",
+ "#Result\n",
+ "print \"Wavelength =\",lamda,\"A\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Wavelength = 6000 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2.4, Page number 2-11"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "a = 0.16*10**-3 #width of slit(cm)\n",
+ "n = 1 #first order\n",
+ "lamda = 5600*10**-10 #wavelength(cm)\n",
+ "\n",
+ "#Calculations\n",
+ "def deg_to_dms(deg):\n",
+ " d = int(deg)\n",
+ " md = abs(deg - d) * 60\n",
+ " m = int(md)\n",
+ " sd = (md - m) * 60\n",
+ " sd=round(sd,2)\n",
+ " return [d, m, sd]\n",
+ "\n",
+ "theta = (math.asin((n*lamda)/a))*180/math.pi\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print \"Half angular width=\",deg_to_dms(theta)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Half angular width= [0, 12, 1.93]\n"
+ ]
+ }
+ ],
+ "prompt_number": 22
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2.5, Page number 2-11"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "a = 12*10**-5 #width of slit(cm)\n",
+ "n = 1 #first order\n",
+ "lamda = 6000*10**-8 #wavelength(cm)\n",
+ "\n",
+ "#Calculations\n",
+ "theta = (math.asin((n*lamda)/a))*180/math.pi\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print \"Half angular width=\",(theta),\"degrees\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Half angular width= 30.0 degrees\n"
+ ]
+ }
+ ],
+ "prompt_number": 30
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2.6, Page number 2-12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "a = 2*10**-6 #width of slit(cm)\n",
+ "n = 1 #first order\n",
+ "lamda = 6500*10**-10 #wavelength(cm)\n",
+ "\n",
+ "#Calculations\n",
+ "theta = (math.asin((n*lamda)/a))*180/math.pi\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print \"Angle theta =\",round(theta,2),\"degrees\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Angle theta = 18.97 degrees\n"
+ ]
+ }
+ ],
+ "prompt_number": 34
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.3.1, Page number 2-16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration\n",
+ "a = 0.16 #width(mm)\n",
+ "b = 0.8 #distance(mm)\n",
+ "\n",
+ "#Calculations & Results\n",
+ "m = ((a+b)/a)\n",
+ "\n",
+ "for n in range(1,4):\n",
+ " print \"m =\",m*n\n",
+ " \n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "m = 6.0\n",
+ "m = 12.0\n",
+ "m = 18.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 48
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.4.1, Page number 2-24"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration\n",
+ "lamda1 = 5*10**-5 #cm\n",
+ "lamda2 = 7*10**-5 #cm\n",
+ "a_plus_b = 1./4000 #cm\n",
+ "\n",
+ "#Calculations\n",
+ "m_max1 = a_plus_b/lamda1\n",
+ "m_max2 = round((a_plus_b/lamda2),1)\n",
+ "\n",
+ "#Results\n",
+ "print m_max2,\"orders are visible for 7000 A and\",m_max1,\"orders for 5000 A and either\",m_max2,\",4 or\",m_max1,\"for intermediate wavelengths\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "3.6 orders are visible for 7000 A and 5.0 orders for 5000 A and either 3.6 ,4 or 5.0 for intermediate wavelengths\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.4.2, Page number 2-24"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration\n",
+ "theta = 30 #angle of diffraction(degrees)\n",
+ "lamda1 = 5400*10**-8 #cm\n",
+ "lamda2 = 4050*10**-8 #cm\n",
+ "\n",
+ "#Calculations\n",
+ "m = lamda2/(lamda1-lamda2)\n",
+ "a_plus_b = (m*lamda1)/math.sin(theta*math.pi/180)\n",
+ "N = 1/a_plus_b\n",
+ "\n",
+ "#Result\n",
+ "print \"Number of lines per cm =\",round(N,2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Number of lines per cm = 3086.42\n"
+ ]
+ }
+ ],
+ "prompt_number": 60
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.4.3, Page number 2-25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration\n",
+ "lamda = 4992 #A\n",
+ "m1 = 3 #for 3rd order\n",
+ "m2 = 4 #for 4th order\n",
+ "\n",
+ "#Calculations\n",
+ "'''For m = 3,\n",
+ "(a+b)sin0 = 3*lamda\n",
+ "\n",
+ "For m = 4,\n",
+ "(a+b)sin0 = 4*lamda'''\n",
+ "\n",
+ "l = (m2*lamda)/m1\n",
+ "\n",
+ "#Results\n",
+ "print \"Wavelength =\",l,\"A\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Wavelength = 6656 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 62
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.4.4, Page number 2-25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration\n",
+ "lamda = 6328*10**-8 #wavelength(cm)\n",
+ "m1 = 1\n",
+ "m2 = 2\n",
+ "a_plus_b = 1./6000 #cm\n",
+ "\n",
+ "#Calculations\n",
+ "theta1 = math.asin((m1*lamda)/a_plus_b)*180/math.pi\n",
+ "theta2 = math.asin((m2*lamda)/a_plus_b)*180/math.pi\n",
+ "\n",
+ "#Result\n",
+ "print \"01 =\",round(theta1,2),\"degrees\"\n",
+ "print \"02 =\",round(theta2,2),\"degrees\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "01 = 22.31 degrees\n",
+ "02 = 49.41 degrees\n"
+ ]
+ }
+ ],
+ "prompt_number": 69
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.4.5, Page number 2-26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "m = 2 #2nd order\n",
+ "lamda = 5*10**-5 #wavelength(cm)\n",
+ "theta = 30\n",
+ "\n",
+ "#Calculations\n",
+ "a_plus_b = (m*lamda)/math.sin(theta*math.pi/180)\n",
+ "N = 1/a_plus_b\n",
+ "\n",
+ "#Result\n",
+ "print \"The number of lines/cm of the grating surface is\",N"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The number of lines/cm of the grating surface is 5000.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.4.6, Page number 2-26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "m = 3 #3rd order\n",
+ "a_plus_b = 1./7000 #no. of lines/cm\n",
+ "sin0 = 1\n",
+ "\n",
+ "#Calculation\n",
+ "lamda = (a_plus_b*sin0)/m\n",
+ "\n",
+ "#Result\n",
+ "print \"Wavelength =\",round(lamda/1e-8),\"A\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Wavelength = 4762.0 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.4.7, Page number 2-26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "m = 1 #1st order\n",
+ "lamda = 6560*10**-8 #wavelength(cm)\n",
+ "theta = 16+12./60\n",
+ "\n",
+ "#Calculations\n",
+ "a_plus_b = (m*lamda)/math.sin(theta*math.pi/180)\n",
+ "N = 1/a_plus_b\n",
+ "w = 2*N\n",
+ "\n",
+ "#Result\n",
+ "print \"The total number of lines is\",round(w)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The total number of lines is 8506.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.4.8, Page number 2-27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "m = 1 #1st order\n",
+ "lamda = 6.56*10**-5 #wavelength(cm)\n",
+ "theta = 18+14./60\n",
+ "\n",
+ "#Calculations\n",
+ "a_plus_b = (m*lamda)/math.sin(theta*math.pi/180)\n",
+ "N = 1/a_plus_b\n",
+ "w = 2*N\n",
+ "\n",
+ "#Result\n",
+ "print \"The total number of lines is\",round(w,1)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The total number of lines is 9539.3\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.4.9, Page number 2-27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration\n",
+ "lamda = 6*10**-5 #wavelength(cm)\n",
+ "a_plus_b = 1./5000 #cm\n",
+ "\n",
+ "#Calculations\n",
+ "m_max = a_plus_b/lamda\n",
+ "\n",
+ "#Result\n",
+ "print \"Order =\",round(m_max)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Order = 3.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.4.10, Page number 2-28"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration\n",
+ "lamda = 6000*10**-8 #wavelength(cm)\n",
+ "a_plus_b = 1./5000 #cm\n",
+ "\n",
+ "#Calculations\n",
+ "m_max = a_plus_b/lamda\n",
+ "\n",
+ "#Result\n",
+ "print \"m_max =\",round(m_max)\n",
+ "\n",
+ "#The rest of the solution is theoretical"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "m_max = 3.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.4.11, Page number 2-28"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "m = 1 #1st order\n",
+ "lamda = 5790*10**-8 #wavelength(cm)\n",
+ "theta = 19.994\n",
+ "\n",
+ "#Calculations\n",
+ "a_plus_b = (m*lamda)/math.sin(theta*math.pi/180)\n",
+ "N = 1/a_plus_b\n",
+ "w = 2.54*N\n",
+ "\n",
+ "#Result\n",
+ "print \"The total number of lines is\",round(w)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The total number of lines is 15000.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.6.1, Page number 2-31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "\n",
+ "#Varaible declaration\n",
+ "n = 3000./0.5 #no. of lines per cm\n",
+ "m = 2 #for 2nd order\n",
+ "lamda1 = 5893*10**-8 #wavelength(cm)\n",
+ "lamda2 = 5896*10**-8 #wavelength(cm)\n",
+ "\n",
+ "#Calculations\n",
+ "a_plus_b = 1/n\n",
+ "theta1 = math.degrees(math.asin((2*lamda1)/(a_plus_b)))\n",
+ "theta2 = math.degrees(math.asin((2*lamda2)/(a_plus_b)))\n",
+ "d = theta2-theta1 #angular seperation\n",
+ "N = lamda1*10**8/(m*3)\n",
+ "\n",
+ "#Result\n",
+ "print \"Since N=\",round(N),\"which is smaller than 3000 lines, the two lines will be resolved in the second order\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Since N= 982.0 which is smaller than 3000 lines, the two lines will be resolved in the second order\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.6.2, Page number 2-32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "\n",
+ "#Varaible declaration\n",
+ "m = 3 #for 3rd order\n",
+ "lamda = 481 #wavelength(nm)\n",
+ "n = 620 #no. of ruling per mm\n",
+ "w = 5.05 #width(mm)\n",
+ "\n",
+ "#Calculations\n",
+ "N = n*w\n",
+ "dl = lamda/(m*N)\n",
+ "\n",
+ "#Result\n",
+ "print \"Smallest wavelength interval =\",round(dl,4),\"nm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Smallest wavelength interval = 0.0512 nm\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.6.3, Page number 2-33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "\n",
+ "#Varaible declaration\n",
+ "m = 2 #for 2nd order\n",
+ "lamda = 5890 #wavelength(A)\n",
+ "dl = 6 #A\n",
+ "n = 500. #no. of lines per cm\n",
+ "\n",
+ "#Calculations\n",
+ "N = lamda/(dl*m)\n",
+ "W = N/n\n",
+ "\n",
+ "#Result\n",
+ "print \"Least width =\",W,\"cm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Least width = 0.98 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.6.4, Page number 2-33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Varaible declaration\n",
+ "N = 3*5000 #no. of lines per cm\n",
+ "a_plus_b = 1./5000 #cm\n",
+ "lamda = 5890*10**-8 #wavelength(cm)\n",
+ "\n",
+ "#Calculations\n",
+ "m_max = round(a_plus_b/lamda)\n",
+ "RP = m_max*N\n",
+ "\n",
+ "#Result\n",
+ "print \"Maximum value of resolving power =\",RP"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Maximum value of resolving power = 45000.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.6.5, Page number 2-34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Varaible declaration\n",
+ "m = 2 #for 2nd order\n",
+ "lamda = 5890 #wavelength(A)\n",
+ "dl = 6 #A\n",
+ "w = 3. #width of a line(cm)\n",
+ "\n",
+ "#Calculations\n",
+ "lamda2 = lamda+dl\n",
+ "N = lamda/(dl*m)\n",
+ "\n",
+ "a_plus_b = w/N\n",
+ "\n",
+ "#Results\n",
+ "print \"The minimum no. of lines a grating must have is\",N\n",
+ "print \"The grating element is\",round(a_plus_b/1e-3,2),\"*10^-3 cm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The minimum no. of lines a grating must have is 490\n",
+ "The grating element is 6.12 *10^-3 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 28
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.6.6, Page number 2-34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Varaible declaration\n",
+ "N = 40000 #no. of lines per cm\n",
+ "m = 2 #for 2nd order\n",
+ "\n",
+ "#Calculations\n",
+ "RP = m*N\n",
+ "\n",
+ "#Result\n",
+ "print \"Maximum value of resolving power =\",RP"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Maximum value of resolving power = 80000\n"
+ ]
+ }
+ ],
+ "prompt_number": 29
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file