diff options
author | Thomas Stephen Lee | 2015-09-04 22:04:10 +0530 |
---|---|---|
committer | Thomas Stephen Lee | 2015-09-04 22:04:10 +0530 |
commit | 41f1f72e9502f5c3de6ca16b303803dfcf1df594 (patch) | |
tree | f4bf726a3e3ce5d7d9ee3781cbacfe3116115a2c /Applied_Physics/Chapter_12_Fibre_Optics.ipynb | |
parent | 9c9779ba21b9bedde88e1e8216f9e3b4f8650b0e (diff) | |
download | Python-Textbook-Companions-41f1f72e9502f5c3de6ca16b303803dfcf1df594.tar.gz Python-Textbook-Companions-41f1f72e9502f5c3de6ca16b303803dfcf1df594.tar.bz2 Python-Textbook-Companions-41f1f72e9502f5c3de6ca16b303803dfcf1df594.zip |
add/remove/update books
Diffstat (limited to 'Applied_Physics/Chapter_12_Fibre_Optics.ipynb')
-rwxr-xr-x | Applied_Physics/Chapter_12_Fibre_Optics.ipynb | 365 |
1 files changed, 0 insertions, 365 deletions
diff --git a/Applied_Physics/Chapter_12_Fibre_Optics.ipynb b/Applied_Physics/Chapter_12_Fibre_Optics.ipynb deleted file mode 100755 index f573b0a2..00000000 --- a/Applied_Physics/Chapter_12_Fibre_Optics.ipynb +++ /dev/null @@ -1,365 +0,0 @@ -{
- "metadata": {
- "name": "",
- "signature": "sha256:dac7a0b06f622e783ea6c469bf1c100c0c8157cc5e77bffea65e378f258808b2"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter 12:Fibre Optics"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 12.1 , Page no:360"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#given\n",
- "u1=1.563; #refractive index of core\n",
- "u2=1.498; #refractive index of cladding\n",
- "\n",
- "#calculate\n",
- "d=(u1-u2)/u1; #calculation of fractional index change\n",
- "\n",
- "#result\n",
- "print\"The fractional index change for a given optical fibre is =\",round(d,4);"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The fractional index change for a given optical fibre is = 0.0416\n"
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 12.2 , Page no:360"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#given\n",
- "u1=1.55; #refractive index of core\n",
- "u2=1.50; #refractive index of cladding\n",
- "\n",
- "#calculate\n",
- "d=(u1-u2)/u1; #calculation of fractional index change\n",
- "NA=u1*math.sqrt(2*d); #calculation of numerical aperture\n",
- "theta=math.asin(NA); #calculation of acceptance angle\n",
- "theta1=theta*180/3.14;\n",
- "\n",
- "#result\n",
- "print\"The numerical aperture of the fibre is NA=\",round(NA,3);\n",
- "print\"The acceptance angle of the optical fibre is =\",round(theta1,2),\"degree\";"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The numerical aperture of the fibre is NA= 0.394\n",
- "The acceptance angle of the optical fibre is = 23.2 degree\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 12.3 , Page no:360"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#given\n",
- "u1=1.563; #refractive index of core\n",
- "u2=1.498; #refractive index of cladding\n",
- "\n",
- "#calculate\n",
- "NA=math.sqrt(u1**2-u2**2); #calculation of numerical aperture\n",
- "theta=math.asin(NA); #calculation of acceptance angle\n",
- "theta1=theta*180/3.14;\n",
- "#result\n",
- "print\"The numerical aperture of the fibre is NA=\",round(NA,4);\n",
- "print\"The acceptance angle of the optical fibre is =\",round(theta1,2),\"degree\";"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The numerical aperture of the fibre is NA= 0.4461\n",
- "The acceptance angle of the optical fibre is = 26.5 degree\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 12.4 , Page no:360"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#given\n",
- "NA=0.39; #numerical aperture of the optical fibre\n",
- "d=0.05; #difference in the refractive index of the material of the core and cladding\n",
- "\n",
- "#calculate\n",
- "#since NA=u1*sqrt(2*d)\n",
- "#we have u1=NA/sqrt(2*d)\n",
- "u1= NA/math.sqrt(2*d); #calculation of refractive index of material of the core\n",
- "\n",
- "#result\n",
- "print\"The refractive index of material of the core is u1=\",round(u1,3);"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The refractive index of material of the core is u1= 1.233\n"
- ]
- }
- ],
- "prompt_number": 4
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 12.5 , Page no:361"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#given\n",
- "u1=1.50; #refractive index of core\n",
- "u2=1.45; #refractive index of cladding\n",
- "\n",
- "#calculate\n",
- "d=(u1-u2)/u1; #calculation of fractional index change\n",
- "NA=u1*math.sqrt(2*d); #calculation of numerical aperture\n",
- "theta_0=math.asin(NA); #calculation of acceptance angle\n",
- "theta_01=theta_0*180/3.14;\n",
- "theta_c=math.asin(u2/u1); #calculation of critical angle\n",
- "theta_c1=theta_c*180/3.14;\n",
- "\n",
- "#result\n",
- "print\"The numerical aperture of the fibre is NA=\",round(NA,3);\n",
- "print\"The acceptance angle of the optical fibre is =\",round(theta_01,2),\"degree\";\n",
- "print\"The critical angle of the optical fibre is =\",round(theta_c1,2),\"degree\";"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The numerical aperture of the fibre is NA= 0.387\n",
- "The acceptance angle of the optical fibre is = 22.8 degree\n",
- "The critical angle of the optical fibre is = 75.2 degree\n"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 12.6 , Page no:361"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#given\n",
- "NA=0.33; #numerical aperture\n",
- "d=0.02; #difference in the refractive index of the core and cladding of the material\n",
- "\n",
- "#calculate\n",
- "#since NA=u1*sqrt(2*d)\n",
- "#therefore we have\n",
- "u1=NA/math.sqrt(2*d); #calculation of refractive index of the core\n",
- "#since d=(u1-u2)/u2\n",
- "#therefore we have\n",
- "u2=(1-d)*u1; #calculation of refractive index of the cladding\n",
- "\n",
- "#result\n",
- "print\"The refractive index of the core is u1=\",round(u1,2);\n",
- "print\"The refractive index of the cladding is u2=\",round(u2,3);\n",
- "print \"NOTE: The answer in the textbook is wrong\" "
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The refractive index of the core is u1= 1.65\n",
- "The refractive index of the cladding is u2= 1.617\n",
- "NOTE: The answer in the textbook is wrong\n"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 12.7 , Page no:361"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#given\n",
- "u1=3.5; #refractive index of core\n",
- "u2=3.45; #refractive index of cladding\n",
- "u0=1; #refractive index of the air\n",
- "\n",
- "#calculate\n",
- "NA=math.sqrt(u1**2-u2**2); #calculation of numerical aperture\n",
- "NA1=NA/u0;\n",
- "alpha=math.asin(NA); #calculation of acceptance angle\n",
- "alpha1=alpha*180/3.14;\n",
- "#result\n",
- "print\"The numerical aperture of the fibre is NA=\",round(NA1,2);\n",
- "print\"The acceptance angle of the optical fibre is =\",round(alpha1,2),\"degree\";"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The numerical aperture of the fibre is NA= 0.59\n",
- "The acceptance angle of the optical fibre is = 36.14 degree\n"
- ]
- }
- ],
- "prompt_number": 7
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 12.8 , Page no:361"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#given\n",
- "u1=1.48; #refractive index of core\n",
- "u2=1.45; #refractive index of cladding\n",
- "\n",
- "#calculate\n",
- "NA=math.sqrt(u1**2-u2**2); #calculation of numerical aperture\n",
- "theta=math.asin(NA); #calculation of acceptance angle\n",
- "theta1=theta*180/3.14;\n",
- "#result\n",
- "print\"The numerical aperture of the fibre is NA=\",round(NA,3);\n",
- "print\"The acceptance angle of the optical fibre is =\",round(theta1,2),\"degree\";\n",
- "print \" (roundoff error)\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The numerical aperture of the fibre is NA= 0.296\n",
- "The acceptance angle of the optical fibre is = 17.26 degree\n",
- " (roundoff error)\n"
- ]
- }
- ],
- "prompt_number": 8
- }
- ],
- "metadata": {}
- }
- ]
-}
\ No newline at end of file |