diff options
author | Thomas Stephen Lee | 2015-09-04 22:04:10 +0530 |
---|---|---|
committer | Thomas Stephen Lee | 2015-09-04 22:04:10 +0530 |
commit | 41f1f72e9502f5c3de6ca16b303803dfcf1df594 (patch) | |
tree | f4bf726a3e3ce5d7d9ee3781cbacfe3116115a2c /Applied_Physics/Chapter_08_Magnetic_Properties.ipynb | |
parent | 9c9779ba21b9bedde88e1e8216f9e3b4f8650b0e (diff) | |
download | Python-Textbook-Companions-41f1f72e9502f5c3de6ca16b303803dfcf1df594.tar.gz Python-Textbook-Companions-41f1f72e9502f5c3de6ca16b303803dfcf1df594.tar.bz2 Python-Textbook-Companions-41f1f72e9502f5c3de6ca16b303803dfcf1df594.zip |
add/remove/update books
Diffstat (limited to 'Applied_Physics/Chapter_08_Magnetic_Properties.ipynb')
-rwxr-xr-x | Applied_Physics/Chapter_08_Magnetic_Properties.ipynb | 323 |
1 files changed, 0 insertions, 323 deletions
diff --git a/Applied_Physics/Chapter_08_Magnetic_Properties.ipynb b/Applied_Physics/Chapter_08_Magnetic_Properties.ipynb deleted file mode 100755 index 353fc099..00000000 --- a/Applied_Physics/Chapter_08_Magnetic_Properties.ipynb +++ /dev/null @@ -1,323 +0,0 @@ -{
- "metadata": {
- "name": "",
- "signature": "sha256:aecad4e644a378cab0352aa29e9045a53c52646739e4f4bd6cdff80f1d0741e6"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter 8:Magnetic Properties"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 8.1 , Page no:236"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#given\n",
- "X=-0.5E-5; #magnetic susceptibility of silicon\n",
- "H=0.9E4; #in A/m (magnetic field intensity)\n",
- "mu0=4*3.14*1E-7; #in H/m (absolute permeability)\n",
- "\n",
- "#calculate\n",
- "I=X*H; #calculation of intensity of magnetism\n",
- "B=mu0*H*(1+X); #calculation of magnetic flux density\n",
- "\n",
- "#result\n",
- "print\"The intensity of magnetism is I=\",I,\"A/m\";\n",
- "print\"The magnetic flux density is B=\",round(B,3),\"Wb/m^2\";\n",
- "print \"NOTE: The answer in the textbook is wrong\" "
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The intensity of magnetism is I= -0.045 A/m\n",
- "The magnetic flux density is B= 0.011 Wb/m^2\n",
- "NOTE: The answer in the textbook is wrong\n"
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 8.2 , Page no:236"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#given\n",
- "r=0.052; #in nm (radius of orbit)\n",
- "B=1; #in Wb/m^2 (magnetic field of induction)\n",
- "e=1.6E-19; #in C (charge of electron)\n",
- "m=9.1E-31; #in Kg (mass of electron)\n",
- "\n",
- "#calculate\n",
- "r=0.052*1E-9; #changing unit from nm to m\n",
- "d_mu=(e**2*r**2*B)/(4*m); #calculation of change in magnetic moment\n",
- "\n",
- "#result\n",
- "print\"The change in magnetic moment is =\",d_mu,\"Am^2\";\n",
- "print \"NOTE: The answer in the textbook is wrong\" "
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The change in magnetic moment is = 1.90171428571e-29 Am^2\n",
- "NOTE: The answer in the textbook is wrong\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 8.3 , Page no:236"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#given\n",
- "H=220; #in A/m (magnetic field intensity)\n",
- "I=3300; #in A/m (intensity of magnetisation)\n",
- "\n",
- "#calculate\n",
- "mu_r=1+(I/H); #calculation of relative permeability\n",
- "\n",
- "#result\n",
- "print\"The relative permeability of a ferromagentic material is =\",mu_r;"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The relative permeability of a ferromagentic material is = 16.0\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 8.4 , Page no:236"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#given\n",
- "I=3000; #in A/m (intensity of magnetisation)\n",
- "B=0.005; #in Wb/m^2 (magnetic flus intensity)\n",
- "pi=3.14; #value of pi used in the solution\n",
- "mu0=4*pi*1E-7; #in H/m (absolute permeability)\n",
- "\n",
- "#calculate\n",
- "H=(B/mu0)-I; #calculation of magnetic force\n",
- "mu_r=(I/H)+1; #calculation of relative permeability\n",
- "\n",
- "#result\n",
- "print\"The magnetic force is H=\",H;\n",
- "print\"The relative permeability is =\",mu_r;"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The magnetic force is H= 980.891719745\n",
- "The relative permeability is = 4.05844155844\n"
- ]
- }
- ],
- "prompt_number": 4
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 8.5 , Page no:237"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#given\n",
- "H=4E3; #in A/m (magnetic field intensity)\n",
- "N=60; #number of turns\n",
- "l=12; #in cm (length of solenoid)\n",
- "\n",
- "#calculate\n",
- "n=N/(l*1E-2); #calculation of number of turns per unit metre\n",
- "#Snice H=n*i;\n",
- "i=H/n; #calculation of current through the solenoid\n",
- "\n",
- "#result\n",
- "print\"The current through the solenoid is i=\",i,\"A\";"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The current through the solenoid is i= 8.0 A\n"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 8.6 , Page no:237"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#given\n",
- "l=30; #in cm (length of solenoid)\n",
- "A=1; #in cm^2 (cross-sectional area)\n",
- "N=300; #number of turns\n",
- "i=0.032; #in A (current through the winding)\n",
- "phi_B=2E-6; #in Wb (magnetic flux)\n",
- "pi=3.14; #value of pi used in the solution\n",
- "mu0=4*pi*1E-7; #in H/m (absolute permeability)\n",
- "\n",
- "#calculate\n",
- "l=l*1E-2; #changing unit from cm to m\n",
- "A=A*1E-4; #changing unit from cm^2 to m^2\n",
- "B=phi_B/A; #calculation of flux density\n",
- "H=N*i/l; #calculation of magnetic intensity\n",
- "mu=B/H; #calcluation of absolute permeability of iron\n",
- "mu_r=mu/mu0; #calcluation of relative permeability of iron\n",
- "\n",
- "#result\n",
- "print\"The flux density is B=\",B,\"Wb/m^2\";\n",
- "print\"The magnetic intensity is H=\",H,\"A-turns/m\";\n",
- "print\"The relative permeability of iron is =\",round(mu_r),\" (roundoff error)\";\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The flux density is B= 0.02 Wb/m^2\n",
- "The magnetic intensity is H= 32.0 A-turns/m\n",
- "The relative permeability of iron is = 498.0 (roundoff error)\n"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 8.7 , Page no:238"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#given\n",
- "A=100; #in m^2 (area of Hysteresis loop)\n",
- "B=0.01; #in Wb/m^2 (unit space along vertical axis or magnetic flux density)\n",
- "H=40; #in A/m (unit space along horizontal axis or magnetic fild ntensity)\n",
- "\n",
- "#calculate\n",
- "H_L=A*B*H; #calculation of magnetic intensity\n",
- "\n",
- "#result\n",
- "print\"The Hystersis loss per cycle is =\",round(H_L),\"J/m^2\";"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The Hystersis loss per cycle is = 40.0 J/m^2\n"
- ]
- }
- ],
- "prompt_number": 7
- }
- ],
- "metadata": {}
- }
- ]
-}
\ No newline at end of file |