diff options
author | tslee | 2014-11-27 17:17:59 +0530 |
---|---|---|
committer | tslee | 2014-11-27 17:17:59 +0530 |
commit | 7b78be04fe05bf240417e22f74b3fc22e7a77d19 (patch) | |
tree | 1875acbe01f3225bbfcc1024266dc96e515f3ea0 /Antennas_and_Wave_Propagation/chapter7.ipynb | |
parent | 8048392490bd2efe0fdfa001945f663cba969841 (diff) | |
download | Python-Textbook-Companions-7b78be04fe05bf240417e22f74b3fc22e7a77d19.tar.gz Python-Textbook-Companions-7b78be04fe05bf240417e22f74b3fc22e7a77d19.tar.bz2 Python-Textbook-Companions-7b78be04fe05bf240417e22f74b3fc22e7a77d19.zip |
added books
Diffstat (limited to 'Antennas_and_Wave_Propagation/chapter7.ipynb')
-rw-r--r-- | Antennas_and_Wave_Propagation/chapter7.ipynb | 386 |
1 files changed, 386 insertions, 0 deletions
diff --git a/Antennas_and_Wave_Propagation/chapter7.ipynb b/Antennas_and_Wave_Propagation/chapter7.ipynb new file mode 100644 index 00000000..6481c2bd --- /dev/null +++ b/Antennas_and_Wave_Propagation/chapter7.ipynb @@ -0,0 +1,386 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h1>Chapter 7: Loop, Slot and Horn Antennas<h1>" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h3>Example 7-8.1, Page number: 256<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import sqrt,pi,sin,log10\n", + "\n", + "#Variable declaration\n", + "C_lambda = 0.1*pi #Circumference (lambda)\n", + "R_m = 1.6 #Mutual resistance of two loops (ohm)\n", + "theta1 = 90*pi/180 #Angle of radiation (radians)\n", + "theta2 = 2*pi/10 #Angle of radiation (radians)\n", + "\n", + "#Calculation\n", + "Rr = 197*(C_lambda)**4 #Self resistance of loop (ohm)\n", + "D1 = (1.5)*(sin(theta1))**2 #Direcivity of loop alone (unitless)\n", + "D1_db = 10*log10(D1) #Directivity of loop alone (dBi)\n", + "D2 = 1.5*(2*sqrt(Rr/(Rr-R_m))*sin(theta2))**2\n", + " #Directivity of loop with ground plane (unitless)\n", + "D2_db = 10*log10(D2) #Direcitivy of loop with ground plane (dBi)\n", + "\n", + "#Result\n", + "print \"The directivity of loop alone is %.2f or %.2f dBi\" % (D1,D1_db)\n", + "print \"\"\"The direcitivy of loop with ground plane is %.2f or %.0f dBi\n", + " \"\"\" %(D2,D2_db)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The directivity of loop alone is 1.50 or 1.76 dBi\n", + "The direcitivy of loop with ground plane is 12.47 or 11 dBi\n", + " \n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h3>Example 7-8.2, Page number:257<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import sqrt, sin, pi, log10\n", + "\n", + "#Variable declaration\n", + "Rr = 197.0 #self resistance of loop (ohm)\n", + "Rm = 157.0 #mutual resistance of two loops (ohm)\n", + "theta = 2*pi/10 #Angle of radiation (radians)\n", + "\n", + "#Calculation\n", + "D = 1.5*(2*sqrt(Rr/(Rr-Rm))*sin(theta))**2 #Directivity (unitless)\n", + "D_db = 10*log10(D) #Directivity (dBi)\n", + "\n", + "#Result\n", + "print \"The direcitivy is %.1f or %.1f dBi\" % (D,D_db)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The direcitivy is 10.2 or 10.1 dBi\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h3>Example 7-11.1, Page number: 261<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import pi, log10\n", + "\n", + "#Variable declaration\n", + "c = pi #Circumference (m)\n", + "f1 = 1 #Frequency (MHz)\n", + "f2 = 10 #Frequency (MHz)\n", + "d = 10e-3 #Diameter of copper wire (m)\n", + "\n", + "#Calcalation\n", + "RL_Rr1 = 3430/((c**3)*(f1**3.5)*d) \n", + "RL_Rr2 = 3430/((c**3)*(f2**3.5)*d)\n", + " #Ratio of Loss resistance and radiation resistance (unitless\n", + " \n", + "k1 = 1/(1+RL_Rr1) #Radiation efficiency (unitless)\n", + "k_db1 = 10*log10(k1) #Radiation efficiency (in dB)\n", + "k2 = 1/(1+RL_Rr2) #Radiation efficiency (unitless)\n", + "k_db2 = 10*log10(k2) #Radiation efficiency (in dB)\n", + "\n", + "#Result\n", + "print \"The radiation effiency for 1 MHz is %.1ef or %.1f dB\" % (k1, k_db1)\n", + "print \"The radiation effiency for 10 MHz is %.2f or %.1f dB\" % (k2, k_db2)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The radiation effiency for 1 MHz is 9.0e-05f or -40.4 dB\n", + "The radiation effiency for 10 MHz is 0.22 or -6.5 dB\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h3>Example 7-11.2, Page number: 264</h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import pi,sqrt\n", + "\n", + "#Variable declaration\n", + "n = 10 #Number of turns (unitless)\n", + "dia = 1e-3 #Diameter of copper wire (m)\n", + "dia_rod = 1e-2 #Diameter of ferrite rod (m)\n", + "len_rod = 10e-2 #Length of ferrite rod (m)\n", + "mu_r = 250 - 2.5j #Relative permeability (unitless)\n", + "mu_er = 50 #Efeective relative permeability (unitless)\n", + "f = 1e6 #Frequency (Hz)\n", + "c = 3e8 #Speed of light (m/s)\n", + "mu_0 = pi*4e-7 #Absolute permeability (H/m)\n", + "\n", + "#Calculations\n", + "wave_lt = c/f #Wavelength (m)\n", + "radius = dia_rod/2\n", + "C_l = (2*pi*radius)/(wave_lt) #Circumference of loop (m)\n", + "Rr = 197*(mu_er**2)*(n**2)*(C_l**4) #Radiation resistance (ohm)\n", + "Rf = 2*pi*f*mu_er*(mu_r.imag/mu_r.real)*mu_0*(n**2)*(pi*radius**2)/len_rod #Loss resistance(ohm)\n", + "cond = 1/((7e-5**2)*f*pi*mu_er) #Conductivity (S/m)\n", + "delta = 1/(sqrt(f*pi*mu_er*cond)) #Depth of penetration(m)\n", + "\n", + "RL = n*(C_l/dia)*sqrt((f*mu_0)/(pi*cond)) #Ohmic resistance (ohm)\n", + "k = Rr/(RL+abs(Rf)) #Radiation efficiency (unitless)\n", + "\n", + "L = mu_er*(n**2)*(radius**2)*mu_0/len_rod #Inductance (H)\n", + "Q = 2*pi*f*L/(abs(Rf) + Rr + RL) #Ratio of energy stored to energy lost per cycle (unitless)\n", + "\n", + "fHP = f/Q #Bandwidth at half power (Hz)\n", + "\n", + "\n", + "#Results\n", + "print \"The radiation efficiency is \", round(k,11)\n", + "print \"The value of Q is \", round(Q,3)\n", + "print \"The half-power bandwidth is\", round(fHP), \"Hz\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The radiation efficiency is 6.65e-09\n", + "The value of Q is 11.076\n", + "The half-power bandwidth is 90289.0 Hz\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h3>Example 7-17.1, Page number: 280<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import numpy as np\n", + "\n", + "#Variable declaration\n", + "Z0 = 376.7 #Intrinsic impdence of free space (ohm)\n", + "Zd = 73 + 42.5j #Impedence of infinitesimally thin lambda/2 antenna (ohm)\n", + "\n", + "#Calculation\n", + "Z1 = (Z0**2)/(4*Zd) #Terminal impedence of the lambda/2 slot antenna (ohm)\n", + "\n", + "#Result\n", + "print \"The terminal impedence of the thin lambda/2 slot antenna is\", np.around(Z1), \"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The terminal impedence of the thin lambda/2 slot antenna is " + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(363-211j) ohm\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h3>Example 7-17.2, Page number: 280<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "Zd = 67 #Terminal impedence of cylindrical antenna (ohm)\n", + "Z0 = 376.7 #Intrinsic impedence of free space (ohm)\n", + "L = 0.475 #Length of complementary slot (lambda)\n", + "\n", + "#Calculation\n", + "Z1 = Z0**2/(4*Zd) #Terminal resistance of complementary slot (ohm)\n", + "w = 2*L/100 #Width of complementary slot (lambda)\n", + "\n", + "#Result\n", + "print \"The terminal resistance of the complementary slot is\", round(Z1), \"ohm\"\n", + "print \"The width of the complementary slot is\", w, \"lambda\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The terminal resistance of the complementary slot is 529.0 ohm\n", + "The width of the complementary slot is 0.0095 lambda\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h3>Example 7-17.3, Page number: 281<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "Zd = 710 #Terminal impdence of cylindrical dipole\n", + "Z0 = 376.7 #Intrinsic impedence of free space (ohm)\n", + "\n", + "#Calculation\n", + "Z1 = Z0**2/(4*Zd) #Terminal resistance of complementary slot (ohm)\n", + "\n", + "#Result\n", + "print \"The terminal resistance of the complementary slot is\", round(Z1),\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The terminal resistance of the complementary slot is 50.0 ohm\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h3>Example 7-20.1, Page number 288<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#Variable declaration\n", + "delta_e = 0.2 #path length difference in E-plane (lambda)\n", + "delta_h = 0.375 #path length difference in H-plane (lambda)\n", + "a_e = 10 #E-plane aperture (lambda)\n", + "\n", + "\n", + "#Calculation\n", + "L = a_e**2/(8*delta_e) #Horn length(lambda)\n", + "theta_e = 2*math.atan2(a_e,2*L)*180/math.pi #Flare angle in E-plane (degrees)\n", + "theta_h = 2*math.acos(L/(L+delta_h))*180/math.pi\n", + " #Flare angle in the H-plane (degrees)\n", + "a_h = 2*L*math.tan(theta_h/2*math.pi/180) #H-plane aperture (lambda)\n", + "\n", + "hpbw_e = 56/a_e #Half power beamwidth in E-plane (degrees)\n", + "hpbw_h = 67/a_h #Half power beamwidth in H-plane (degrees)\n", + "\n", + "D = 10*math.log10(7.5*a_e*a_h) #Directivity (dB)\n", + "\n", + "#Result\n", + "print \"The length of the pyramidal horn is\", L,\"lambda\"\n", + "print \"The flare angles in E-plane and H-plane are\", round(theta_e,1),\"and\", round(theta_h,2), \"degrees\"\n", + "print \"The H-plane aperture is\", round(a_h,1), \"lambda\"\n", + "print \"The Half power beamwidths in E-plane and H-plane are\", hpbw_e,\"&\",round(hpbw_h,1),\\\n", + "\"degrees\"\n", + "print \"The direcivity is\", round(D,1),\"dBi\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The length of the pyramidal horn is 62.5 lambda\n", + "The flare angles in E-plane and H-plane are 9.1 and 12.52 degrees\n", + "The H-plane aperture is 13.7 lambda\n", + "The Half power beamwidths in E-plane and H-plane are 5 & 4.9 degrees\n", + "The direcivity is 30.1 dBi\n" + ] + } + ], + "prompt_number": 10 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file |