diff options
author | Thomas Stephen Lee | 2015-08-28 16:53:23 +0530 |
---|---|---|
committer | Thomas Stephen Lee | 2015-08-28 16:53:23 +0530 |
commit | 4a1f703f1c1808d390ebf80e80659fe161f69fab (patch) | |
tree | 31b43ae8895599f2d13cf19395d84164463615d9 /Antenna_and_Wave_Propagation_by_S._Wali/chapter4.ipynb | |
parent | 9d260e6fae7328d816a514130b691fbd0e9ef81d (diff) | |
download | Python-Textbook-Companions-4a1f703f1c1808d390ebf80e80659fe161f69fab.tar.gz Python-Textbook-Companions-4a1f703f1c1808d390ebf80e80659fe161f69fab.tar.bz2 Python-Textbook-Companions-4a1f703f1c1808d390ebf80e80659fe161f69fab.zip |
add books
Diffstat (limited to 'Antenna_and_Wave_Propagation_by_S._Wali/chapter4.ipynb')
-rw-r--r-- | Antenna_and_Wave_Propagation_by_S._Wali/chapter4.ipynb | 324 |
1 files changed, 324 insertions, 0 deletions
diff --git a/Antenna_and_Wave_Propagation_by_S._Wali/chapter4.ipynb b/Antenna_and_Wave_Propagation_by_S._Wali/chapter4.ipynb new file mode 100644 index 00000000..d64c52dd --- /dev/null +++ b/Antenna_and_Wave_Propagation_by_S._Wali/chapter4.ipynb @@ -0,0 +1,324 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:7ee429170e048ea291cb04ea69be8064a04800ea636a7a3699d6be07a58fc7ae" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter4, Linear Wire Antennas" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example No. 4.2.1, page 4-17" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import pi, acos, degrees, cos, sin, atan\n", + "import numpy as np\n", + "l=5 #cm(length of antenna)\n", + "f=100 #MHz(operating frequency)\n", + "Io=120 #mA(Terminal current)\n", + "t=1 #s(time)\n", + "theta=45 #degree(Angle)\n", + "r=3 #m(radius)\n", + "c=3*10**8 #m/s##Speed of light\n", + "omega=2*pi*f*10**6 #rad/sec(rotation)\n", + "k=omega/c #rad/m(Phase constant)\n", + "kr=2*pi*r/3 #degree(Phase constant)\n", + "Er=Io*10**-3*l*10**-2/(2*pi*r**2)*cos(theta*pi/180)*120*pi*(1+1/(1J*kr))*np.exp(-1J*kr+1J*omega*t) #V/m(Electric field)\n", + "Er=Er*1000 #mV/m(Electric field)\n", + "Er_mag=abs(Er) #mV/m(magnitude of Er)\n", + "Er_angle=degrees(atan(Er.imag/Er.real)) #degree(angle of Er)\n", + "print \"Value of Er : magnitude = %0.2f mV/m & angle = %0.2f degree \" %(Er_mag,Er_angle) \n", + "Etheta=Io*10**-3*l*10**-2/(4*pi*r)*sin(theta*pi/180)*120*pi*1J*k*(1+1/(1J*kr)+1/(1J*kr)**2)*np.exp(-1J*kr+1J*omega*t) #V/m(Electric field)\n", + "Etheta_mag=abs(Etheta) #V/m(magnitude of Etheta)\n", + "Etheta_angle=degrees(atan(Etheta.imag/Etheta.real)) #degree(angle of Etheta)\n", + "print \"Value of Etheta : magnitude = %0.2e V/m & angle = %0.2f degree \" %(Etheta_mag,Etheta_angle) \n", + "Hfi=Io*10**-3*l*10**-2/(4*pi*r)*sin(theta*pi/180)*1J*k*(1+1/(1J*kr))*np.exp(-1J*kr+1J*omega*t) #A/m(Magnetic field)\n", + "Hfi_mag=abs(Hfi) #A/m(magnitude of Hfi)\n", + "Hfi_angle=degrees(atan(Hfi.imag/Hfi.real)) #degree(angle of Hfi)\n", + "print \"Value of H\u03a6 : magnitude = %0.3e A/m & angle = %0.f degree \" %(Hfi_mag,Hfi_angle) \n", + "#Answer is not accurate in the book." + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Value of Er : magnitude = 28.64 mV/m & angle = -9.04 degree \n", + "Value of Etheta : magnitude = 8.78e-02 V/m & angle = 80.73 degree \n", + "Value of H\u03a6 : magnitude = 2.387e-04 A/m & angle = 81 degree \n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example No. 4.5.1, page 4-35" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import pi\n", + "f=500.0 #MHz(Operating Frequency)\n", + "Do=1.643 #for half wave dipole\n", + "c=3*10**8 #m/s##Speed of light\n", + "lamda=c/(f*10**6) #m(Wavelength)\n", + "Aem=lamda**2/(4*pi)*Do #m\u00b2(Effective area)\n", + "print \"Effective area = %0.3f m\u00b2 \" %Aem " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Effective area = 0.047 m\u00b2 \n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example No. 4.6.1, page 4-37" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import sqrt, pi\n", + "l=1 #m\n", + "Prad=4 #W\n", + "f=1.5 #MHz\n", + "c=3*10**8 #m/s##Speed of light\n", + "lamda=c/(f*10**6) #m\n", + "#here l/lamda<1/50 tells us it is a Hertzian monopole antenna\n", + "h=1 #m\n", + "Rr=40*pi**2*(h/lamda)**2 #m\u03a9\n", + "Io=sqrt(2*Prad/Rr) #A\n", + "print \"Current required = %0.2f A \" %Io " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Current required = 28.47 A \n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example No. 4.9.1, page 4-51" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import pi\n", + "le=100.0 #m\n", + "Irms=450.0 #A\n", + "f=40000.0 #Hz\n", + "c=3*10**8 #m/s##Speed of light\n", + "lamda=c/f #m\n", + "P=160*pi**2*(le/lamda)**2*Irms**2 #mW\n", + "Rr=160*pi**2*(le/lamda)**2 #\u03a9\n", + "print \"Power radiated = %0.2f kW \" %(P*10**-3) \n", + "print \"Radiation resistance = %0.3f \u03a9 \"%Rr\n", + "#Answer wrong for radiation resistance in the book." + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Power radiated = 56.85 kW \n", + "Radiation resistance = 0.281 \u03a9 \n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example No. 4.9.2, page 4-51" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import pi\n", + "\n", + "le=61.4 #m\n", + "Irms=50 #A\n", + "lamda=625 #m\n", + "P=160*pi**2*(le/lamda)**2*Irms**2 #kW\n", + "Rr=160*pi**2*(le/lamda)**2 #\u03a9\n", + "print \"Power radiated = %0.2f kW \" %(P*10**-3) \n", + "print \"Radiation resistance = %0.2f \u03a9 \"%Rr " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Power radiated = 38.10 kW \n", + "Radiation resistance = 15.24 \u03a9 \n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example No. 4.9.3, page 4-51" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import pi\n", + "le=10.0 #m(effective length)\n", + "Irms=450 #A(rms current)\n", + "Rl=1.5 #\u03a9(resistance)\n", + "f=50.0 #kHz(Operating frequency)\n", + "c=3*10**8 #m/s##Speed of light\n", + "lamda=c/(f*10**3) #m(Wavelength)\n", + "P=160*pi**2*(le/lamda)**2*Irms**2 #kW(Power)\n", + "P=P*1000 #W(Power)\n", + "Rr=160*pi**2*(le/lamda)**2 #\u03a9(Radiation resistance)\n", + "Eta=Rr/(Rr+Rl)*100 #%(Efficiency)\n", + "print \"Efficiency of antenna = %0.2f %% \"%Eta " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Efficiency of antenna = 0.29 % \n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example No. 4.9.4, page 4-52" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import pi\n", + "#l=lamda/8\n", + "lBYlamda=1.0/8 #(length/Wavelength)\n", + "Rr=80*pi**2*(lBYlamda)**2 #\u03a9(Radiation resistance)\n", + "print \"Radiation resistance = %0.4f \u03a9 \"%Rr " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Radiation resistance = 12.3370 \u03a9 \n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example No. 4.9.5, page 4-52" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from math import pi\n", + "L=1 #m(Length of element)\n", + "f=10 #MHz(Operating frequency)\n", + "c=3*10**8 #m/s##Speed of light\n", + "lamda=c/(f*10**6) #m(Wavelength)\n", + "Rr=80*pi**2*(L/lamda)**2 #\u03a9(Radiation resistance)\n", + "print \"Radiation resistance = %0.3f \u03a9 \"%Rr " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Radiation resistance = 0.877 \u03a9 \n" + ] + } + ], + "prompt_number": 16 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file |