diff options
author | hardythe1 | 2015-06-03 15:27:17 +0530 |
---|---|---|
committer | hardythe1 | 2015-06-03 15:27:17 +0530 |
commit | df60071cf1d1c18822d34f943ab8f412a8946b69 (patch) | |
tree | ab059cf19bad4a1233a464ccf5d72cf8b3fb323c /Aircraft_Propulsion/Chapter11.ipynb | |
parent | fba055ce5aa0955e22bac2413c33493b10ae6532 (diff) | |
download | Python-Textbook-Companions-df60071cf1d1c18822d34f943ab8f412a8946b69.tar.gz Python-Textbook-Companions-df60071cf1d1c18822d34f943ab8f412a8946b69.tar.bz2 Python-Textbook-Companions-df60071cf1d1c18822d34f943ab8f412a8946b69.zip |
add books
Diffstat (limited to 'Aircraft_Propulsion/Chapter11.ipynb')
-rwxr-xr-x | Aircraft_Propulsion/Chapter11.ipynb | 529 |
1 files changed, 529 insertions, 0 deletions
diff --git a/Aircraft_Propulsion/Chapter11.ipynb b/Aircraft_Propulsion/Chapter11.ipynb new file mode 100755 index 00000000..598200a3 --- /dev/null +++ b/Aircraft_Propulsion/Chapter11.ipynb @@ -0,0 +1,529 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:06f38e289e9f8216cfd07d87aec91d972c15f74d0ec70f7e3421fc091b17b1fb"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter11-Chemical Rocket and Hypersonic propulsion "
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg644"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calcualte Diameter of the SSME nozzle exit area\n",
+ "print(\"Example 11.1\")\n",
+ "\n",
+ "Ts=470000. ##in lb\n",
+ "Tv=375000. ##in lb\n",
+ "A2=(Ts-Tv)/(14.7*144.)\n",
+ "D=(4.*A2/math.pi)**(1./2.)\n",
+ "print'%s %.1f %s'%(\"Diameter of the SSME nozzle exit area :\",D,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg644"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "print(\"Example 11.2\")\n",
+ "#calculate rocket thurst and effective thurst\n",
+ "m=1000 ##in kg/s\n",
+ "g=9.8 ##m/s**2\n",
+ "Is=340. ##in s\n",
+ "F=m*g*Is\n",
+ "print'%s %.1f %s'%(\"(a)Rocket thrust F in N :\",F,\"\")\n",
+ "c=F/m\n",
+ "print'%s %.1f %s'%(\"(b)Effective exhaust velocity c in m/s :\",c,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 11.2\n",
+ "(a)Rocket thrust F in N : 3332000.0 \n",
+ "(b)Effective exhaust velocity c in m/s : 3332.0 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Ex3-pg646"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "print(\"Example 11.3\")\n",
+ "#calculate optimum thurst and nozzle exit mach number and nozzle area exapnsion\n",
+ "pc=200. ##in atm\n",
+ "p2=1. ##in atm\n",
+ "gm=1.3\n",
+ "Ath=25. ##in m**2\n",
+ "Cf=((2.*gm**2.)/(gm-1.)*(2./(gm+1.))**((gm+1.)/(gm-1.))*(1.-(p2/pc)**((gm-1.)/gm)))**(1/2.)\n",
+ "print'%s %.1f %s'%(\"(a)Optimum thrust coefficient Cf,opt :\",Cf,\"\")\n",
+ "pc=200.*101. ##converting to MPa\n",
+ "F=Ath*Cf*pc\n",
+ "print'%s %.1f %s'%(\"(b)thrust F in N\",F,\"\")\n",
+ "pc=200.\n",
+ "M2=((2./(gm-1.))*((pc/p2)**((gm-1.)/gm)-1.))**(1/2.)\n",
+ "print'%s %.1f %s'%(\"(c)Nozzle exit Mach no. M2 :\",M2,\"\")\n",
+ "A=1./M2*(2./(gm+1)*(1+(gm-1.)/2.*M2**2.))**((gm+1.)/(2.*(gm-1.)))\n",
+ "print'%s %.1f %s'%(\"(d)Nozzle area expansion ratio A2/Ath :\",A,\"\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 11.3\n",
+ "(a)Optimum thrust coefficient Cf,opt : 1.7 \n",
+ "(b)thrust F in N 833262.4 \n",
+ "(c)Nozzle exit Mach no. M2 : 4.0 \n",
+ "(d)Nozzle area expansion ratio A2/Ath : 15.9 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg648"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "print(\"Example 11.4\")\n",
+ "#estimate combustion gas constant and moleculare weight \n",
+ "Tc=2999 ##in K\n",
+ "Ccr=2432 ##in m/s\n",
+ "gm=1.26\n",
+ "f=4.02\n",
+ "R=((Ccr*gm*(2./(gm+1))**((gm+1.)/(2.*(gm-1))))**2.)/(gm*Tc)\n",
+ "print'%s %.1f %s'%(\"Combustion gas constant R in J/kg.K:\",R,\"\")\n",
+ "RU=8314.6 ##in j/kmol.K\n",
+ "MW=RU/R\n",
+ "print'%s %.1f %s'%(\"Molecular weight of the mixture in kg/kmol :\",MW,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 11.4\n",
+ "Combustion gas constant R in J/kg.K: 858.9 \n",
+ "Molecular weight of the mixture in kg/kmol : 9.7 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg648"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calcualte The oxidizer-to-fuel mixture ratio and The molecular weight of the mixture of gases in the product of combustion in kg/kmol\n",
+ "import math\n",
+ "print(\"Example 11.5\")\n",
+ "\n",
+ "f=4.\n",
+ "MW=(2.*18+2*2)/4. ##from equation\n",
+ "print'%s %.1f %s'%(\"(a)The oxidizer-to-fuel mixture ratio :\",f,\"\")\n",
+ "print'%s %.1f %s'%(\"(b)The molecular weight of the mixture of gases in the product of combustion in kg/kmol:\",MW,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 11.5\n",
+ "(a)The oxidizer-to-fuel mixture ratio : 4.0 \n",
+ "(b)The molecular weight of the mixture of gases in the product of combustion in kg/kmol: 10.0 \n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg651"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "print(\"Example 11.6\")\n",
+ "#calculate imporvement in Delv\n",
+ "g=9.8 ##in m/s**2\n",
+ "Is=400. ##in s\n",
+ "\n",
+ "delv1=g*Is*math.log(1./0.1) ##for pmf=0.9\n",
+ "delv2=g*Is*math.log(1./0.05) ##for pmf=0.95\n",
+ "delp=(delv2-delv1)/delv1*100.\n",
+ "print'%s %.1f %s'%(\"% improvement in delv :\",delp,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 11.6\n",
+ "% improvement in delv : 30.1 \n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg653"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calcualte reduction in terminal speed\n",
+ "print(\"Example 11.7\")\n",
+ "\n",
+ "g=9.8 ##in m/s**2\n",
+ "Is=420. ##in s\n",
+ "the=90. ##in degree\n",
+ "tb=30. ##in s\n",
+ "gavg=9.65 ##in m/s**2\n",
+ "MR=0.1\n",
+ "delv1=-g*Is*math.log(MR) ##in m/s\n",
+ "delv2=-g*Is*math.log(MR)-gavg*tb\n",
+ "delp=abs(delv2-delv1)/delv1*100\n",
+ "print'%s %.1f %s'%(\"% reduction in terminal speed :\",delp,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 11.7\n",
+ "% reduction in terminal speed : 3.1 \n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8-pg656"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "print(\"Example 11.8\")\n",
+ "#calculate Terminal speed of rocket vehical excluding gravitatinal effect in m/s\n",
+ "mf=0.8\n",
+ "g=9.8 ##in m/s**2\n",
+ "Is=345. ##in s\n",
+ "delvt=-g*Is*math.log(1-mf)\n",
+ "m=500000. ##in kg\n",
+ "q0=100000. ##in Pa\n",
+ "tb=60. ##in s\n",
+ "Af=20.##in m**2\n",
+ "Cd=0.3 ##mean drag coefficient\n",
+ "delvd=math.log(1-mf)*(Af/m)*q0*(tb/(1-mf))*Cd\n",
+ "delv=delvt+delvd\n",
+ "print'%s %.1f %s'%(\"Terminal speed of rocket vehical excluding gravitatinal effect in m/s :\",delv,\"\")\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 11.8\n",
+ "Terminal speed of rocket vehical excluding gravitatinal effect in m/s : 4862.1 \n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9-pg660"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calcualte Effective exhaust speed and propulsive efficiency and Overall efficiency\n",
+ "print(\"Example 11.9\")\n",
+ "g=9.8 ##in m/s**2\n",
+ "Is=421. ##in s\n",
+ "Qr=120000000.\n",
+ "v=5000. ##in m/s\n",
+ "c=g*Is\n",
+ "print'%s %.1f %s'%(\"(a)Effective exhaust speed c in m/s :\",c,\"\")\n",
+ "ep=2.*(v/c)/(1.+(v/c)**2.)\n",
+ "print'%s %.1f %s'%(\"(b)propulsive efficiency :\",ep,\"\")\n",
+ "eo=c*v/Qr\n",
+ "print'%s %.1f %s'%(\"(c)Overall efficiency :\",eo,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 11.9\n",
+ "(a)Effective exhaust speed c in m/s : 4125.8 \n",
+ "(b)propulsive efficiency : 1.0 \n",
+ "(c)Overall efficiency : 0.2 \n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11-pg671"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "print(\"Example 11.11\")\n",
+ " #calcualte the new chamber pressure and burning rate and the corresponding reduction in burn time\n",
+ "p=7. ##in MPa, \n",
+ "n=0.5 ##and \n",
+ "a=5. ##cm/s \n",
+ "Tdg=15. ##in degree C\n",
+ "Td=15+273 ##in K\n",
+ "br=0.002 ##per degree C\n",
+ "pk=0.004 ##per degree C\n",
+ "t=60.##s, \n",
+ "\n",
+ "DT=30. ## temp difference in degree C\n",
+ "pc=p*(1.+pk*DT)\n",
+ "print'%s %.1f %s'%(\"(a)The new chamber pressure when the initial grain temp. is 45 degree C in MPa\",pc,\"\")\n",
+ "r=a*(pc/p)**n\n",
+ "r=r*(1+br*DT) ##correcting for the effect of the grain temperature on burning rate.\n",
+ "print'%s %.1f %s'%(\"Burning rate when grain temp. is 45 degree C\",r,\"\")\n",
+ "L=a*t/100.\n",
+ "tb=L*100./r ##time to burn 3m of end burning grain at 5.61cm/s\n",
+ "tbn=t*(p/pc) ##burn time for a constant total impulse\n",
+ "\n",
+ "dt=t-tb\n",
+ "print'%s %.1f %s'%(\"(b)The corresponding reduction in burn time in seconds:\",dt,\"\")\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 11.11\n",
+ "(a)The new chamber pressure when the initial grain temp. is 45 degree C in MPa 7.8 \n",
+ "Burning rate when grain temp. is 45 degree C 5.6 \n",
+ "(b)The corresponding reduction in burn time in seconds: 6.5 \n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12-pg678"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate heat flux and total heat flux and convection heat flux and wall temperature on the gas side \n",
+ "print(\"Example 11.12\")\n",
+ "Tg=2750. ##in K\n",
+ "Ttg=Tg\n",
+ "Tc=300. ## coolant bulk temp. in K\n",
+ "tw=0.002 ##Wall thickness in m\n",
+ "kw=43. ##thermal conductivity of the wall in W/m.C\n",
+ "hg=657. ##Gas side film coefficient in W/m**2K\n",
+ "hc=26000. ##Coolant side film coefficient in W/m**2K\n",
+ "eg=0.05 ##emissivity of the gas \n",
+ "sigma=5.67*10**(-8)##in W/m**2K\n",
+ "Taw=Ttg\n",
+ "\n",
+ "rhf=eg*sigma*Tg**4/1000.\n",
+ "print'%s %.1f %s'%(\"(a)The radiation heat flux in kW/m**2 :\",rhf,\"\")\n",
+ "qw=(Ttg-Tc+(rhf*1000./hg))/((1./hg)+(tw/kw)+(1./hc))/1000.\n",
+ "print'%s %.1f %s'%(\"(b)The total heat flux in kW/m**2:\",qw,\"\")\n",
+ "qc=qw-rhf\n",
+ "print'%s %.1f %s'%(\"(c)The convection heat in kW/m**2:\",qc,\"\")\n",
+ "Twg=Taw-qc*1000./hg\n",
+ "print'%s %.1f %s'%(\"(d)Wall temp. on the gas side in K:\",Twg,\"\")\n",
+ "Twc=Tc+(qw*1000./hc)\n",
+ "print'%s %.1f %s'%(\"(e)Wall temp. on the coolant side in K:\",Twc,\"\")\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 11.12\n",
+ "(a)The radiation heat flux in kW/m**2 : 162.1 \n",
+ "(b)The total heat flux in kW/m**2: 1678.1 \n",
+ "(c)The convection heat in kW/m**2: 1516.0 \n",
+ "(d)Wall temp. on the gas side in K: 442.6 \n",
+ "(e)Wall temp. on the coolant side in K: 364.5 \n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Ex13-pg690"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate ratio of specific impulse\n",
+ "print(\"Example 11.13\")\n",
+ "\n",
+ "Cpg=2006. ##in J/kg.K\n",
+ "Cs=903. ##J/kg.K\n",
+ "X1=0.18\n",
+ "X2=0.16\n",
+ "Tr=1.057\n",
+ "Ir=(((1.-X1)*Cpg+X1*Cs)*Tr/((1.-X2)*Cpg+X2*Cs))**(1/2.) ##Ratio of specific impulse \n",
+ "print'%s %.3f %s'%(\"Raio of specific impulse :\",Ir,\"\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 11.13\n",
+ "Raio of specific impulse : 1.022 \n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file |