diff options
author | hardythe1 | 2015-04-07 15:58:05 +0530 |
---|---|---|
committer | hardythe1 | 2015-04-07 15:58:05 +0530 |
commit | 92cca121f959c6616e3da431c1e2d23c4fa5e886 (patch) | |
tree | 205e68d0ce598ac5caca7de839a2934d746cce86 /Advance_Semiconductor_Devices/ChapterNo4.ipynb | |
parent | b14c13fcc6bb6d01c468805d612acb353ec168ac (diff) | |
download | Python-Textbook-Companions-92cca121f959c6616e3da431c1e2d23c4fa5e886.tar.gz Python-Textbook-Companions-92cca121f959c6616e3da431c1e2d23c4fa5e886.tar.bz2 Python-Textbook-Companions-92cca121f959c6616e3da431c1e2d23c4fa5e886.zip |
added books
Diffstat (limited to 'Advance_Semiconductor_Devices/ChapterNo4.ipynb')
-rwxr-xr-x | Advance_Semiconductor_Devices/ChapterNo4.ipynb | 928 |
1 files changed, 928 insertions, 0 deletions
diff --git a/Advance_Semiconductor_Devices/ChapterNo4.ipynb b/Advance_Semiconductor_Devices/ChapterNo4.ipynb new file mode 100755 index 00000000..e76421ad --- /dev/null +++ b/Advance_Semiconductor_Devices/ChapterNo4.ipynb @@ -0,0 +1,928 @@ +{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "<h1> Chapter No 4 : Junctions and Interfaces<h1>"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.2 Page No 184"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#initialisation of variables\n",
+ "N_D = 10**17 * 10**6 #in atoms/m^3\n",
+ "N_A = 0.5*10**16*10**6 #in atoms/m^3\n",
+ "Epsilon_r = 10\n",
+ "\n",
+ "#CALCULATIONS\n",
+ "Epsilon_o = 8.85*10**-12\n",
+ "Epsilon = Epsilon_r*Epsilon_o #in F/m\n",
+ "e = 1.602*10**-19 #in C\n",
+ "V = 0\n",
+ "V_B = 0.7 #in V\n",
+ "W1 = math.sqrt( ((2*Epsilon*V_B)/e)*(1/N_A+1/N_D) ) #in m\n",
+ "V_o = V_B #in V\n",
+ "V1 = -10 #in V\n",
+ "V_B1 = V_o-V1 #in V\n",
+ "W = math.sqrt( ((2*Epsilon*V_B1)/e)*(1/N_A+1/N_D) ) #in m\n",
+ "\n",
+ "\n",
+ "#RESULTS\n",
+ "print('The junction width in meter when no external voltage is applied is =%.2f X 10^-6' %(W1*(10**6)))\n",
+ "print('Junction width in meter with an external voltage of -10V is =%.2f X 10^-6 m' %(W*(10**6)))\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The junction width in meter when no external voltage is applied is =0.39 X 10^-6\n",
+ "Junction width in meter with an external voltage of -10V is =1.54 X 10^-6 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 34
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.4 Page No 208"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#initialisation of variables\n",
+ "V = 5 #in V\n",
+ "V_Gamma = 0.6 #in V\n",
+ "r_F = 12 #in ohm\n",
+ "R = 1 #in k ohm\n",
+ "\n",
+ "#CALCULATIONS\n",
+ "R = R * 10**3 #in ohm\n",
+ "I_F = (V-V_Gamma)/(R+r_F) #in A\n",
+ "V_F = V_Gamma + (I_F*r_F) #in V\n",
+ "I_F=I_F*10**3 \n",
+ "#RESULTS\n",
+ "print('The forward diode current is =%.2f mA ' %I_F)\n",
+ "print('The diode voltage is =%.2f V ' %V_F)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The forward diode current is =4.35 mA \n",
+ "The diode voltage is =0.65 V \n"
+ ]
+ }
+ ],
+ "prompt_number": 35
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.5 Page No 214"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#initialisation of variables\n",
+ "n = 4.4*10**22 #total number of Ge atoms/cm^3\n",
+ "n_a = 1*10**8 #number of impurity atoms\n",
+ "\n",
+ "#CALCULATIONS\n",
+ "N_A = n/n_a #in atoms/cm^3\n",
+ "N_A = N_A * 10**6 #in atoms/m^3\n",
+ "n_i = 2.5*10**13 #in atoms/cm^3\n",
+ "n_i = n_i * 10**6 #in atoms/m^3\n",
+ "N_D = 10**3 * N_A #in atoms/m^3\n",
+ "V_T = 26*10**-3 #in A\n",
+ "V_J = V_T*math.log( (N_A*N_D)/((n_i)**2) ) #in V\n",
+ "print('The contact difference of potential is =%.2f V For a silicon P-N junction ' %V_J)\n",
+ "n = 5*10**22\n",
+ "N_A = n/n_a #in atoms/cm^3\n",
+ "N_A = N_A * 10**6 #in atoms/m^3\n",
+ "N_D = 10**3 * N_A #in atoms/m^3\n",
+ "n_i = 1.5*10**10 #in /cm^3\n",
+ "V_J = V_T*math.log(N_A*N_D/n_i**2) #in V\n",
+ "\n",
+ "\n",
+ "#RESULTS\n",
+ "\n",
+ "print('The contact difference of potential is =%.2f V' %V_J)\n",
+ "\n",
+ "#Note: There is a calculation error to find the value of V_J in the book, so the answer in the book is wrong.\n",
+ "\n",
+ " "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The contact difference of potential is =0.33 V For a silicon P-N junction \n",
+ "The contact difference of potential is =1.44 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 36
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.6 Page No 214"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#initialisation of variables\n",
+ "Rho_p = 2 #in ohm-cm\n",
+ "Rho_n = 1 #in ohm cm\n",
+ "q = 1.6*10**-19 #in C\n",
+ "n_i = 2.5*10**13 #atoms per cm^3\n",
+ "Miu_p = 1800\n",
+ "Miu_n = 3800\n",
+ "\n",
+ "#CALCULATIONS\n",
+ "N_A = 1/(Rho_p*q*Miu_p) #in /cm^3\n",
+ "N_D = 1/(Rho_n*q*Miu_n) #in /cm^3\n",
+ "V_T = 26 #in mV\n",
+ "V_T= V_T*10**-3 #in V\n",
+ "V_J = V_T*math.log((N_A*N_D)/((n_i)**2)) #in V\n",
+ "print('The height of the potential energy barrier is =%.2f in V ' %V_J)\n",
+ "Miu_p = 500\n",
+ "N_A = 1/(Rho_p*q*Miu_p) #in /cm^3\n",
+ "Miu_n = 1300\n",
+ "N_D = 1/(Rho_n*q*Miu_n) #in /cm^3\n",
+ "n_i = 1.5*10**10;\n",
+ "V_J = V_T*math.log((N_A*N_D)/((n_i)**2)) #in V\n",
+ "\n",
+ "#RESULTS\n",
+ "print('For silicon P-N juction The height of the potential energy barrier is =%.2f V' %V_J)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The height of the potential energy barrier is =0.22 in V \n",
+ "For silicon P-N juction The height of the potential energy barrier is =0.67 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 37
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.7 page No 215"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#initialisation of variables\n",
+ "Eta = 1\n",
+ "V_T = 26 #in mV\n",
+ "V_T= V_T*10**-3 #in V\n",
+ "\n",
+ "#CALCULATIONS\n",
+ "V= math.log(1-0.9)*V_T #in V\n",
+ "print(\"The voltage in volts is : %.2f \" %V)\n",
+ "V1=0.05 #in V\n",
+ "V2= -0.05 #in V\n",
+ "ratio= (math.e**(V1/(Eta*V_T))-1)/(math.e**(V2/(Eta*V_T))-1)\n",
+ "print(\"The ratio of the current for a forward bias to reverse bias is : %.2f \" %ratio)\n",
+ "\n",
+ "# Part (iii)\n",
+ "Io= 10 #in \u00b5A\n",
+ "Io=Io*10**-3 #in mA\n",
+ "#For \n",
+ "V=0.1 #in V\n",
+ "I = Io * (math.e**(V/(Eta*V_T)) - 1) #in mA\n",
+ "print(\"For v=0.1 V , the value of I is : %.2f mA \" %I)\n",
+ "\n",
+ "#For \n",
+ "V=0.2 #in V\n",
+ "I = Io * (math.e**(V/(Eta*V_T)) - 1) #in mA\n",
+ "print(\"For v=0.2 V , the value of I is : %.2f mA \" %I)\n",
+ "\n",
+ "#For \n",
+ "V=0.3 #in V\n",
+ "I = Io * (math.e**(V/(Eta*V_T)) - 1) #in mA\n",
+ "\n",
+ "#RESULTS\n",
+ "\n",
+ "I=I*10**-3\n",
+ "print(\"For v=0.3 V , the value of I is : %.2f mA\" %I)\n",
+ "print(\"From three value of I, for small rise in forward voltage, the diode current increase rapidly \")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The voltage in volts is : -0.06 \n",
+ "The ratio of the current for a forward bias to reverse bias is : -6.84 \n",
+ "For v=0.1 V , the value of I is : 0.46 mA \n",
+ "For v=0.2 V , the value of I is : 21.90 mA \n",
+ "For v=0.3 V , the value of I is : 1.03 mA\n",
+ "From three value of I, for small rise in forward voltage, the diode current increase rapidly \n"
+ ]
+ }
+ ],
+ "prompt_number": 38
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.8 Page No 216"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#initialisation of variables\n",
+ "# Part (i)\n",
+ "T1= 25 #in \u00b0C\n",
+ "T2= 80.0 #in \u00b0C\n",
+ "\n",
+ "#CALCULATIONS\n",
+ "# Formula Io2= Io1*2**((T2-T1)/10)\n",
+ "AntiFactor= 2**((T2-T1)/10)\n",
+ "print('Anticipated factor for Ge is : =%.f ' %AntiFactor)\n",
+ "\n",
+ "# Part (ii)\n",
+ "T1= 25.0 #in \u00b0C\n",
+ "T2= 150.0 #in \u00b0C\n",
+ "AntiFactor= 2**((T2-T1)/10)\n",
+ "\n",
+ "#RESULTS\n",
+ "print('Anticipated factor for Ge is : =%.f ' %AntiFactor)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Anticipated factor for Ge is : =45 \n",
+ "Anticipated factor for Ge is : =5793 \n"
+ ]
+ }
+ ],
+ "prompt_number": 39
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.9 Page No 216"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#initialisation of variables\n",
+ "I=5.0 #in \u00b5A\n",
+ "V=10.0 #in V\n",
+ "T1= 0.11 #in \u00b0C^-1\n",
+ "T2= 0.07 #in \u00b0C^-1\n",
+ "\n",
+ "#CALCULATIONS\n",
+ "Io= T2*I/T1 #in \u00b5A\n",
+ "I_R= I-Io #in \u00b5A\n",
+ "R= V/I_R #in M\u03a9\n",
+ "\n",
+ "#RESULTS\n",
+ "print('The leakage resistance is : =%.1f M\u03a9 ' %R)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The leakage resistance is : =5.5 M\u03a9 \n"
+ ]
+ }
+ ],
+ "prompt_number": 40
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.10 Page No 216"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "#initialisation of variables\n",
+ "Eta = 1.0\n",
+ "T = 125.0 #in \u00b0C\n",
+ "T = T + 273 #in K\n",
+ "V_T = 8.62 * 10**-5 * 398 #in V\n",
+ "I_o = 30 #in \u00b5A\n",
+ "\n",
+ "#CALCULATIONS\n",
+ "I_o= I_o*10**-6 #in A\n",
+ "v = 0.2 #in V\n",
+ "r_f = (Eta * V_T)/(I_o * math.e**(v/(Eta* V_T))) #in ohm\n",
+ "print('The dynamic resistance in the forward direction is =%.2f \u03a9 ' %r_f)\n",
+ "\n",
+ "r_r = (Eta * V_T)/(I_o * math.e**(-v/(Eta* V_T))) #in ohm\n",
+ "r_r=r_r*10**-3\n",
+ "print('The dynamic resistance in the forward direction is =%.2f K\u03a9 ' %r_r)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The dynamic resistance in the forward direction is =3.36 \u03a9 \n",
+ "The dynamic resistance in the forward direction is =389.08 K\u03a9 \n"
+ ]
+ }
+ ],
+ "prompt_number": 41
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.11 Page No 217"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#initialisation of variables\n",
+ "epsilon = 16/(36 * math.pi * 10**11) #in F/cm\n",
+ "A = 1 * 10**-2\n",
+ "W = 2 * 10**-4\n",
+ "\n",
+ "#CALCULATIONS\n",
+ "C_T = (epsilon * A)/W #in F\n",
+ "C_T=C_T*10**12\n",
+ "\n",
+ "#RESULTS\n",
+ "print('The barrier capacitance is =%.2f pF ' %C_T)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The barrier capacitance is =70.74 pF \n"
+ ]
+ }
+ ],
+ "prompt_number": 42
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.12 Page No 217"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#initialisation of variables\n",
+ "A = 1.0 #in mm^2\n",
+ "A = A * 10**-6 #in m^2\n",
+ "N_A = 3 * 10**20 #in atoms/m^3\n",
+ "q = 1.6 *10**-19 #in C\n",
+ "V_o = 0.2 #in V\n",
+ "epsilon_r=16\n",
+ "epsilon_o= 8.854*10**-12 #in F/m\n",
+ "\n",
+ "\n",
+ "#CALCULATIONS\n",
+ "epsilon=epsilon_r*epsilon_o\n",
+ "# Part (a)\n",
+ "V=-10 #in V\n",
+ "W = math.sqrt(((V_o - V) * 2 * epsilon)/(q * N_A)) #m\n",
+ "C_T1 = (epsilon * A)/W #in F\n",
+ "W=W*10**6\n",
+ "print('The width of the depletion layer for an applied reverse voltage of 10V is =%.2f \u00b5m ' %W)\n",
+ "\n",
+ "# Part (b)\n",
+ "V=-0.1 #in V\n",
+ "W = math.sqrt(((V_o - V) * 2 * epsilon)/(q * N_A)) #m\n",
+ "C_T2 = (epsilon * A)/W #in F\n",
+ "W=W*10**6\n",
+ "print('The width of the depletion layer for an applied reverse voltage of 0.1V is =%.2f \u00b5m ' %W)\n",
+ "\n",
+ "# Part (c)\n",
+ "V=0.1 #in V\n",
+ "W = math.sqrt(((V_o - V) * 2 * epsilon)/(q * N_A)) # m\n",
+ "W=W*10**6\n",
+ "print('The width of the depletion layer for an applied reverse voltage of 0.1V is =%.2f \u00b5m ' %W)\n",
+ "\n",
+ "#Part (d)\n",
+ "C_T1=C_T1*10**12\n",
+ "C_T2=C_T2*10**12\n",
+ "\n",
+ "#RESULTS\n",
+ "print('The space charge capacitance for an applied reverse voltage of 10V is =%.2f pF ' %C_T1)\n",
+ "print('The space charge capacitance for an applied reverse voltage of 0.1V is =%.2f pF' %C_T2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The width of the depletion layer for an applied reverse voltage of 10V is =7.76 \u00b5m \n",
+ "The width of the depletion layer for an applied reverse voltage of 0.1V is =1.33 \u00b5m \n",
+ "The width of the depletion layer for an applied reverse voltage of 0.1V is =0.77 \u00b5m \n",
+ "The space charge capacitance for an applied reverse voltage of 10V is =18.26 pF \n",
+ "The space charge capacitance for an applied reverse voltage of 0.1V is =106.46 pF\n"
+ ]
+ }
+ ],
+ "prompt_number": 43
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example No 4.13 Page No 218"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#initialisation of variables\n",
+ "I_o = 1.8 * 10**-9 #A\n",
+ "v = 0.6 #in V\n",
+ "Eta = 2\n",
+ "V_T = 26 #in mV\n",
+ "\n",
+ "#CALCULATIONS\n",
+ "V_T=V_T*10**-3 #in V\n",
+ "I = I_o *(math.e**(v/(Eta * V_T))) #in A\n",
+ "I=I*10**3\n",
+ "\n",
+ "#RESULTS\n",
+ "print('The current in the junction is =%.2f mA ' %I)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The current in the junction is =0.18 mA \n"
+ ]
+ }
+ ],
+ "prompt_number": 44
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example No 4.14 Page No 218"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#initialisation of variables\n",
+ "I_o = 2.4 * 10**-14\n",
+ "I = 1.5 #in mA\n",
+ "I=I*10**-3 #in A\n",
+ "Eta = 1\n",
+ "V_T = 26 #in mV\n",
+ "\n",
+ "#CALCULATIONS\n",
+ "V_T= V_T*10**-3 #in V\n",
+ "v =math.log((I + I_o)/I_o) * V_T #in V\n",
+ "\n",
+ "#RESULTS\n",
+ "print('The forward biasing voltage across the junction is =%.2f V' %v)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The forward biasing voltage across the junction is =0.65 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 45
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example No 4.15 Page No 218"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#initialisation of variables\n",
+ "I_o = 10 #in nA\n",
+ "\n",
+ "#CALCULATIONS\n",
+ "I = I_o * (-1) #in nA\n",
+ "\n",
+ "#RESULTS\n",
+ "print('The Diode current is = %.f nA ' %I)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Diode current is = -10 nA \n"
+ ]
+ }
+ ],
+ "prompt_number": 46
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example No 4.16 Page No 218"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#initialisation of variables\n",
+ "R = 4.5 #in ohm\n",
+ "I = 44.4 #in mA\n",
+ "\n",
+ "#CALCULATIONS\n",
+ "I=I*10**-3 #in A\n",
+ "V = R * I #in V\n",
+ "Eta = 1\n",
+ "V_T = 26 #in mV\n",
+ "V_T=V_T*10**-3 #in V\n",
+ "I_o = I/((math.e**(V/(Eta * V_T))) -1) #in A\n",
+ "V = 0.1 #in V\n",
+ "r_f = (Eta * V_T)/(I_o * ((math.e**(V/(Eta * V_T)))-1)) #in ohm\n",
+ "\n",
+ "#RESULTS\n",
+ "print('The diode dynamic resistance is =%.2f \u03a9' %r_f)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The diode dynamic resistance is =27.78 \u03a9\n"
+ ]
+ }
+ ],
+ "prompt_number": 47
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example No 4.18 Page No 219"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#initialisation of variables\n",
+ "V = 0.25 #in V\n",
+ "I_o = 1.2 #in \u00b5A\n",
+ "\n",
+ "#CALCULATIONS\n",
+ "I_o = I_o * 10**-6 #in A\n",
+ "V_T = 26 #in mV\n",
+ "V_T = V_T * 10**-3 #in V\n",
+ "Eta = 1\n",
+ "r = (Eta * V_T)/(I_o * (math.e**(V/(Eta * V_T)))) #in ohm\n",
+ "\n",
+ "#RESULTS\n",
+ "print('The ac resistance of the diode is =%.2f \u03a9' %r)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The ac resistance of the diode is =1.45 \u03a9\n"
+ ]
+ }
+ ],
+ "prompt_number": 48
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ " Example No 4.19 Page No 219"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#initialisation of variables\n",
+ "q = 1.6 * 10**-19 #in C\n",
+ "N_A = 3 * 10**20 #in /m^3\n",
+ "A = 1 #in \u00b5m^2\n",
+ "\n",
+ "#CALCULATIONS\n",
+ "A = A * 10**-6 #in m^2\n",
+ "V = -10 #in V\n",
+ "V_J = 0.25 #in V\n",
+ "V_B = V_J - V #in V\n",
+ "epsilon_o = 8.854 #in pF/m\n",
+ "epsilon_o = epsilon_o * 10**-12 #in F/m\n",
+ "epsilon_r = 16\n",
+ "epsilon = epsilon_o * epsilon_r\n",
+ "W = math.sqrt((V_B * 2 * epsilon)/(q * N_A)) #in m \n",
+ "\n",
+ "#RESULTS\n",
+ "C_T = (epsilon * A)/W #in pF\n",
+ "W=W*10**6\n",
+ "C_T=C_T*10**12\n",
+ "print('The width of depletion layer is =%.2f \u00b5m ' %W)\n",
+ "print('The space charge capacitance is =%.2f pF ' %C_T)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The width of depletion layer is =7.78 \u00b5m \n",
+ "The space charge capacitance is =18.21 pF \n"
+ ]
+ }
+ ],
+ "prompt_number": 49
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ " Example No 4.20 Page No 220"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#initialisation of variables\n",
+ "C_T = 100.0 #in pF\n",
+ "C_T=C_T*10**-12 #in F\n",
+ "epsilon_r = 12\n",
+ "epsilon_o = 8.854 * 10**-12 #in F/m\n",
+ "\n",
+ "#CALCULATIONS\n",
+ "epsilon = epsilon_r * epsilon_o\n",
+ "Rho_p = 5 #in ohm-cm\n",
+ "Rho_p = Rho_p * 10**-2 #in ohm-m\n",
+ "V_j = 0.5 #in V\n",
+ "V = -4.5 #in V\n",
+ "Mu_p = 500 #in cm^2\n",
+ "Mu_p = Mu_p * 10**-4 #in m^2\n",
+ "Sigma_p = 1/Rho_p #in per ohm-m\n",
+ "qN_A = Sigma_p/ Mu_p\n",
+ "V_B = V_j - V\n",
+ "W = math.sqrt((V_B * 2 * epsilon)/qN_A)\n",
+ "A = (C_T * W)/ epsilon #in m\n",
+ "D = math.sqrt(A * (4/math.pi)) #in m\n",
+ "D = D * 10**3 #in mm\n",
+ "\n",
+ "#RESULTS\n",
+ "print('The diameter is =%.2f mm ' %D)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The diameter is =1.40 mm \n"
+ ]
+ }
+ ],
+ "prompt_number": 50
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ " Example No 4.21 Page No 221"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#initialisation of variables\n",
+ "q = 1.6 * 10**-19 #in C\n",
+ "Mu_p = 500 #in cm^2/V-sec\n",
+ "Rho_p = 3.5 #in ohm-cm\n",
+ "Mu_n = 1500 #in cm^2/V-sec\n",
+ "Rho_n = 10 #in ohm-cm\n",
+ "\n",
+ "#CALCULATIONS\n",
+ "N_A = 1/(Rho_p * Mu_p * q) # in /cm^3\n",
+ "N_D = 1/(Rho_n * Mu_n * q) # in /cm^3\n",
+ "V_J = 0.56 # in V\n",
+ "n_i = 1.5 * 10**10 #in /cm^3\n",
+ "V_T = V_J/math.log((N_A * N_D)/(n_i)**2) #in V\n",
+ "T = V_T * 11600 #in K\n",
+ "T = T - 273 #in \u00b0C\n",
+ "\n",
+ "#RESULTS\n",
+ "print('The Temperature of junction is =%.2f \u00b0C ' %T)\n",
+ "print('Approximation error')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Temperature of junction is =14.28 \u00b0C \n",
+ "Approximation error\n"
+ ]
+ }
+ ],
+ "prompt_number": 51
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ " Example No 4.22 Page No 221"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#initialisation of variables\n",
+ "R = 5 #in ohm\n",
+ "I = 50 #in mA\n",
+ "I=I*10**-3 #in A\n",
+ "V = R * I #in V\n",
+ "Eta = 1\n",
+ "V_T = 26 #in mV\n",
+ "\n",
+ "#CALCULATIONS\n",
+ "V_T=V_T*10**-3 #in V\n",
+ "I_o = I/((math.e**(V/(Eta * V_T))) - 1) #in A\n",
+ "v1 = 0.2 #in V\n",
+ "r = (Eta * V_T)/(I_o * (math.e**(v1/(Eta * V_T)))) #in ohm\n",
+ "\n",
+ "#RESULTS\n",
+ "I_o=I_o*10**6\n",
+ "print('Reverse saturation current is =%.2f \u00b5A ' %I_o)\n",
+ "print('Dynamic resistance of the diode is =%.2f \u03a9 ' %r)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Reverse saturation current is =3.33 \u00b5A \n",
+ "Dynamic resistance of the diode is =3.56 \u03a9 \n"
+ ]
+ }
+ ],
+ "prompt_number": 52
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file |