diff options
author | Trupti Kini | 2016-11-30 23:31:02 +0600 |
---|---|---|
committer | Trupti Kini | 2016-11-30 23:31:02 +0600 |
commit | 62af55f706a26e839be620b57d11a82c8cce209d (patch) | |
tree | 5119890ac0ef744d287d49d22f08ad861965b9a4 /A_TEXTBOOK_OF_ELECTRICAL_TECHNOLOGY_(VOL-III)_by_B.L.Thareja/chapter45.ipynb | |
parent | 438d9fd8f7add257aab494ee58513315c78d0543 (diff) | |
download | Python-Textbook-Companions-62af55f706a26e839be620b57d11a82c8cce209d.tar.gz Python-Textbook-Companions-62af55f706a26e839be620b57d11a82c8cce209d.tar.bz2 Python-Textbook-Companions-62af55f706a26e839be620b57d11a82c8cce209d.zip |
Added(A)/Deleted(D) following books
A A_TEXTBOOK_OF_ELECTRICAL_TECHNOLOGY_(VOL-III)_by_B.L.Thareja/chapter40.ipynb
A A_TEXTBOOK_OF_ELECTRICAL_TECHNOLOGY_(VOL-III)_by_B.L.Thareja/chapter41.ipynb
A A_TEXTBOOK_OF_ELECTRICAL_TECHNOLOGY_(VOL-III)_by_B.L.Thareja/chapter43.ipynb
A A_TEXTBOOK_OF_ELECTRICAL_TECHNOLOGY_(VOL-III)_by_B.L.Thareja/chapter44.ipynb
A A_TEXTBOOK_OF_ELECTRICAL_TECHNOLOGY_(VOL-III)_by_B.L.Thareja/chapter45.ipynb
A A_TEXTBOOK_OF_ELECTRICAL_TECHNOLOGY_(VOL-III)_by_B.L.Thareja/chapter46.ipynb
A A_TEXTBOOK_OF_ELECTRICAL_TECHNOLOGY_(VOL-III)_by_B.L.Thareja/chapter47.ipynb
A A_TEXTBOOK_OF_ELECTRICAL_TECHNOLOGY_(VOL-III)_by_B.L.Thareja/chapter49.ipynb
A A_TEXTBOOK_OF_ELECTRICAL_TECHNOLOGY_(VOL-III)_by_B.L.Thareja/chapter50.ipynb
A A_TEXTBOOK_OF_ELECTRICAL_TECHNOLOGY_(VOL-III)_by_B.L.Thareja/screenshots/figure_1.png
A A_TEXTBOOK_OF_ELECTRICAL_TECHNOLOGY_(VOL-III)_by_B.L.Thareja/screenshots/figure_2.png
A A_TEXTBOOK_OF_ELECTRICAL_TECHNOLOGY_(VOL-III)_by_B.L.Thareja/screenshots/figure_3.png
Diffstat (limited to 'A_TEXTBOOK_OF_ELECTRICAL_TECHNOLOGY_(VOL-III)_by_B.L.Thareja/chapter45.ipynb')
-rw-r--r-- | A_TEXTBOOK_OF_ELECTRICAL_TECHNOLOGY_(VOL-III)_by_B.L.Thareja/chapter45.ipynb | 1281 |
1 files changed, 1281 insertions, 0 deletions
diff --git a/A_TEXTBOOK_OF_ELECTRICAL_TECHNOLOGY_(VOL-III)_by_B.L.Thareja/chapter45.ipynb b/A_TEXTBOOK_OF_ELECTRICAL_TECHNOLOGY_(VOL-III)_by_B.L.Thareja/chapter45.ipynb new file mode 100644 index 00000000..6a963318 --- /dev/null +++ b/A_TEXTBOOK_OF_ELECTRICAL_TECHNOLOGY_(VOL-III)_by_B.L.Thareja/chapter45.ipynb @@ -0,0 +1,1281 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# CHAPTER 45 : RATING AND SERVICE CAPACITY" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 45.1 , PAGE NO :- 1796" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Size of motor = 66.0 KW.\n" + ] + } + ], + "source": [ + "'''An electric motor operates at full-load of 100KW for 10 minutes,at 3/4 full load for the next 10 minutes and at 1/2 load for\n", + "next 20 minutes,no-load for the next 20 minutes and this cycle repeats continously.Find the continous rating of the suitable \n", + "motor.'''\n", + "\n", + "import math as m\n", + "#Loads\n", + "l1 = 100.0 #kW (load 1)\n", + "l2 = 0.75*l1 #kW (load 2)\n", + "l3 = 0.5*l1 #kW (load 3)\n", + "l4 = 0.0 #kW (no-load)\n", + "\n", + "#coresponding time\n", + "t1 = 10.0 #minutes\n", + "t2 = 10.0 #minutes\n", + "t3 = 20.0 #minutes\n", + "t4 = 20.0 #minutes\n", + "\n", + "#size of motor required\n", + "size = m.sqrt((l1*l1*t1 + l2*l2*t2 + l3*l3*t3 + l4*l4*t4)/(t1+t2+t3+t4/3)) #kW\n", + "print \"Size of motor =\",round(size),\"KW.\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 45.2 , PAGE NO :- 1797" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Size of motor = 141.0 KW.\n" + ] + } + ], + "source": [ + "'''An electric motor has to be selected for a load which rises uniformly from zero to 200KW in 10 minutes after which it remains \n", + "constant at 200KW for the next 10 minutes,followed by a no-load period of 15 minutes before the cycle repeats itself.Estimate a \n", + "suitable size of continuosly rated motor.'''\n", + "\n", + "import math as m\n", + "#Loads\n", + "l1 = 200.0/2 #kW (load 1)\n", + "l2 = 200.0 #kW (load 2)\n", + "l3 = 0.0 #kW (no-load)\n", + "\n", + "#coresponding time\n", + "t1 = 10.0 #minutes\n", + "t2 = 10.0 #minutes\n", + "t3 = 15.0 #minutes\n", + "\n", + "\n", + "#size of motor required\n", + "size = m.sqrt((l1*l1*t1 + l2*l2*t2 + l3*l3*t3)/(t1+t2+t3/3)) #kW\n", + "print \"Size of motor =\",round(size),\"KW.\"\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 45.3 , PAGE NO :- 1797 " + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Size of motor = 70.0 KW.\n" + ] + } + ], + "source": [ + "'''A certain motor has to perform the following duty cycle:\n", + "(a) 100KW for 10 minutes (No-load for 5 minutes)\n", + "(b) 50KW for 8 minutes (No-load for 4 minutes)\n", + "The duty cycle is repeated indefinitely.Draw the curve for the load cycle.Assuming that the heating is propotional to the square of\n", + "the load,determine suitable size of a continuosly-rated motor.'''\n", + "\n", + "import math as m\n", + "\n", + "#Loads\n", + "l1 = 100.0 #KW (load 1)\n", + "l3 = 50.0 #KW (load 2)\n", + "\n", + "#Time\n", + "t1 = 10.0 #minutes\n", + "t2 = 5.0 #minutes\n", + "t3 = 8.0 #minutes\n", + "t4 = 4.0 #minutes\n", + "\n", + "#Size of the motor is\n", + "size = m.sqrt((l1*l1*t1 + l3*l3*t3)/(t1+t2+t3+t4)) #KW\n", + "print \"Size of motor = \",round(size,-1),\"KW.\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 45.4 , PAGE NO :- 1799" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Size of motor = 69.07 H.P.\n" + ] + } + ], + "source": [ + "'''A motor has to perform the following duty cycle :-\n", + "(i) 100 H.P (10 mins) (ii) No Load (5 mins)\n", + "(iii)60 H.P (8 mins) (iv) No Load (4 mins)\n", + "which is repeated infinitely.Determine the suitable size of continuosly rated motor.'''\n", + "\n", + "import math as m\n", + "\n", + "#Loads\n", + "l1 = 100.0 #H.P (load 1)\n", + "l3 = 60.0 #H.P (load 2)\n", + "\n", + "#Time\n", + "t1 = 10.0 #minutes\n", + "t2 = 5.0 #minutes\n", + "t3 = 8.0 #minutes\n", + "t4 = 4.0 #minutes\n", + "\n", + "#Size of the motor is\n", + "size = m.sqrt((l1*l1*t1 + l3*l3*t3)/(t1+t2+t3+t4)) #H.P\n", + "print \"Size of motor = \",round(size,2),\"H.P.\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 45.5 , PAGE nO :- 1800" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Size of motor = 48.11 H.P .\n" + ] + } + ], + "source": [ + "'''A motor working in a coal mine has to exert power starting from zero and rising uniformly to 100 H.P in 5 min\n", + "after which it works at a constant rate of 50 H.P for 10 min.Then, a no load period of 3 min.The cycle is repeated\n", + "indefinitely,estimate suitable size of motor.'''\n", + "\n", + "import math as m\n", + "\n", + "#Load\n", + "l1 = 100.0 #H.P (load 1)\n", + "l2 = 50.0 #H.P (load 2)\n", + "l3 = 0.0 #H.P (no-load)\n", + "\n", + "#Time\n", + "t1 = 5.0 #min (time 1) \n", + "t2 = 10.0 #min (time 2)\n", + "t3 = 3.0 #min (time 3)\n", + "\n", + "#Using Simpson's one-third rule of Integration\n", + "rating = m.sqrt((1.0/3*l1*l1*t1 + l2*l2*t2)/(t1 + t2 + t3) ) #H.P\n", + "\n", + "print \"Size of motor =\",round(rating,2),\"H.P .\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 45.6 , PAGE NO :- 1800" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Size of motor = 263.19 H.P .\n", + "Therefore, suitable size of motor is 300.0 H.P\n" + ] + } + ], + "source": [ + "'''A motor has following duty cycle\n", + "Load rising from 200 to 400 H.P - 4 min.\n", + "Uniform load 300 H.P - 2 min.\n", + "Regenerative braking (50 H.P to 0) - 1 min.\n", + "Idle - 1 min.\n", + "Estimate suitable H.P rating of the motor that can be used.'''\n", + "\n", + "import math as m\n", + "\n", + "#Loads\n", + "l1 = 200.0 #H.P (load 1)\n", + "l2 = 400.0 #H.P (load 2)\n", + "l3 = 300.0 #H.P (load 3)\n", + "l4 = 50.0 #H.P (load 4)\n", + "\n", + "#Time\n", + "t1 = 4.0 #min (time 1)\n", + "t2 = 2.0 #min (time 2)\n", + "t3 = 1.0 #min (time 3)\n", + "t4 = 1.0 #min (idle time)\n", + "\n", + "rating = m.sqrt((1.0/3*(l1*l1 + l1*l2 + l2*l2)*t1 + l3*l3*t2 + 1.0/3*l4*l4*t3)/(t1 + t2 + t3 + t4)) #H.P\n", + "\n", + "print \"Size of motor = \",round(rating,2),\"H.P .\"\n", + "print \"Therefore, suitable size of motor is\",round(rating,-2),\"H.P\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 45.7 , PAGE NO :- 1802" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Suitable motor size = 30.0 H.P .\n" + ] + } + ], + "source": [ + "'''The load cycle of a motor for 15 min in driving some equipment is as follows :\n", + "0 - 5 min - 30 H.P\n", + "5 - 9 min - No load\n", + "9 - 12 min - 45 H.P\n", + "12 - 15 min - No load\n", + "The load cycle is repeated indefinitely.Suggest a suitable size of continuosly rated motor.'''\n", + "\n", + "import math as m\n", + "\n", + "#Loads\n", + "l1 = 30.0 #H.P\n", + "l3 = 45.0 #H.P\n", + "\n", + "#Time\n", + "t1 = 5.0 #min\n", + "t2 = 4.0 #min\n", + "t3 = 3.0 #min\n", + "t4 = 3.0 #min\n", + "\n", + "#Size of motor is\n", + "Size = m.sqrt((l1*l1*t1 + l3*l3*t3)/(t1+t2+t3+t4)) #H.P\n", + "print \"Suitable motor size =\",round(Size,-1),\"H.P .\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 45.8 , PAGE NO :- 1802" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Size of continously rated motor = 505.0 H.P .\n" + ] + } + ], + "source": [ + "'''A motor driving a colliery winder has the following acceleration period :\n", + " load cycle 0-15 sec : Load rises uniformly from 0-1000 H.P .\n", + " Full speed period : 15-85 sec. Load constant at 600 H.P .\n", + " Decceleration period : 85-95 sec. Regenerative braking the H.P returned uniformly from 200 to 0 H.P.\n", + " 95 - 120 sec : Motor stationary.\n", + "Estimate the size of continuosly rated motor.'''\n", + "\n", + "import math as m\n", + "\n", + "#Loads\n", + "l1 = 1000.0 #H.P (load 1)\n", + "l2 = 600.0 #H.P (load 2)\n", + "l3 = 200.0 #H.P (load 3)\n", + "\n", + "#Time\n", + "t1 = 15.0 #s\n", + "t2 = 70.0 #s\n", + "t3 = 10.0 #s\n", + "t4 = 25.0 #s\n", + "\n", + "#Size of motor is\n", + "\n", + "size = m.sqrt((l1*l1*t1/3 + l2*l2*t2 + l3*l3*t3/3)/(t1+t2+t3+t4)) #H.P\n", + "\n", + "while(round(size)%5!=0):\n", + " size = size + 1\n", + " \n", + "print \"Size of continously rated motor = \",round(size),\"H.P .\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 45.9 , PAGE NO :- 1807" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1/2 hour rating = 75.13 KW.\n" + ] + } + ], + "source": [ + "'''A 40KW motor when run continuosly on full load,attains a temperature of 35C , above the surrounding air.Its heating time \n", + "constant is 90 min.What would be the 1/2 hour rating of the motor for this temperature rise?Assume that the machine cools down \n", + "completely between each load period and that the losses are propotional to square of the load.'''\n", + "\n", + "\n", + "from sympy import Symbol,Eq,solve\n", + "import math as m\n", + "# Let 'P' KW be 1/2 hour rating of the motor\n", + "# theta1 - final temp rise at P KW\n", + "# theta2 - final temp rise at 40 KW\n", + "#Losses at P KW is directlt propotional to P^2\n", + "\n", + "theta2 = 35.0 # *C\n", + "tau = 1.5 #hr (time constant)\n", + "t = 0.5 #hr (motor running time)\n", + "\n", + "#Now, (theta1/theta2) = loss at P KW/loss at 40KW = (P/40)^2\n", + "P = Symbol('P')\n", + "theta1 = theta2*(P/40)*(P/40) #*C\n", + "\n", + "#Now, theta2 = theta1*(1 - exp(-t/tau))\n", + "\n", + "theta2a = theta1*(1-m.exp(-t/tau)) #*C\n", + "eq = Eq(theta2,theta2a)\n", + "P = solve(eq)\n", + "P1 = P[1] #KW\n", + "\n", + "print \"1/2 hour rating = \",round(P1,2),\"KW.\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 45.10 , PAGE NO :- 1807" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1 hour rating = 24.0 H.P.\n" + ] + } + ], + "source": [ + "'''Determine the one-hour rating of a 15 H.P motor having heating time contant of 2 hours.The motor attains the temperature of\n", + "40*C on continuos run at full load.Assume that the losses are propotional to square of the load and the motor is allowed to cool\n", + "down to the ambient temperature before being loaded again.'''\n", + "\n", + "from sympy import Symbol,Eq,solve\n", + "import math as m\n", + "# Let 'P' H.P be 1 hour rating of the motor\n", + "# theta2 - final temp rise at P H.P\n", + "# theta1 - final temp rise at 15 H.P\n", + "#Losses at P H.P is directlt propotional to P^2\n", + "\n", + "theta1 = 40.0 # *C\n", + "tau = 2.0 #hr (time constant)\n", + "t = 1.0 #hr (motor running time)\n", + "\n", + "#Now, (theta2/theta1) = loss at P H.P/loss at 15 H.P = (P/15)^2\n", + "P = Symbol('P')\n", + "theta2 = theta1*(P/15)*(P/15) #*C\n", + "\n", + "#Now, theta1 = theta2*(1 - exp(-t/tau))\n", + "\n", + "theta1a = theta2*(1-m.exp(-t/tau)) #*C\n", + "eq = Eq(theta1,theta1a)\n", + "P = solve(eq)\n", + "P1 = P[1] #H.P\n", + "\n", + "print \"1 hour rating = \",round(P1),\"H.P.\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 45.11 , PAGE NO :- 1808" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Temperature rise of motor = 35.6 *C .\n" + ] + } + ], + "source": [ + "'''The heating and cooling time constants of a motor are 1 hour and 2 hours respectively.Final temperature rise attained is \n", + "100*C.This motor runs at full load for 30 minutes and then kept idle for 12 min and the cycle is repeated indefinitely.Determine \n", + "the temperature rise of motor after one cycle.'''\n", + "\n", + "import math as m\n", + "\n", + "theta2 = 100.0 #*C (Final temperature rise)\n", + "tau_h = 1.0 #hr (heating time constant)\n", + "tau_c = 2.0 #hr (cooling time constant)\n", + "t1 = 30.0/60 #hr (motor running time)\n", + "t2 = 12.0/60 #hr (motor idle time)\n", + "\n", + "#Heating cycle\n", + "theta1 = theta2*(1 - m.exp(-t1/tau_h))\n", + "\n", + "#Cooling cycle\n", + "thetac = theta1*m.exp(-t2/tau_c)\n", + "\n", + "print \"Temperature rise of motor = \",round(thetac,2),\"*C .\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 45.12 , PAGE NO :- 1808" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Maximum overload that can be carried by motor = 25.82 KW.\n" + ] + } + ], + "source": [ + "'''Calculate the maximum overload that can be carried by a 20KW output motor,if the temperature rise is not to exceed 50*C after\n", + "one hour on overload .The temperature rise on full load,after 1 hour is 30*C and after 2 hour is 40*C . Assume losses propotional\n", + "to square of load.'''\n", + "\n", + "from sympy import solve,Symbol,Eq\n", + "import math as m\n", + "\n", + "# As theta = thetaf*(1 - exp(-t/T))\n", + "\n", + "theta1 = 30.0 #*C (temperature rise in time1)\n", + "t1 = 1 #hr (time 1)\n", + "theta2 = 40.0 #*C (temperature rise in time2)\n", + "t2 = 2 #hr (time 2)\n", + "#Now theta1/theta2 = (1-exp(-t1/T))/(1-exp(-t2/T))\n", + "#Let us assume that x = exp(-1/T).Therefore\n", + "x = Symbol('x')\n", + "ratio1 = (1 - x**t1)/(1-x**t2) #(theta1/theta2)\n", + "ratio2 = theta1/theta2\n", + "\n", + "#As ratio1 = ratio2\n", + "eq = Eq(ratio1,ratio2)\n", + "x1 = solve(eq)\n", + "x = x1[0] #variable \n", + "\n", + "#x = exp(-1/T) . Therefore,\n", + "T = -1/m.log(x)\n", + "\n", + "#Now, theta1 = thetaf1*(1 - exp(-t1/T))\n", + "\n", + "thetaf1 = theta1/(1-x**t1) #*C\n", + "\n", + "#Also theta3 = thetaf3*(1 - exp(-t3/T))\n", + "theta3 = 50.0 #*C (max temp)\n", + "t3 = 1 #hr (time 3) \n", + "thetaf3 = theta3/(1-x**t3) #*C\n", + "\n", + "#Given that temp is directly propotional to square of power output i.e thetaf1/thetaf3 = (Power1/Power3)^2\n", + "P1 = 20.0 #KW\n", + "P3 = m.sqrt(thetaf3/thetaf1)*P1 #KW\n", + "\n", + "print \"Maximum overload that can be carried by motor = \",round(P3,2),\"KW.\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 45.13 , PAGE NO :- 1809" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Final steady temperature rise = 50.0 *C.\n", + "Cooling time constant = 0.93 hr\n" + ] + } + ], + "source": [ + "'''In a transformer the temperature rise is 25*C after 1 hour and 37.5*C after 2 hours,starting from cold conditions.Calculate \n", + "its final steady temperature rise and the heating time constant.If the transformer temerature falls from the final steady state\n", + "value to 40*C in 1.5 hours when disconnected,calculate its cooling time constant.Ambient temperature is 30*C.'''\n", + "\n", + "from sympy import solve,Symbol,Eq\n", + "import math as m\n", + "\n", + "# As theta = thetaf*(1 - exp(-t/T))\n", + "\n", + "theta1 = 25.0 #*C (temperature rise in time1)\n", + "t1 = 1 #hr (time 1)\n", + "theta2 = 37.5 #*C (temperature rise in time2)\n", + "t2 = 2 #hr (time 2)\n", + "#Now theta1/theta2 = (1-exp(-t1/T))/(1-exp(-t2/T))\n", + "#Let us assume that x = exp(-1/T).Therefore\n", + "x = Symbol('x')\n", + "ratio1 = (1 - x**t1)/(1-x**t2) #(theta1/theta2)\n", + "ratio2 = theta1/theta2\n", + "\n", + "#As ratio1 = ratio2\n", + "eq = Eq(ratio1,ratio2)\n", + "x1 = solve(eq)\n", + "x = x1[0] #variable \n", + "\n", + "#x = exp(-1/T) . Therefore,\n", + "T = -1/m.log(x)\n", + "\n", + "#As theta1 = thetaf1*(1 - exp(-t1/T))\n", + "thetaf1 = theta1/(1-x**t1) #*C\n", + "print \"Final steady temperature rise =\",round(thetaf1,2),\"*C.\"\n", + "\n", + "#Cooling conditions\n", + "theta_rise = 40.0 - 30.0 #*C (temp rise above ambient conditions)\n", + "t3 = 1.5 #hr (time taken)\n", + "\n", + "#Now, theta_rise = thetaf1*exp(-t3/T)\n", + "T = -t3/m.log(theta_rise/thetaf1) #hr\n", + "print \"Cooling time constant =\",round(T,2),\"hr\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 45.14 , PAGE NO :- 1809" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Temperature of machine = 70.58 *C.\n" + ] + } + ], + "source": [ + "'''The initial temperature of machine is 20*C.Calculate the temperature of machine after 1.2 hours,if its final steady \n", + "temperature rise is 85*C and the heating time constant is 2.4 hours.Ambient temperature is 25*C.''' \n", + "\n", + "import math as m\n", + "thetaf = 85.0 #*C (final temp. rise)\n", + "theta1 = 20.0 #*C (initial temp)\n", + "t1 = 1.2 #hr (time taken)\n", + "T = 2.4 #hr (heat time constant)\n", + "#Now, Temperature rise above coling medium is\n", + "theta = thetaf - (thetaf - theta1)*m.exp(-t1/T) #*C\n", + "\n", + "#Therefore, temp. of machine after t1 time is\n", + "temp = theta + 25.0\n", + "\n", + "print \"Temperature of machine =\",round(temp,2),\"*C.\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 45.15 , PAGE NO :- 1809" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Final steady temperature rise = 45.0 *C .\n", + "Time constant = 2.47 hr.\n", + "The steady temperature rise = 30.0 *C .\n" + ] + } + ], + "source": [ + "'''The following rises were observed in a teperature rise test on a D.C machine at full loads. :-\n", + "After 1 hour - 15*C\n", + "After 2 hours - 25*C\n", + "Find out (i) Final steady temperature rise and time constant.\n", + " (ii)The steady temperature rise after 1 hour at 50% overload,from cold.\n", + "Assume that the final temperature rise on 50% overload is 90*C.'''\n", + "\n", + "\n", + "from sympy import solve,Symbol,Eq\n", + "import math as m\n", + "\n", + "# As theta = thetaf*(1 - exp(-t/T))\n", + "\n", + "theta1 = 15.0 #*C (temperature rise in time1)\n", + "t1 = 1 #hr (time 1)\n", + "theta2 = 25.0 #*C (temperature rise in time2)\n", + "t2 = 2 #hr (time 2)\n", + "#Now theta1/theta2 = (1-exp(-t1/T))/(1-exp(-t2/T))\n", + "#Let us assume that x = exp(-1/T).Therefore\n", + "x = Symbol('x')\n", + "ratio1 = (1 - x**t1)/(1-x**t2) #(theta1/theta2)\n", + "ratio2 = theta1/theta2\n", + "\n", + "#As ratio1 = ratio2\n", + "eq = Eq(ratio1,ratio2)\n", + "x1 = solve(eq)\n", + "x = x1[0] #variable \n", + "\n", + "#x = exp(-1/T) . Therefore,\n", + "T = -1/m.log(x) #hr (time constant)\n", + "\n", + "#As theta1 = thetaf1*(1 - exp(-t/T))\n", + "thetaf1 = theta1/(1-x**t1) #*C (Final steady temp. rise)\n", + "print \"Final steady temperature rise =\",round(thetaf1,2),\"*C .\"\n", + "print \"Time constant =\",round(T,2),\"hr.\"\n", + "\n", + "#(ii) Now at 50% overload .Final temp rise is\n", + "thetaf3 = 90.0 #*C\n", + "t3 = 1 #hr (time taken)\n", + "#As , theta = thetaf*(1 - exp(-t/T))\n", + "theta3 = thetaf3*(1 - m.exp(-t3/T)) #*C\n", + "\n", + "print \"The steady temperature rise =\",round(theta3,2),\"*C .\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 45.16 , PAGE NO :- 1813" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Moment of Inertia = 2.947543e+06 kg-m^2\n" + ] + } + ], + "source": [ + "'''The following data refers to a 500 H.P rolling mill,induction motor equipped with a flywheel.\n", + " No load speed -> 40 rpm\n", + " Slip at full load(torque) -> 12%\n", + " Load torque during actual rolling -> 41500 kg-m\n", + " Duration of each rolling period -> 10 sec.\n", + "Determine inertia of flywheel required in the above case to limit motor torque to twice its full load value.Neglect no-load \n", + "losses and assume that the rolling mill torque falls to zero between each rolling period.Assume motor slip propotional to\n", + "full load torque.'''\n", + "\n", + "\n", + "import math as m\n", + "N = 40.0 #rpm (No load speed)\n", + "P = 500.0*(735.5) #W (Power)\n", + "w = 2*(3.14)*N/60 #rad/sec (angular speed)\n", + "T0 = 0 #kg-m (initial torque)\n", + "Tl = 41500.0 #kg-m (Torque load) \n", + "t = 10.0 #sec (time taken)\n", + "s = 0.12 # (slip)\n", + "g = 9.81 #m/s^2 \n", + "Tfull = P/(w*(1-s)) #N-m (full load torque)\n", + "Tfull = Tfull/g #kg-m\n", + "Tm = 2*Tfull #kg-m (Max torque)\n", + "S = 2*3.14*(0.12*40)/60\n", + "#Now, S = K*Tfl\n", + "K = S/Tfull #constant\n", + "#Also, Tm = Tl - (Tl-T0)*exp(-tg/IK) .Therefore I is\n", + "I =(-t*g)/(K*m.log((Tl-Tm)/(Tl-T0))) #kg-m^2\n", + "\n", + "print \"Moment of Inertia = %e kg-m^2\" %round(I,2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 45.17 , PAGE NO :- 1814 " + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tm = 47.84 kg-m.\n", + "Actual Speed = 942.59 rpm.\n" + ] + } + ], + "source": [ + "'''A 6 pole,50 Hz Induction Motor has a flywheel of 1200 kg-m^2 as moment of inertia.Load torque is 100 kg-m for 10 sec.No load\n", + "period is long enough for the flywheel,to regain its full speed.Motor has a slip of 6% at a torque of 50 kg-m.Calculate\n", + "(i)Maximum torque exerted by motor\n", + "(ii)Speed at the end of deacceleration period.'''\n", + "\n", + "import math as m\n", + "\n", + "Tl = 100.0 #kg-m (load torque)\n", + "t = 10.0 #s (time taken)\n", + "g = 9.81 #m/s^2 (gravitational acceleration)\n", + "I = 1200.0 #kg-m^2 (moment of inertia)\n", + "p = 6 # (poles)\n", + "f = 50.0 #Hz (frequency)\n", + "s = 0.06 # (slip)\n", + "Tfull = 50.0 #kg-m (full load torque)\n", + "Ns = 120*f/p\n", + "Nr = (1-s)*Ns\n", + "\n", + "#Now, S = K*T\n", + "S = 2*3.14*(Ns - Nr)/60 #rad/sec\n", + "K = S/Tfull #constant\n", + "\n", + "#As Tm = Tl*(1-exp(-t*g/I*K))\n", + "Tm = Tl*(1 - m.exp(-t*g/(I*K))) #kg-m\n", + "print \"Tm = \",round(Tm,2),\"kg-m.\"\n", + "\n", + "#(ii)Slip speed\n", + "S = K*Tm #rad/sec (slip speed)\n", + "S = S*(60/(2*3.14)) #rpm\n", + "N = Ns - S #rpm (actual speed)\n", + "print \"Actual Speed =\",round(N,2),\"rpm.\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 45.18 , PAGE NO :- 1815" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Speed 1 = 691.75 rpm.\n", + "Speed 2 = 731.62 rpm.\n", + "Speed 1 = 683.89 rpm.\n", + "Speed 2 = 731.0 rpm.\n", + "Speed 1 = 683.62 rpm.\n", + "Speed 2 = 730.98 rpm.\n" + ] + } + ], + "source": [ + "'''An Induction Motor equipped with a flywheel is driving a rolling mill which requires a load torque of 1900 N-m for 10 sec\n", + "followed by 250 N-m for 30 sec.This cycle being repeated indefinitely.The synchronus speed of motor is 750 rpm and it has slip of\n", + "10% when delivering 1400 N-m torque.The total Moment of Inertia of the flywheel and other rotating parts is 2100 kg-m^2.Draw the \n", + "curves showing the torque exerted by the motor and the speed for five complete cycles,assuming the initial torque is zero.'''\n", + "\n", + "import math as m\n", + "\n", + "Tl1 = 1900.0 #N-m (load torque 1)\n", + "t1 = 10.0 #s (time 1)\n", + "Tl2 = 280.0 #N-m (load torque 2)\n", + "t2 = 30.0 #s (time 2)\n", + "s = 0.1 # (slip)\n", + "Ns = 750.0 #rpm (synchronus speed)\n", + "I = 2100.0 #kg-m^2 (moment of inertia)\n", + "Tm = 1400.0 #N-m\n", + "S = Ns*s #rpm (slip speed)\n", + "S = S*(2*3.14/60) #rad/sec \n", + "\n", + "K = S/Tm #constant\n", + "T0 = 0 #N-m\n", + "#(i) During First Cycle\n", + "Tm = Tl1 -(Tl1-T0)*m.exp(-t1/(I*K)) #N-m\n", + "s2 = K*Tm*(60/(2*3.14)) #rpm\n", + "Speed1 = Ns - s2 #rpm\n", + "print \"Speed 1 = \",round(Speed1,2),\"rpm.\"\n", + "\n", + "# Now, Tm = T0 + (Tm' - T0)*exp(-t/(I*K))\n", + "Tmb = Tm #N-m\n", + "T0 = Tl2 #N-m (No Load Torque)\n", + "\n", + "Tm = T0 + (Tmb - T0)*m.exp(-t2/(I*K))\n", + "S2 = K*Tm*(60/(2*3.14)) #rpm\n", + "Speed2 = Ns - S2 #rpm\n", + "print \"Speed 2 = \",round(Speed2,2),\"rpm.\"\n", + "#################################################################\n", + "\n", + "#(ii) During Second cycle\n", + "T0 = Tm\n", + "Tm2 = Tl1 -(Tl1-T0)*m.exp(-t1/(I*K)) #N-m\n", + "s2 = K*Tm2*(60/(2*3.14)) #rpm\n", + "Speed1 = Ns - s2 #rpm\n", + "print \"Speed 1 = \",round(Speed1,2),\"rpm.\"\n", + "\n", + "# Now, Tm = T0 + (Tm' - T0)*exp(-t/(I*K))\n", + "Tm2b = Tm2 #N-m\n", + "T0 = Tl2 #N-m (No Load Torque)\n", + "\n", + "Tm = T0 + (Tm2b - T0)*m.exp(-t2/(I*K))\n", + "S2 = K*Tm*(60/(2*3.14)) #rpm\n", + "Speed2 = Ns - S2 #rpm\n", + "print \"Speed 2 = \",round(Speed2,2),\"rpm.\"\n", + "###################################################################\n", + "\n", + "#(iii) During Third cycle\n", + "T0 = Tm\n", + "Tm3 = Tl1 -(Tl1-T0)*m.exp(-t1/(I*K)) #N-m\n", + "s2 = K*Tm3*(60/(2*3.14)) #rpm\n", + "Speed1 = Ns - s2 #rpm\n", + "print \"Speed 1 = \",round(Speed1,2),\"rpm.\"\n", + "\n", + "# Now, Tm = T0 + (Tm' - T0)*exp(-t/(I*K))\n", + "Tm3b = Tm3 #N-m\n", + "T0 = Tl2 #N-m (No Load Torque)\n", + "\n", + "Tm = T0 + (Tm3b - T0)*m.exp(-t2/(I*K))\n", + "S2 = K*Tm*(60/(2*3.14)) #rpm\n", + "Speed2 = Ns - S2 #rpm\n", + "print \"Speed 2 = \",round(Speed2,2),\"rpm.\"\n", + "####################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## EXAMPLE 45.19 , PAGE NO :- 1817" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Moment of inertia = 2860.94 kg-m^2.\n" + ] + } + ], + "source": [ + "'''A motor fitted with a flywheel supplies a load torque of 150 kg-m for 15 sec.During the no-load period,the flywheel regains \n", + "its original speed.The motor torque is required to be limited to 85 kg-m.Determine moment of inertia of flywheel.\n", + "The no-load speed of motor is 500 rpm and it has slip of 10% on full load.'''\n", + "\n", + "from sympy import Symbol,solve,Eq,exp\n", + "import math as m\n", + "\n", + "Tm = 85.0 #kg-m (Max torque)\n", + "Tl = 150.0 #kg-m (load torque with flywheel)\n", + "T0 = 0 #kg-m (constant load torque)\n", + "t = 15.0 #s (time)\n", + "N = 500.0 #rpm (no load speed)\n", + "s = 0.1 # (slip)\n", + "g = 9.82 #m/s^2 \n", + "# s = K*T\n", + "K = 2*(3.14)*N*s/(60*Tm) #constant\n", + "\n", + "# As Tm = Tl*(1 - exp(-t*g/(I*K)))\n", + "\n", + "I =(-t*g)/(K*m.log(1 - Tm/Tl)) #kg-m^2 (Moment of inertia)\n", + "\n", + "print \"Moment of inertia =\",round(I,2),\"kg-m^2.\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 45.20 , PAGE NO :- 1817" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Moment of inertia of flywheel = 1908.86 kg-m^2.\n", + "Time taken after removal of additional load = 8.88 s.\n" + ] + } + ], + "source": [ + "'''A 3-phase ,50 KW,6 pole,960 rpm induction motor has a constant load torque of 300 N-m and at wide intervals additional \n", + "torque of 1500 N-m for 10 sec.Calculate\n", + "(a)The moment of inertia of the flywheel used for load equalization,if the motor torque is not to exceed twice the rated torque.\n", + "(b)Time taken after removal of additional load,before the motor torque becomes 700 N-m.'''\n", + "\n", + "from sympy import Symbol,Eq,solve\n", + "import math as m\n", + "\n", + "P = 50.0e+3 #W (output power)\n", + "Nr = 960.0 #rpm (rotational speed)\n", + "p = 6.0 # (no. of poles)\n", + "t = 10.0 #s (time)\n", + "T0 = 300.0 #N-m (constant load torque)\n", + "Tl = T0 + 1500.0 #N-m (total load torque)\n", + "f = 50.0 #Hz (frequency) \n", + "\n", + "# Power = T*w (torque*ang_speed)\n", + "T = P/(2*3.14*Nr/60) #N-m (Full-load torque)\n", + "Tm = 2*T #N-m (Max torque)\n", + "\n", + "Ns = 120*f/p #rpm (synchronus speed)\n", + "\n", + "#Slip speed\n", + "sl = Ns-Nr #rpm\n", + "\n", + "#Now, s = K*T\n", + "K = 2*3.14*sl/(60*T) #constant\n", + "\n", + "#As Tm = Tl - (Tl - T0)*exp(-t/I*K)\n", + "\n", + "I = (-t)/(K*m.log((Tl - Tm)/(Tl - T0))) #kg-m^2 (moment of inertia)\n", + "\n", + "print \"Moment of inertia of flywheel =\",round(I,2),\"kg-m^2.\"\n", + "\n", + "#(b) Tm2 = T0 + (Tm-T0)*exp(-t/I*K)\n", + "Tm2 = 700.0 #N-m (Max torque - case 2)\n", + "\n", + "t1= (-I*K)*m.log((Tm2 - T0)/(Tm - T0)) #s (time after removal of load)\n", + "print \"Time taken after removal of additional load =\",round(t1,2),\"s.\"" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## EXAMPLE 45.21 , PAGE NO :- 1818" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Moment of Inertia = 551.35 kg-m^2.\n" + ] + } + ], + "source": [ + "'''A 3-phase,8 pole,50 cps.Induction Motor equipped with a flywheel supplies a constant load torque of 100 N-m and at wide \n", + "intervals an additional load torque of 300 N-m for 6 sec.The motor runs at 735 rpm at 100 N-m torque.Find moment of inertia of \n", + "the flywheel,if the motor torque is not to exceed 250 N-m.'''\n", + "\n", + "from sympy import Symbol,Eq,solve\n", + "import math as m\n", + "\n", + "T0 = 100.0 #N-m (constant load torque)\n", + "Tl = T0 + 300.0 #N-m (Total load torque)\n", + "f = 50.0 #Hz (frequency)\n", + "P = 8.0 # (poles)\n", + "Tm = 250.0 #N-m (Max torque) \n", + "Ns = 120*f/P #rpm (Synchronus speed)\n", + "sl = Ns - 735.0 #rpm (Slip speed)\n", + "t = 6.0 #s (time)\n", + "#Now, s = K*T0\n", + "K = 2*3.14*sl/(60*T0) #constant\n", + "\n", + "#Also, Tm = Tl - (Tl-T0)*exp(-t/I*K)\n", + "\n", + "I = -t/(K*m.log((Tl - Tm)/(Tl-T0))) #kg-m^2 (moment of inertia)\n", + "\n", + "print \"Moment of Inertia =\",round(I,2),\"kg-m^2.\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 45.22 , PAGE NO :- 1818" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Maximum torque developed by motor = 615.35 N-m.\n", + "Speed at the end of deacceleration period = 938.47 rpm.\n" + ] + } + ], + "source": [ + "'''A 6 pole,50 Hz,3-phase wound rotor Induction Motor has a flywheel coupled to its shaft.The total moment of inertia is \n", + "1000kg-m^2.Load torque is 1000 N-m for 10 sec followed by a no-load period which is long enough for the motor to reach its \n", + "no-load speed.Motor has a slip of 5% at a torque of 500 N-m.Find\n", + "(a)Maximum torque developed by motor\n", + "(b)Speed at the end of deacceleration period.'''\n", + "\n", + "import math as m\n", + "\n", + "P = 6.0 # (No of poles)\n", + "I = 1000.0 #kg-m^2 (Moment of Inertia)\n", + "Tl = 1000.0 #N-m (Load torque with flywheel)\n", + "t = 10.0 #s (time)\n", + "s = 0.05 # (slip)\n", + "Tfl = 500.0 #N-m (full load Torque)\n", + "f = 50.0 #Hz (frequency)\n", + "\n", + "Ns = 120*f/P #rpm (Synchronus speed)\n", + "\n", + "#Now, s = K*Tfl\n", + "K = 2*3.14*(Ns*s)/(60*Tfl) #constant\n", + "\n", + "#K = 6.2e-3 #(considered value) \n", + "\n", + "#Also Tm = Tl*(1-exp(-t/I*K)\n", + "Tm = Tl*(1 - m.exp(-t/(I*K))) #N-m\n", + "print \"Maximum torque developed by motor = \",round(Tm,2),\"N-m.\"\n", + " \n", + "#(b) s = K*Tfl where s = 2*3.14*(Ns - N)/60\n", + "N = Ns - (60/(2*3.14))*K*Tm #rpm\n", + "print \"Speed at the end of deacceleration period =\",round(N,2),\"rpm.\" " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 45.23 , PAGE NO :- 1819" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Moment of inertia of flywheel = 275.67 kg-m^2.\n" + ] + } + ], + "source": [ + "'''A motor fitted with a flywheel supplies a load torque of 1000 N-m for 2 seconds.During no load period,the flywheel regains its\n", + "original speed.The motor torque is to be limited to 500 N-m.Find moment of inertia of the flywheel.No load speed of the motor is \n", + "500 rpm and its full load slip is 10%.'''\n", + "\n", + "from sympy import solve,Eq,Symbol\n", + "import math as m\n", + "N = 500.0 #rpm (No load speed)\n", + "s = 0.1 # (slip)\n", + "Tfl = 500.0 #N-m (full load torque)\n", + "Tl = 1000.0 #N-m (load torque with flywheel)\n", + "t = 2.0 #s (time) \n", + "#Now, s = K*Tfl\n", + "K = (2*3.14*(N*s))/(Tfl*60) #constant\n", + "\n", + "\n", + "#Also, Tm = Tl*(1 - exp(-t/I*K))\n", + "I =-t/(K*m.log(1 - Tfl/Tl)) #(moment of inertia)\n", + "\n", + "print \"Moment of inertia of flywheel =\",round(I,2),\"kg-m^2.\"" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |