diff options
author | kinitrupti | 2017-07-06 16:20:14 +0530 |
---|---|---|
committer | kinitrupti | 2017-07-06 16:20:14 +0530 |
commit | 0f735fd99edf070a6c92e05def1f7c8fa20b7a68 (patch) | |
tree | a10d5b3363beabb1421b13f7c76b2912713d2be7 /A Textbook of Electrical Technology AC and DC Machines | |
parent | bbd6787f847c9312843e14fbaa3537b9235bc054 (diff) | |
download | Python-Textbook-Companions-0f735fd99edf070a6c92e05def1f7c8fa20b7a68.tar.gz Python-Textbook-Companions-0f735fd99edf070a6c92e05def1f7c8fa20b7a68.tar.bz2 Python-Textbook-Companions-0f735fd99edf070a6c92e05def1f7c8fa20b7a68.zip |
Updated 3 books
Diffstat (limited to 'A Textbook of Electrical Technology AC and DC Machines')
15 files changed, 26402 insertions, 0 deletions
diff --git a/A Textbook of Electrical Technology AC and DC Machines/chapter25.ipynb b/A Textbook of Electrical Technology AC and DC Machines/chapter25.ipynb new file mode 100644 index 00000000..894eff9f --- /dev/null +++ b/A Textbook of Electrical Technology AC and DC Machines/chapter25.ipynb @@ -0,0 +1,210 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:9895a0f3fc78aa13cc793dfc60b4d616a3af11e4983465d122ac29be7197893e" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 25: Elements of Electro-Mechanical Energy Conversion" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 25.1, Page Number:876" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#variable declaration\n", + "sod=15#stator-core outer diameter\n", + "sid=10.05#stator-core inner diameter\n", + "rod=10.00#rotor-core outer diameter\n", + "rid=5#rotor-core inner diameter\n", + "a=8#axial lenght of the machine\n", + "b=1.20\n", + "ur=1000\n", + "#calculations\n", + "vs=(3.14/4)*((sod*sod)-(sid*sid))*a#volume of stator-core\n", + "vr=(3.14/4)*((rod*rod)-(rid*rid))*a#volume of rotor-core\n", + "va=(3.14/4)*((sid*sid)-(rod*rod))*a#volume of air-gap in the machine\n", + "ed=(.5*b*b)/(4*3.14*math.pow(10,-7))\n", + "e=ed*va*math.pow(10,-6)\n", + "edm=(.5*b*b)/(4*3.14*math.pow(10,-7)*ur)\n", + "es=edm*vs*math.pow(10,-6)\n", + "er=edm*vr*math.pow(10,-6)\n", + "kr=(vs+vr)/vs\n", + "ke=(es+er)/e\n", + "ratio=kr/ke\n", + "eratio=e/(es+er)\n", + "\n", + "#result\n", + "print \"Energy stored in air gap= \",e,\" Joules\"\n", + "print \"Energy stored in stator-core= \",round(es,2),\" Joules\"\n", + "print \"Energy stored in rotor core= \",er,\" Joules\"\n", + "print \"Ratio of energy dtored in air-gap to that stored in the cores=\",round(eratio)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Energy stored in air gap= 3.609 Joules\n", + "Energy stored in stator-core= 0.45 Joules\n", + "Energy stored in rotor core= 0.27 Joules\n", + "Ratio of energy dtored in air-gap to that stored in the cores= 5.0\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 25.2, Page Number:877" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#variable declaration\n", + "n=800#turns\n", + "area=5*5#cross sectional area\n", + "i=1.25#amp\n", + "x=0.25#cm\n", + "l=0.402\n", + "#calculations\n", + "p=4*3.14*10**(-7)*area*10**(-4)/(0.5*10**(-2))\n", + "l=n**2*p\n", + "em=.5*i*i*l\n", + "W=-1*0.5*n**2*4*3.14*10**(-7)*area*10**(-4)*i**2/(0.5*10**(-2))**2\n", + "\n", + "#result\n", + "print \"a)i)coil inductance=\",l,\"H\"\n", + "print \" ii)field energy stored=\",em,\"J\"\n", + "print \"b)mechanical energy output=\",W,\"NW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a)i)coil inductance= 0.40192 H\n", + " ii)field energy stored= 0.314 J\n", + "b)mechanical energy output= -62.8 NW\n" + ] + } + ], + "prompt_number": 13 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 25.4, Page Number:882" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "lo=50#mH\n", + "xo=0.05#cm\n", + "r=0.5#ohm\n", + "x=0.075#cm\n", + "i2=3#A\n", + "x2=0.15#cm\n", + "\n", + "#calculation\n", + "l1=2*lo/(1+(x/xo))\n", + "lambda1=l1*i2*10**(-3)\n", + "W=0.5*l1*i2**2*10**(-3)\n", + "l2=2*lo/(1+(x2/xo))\n", + "lambda2=l2*i2*10**(-3)\n", + "w2=0.5*i2*(lambda1-lambda2)\n", + "\n", + "#result\n", + "print \"a)magnetic stored energy=\",W,\"J\"\n", + "print \"b)change in magnetic stored energy=\",w2,\"J\"" + ], + "language": "python", + "metadata": {}, + "outputs": [] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 25.5, Page Number:883" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "rc=0.5#ohm\n", + "v=3#V\n", + "i=6#A\n", + "l1=40#mH\n", + "l2=25#mH\n", + "wfld=0.5*l2*i*i*0.001\n", + "delE=0.5*i*i*0.001*(l1-l2)\n", + "\n", + "#result\n", + "print \"a)magnetic stored energy=\",wfld,\"J\"\n", + "print \"b)change in magnetic store energy=\",delE,\"J\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a)magnetic stored energy= 0.45 J\n", + "b)change in magnetic store energy= 0.27 J\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A Textbook of Electrical Technology AC and DC Machines/chapter26.ipynb b/A Textbook of Electrical Technology AC and DC Machines/chapter26.ipynb new file mode 100644 index 00000000..0690f646 --- /dev/null +++ b/A Textbook of Electrical Technology AC and DC Machines/chapter26.ipynb @@ -0,0 +1,1741 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:e71bef33b0871199556c73182ec6cd28497a9d9d16612973a23ee2cceda4b35b" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 26: D.C. Generators" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.3, Page Number:912" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "i=450#A\n", + "v=230#v\n", + "rs=50#ohm\n", + "ra=.03#ohm\n", + "\n", + "#calculations\n", + "ish=v/rs\n", + "ia=i+ish\n", + "va=ia*ra\n", + "E=v+va\n", + "\n", + "#result\n", + "print \"e.m.f. generated in the armature= \",E,\" V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "e.m.f. generated in the armature= 243.62 V\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.4, Page Number:913" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "i=50#A\n", + "v=500#v\n", + "rs=250#ohm\n", + "ra=.05#ohm\n", + "rseries=0.03#ohm\n", + "b=1#V\n", + "\n", + "#calculations\n", + "ish=v/rs\n", + "ia=i+ish\n", + "vs=ia*rseries\n", + "va=ia*ra\n", + "vb=ish*b\n", + "E=v+va+vs+vb\n", + "\n", + "#result\n", + "print \"generated voltage in the armature= \",E,\" V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "generated voltage in the armature= 506.16 V\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.5, Page Number:913" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "i=30#A\n", + "v=220#v\n", + "rs=200#ohm\n", + "ra=.05#ohm\n", + "rseries=0.30#ohm\n", + "b=1#V\n", + "\n", + "#calculations\n", + "vs=i*rseries\n", + "vshunt=v+vs\n", + "ish=vshunt/v\n", + "ia=i+ish\n", + "vb=b*2\n", + "E=v+vs+vb+(ia*ra)\n", + "\n", + "#result\n", + "print \"generated voltage in the armature= \",E,\" V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "generated voltage in the armature= 232.552045455 V\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.6, Page Number:913" + ] + }, + { + "cell_type": "code", + "collapsed": true, + "input": [ + "#variable declaration\n", + "v=230.0#v\n", + "i=150.0#A\n", + "rs=92.0#ohm\n", + "rseries=0.015#ohm\n", + "rd=0.03#ohm(divertor)\n", + "ra=0.032#ohm\n", + "\n", + "#calculations\n", + "ish=v/rs\n", + "ia=i+ish\n", + "sdr=(rd*rseries)/(rd+rseries)\n", + "tr=ra+sdr\n", + "vd=ia*tr\n", + "Eg=v+vd\n", + "tp=Eg*ia\n", + "pl=(ia*ia*ra)+(ia*ia*sdr)+(v*ish)+(v*i)\n", + "\n", + "#resuts\n", + "print \"i) Induced e.m.f.= \",Eg,\" V\"\n", + "print \"ii)Total power generated= \",tp,\" W\"\n", + "print \"iii)Distribution of the total power:\"\n", + "print \" power lost in armature= \", ia*ia*ra\n", + "print \"power lost in series field and divider= \", ia*ia*sdr\n", + "print \"power dissipated in shunt winding= \", v*ish\n", + "print \"power delivered to load= \", v*i\n", + "print \" ------------\"\n", + "print \"Total= \", pl" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i) Induced e.m.f.= 236.405 V\n", + "ii)Total power generated= 36051.7625 W\n", + "iii)Distribution of the total power:\n", + " power lost in armature= 744.2\n", + "power lost in series field and divider= 232.5625\n", + "power dissipated in shunt winding= 575.0\n", + "power delivered to load= 34500.0\n", + " ------------\n", + "Total= 36051.7625\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.7, Page Number:914" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=300000.0#w\n", + "v=600.0#v\n", + "sr=75.0#ohm\n", + "abr=0.03#ohm\n", + "cr=0.011#ohm\n", + "rseries=0.012#ohm\n", + "dr=0.036#ohm\n", + "\n", + "#calculatons\n", + "io=p/v#output current\n", + "ish=v/sr\n", + "ia=io+ish\n", + "sdr=(rseries*dr)/(rseries+dr)\n", + "tr=abr+cr+sdr\n", + "vd=ia*tr\n", + "va=v+vd\n", + "pg=va*ia\n", + "W=pg/1000\n", + "\n", + "#result\n", + "print \"Voltage generatedby the armature= \",va,\" V\"\n", + "print \"Power generated by the armature= \",W, \"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Voltage generatedby the armature= 625.4 V\n", + "Power generated by the armature= 317.7032 kW\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.8, Page Number:915" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "phi=7*math.pow(10,-3)\n", + "z=51*20\n", + "a=p=4\n", + "n=1500#r.p.m\n", + "\n", + "#calculations\n", + "Eg=(phi*z*n*p)/(a*60)\n", + "\n", + "#result\n", + "print \"Voltage generated= \",Eg,\" V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Voltage generated= 178.5 V\n" + ] + } + ], + "prompt_number": 13 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.9, Page Number:916" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=a=8\n", + "phi=0.05#Wb\n", + "n=1200#rpm\n", + "N=500#armature conductor\n", + "\n", + "#calculations\n", + "E=phi*(n/60)*(p/a)*N\n", + "\n", + "#result\n", + "print \"e.m.f generated= \",E,\" V\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "e.m.f generated= 500.0 V\n" + ] + } + ], + "prompt_number": 22 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.10, Page Number:916" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=127#v\n", + "vt=120#v(terminal voltage)\n", + "r=15#ohms\n", + "i1=8.47#A\n", + "ra=0.02#ohms\n", + "fi=8#A\n", + "\n", + "#calculations\n", + "Eg=v+(i1*ra)\n", + "ia=(Eg-vt)/ra\n", + "il=ia-fi\n", + "\n", + "#result\n", + "print \"Load current \",il,\" A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Load current 350.47 A\n" + ] + } + ], + "prompt_number": 24 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.11(a), Page Number:917" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=8\n", + "z=778\n", + "n=500\n", + "ra=0.24\n", + "rl=12.5\n", + "r=250\n", + "v=250\n", + "a=2\n", + "#calculations\n", + "il=v/rl\n", + "si=v/r\n", + "ai=il+si\n", + "emf=v+(ai*ra)\n", + "phi=(emf*60*a)/(p*z*n)\n", + "\n", + "#result\n", + "print \"armature current= \",ai,\" A\"\n", + "print \"induced e.m.f.= \",emf,\" V\"\n", + "print \"flux per pole= \",round(phi*1000,2),\" mWb\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "armature current= 21.0 A\n", + "induced e.m.f.= 255.04 V\n", + "flux per pole= 9.83 mWb\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.11(b), Page Number:916" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=a=4\n", + "P=5000.0#w\n", + "P2=2500.0#W\n", + "v=250.0#v\n", + "ra=0.2#ohm\n", + "r=250.0#ohm\n", + "z=120\n", + "N=1000#rpm\n", + "\n", + "#calculations\n", + "gc=P/v\n", + "li=P2/v\n", + "ti=gc+li\n", + "fc=1\n", + "ai=ti+fc\n", + "ard=ai*ra\n", + "emf=v+ard+2\n", + "phi=(emf*60*a)/(p*z*N)\n", + "ac_perparralelpath=ai/p\n", + "\n", + "#result\n", + "print \"Flux per pole= \",phi*1000,\" mWb\"\n", + "print \"Armature current per parallel path= \",ac_perparralelpath,\" A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Flux per pole= 129.1 mWb\n", + "Armature current per parallel path= 7.75 A\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.12, Page Number:918" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "i=200.0#A\n", + "v=125.0#V\n", + "n1=1000#rpm\n", + "n2=800#rpm\n", + "ra=0.04#ohm\n", + "bd=2.0#V(brush drop)\n", + "\n", + "#calculations\n", + "R=v/i\n", + "E1=v+(i*ra)+bd\n", + "E2=(E1*n2)/n1\n", + "il=(E2-bd)/0.675\n", + "\n", + "#result\n", + "print \"Load current when speed drops to 800 r.p.m.= \",round(il,2),\" A\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Load current when speed drops to 800 r.p.m.= 157.04 A\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.13, Page Number:918" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "p=4\n", + "n=900 #rpm\n", + "V=220#V\n", + "E=240#V\n", + "ra=0.2#ohm\n", + "phi=10#mWb\n", + "N=8\n", + "\n", + "#calculations\n", + "ia=(E-V)/ra\n", + "Z=(E*600*2)/(phi*math.pow(10,-3)*n*p)\n", + "#since there ae 8 turns in a coil,it means there are 16 active conductor\n", + "number_of_coils=Z/16\n", + "\n", + "#result\n", + "print \"armature current= \",ia,\" A\"\n", + "print \"number of coils= \",number_of_coils" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "armature current= 100.0 A\n", + "number of coils= 500.0\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.14, Page Number:919" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "V=120.0#V\n", + "ra=0.06#ohm\n", + "rs=25#ohm\n", + "rsw=0.04#ohm(series winding)\n", + "il=100.0#A\n", + "#i)Long shunt\n", + "ish=V/rs\n", + "ia=il+ish\n", + "vd=ia*rsw\n", + "vda=ia*ra\n", + "E=V+vd+vda\n", + "\n", + "print \"Induced e.m.f. when the machine is connected to long shunt= \",E,\" V\"\n", + "print \"Armature current when the machine is connected to long shunt=\",ia,\" A\"\n", + "\n", + "#i)Short shunt\n", + "vds=il*rsw\n", + "vs=V+vds\n", + "ish=vs/rs\n", + "ia=il+ish\n", + "vd=ia*rsw\n", + "vda=ia*ra\n", + "E=V+vd+vda\n", + "\n", + "print \"Induced e.m.f. when the machine is connected to short shunt= \",E,\" V\"\n", + "print \"Armature current when the machine is connected to short shunt=\",ia,\" A\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Induced e.m.f. when the machine is connected to long shunt= 130.48 V\n", + "Armature current when the machine is connected to long shunt= 104.8 A\n", + "Induced e.m.f. when the machine is connected to short shunt= 130.496 V\n", + "Armature current when the machine is connected to short shunt= 104.96 A\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.15, Page Number:920" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=25000.0#W\n", + "V=500.0#V\n", + "ra=0.03#ohm\n", + "rs=200.0#ohm\n", + "rseries=0.04#ohm\n", + "vb=1.0#V\n", + "n=1200#rpm\n", + "phi=0.02#Wb\n", + "\n", + "#calculations\n", + "i=p/V\n", + "ish=V/rs\n", + "ia=i+ish\n", + "p=4\n", + "vds=ia*rseries\n", + "vda=ia*ra\n", + "vdb=vb*2\n", + "E=V+vds+vda+vdb\n", + "Z=(E*60*4)/(phi*n*p)\n", + "\n", + "#result\n", + "print \"The e.m.f. generated= \",E,\" V\"\n", + "print \"The number of conductors=\",Z" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The e.m.f. generated= 505.675 V\n", + "The number of conductors= 1264.1875\n" + ] + } + ], + "prompt_number": 15 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.16, Page Number:920" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "n=750#rpm\n", + "e=240.0#V\n", + "z=792\n", + "phi=0.0145#Wb\n", + "\n", + "#calculations\n", + "phi_working=(e*60*2)/(n*z*p)\n", + "lambda_=phi/phi_working\n", + "\n", + "#results\n", + "print \"Leakage coefficient= \",round(lambda_,1)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Leakage coefficient= 1.2\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.17, Page Number:920" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=a=4\n", + "phi=0.07#Wb\n", + "t=220\n", + "rt=0.004#ohm\n", + "n=900#rpm\n", + "ia=50.0#A\n", + "\n", + "#calculations\n", + "z=2*t\n", + "E=(phi*z*n*p)/(60*a)\n", + "rtotal=t*rt\n", + "r_eachpath=rtotal/p\n", + "ra=r_eachpath/a\n", + "vda=ia*ra\n", + "V=E-vda\n", + "\n", + "#result\n", + "print \"Terminal Voltage= \",V, \" V\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Terminal Voltage= 459.25 V\n" + ] + } + ], + "prompt_number": 27 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.18, Page Number:920" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=a=4\n", + "phi=0.07#Wb\n", + "t=220\n", + "rturn=0.004#ohm\n", + "rs=100.0#ohm\n", + "rsc=0.02#ohm\n", + "n=900#rpm\n", + "ia=50.0#A\n", + "\n", + "#calculations\n", + "z=2*t\n", + "E=(phi*z*n*p)/(60*a)\n", + "ra=0.055#ohm\n", + "ra=ra+rsc\n", + "va=ia*ra\n", + "v=E-va\n", + "ish=v/rs\n", + "i=ia-ish\n", + "output=v*i\n", + "\n", + "#result\n", + "print \"Output= \",round(output/1000,3),\" kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Output= 20.813 kW\n" + ] + } + ], + "prompt_number": 15 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.19, Page Number:921" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n1=1200#rpm\n", + "ia=200#A\n", + "v=125#V\n", + "n2=1000#rpm\n", + "ra=0.04#ohm\n", + "vb=2#V\n", + "\n", + "#calculations\n", + "E1=v+vb+(ia*ra)\n", + "E2=E1*n2/n1*0.8\n", + "\n", + "#results\n", + "print \"Generated e.m.f. when field current is reduced to 80%=\",E2,\" V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Generated e.m.f. when field current is reduced to 80%= 90.0 V\n" + ] + } + ], + "prompt_number": 35 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.20(a), Page Number:921" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "rs=100.0#ohm\n", + "ra=1.0#ohm\n", + "z=378\n", + "phi=0.02#Wb\n", + "rl=10.0#ohm\n", + "n=1000#rpm\n", + "a=2\n", + "\n", + "#calculations\n", + "E=(phi*z*n*p)/(60*a)\n", + "V=(100.0/111.0)*E\n", + "il=V/rl\n", + "P=il*V\n", + "\n", + "#result\n", + "print \"Power absorbed by the load is= \",P,\" W\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Power absorbed by the load is= 5154.12710007 W\n" + ] + } + ], + "prompt_number": 50 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.20(b), Page Number:921" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=a=4\n", + "z=300\n", + "phi=0.1#Wb\n", + "n=1000#rpm\n", + "ra=0.2#rpm\n", + "rf=125#ohm\n", + "il=90#A\n", + "\n", + "#calculations\n", + "E=(phi*z*n*p)/(60*a)\n", + "ifield=E/rf\n", + "ia=ifield+il\n", + "V=E-(ia*ra)\n", + "\n", + "#result\n", + "print \"Terminal voltage= \",V,\" V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Terminal voltage= 481.2 V\n" + ] + } + ], + "prompt_number": 51 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.21(a), Page Number:922" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=6\n", + "n=1200#rpm\n", + "e=250.0#V\n", + "d=350.0#mm\n", + "air_gap=3.0#mm\n", + "al=260.0#mm\n", + "fringing=0.8\n", + "coils=96\n", + "t=3\n", + "\n", + "#calculations\n", + "z=t*coils*2\n", + "a=p*2\n", + "phi=(e*60*a)/(n*z*p)\n", + "di=d+air_gap\n", + "pole_arc=(3.14*di*fringing)/6\n", + "B=phi/(pole_arc*0.000001*al)\n", + "\n", + "#result\n", + "print \"flux per pole= \",phi,\" Wb\"\n", + "print \"effective pole arc lenght= \",pole_arc*0.001,\" m\"\n", + "print \"flux density= \",B,\" T\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "flux per pole= 0.0434027777778 Wb\n", + "effective pole arc lenght= 0.147789333333 m\n", + "flux density= 1.12953862717 T\n" + ] + } + ], + "prompt_number": 57 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.21(b), Page Number:922" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "p=a=4\n", + "z=1200\n", + "e=250.0#v\n", + "n=500#rpm\n", + "b=35.0#cm\n", + "ratio=0.7\n", + "lpole=20.0#cm\n", + "\n", + "#calculations\n", + "pole_pitch=(b*3.14)/p\n", + "polearc=ratio*pole_pitch\n", + "pole_area=polearc*lpole\n", + "phi=(e*60*a)/(n*z*p)\n", + "mean_flux=phi/(pole_area*math.pow(10,-4))\n", + " \n", + "#result\n", + "print \"Mean flux density= \",mean_flux,\" Wb/m2\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Mean flux density= 0.649941505265 Wb/m2\n" + ] + } + ], + "prompt_number": 67 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.21(d), Page Number:923" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "i=200.0#A\n", + "v=100.0#V\n", + "ra=0.04#ohm\n", + "rseries=0.03#ohm\n", + "rs=60.0#ohm\n", + "\n", + "#calculations\n", + "va=v+(i*rseries)\n", + "ish=va/rs\n", + "ia=i+ish\n", + "e=va+(ia*ra)\n", + "\n", + "#long shunt\n", + "ishunt=v/rs\n", + "vd=ia*(ra+rseries)\n", + "e2=v+vd\n", + "\n", + "#result\n", + "print \"emf generated(short shunt)\",e,\" V\"\n", + "print \"emf generated(long shunt)\",e2,\" V\"\n", + "\n", + "\n", + "#result\n", + "print " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "emf generated(short shunt) 114.070666667 V\n", + "emf generated(long shunt) 114.123666667 V\n", + "\n" + ] + } + ], + "prompt_number": 73 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.22, Page Number:923" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=1000#rpm\n", + "w=20000.0#W\n", + "v=220.0#v\n", + "ra=0.04#ohm\n", + "rs=110.0#ohm\n", + "rseries=0.05#ohm\n", + "efficiency=.85\n", + "\n", + "#calculations\n", + "il=w/v\n", + "i_f=v/rs\n", + "ia=il+i_f\n", + "ip=w/efficiency#input power\n", + "total_loss=ip-w\n", + "copper_loss=(ia*ia*(ra+rseries))+(i_f*i_f*rs)\n", + "ironloss=total_loss-copper_loss\n", + "omega=2*3.14*n/60\n", + "T=ip/omega\n", + "\n", + "#omega\n", + "print \"Copper loss= \",copper_loss,\" W\"\n", + "print \"Iron and friction loss= \",ironloss,\" W\"\n", + "print \"Torque developed by the prime mover= \",T,\"Nw-m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Copper loss= 1216.88892562 W\n", + "Iron and friction loss= 2312.52283909 W\n", + "Torque developed by the prime mover= 224.803297115 Nw-m\n" + ] + } + ], + "prompt_number": 75 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.23, Page Number:928" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declartaion\n", + "power=10000.0#W\n", + "v=250.0#V\n", + "p=a=6\n", + "n=1000.0#rpm\n", + "z=534\n", + "cu_loss=0.64*1000#W\n", + "vbd=1.0#V\n", + "\n", + "#calculations\n", + "ia=power/v\n", + "ra=cu_loss/(ia*ia)\n", + "E=v+(ia*ra)+vbd\n", + "phi=(E*60*a)/(n*z*p)\n", + "\n", + "#result\n", + "print \"flux per pole= \",phi*1000,\" mWb\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "flux per pole= 30.0 mWb\n" + ] + } + ], + "prompt_number": 25 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.24(a), Page Number:928" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "i=195#A\n", + "pd=250#V\n", + "ra=0.02#ohm\n", + "rsh=50#ohm\n", + "p=250#W\n", + "strayloss=950#W\n", + "#calculations\n", + "ish=pd/rsh\n", + "ia=i+ish\n", + "vda=ia*ra\n", + "E=pd+vda\n", + "cu_loss=(ia*ia*ra)+(pd*ish)\n", + "output_prime=(pd*i)+strayloss+cu_loss\n", + "power_a=output_prime-strayloss\n", + "neu_m=(power_a/output_prime)\n", + "neu_e=(pd*i)/((pd*i)+cu_loss)\n", + "neu_c=(pd*i)/output_prime\n", + "\n", + "#result\n", + "print \"a)e.m.f. generated= \",E,\" V\"\n", + "print \" b)Cu losses= \",cu_loss,\" W\"\n", + "print \" c)output of prime mover= \",output_prime,\" W\"\n", + "print \" d)mechanical efficiency= \",neu_m*100,\" %\"\n", + "print \" electrical efficiency= \",neu_e*100,\" %\"\n", + "print \" commercial efficiency= \",neu_c*100,\" %\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a)e.m.f. generated= 254.0 V\n", + " b)Cu losses= 2050.0 W\n", + " c)output of prime mover= 51750.0 W\n", + " d)mechanical efficiency= 98.1642512077 %\n", + " electrical efficiency= 95.9645669291 %\n", + " commercial efficiency= 94.2028985507 %\n" + ] + } + ], + "prompt_number": 30 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.24(b), Page Number:929" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=500.0#V\n", + "i=5.0#A\n", + "ra=0.15#ohm\n", + "rf=200.0#ohm\n", + "il=40.0#A\n", + "\n", + "#calculations\n", + "output=v*il\n", + "total_loss=(v*i*0.5)+((il+i*0.5)*(il+i*0.5)*ra)+(v*i*0.5)\n", + "efficiency=output/(output+total_loss)\n", + "\n", + "#result\n", + "print \"Efficiency= \",efficiency*100,\" %\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Efficiency= 87.8312542029 %\n" + ] + } + ], + "prompt_number": 39 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.25, Page Number:929" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "i=196#A\n", + "v=220#V\n", + "stray_loss=720#W\n", + "rsh=55#ohm\n", + "e=0.88\n", + "\n", + "#calculations\n", + "output=v*i\n", + "inpute=output/e\n", + "total_loss=inpute-output\n", + "ish=v/rsh\n", + "ia=i+ish\n", + "cu_loss=v*ish\n", + "constant_loss=cu_loss+stray_loss\n", + "culoss_a=total_loss-constant_loss\n", + "ra=culoss_a/(ia*ia)\n", + "I=math.sqrt(constant_loss/ra)\n", + "\n", + "#result\n", + "print \"Load curent corresponding to maximum efficiency\",I,\" A\" " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Load curent corresponding to maximum efficiency 122.283568103 A\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.26, Page Number:929" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=1000#rpm\n", + "p=22*1000#w\n", + "v=220#V\n", + "ra=0.05#ohm\n", + "rsh=110#ohm\n", + "rseries=0.06#ohm\n", + "efficiency=.88\n", + "\n", + "#calculations\n", + "ish=v/rsh\n", + "I=p/v\n", + "ia=ish+I\n", + "vdseries=ia*rseries\n", + "cu_loss=(ia*ia*ra)+(ia*ia*rseries)+(rsh*ish*ish)\n", + "total_loss=(p/efficiency)-p\n", + "strayloss=total_loss-cu_loss\n", + "T=(p/efficiency*60)/(2*3.14*n)\n", + "\n", + "#result\n", + "print \"a)cu losses= \",cu_loss,\" W\"\n", + "print \"b)iron and friction loss= \",strayloss,\" W\"\n", + "print \"c)Torque exerted by the prime mover= \",T,\" N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a)cu losses= 1584.44 W\n", + "b)iron and friction loss= 1415.56 W\n", + "c)Torque exerted by the prime mover= 238.853503185 N-m\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.27, Page Number:930" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "i=20#A\n", + "r=10#ohm\n", + "ra=0.5#ohm\n", + "rsh=50#ohm\n", + "vdb=1#V(voltage drop per brush)\n", + "\n", + "#calculations\n", + "v=i*r\n", + "ish=v/rsh\n", + "ia=i+ish\n", + "E=v+(ia*ra)+(2*vdb)\n", + "totalpower=E*ia\n", + "output=v*i\n", + "efficiency=output/totalpower\n", + "\n", + "#result\n", + "print \"induced e.m.f.= \",E,\" V\"\n", + "print \"efficiency= \",efficiency*100,\" %\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "induced e.m.f.= 214.0 V\n", + "efficiency= 77.8816199377 %\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.28, Page Number:930" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=240#V\n", + "i=100#A\n", + "ra=0.1#ohm\n", + "rseries=0.02#ohm\n", + "ri=0.025#ohm\n", + "rsh=100#ohm\n", + "ironloss=1000#W\n", + "frictionloss=500#W\n", + "\n", + "#calculations\n", + "output=v*i\n", + "totalra=ra+rseries+ri\n", + "ish=v/rsh\n", + "ia=i+ish\n", + "copperloss=ia*ia*totalra\n", + "shculoss=ish*v\n", + "total_loss=copperloss+ironloss+frictionloss+shculoss\n", + "efficiency=output/(output+total_loss)\n", + "\n", + "#result\n", + "print \"F.L. efficiency of the machine= \",efficiency*100,\" %\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "F.L. efficiency of the machine= 87.3089843128 %\n" + ] + } + ], + "prompt_number": 25 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.29, Page Number:930" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "A=Symbol('A')\n", + "B=Symbol('B')\n", + "ironloss=8#kW\n", + "r=0.25#reduction in speed\n", + "n_ironloss=5#kW\n", + "\n", + "#calculations\n", + "ans=solve([ironloss-(A*1+B*1**2),n_ironloss-(A*(1-r)+B*(1-r)**2)],[A,B])\n", + "wh=ans[A]\n", + "we=ans[B]\n", + "wh2=ans[A]*0.5\n", + "we2=ans[B]*0.5**2\n", + "\n", + "#result\n", + "print \"i)full speed:\"\n", + "print \"Wh=\",round(wh,3),\"kW\"\n", + "print \"We=\",round(we,3),\"kW\"\n", + "print \"ii)half speed:\"\n", + "print \"Wh=\",round(wh2,3),\"kW\"\n", + "print \"We=\",round(we2,3),\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)full speed:\n", + "Wh= 2.667 kW\n", + "We= 5.333 kW\n", + "ii)half speed:\n", + "Wh= 1.333 kW\n", + "We= 1.333 kW\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.30, Page Number:931" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "N=Symbol('N')\n", + "n=1000.0#rpm\n", + "wh=250.0#w\n", + "we=100.0#w\n", + "\n", + "#calculations\n", + "A=wh/(n/60)\n", + "B=we/((n/60)**2)\n", + "new_loss=(wh+we)/2\n", + "ans=solve([new_loss-A*N-B*(N**2)],[N])\n", + "\n", + "#result\n", + "print \"Speed at which total loss will be halved=\",ans[1],\"r.p.s\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Speed at which total loss will be halved= (9.50045787200216,) r.p.s\n" + ] + } + ], + "prompt_number": 29 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.31, Page Number:931" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "output=10.0*1000#W\n", + "v=240.0#V\n", + "ra=0.6#ohm\n", + "rsh=160.0#ohm\n", + "mechcoreloss=500.0#W\n", + "culoss=360.0#W\n", + "\n", + "#calculations\n", + "ish=v/rsh\n", + "i=output/v\n", + "ia=ish+i\n", + "culossa=ia*ia*ra\n", + "totalloss=culoss+mechcoreloss+culossa\n", + "inputp=output+totalloss\n", + "efficiency=output/inputp\n", + "\n", + "#result\n", + "print \"Power required= \",inputp*0.001,\" kW\"\n", + "print \"efficinecy= \",efficiency*100,\" %\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Power required= 11.9780166667 kW\n", + "efficinecy= 83.486275552 %\n" + ] + } + ], + "prompt_number": 30 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.32, Page Number:932" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=110*1000#W\n", + "v=220#V\n", + "ra=0.01#ohm\n", + "rse=0.002#ohm\n", + "rsh=110#ohm\n", + "\n", + "#calculations\n", + "il=p/v\n", + "ish=v/rsh\n", + "ia=il+ish\n", + "E=v+ia*(ra+rse)\n", + "\n", + "#result\n", + "print \"induced emf= \",E,\" V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "induced emf= 226.024 V\n" + ] + } + ], + "prompt_number": 31 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.33 Page Number:932" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "E=216.0#V\n", + "n=600.0#rpm\n", + "slots=144\n", + "con=6\n", + "n2=500.0#rpm\n", + "\n", + "#calculations\n", + "z=con*slots\n", + "a=p\n", + "phi=(E*60*a)/(n*z*p)\n", + "a=2\n", + "armatureE=(phi*z*n2*p)/(60*a)\n", + "\n", + "#result\n", + "print \"the armature emf= \",armatureE,\" V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "the armature emf= 360.0 V\n" + ] + } + ], + "prompt_number": 34 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.34 Page Number:933" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "r=0.15#ohm\n", + "\n", + "#calculations\n", + "ar=p*r\n", + "\n", + "#result\n", + "print \"armature resistance=\",ar" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "armature resistance= 0.6\n" + ] + } + ], + "prompt_number": 30 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A Textbook of Electrical Technology AC and DC Machines/chapter27.ipynb b/A Textbook of Electrical Technology AC and DC Machines/chapter27.ipynb new file mode 100644 index 00000000..f35c124e --- /dev/null +++ b/A Textbook of Electrical Technology AC and DC Machines/chapter27.ipynb @@ -0,0 +1,1233 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:fc88e8a107629d62ff7c77f84f67a9d9da67e1160053ed6d930ef88cb4cc11d6" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 27: Armature Reaction and Commutation" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.1, Page Number:943" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "z=722\n", + "ia=100.0#A\n", + "theta_m=8.0#degrees\n", + "\n", + "#calculatons\n", + "i=ia/2\n", + "atd_perpole=z*i*theta_m/360\n", + "atc_perpole=z*i*((1/(2.0*p))-(theta_m/360.0))\n", + "\n", + "#result\n", + "print \"armature demagnetization=\",atd_perpole\n", + "print \"cross-magnetization=\",atc_perpole" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "armature demagnetization= 802.222222222\n", + "cross-magnetization= 3710.27777778\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.2, Page Number:943" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=8\n", + "z=1280\n", + "v=500#V\n", + "ia=200.0#A\n", + "commuter=160\n", + "advanced_segments=4\n", + "\n", + "#calculatons\n", + "i=ia/8\n", + "theta_m=advanced_segments*360/commuter\n", + "atd_perpole=z*i*theta_m/360\n", + "atc_perpole=z*i*((1/(2.0*p))-(theta_m/360.0))\n", + "\n", + "#result\n", + "print \"armature demagnetization=\",atd_perpole\n", + "print \"cross-magnetization=\",atc_perpole" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "armature demagnetization= 800.0\n", + "cross-magnetization= 1200.0\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.3(a), Page Number:943" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "z=880\n", + "ia=120.0#A\n", + "theta_m=3.0#degrees\n", + "n=1100#tturns/pole\n", + "#calculatons\n", + "i=ia/2\n", + "atd_perpole=z*i*theta_m/360\n", + "atc_perpole=z*i*((1/(2.0*p))-(theta_m/360.0))\n", + "iadditional=(atd_perpole/n)\n", + "\n", + "\n", + "#result\n", + "print \"a)armature demagnetization=\",atd_perpole,\"AT\"\n", + "print \"b)cross-magnetization=\",atc_perpole,\"AT\"\n", + "print \"c)additional field current=\",iadditional,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a)armature demagnetization= 440.0 AT\n", + "b)cross-magnetization= 6160.0 AT\n", + "c)additional field current= 0.4 A\n" + ] + } + ], + "prompt_number": 17 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.3(b), Page Number:943" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "z=480\n", + "ia=150.0#A\n", + "theta_m=10.0*2#degrees\n", + "\n", + "#calculatons\n", + "i=ia/4\n", + "total=(z*i)/(2*p)\n", + "atd_perpole=total*(2*theta_m/180)\n", + "atc_perpole=total*(1-(2*theta_m/180))\n", + "\n", + "#result\n", + "print \"armature demagnetization=\",atd_perpole\n", + "print \"cross-magnetization=\",atc_perpole" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "armature demagnetization= 500.0\n", + "cross-magnetization= 1750.0\n" + ] + } + ], + "prompt_number": 27 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.4, Page Number:944" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "z=492\n", + "theta_m=10.0\n", + "ia=143.0+10.0\n", + "\n", + "#calculations\n", + "i1=ia/2#wave wound\n", + "i2=ia/4#lap wound\n", + "atd_perpole1=z*i1*theta_m/360#wave wound\n", + "extra_shunt1=atd_perpole1/theta_m\n", + "atd_perpole2=z*i2*(theta_m/360.0)#lap wound\n", + "extra_shunt2=atd_perpole2/theta_m\n", + "#result\n", + "print \"wave wound:\"\n", + "print \"demagnetization per pole=\",atd_perpole1,\"AT\"\n", + "print \"extra shunt field turns=\",int(extra_shunt1)\n", + "print \"lap wound:\"\n", + "print \"demagnetization per pole=\",atd_perpole2,\"AT\"\n", + "print \"extra shunt field turns=\",int(extra_shunt2)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "wave wound:\n", + "demagnetization per pole= 1045.5 AT\n", + "extra shunt field turns= 104\n", + "lap wound:\n", + "demagnetization per pole= 522.75 AT\n", + "extra shunt field turns= 52\n" + ] + } + ], + "prompt_number": 32 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.5, Page Number:944" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "pole=4\n", + "p=50*1000.0#W\n", + "v=250.0#V\n", + "z=400\n", + "commuter=4\n", + "rsh=50.0#ohm\n", + "a=2\n", + "\n", + "#calculations\n", + "i=p/v\n", + "ish=v/rsh\n", + "ia=i+ish\n", + "i=ia/2\n", + "segments=z/a\n", + "theta=pole*360.0/segments\n", + "atd=z*i*(theta/360)\n", + "extra=atd/ish\n", + "\n", + "#result\n", + "print \"demagnetisation=\",atd,\"AT\"\n", + "print \"extra shunt turns/poles\",extra" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "demagnetisation= 820.0 AT\n", + "extra shunt turns/poles 164.0\n" + ] + } + ], + "prompt_number": 35 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.6, Page Number:943" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "z=500\n", + "ia=200.0#A\n", + "p=6\n", + "theta=10.0#degrees\n", + "lambda_=1.3\n", + "\n", + "#calculations\n", + "i=ia/2\n", + "atc=((1/(2.0*p))-(theta/360.0))*z*i\n", + "atd=z*i*theta/360\n", + "extra=lambda_*atd/ia\n", + "\n", + "#result\n", + "print \"i)cross magnetization ampere-turns=\",atc\n", + "print \"ii)back ampere-turns\",atd\n", + "print \"iii)series turns required to balance the demagnetising ampere turns\",int(extra)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)cross magnetization ampere-turns= 2777.77777778\n", + "ii)back ampere-turns 1388.88888889\n", + "iii)series turns required to balance the demagnetising ampere turns 9\n" + ] + } + ], + "prompt_number": 45 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.7, Page Number:945" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=22.38#kW\n", + "v=440.0#V\n", + "pole=4\n", + "z=840\n", + "commutator=140\n", + "efficiency=0.88\n", + "ish=1.8#A\n", + "back=1.5\n", + "\n", + "#calculations\n", + "motor_input=p*1000.0/efficiency\n", + "input_i=motor_input/v\n", + "ia=input_i-ish\n", + "i=ia/2.0\n", + "theta=back*360/commutator\n", + "atd=z*i*(theta/360.0)\n", + "atc=((1/(2.0*pole))-(theta/360.0))*z*i\n", + "#result\n", + "print \"armature demagnetization amp-turns/pole=\",atd\n", + "print \"distorting amp-turns/pole=\",atc" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "armature demagnetization amp-turns/pole= 251.998140496\n", + "distorting amp-turns/pole= 2687.98016529\n" + ] + } + ], + "prompt_number": 59 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.8, Page Number:945" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=400#V\n", + "ia=1000#A\n", + "p=10\n", + "z=860\n", + "per=0.7\n", + "\n", + "#calculations\n", + "i=ia/p\n", + "at=per/p*z*(i/2)\n", + "\n", + "#result\n", + "print \"AT/pole for compensation winding=\",at" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "AT/pole for compensation winding= 3010.0\n" + ] + } + ], + "prompt_number": 62 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.9, Page Number:948" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=800.0#rpm\n", + "segment=123\n", + "wb=3\n", + "#calculations\n", + "v=n/60.0*segment\n", + "commutation=wb/v\n", + "\n", + "#result\n", + "print \"commutation time=\",commutation*1000,\"millisecond\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "commutation time= 1.82926829268 millisecond\n" + ] + } + ], + "prompt_number": 64 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.10, Page Number:948" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "n=1500#rpm\n", + "d=30#cm\n", + "ia=150#A\n", + "wb=1.25#cm\n", + "L=0.07*0.001#H\n", + "\n", + "#calculation\n", + "i=ia/2\n", + "v=3.14*d*(n/60)\n", + "tc=wb/v\n", + "E=L*2*i/tc\n", + "\n", + "#result\n", + "print \"average emf=\",E,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "average emf= 19.782 V\n" + ] + } + ], + "prompt_number": 65 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.11, Page Number:949" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "segments=55\n", + "n=900\n", + "wb=1.74\n", + "L=153*math.pow(10,-6)#H\n", + "i=27#A\n", + "\n", + "#calculations\n", + "v=segments*n/60\n", + "Tc=wb/v\n", + "E=L*2*i/Tc\n", + "\n", + "#result\n", + "print \"average emf=\",E,\"V\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "average emf= 3.91732758621 V\n" + ] + } + ], + "prompt_number": 67 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.12, Page Number:949" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "n=1500.0#rpm\n", + "ia=150.0#A\n", + "z=64\n", + "wb=1.2\n", + "L=0.05#mH\n", + "\n", + "#calculations\n", + "L=L*0.001\n", + "v=n/60*z\n", + "tc=wb/v\n", + "i=ia/p\n", + "#i.linear\n", + "E1=L*2*i/tc\n", + "#ii.sinusoidal\n", + "E2=1.11*E1\n", + "\n", + "#result\n", + "print \"Linear commutation,E=\",E1,\"V\"\n", + "print \"Sinosoidal commutation,E=\",E2,\"V\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Linear commutation,E= 5.0 V\n", + "Sinosoidal commutation,E= 5.55 V\n" + ] + } + ], + "prompt_number": 68 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.13, Page Number:951" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "p=6\n", + "B=0.5#Wb/m2\n", + "Ig=4.0#mm\n", + "ia=500.0#A\n", + "z=540\n", + "\n", + "#calculations\n", + "arm_mmf=z*(ia/p)/(2*p)\n", + "compole=int(B*Ig*0.001/(4*3.14*math.pow(10,-7)))\n", + "mag=0.1*compole\n", + "total_compole=int(compole+mag)\n", + "total_mmf=arm_mmf+total_compole\n", + "Ncp=total_mmf/ia\n", + "\n", + "#result\n", + "print \"Number of turns on each commutating pole=\",int(Ncp)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Number of turns on each commutating pole= 11\n" + ] + } + ], + "prompt_number": 89 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.14, Page Number:957" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p1=100.0#kW\n", + "V1=250#V\n", + "p2=300.0#kW\n", + "V2=250#V\n", + "i1=200#A\n", + "i2=500#A\n", + "il=600#A\n", + "\n", + "#calculations\n", + "delI1=p1/(p1+p2)*il\n", + "delI2=p2/(p1+p2)*il\n", + "\n", + "#result\n", + "print \"Current supplied by generator 1 with additional load=\",delI1,\"A\"\n", + "print \"Current supplied by generator 2 with additional load=\",delI2,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Current supplied by generator 1 with additional load= 150.0 A\n", + "Current supplied by generator 2 with additional load= 450.0 A\n" + ] + } + ], + "prompt_number": 92 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.15, Page Number:957" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "i1=Symbol('i1')\n", + "i2=Symbol('i2')\n", + "v_nl1=270#V\n", + "v_l=220#V\n", + "il1=35#A\n", + "v_nl2=280#V\n", + "il2=50#A\n", + "il=60#A\n", + "\n", + "#calculations\n", + "#generator 1\n", + "vd1=v_nl1-v_l\n", + "vd_pa=vd1/il1#voltage drop per ampere\n", + "#generator 2\n", + "vd_pa2=(v_nl2-v_l)/il2\n", + "#270=(10/7)i1=280-1.2*i2\n", + "ans=solve([4.2*i2-5*i1-35,i1+i2-60],[i1,i2])\n", + "v=v_nl2-vd_pa2*ans[i2]\n", + "o1=v*ans[i1]/1000.0\n", + "o2=v*ans[i2]/1000.0\n", + "\n", + "#result\n", + "print \"output current of first machine=\",round(ans[i1],1)\n", + "print \"output current of second machine=\",round(ans[i2],1)\n", + "print \"output of first machine=\",round(o1,1),\"kW\"\n", + "print \"output of second machine=\",round(o2,1),\"kW\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "output current of first machine= 23.6\n", + "output current of second machine= 36.4\n", + "output of first machine= 5.7 kW\n", + "output of second machine= 8.9 kW\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.16, Page Number:958" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "i1=Symbol('i1')\n", + "i2=Symbol('i2')\n", + "v=Symbol('v')\n", + "ra=0.01#ohm\n", + "rf=20#ohm\n", + "i=4000#A\n", + "v1=210#V\n", + "v2=220#V\n", + "\n", + "#calculations\n", + "#V+(i1+v/20)*0.01=210\n", + "#V+(i2+v/20)*0.01=220\n", + "#solving the above two equations we have i1-i2=1000\n", + "ans=solve([i1-i2-1000,i1+i2-4000],[i1,i2])\n", + "V=solve([v1-(ans[i1]+v/20)*0.01-v],[v])\n", + "o1=V[v]*ans[i1]/1000\n", + "o2=V[v]*ans[i2]/1000\n", + "\n", + "#result\n", + "print \"Bus bar voltage=\",V[v],\"V\"\n", + "print \"output of first generator=\",o1,\"kW\"\n", + "print \"output of second generator=\",o2,\"kW\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Bus bar voltage= 184.907546226887 V\n", + "output of first generator= 462.268865567216 kW\n", + "output of second generator= 277.361319340330 kW\n" + ] + } + ], + "prompt_number": 15 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.17, Page Number:959" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "i1=Symbol('i1')\n", + "i2=Symbol('i2')\n", + "i=250.0#A\n", + "v1=50.0#kW\n", + "v2=100.0#kW\n", + "v=500.0#V\n", + "r1=0.06\n", + "r2=0.04\n", + "\n", + "#calculations\n", + "#generator 1\n", + "vd1=v*r1\n", + "il1=v1*1000/v\n", + "i_d1=vd1/il1\n", + "#generator 2\n", + "vd2=v*r2\n", + "il2=v2*1000/v\n", + "i_d2=vd2/il2\n", + "#3i1/10=i2/10\n", + "ans=solve([i1+i2-i,3*i1-i2],[i1,i2])\n", + "v=v-(3*ans[i1]/10)\n", + "\n", + "#result\n", + "print \"current delivered to first machine=\",round(ans[i1],1),\"A\"\n", + "print \"current delivered to second machine=\",round(ans[i2],1),\"A\"\n", + "print \"terminal voltage=\",round(v,1),\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "current delivered to first machine= 62.5 A\n", + "current delivered to second machine= 187.5 A\n", + "terminal voltage= 481.3 V\n" + ] + } + ], + "prompt_number": 19 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.18, Page Number:959" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "x1=Symbol('x1')\n", + "x2=Symbol('x2')\n", + "i1=Symbol('i1')\n", + "i2=Symbol('i2')\n", + "v=125.0#V\n", + "w1=250.0#kW\n", + "v1=119.0#V\n", + "w2=200.0#kW\n", + "v2=116.0#V\n", + "i=3500.0#A\n", + "\n", + "#calculations\n", + "#v=125-[(125-119)(x1/100)] for generator 1\n", + "#v=125-[(125-116)(x2/100)] for generator 2\n", + "#(250x1*1000/100)+(200x2*1000/100)=v*3500\n", + "#v=125-6x1/100\n", + "ans=solve([(250.0*x1*1000.0/100.0)+(200.0*(2.0*x1*1000.0)/300.0)-((125.0-((6.0*x1)/100.0))*3500.0)],[x1])\n", + "V=v-(6.0*ans[x1]/100.0)\n", + "ans2=solve([V-(v-((v-v2)*(x2/100.0)))],[x2])\n", + "ratio=ans[x1]/ans2[x2]\n", + "I=solve([ratio-((i1*w2)/(i2*w1)),i1+i2-i],[i1,i2])\n", + "print \"I1=\",round(I[i1],0),\"A\"\n", + "print \"I2=\",round(I[i2],0),\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "I1= 2283.0 A\n", + "I2= 1217.0 A\n" + ] + } + ], + "prompt_number": 23 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.19, Page Number:960" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "IA=Symbol('IA')\n", + "IB=Symbol('IB')\n", + "va1=240.0#V\n", + "va2=220.0#v\n", + "ia=200.0#A\n", + "vb1=245.0#V\n", + "vb2=220.0#V\n", + "ib=150.0#A\n", + "i=300.0#A\n", + "\n", + "#calculations\n", + "I=solve([(va1-((va1-va2)*IA/ia))-(vb1-((vb1-vb2)*IB/ib)),IA+IB-i],[IA,IB])\n", + "vbus=va1-((va1-va2)*I[IA]/ia)\n", + "#result\n", + "print \"IA=\",round(I[IA],2),\"A\"\n", + "print \"IB=\",round(I[IB],2),\"A\"\n", + "print \"V bus=\",round(vbus,2),\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "IA= 168.75 A\n", + "IB= 131.25 A\n", + "V bus= 223.13 V\n" + ] + } + ], + "prompt_number": 16 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.20, Page Number:961" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "i1=Symbol('i1')\n", + "i2=Symbol('i2')\n", + "n=5.0#number ofshunt generators\n", + "ra=0.1#ohm\n", + "p=250.0#kW\n", + "v=500.0#V\n", + "incr=0.04#increase in current\n", + "\n", + "#calculations\n", + "load=p/n\n", + "o=load*1000.0/v\n", + "a_drop=ra*o\n", + "emf=v+a_drop\n", + "incr=incr*emf\n", + "emf1=emf+incr\n", + "#emf1-ra*i1=V\n", + "#emf-ra*i2=V\n", + "I=solve([emf1-emf-ra*(i1-i2),i1+4.1*i2-510],[i1,i2])\n", + "V=I[i1]+4.0*I[i2]#V=i1+4*i2\n", + "o1=V*I[i1]/1000.0\n", + "o2=V*I[i2]/1000.0\n", + "\n", + "#result\n", + "print \"Power output of first machine=\",round(o1),\"kW\"\n", + "print \"Power output of second machine=\",round(o2,2),\"kW\"\n", + "print \"Terminal voltage=\",round(V),\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Power output of first machine= 133.0 kW\n", + "Power output of second machine= 30.24 kW\n", + "Terminal voltage= 504.0 V\n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.21, Page Number:961" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "V=Symbol('V')\n", + "i=1500.0#A\n", + "ra1=0.5#ohm\n", + "emf1=400.0#V\n", + "ra2=0.04#ohm\n", + "emf2=440.0#V\n", + "rs1=100.0#ohm\n", + "rs2=80.0#ohm\n", + "\n", + "#calculations\n", + "#i2=1500-i1\n", + "#ish1=v/100, ish2=v/80\n", + "#ia1=i1+v/100, ia2=i2+v/80\n", + "ans=solve([(0.5/0.04)-((emf1-1.005*V)/(1.0005*V-380))],[V])\n", + "i1=(emf1-1.005*ans[V])/0.5\n", + "i2=i-i1\n", + "o1=ans[V]*i1/1000\n", + "o2=ans[V]*i2/1000\n", + "#result\n", + "print \"I1=\",round(i1,2),\"A\"\n", + "print \"I2=\",round(i2,2),\"A\"\n", + "print \"Terminal Voltage=\",round(ans[V],2),\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "I1= 33.86 A\n", + "I2= 1466.14 A\n", + "Terminal Voltage= 381.16 V\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.22, Page Number:962" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "V=Symbol('V')\n", + "I=Symbol('I')\n", + "v1=250#V\n", + "ra1=0.24#ohm\n", + "rf1=100#ohm\n", + "v2=248#V\n", + "ra2=0.12#ohm\n", + "rf2=100#ohm\n", + "i=40#A\n", + "ir=0.172#ohm\n", + "\n", + "#calculations\n", + "ans=solve([V+((I+V/rf1)*ra1)-v1,V+((I+V/rf2)*ra2)-v2],[I,V])\n", + "ib=i-2*ans[I]\n", + "vd=ib*ir\n", + "eb=ans[V]+vd\n", + "\n", + "#result\n", + "print \"emf of battery=\",round(eb),\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "emf of battery= 248.0 V\n" + ] + } + ], + "prompt_number": 24 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.23, Page Number:963" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "va=400#V\n", + "ra=0.25#ohm\n", + "vb=410#V\n", + "rb=0.4#ohm\n", + "V=390#V\n", + "\n", + "#calculations\n", + "loada=(va-V)/ra\n", + "loadb=(vb-V)/rb\n", + "pa=loada*V\n", + "pb=loadb*V\n", + "net_v=vb-va\n", + "total_r=ra+rb\n", + "i=net_v/total_r\n", + "terminal_v=va+(i*ra)\n", + "power_AtoB=terminal_v*i\n", + "\n", + "#result\n", + "print \"Current=\",i,\"A\"\n", + "print \"Voltage=\",terminal_v,\"V\"\n", + "print \"Power=\",power_AtoB,\"W\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Current= 15.3846153846 A\n", + "Voltage= 403.846153846 V\n", + "Power= 6213.01775148 W\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.24, Page Number:964" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "v=Symbol('v')\n", + "i=500.0#A\n", + "ra1=0.01#ohm\n", + "ra2=0.02#ohm\n", + "sw1=0.004#ohm\n", + "sw2=0.006#ohm\n", + "e1=240.0#V\n", + "e2=244.0#V\n", + "\n", + "#calculations\n", + "V=solve([(((e1-v)/ra1)+((e2-v)/ra2)-i)],[v])\n", + "i1=(e1-V[v])/ra1\n", + "i2=(e2-V[v])/ra2\n", + "#ratio of series winding (1/0.004):(1/0.0006) or 3:2\n", + "is1=i*3/5\n", + "is2=i*2/5\n", + "vbus=V[v]-(is1*sw1)\n", + "\n", + "#result\n", + "print \"I1=\",round(i1),\"A\"\n", + "print \"I2=\",round(i2),\"A\"\n", + "print \"Current in series winding:\"\n", + "print \"generator A=\",round(is1),\"A\"\n", + "print \"generator B=\",round(is2),\"B\"\n", + "print \"Bus bar voltage=\",round(vbus,1),\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "I1= 200.0 A\n", + "I2= 300.0 A\n", + "Current in series winding:\n", + "generator A= 300.0 A\n", + "generator B= 200.0 B\n", + "Bus bar voltage= 236.8 V\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A Textbook of Electrical Technology AC and DC Machines/chapter28.ipynb b/A Textbook of Electrical Technology AC and DC Machines/chapter28.ipynb new file mode 100644 index 00000000..447ef8ab --- /dev/null +++ b/A Textbook of Electrical Technology AC and DC Machines/chapter28.ipynb @@ -0,0 +1,388 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:6743417a1c79c6197a7cd49755318e10828c09b3cb248c5af8d5364367840700" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 28: Generator Characteristics" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 28.13, Page Number:984" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=220#V\n", + "#emf increases by 1 V for every increase of 6 A\n", + "ra=0.02#ohm\n", + "i=96#A\n", + "\n", + "#calculations\n", + "voltageincrease=i/6\n", + "vd=i*ra\n", + "voltage_rise=voltageincrease-vd\n", + "vconsumer=v+voltage_rise\n", + "power_supplied=voltage_rise*i\n", + "\n", + "#result\n", + "print \"voltage supplied ot consumer= \",vconsumer,\" V\"\n", + "print \"power supplied by the booster itself= \",power_supplied/1000,\" kW\" " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "voltage supplied ot consumer= 234.08 V\n", + "power supplied by the booster itself= 1.35168 kW\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 28.14, Page Number:985" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=50.0#V\n", + "i=200.0#A\n", + "r=0.3#ohm\n", + "i1=200.0#A\n", + "i2=50.0#A\n", + "\n", + "#calculations\n", + "vd=i*r\n", + "voltage_decrease=v-vd\n", + "feeder_drop=v*r\n", + "booster_voltage=v*v/i1\n", + "voltage_net=feeder_drop-booster_voltage\n", + "\n", + "#result\n", + "print \"Net decrease in voltage= \",voltage_net,\" V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Net decrease in voltage= 2.5 V\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 28.15, Page Number:986" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "inl=5.0#A\n", + "v=440.0#V\n", + "il=6.0#A\n", + "i_full=200.0#A(full load)\n", + "turns=1600\n", + "\n", + "#calcuations\n", + "shunt_turns1=turns*inl\n", + "shunt_turns2=turns*il\n", + "increase=shunt_turns2-shunt_turns1\n", + "n=increase/i_full#number of series turns required\n", + "\n", + "#result\n", + "print \"Number of series turns required= \",n,\" tunrs/pole\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Number of series turns required= 8.0 tunrs/pole\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 28.16, Page Number:987" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=1000#turns/pole\n", + "series_winding=4#turns/pole\n", + "r=0.05#ohm\n", + "increase_i=0.2#A\n", + "ia=80#A\n", + "\n", + "#calculations\n", + "additional_at=n*increase_i\n", + "current_required=additional_at/series_winding\n", + "R=(current_required*r)/(ia-current_required)\n", + "\n", + "#result\n", + "print \"Divertor resistance= \",R,\" ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Divertor resistance= 0.0833333333333 ohm\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 28.17, Page Number:987" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=220.0#V\n", + "i=100.0#A\n", + "ra=0.1#ohm\n", + "rsh=50.0#ohm\n", + "rse=0.06#ohm\n", + "divertor=0.14#ohm\n", + "\n", + "#calculations\n", + "#short shunt\n", + "vd=i*rse\n", + "ish=v/rsh\n", + "ia=i+ish\n", + "armature_drop=ia*ra\n", + "E=v+vd+armature_drop\n", + "#long shunt\n", + "vd=ia*(ra+rse)\n", + "print vd\n", + "E2=v+vd\n", + "current_divertor=(ia*divertor)/(divertor+rse)\n", + "change=(current_divertor/ia)*100\n", + "\n", + "#result\n", + "print \"a)emf induced using short shunt= \",E\n", + "print \"b)emf induced using long shunt= \",E2\n", + "print \"c)series amp-turns are reduced to \",change,\" %\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "16.704\n", + "a)emf induced using short shunt= 236.44\n", + "b)emf induced using long shunt= 236.704\n", + "c)series amp-turns are reduced to 70.0 %\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 28.18, Page Number:988" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=250*1000#W\n", + "v=240#V\n", + "v2=220#V\n", + "i=7#A\n", + "inl=12#A\n", + "shunt=650#turns/pole\n", + "series=4#turns/pole\n", + "rse=0.006#ohm\n", + "\n", + "#calculations\n", + "i_fulload=p/v\n", + "shunt_increase=shunt*(inl-i)\n", + "ise=shunt_increase/series\n", + "i_d=i_fulload-ise\n", + "Rd=(ise*rse)/i_d\n", + "\n", + "#results\n", + "print \"resistance of the series amp-turns at no-load\",Rd,\"ohm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance of the series amp-turns at no-load 0.0212751091703 ohm\n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 28.19, Page Number:988" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "p=60.0*1000#W\n", + "n=1600.0#turns/pole\n", + "inl=1.25#A\n", + "vnl=125#V\n", + "il=1.75#A\n", + "vl=150.0#V\n", + "\n", + "#calculations\n", + "extra_excitation=n*(il-inl)\n", + "ise=p/vl\n", + "series=extra_excitation/ise\n", + "ise2=extra_excitation/3\n", + "i_d=ise-ise2\n", + "rd=(ise2*0.02)/i_d\n", + "reg=(vnl-vl)*100/vl\n", + "\n", + "#result\n", + "print \"i)minimum number of series turns/pole= \",series\n", + "print \"ii)divertor resistance= \",rd\n", + "print \"iii)voltage regulation= \",reg,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)minimum number of series turns/pole= 2.0\n", + "ii)divertor resistance= 0.04\n", + "iii)voltage regulation= -16.6666666667 %\n" + ] + } + ], + "prompt_number": 26 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 28.20, Page Number:989" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=50.0#v\n", + "i=200.0#A\n", + "r=0.3#ohm\n", + "i1=160.0#A\n", + "i2=50.0#A\n", + "\n", + "#calculations\n", + "#160 A\n", + "vd=i1*(r-(v/i))\n", + "#50 A\n", + "vd2=i2*(r-(v/i))\n", + "\n", + "#result\n", + "print \"voltage drop at 160 A=\",vd,\"V\"\n", + "print \"voltage drop at 50 A=\",vd2,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "voltage drop at 160 A= 8.0 V\n", + "voltage drop at 50 A= 2.5 V\n" + ] + } + ], + "prompt_number": 33 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A Textbook of Electrical Technology AC and DC Machines/chapter29.ipynb b/A Textbook of Electrical Technology AC and DC Machines/chapter29.ipynb new file mode 100644 index 00000000..414e96f4 --- /dev/null +++ b/A Textbook of Electrical Technology AC and DC Machines/chapter29.ipynb @@ -0,0 +1,2346 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:cc4f342391bb51dd1544d3ff7e470e05be79bafb54959e6b5c13aa0d16dbd712" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 29: D.C. Motor" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.1, Page Number:999" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=220#V\n", + "r=0.5#ohm\n", + "i=20#A\n", + "\n", + "#calculation\n", + "#as generator \n", + "eg=v+i*r\n", + "#as motor\n", + "eb=v-i*r\n", + "\n", + "#result\n", + "print \"as generator:eg=\",eg,\"V\"\n", + "print \"as motor:eb=\",eb,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "as generator:eg= 230.0 V\n", + "as motor:eb= 210.0 V\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.2, Page Number:999" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "ia=Symbol('ia')\n", + "r=0.1#ohm\n", + "brush_drop=2#V\n", + "n=1000#rpm\n", + "i=100#A\n", + "v=250#V\n", + "n2=700#rpm\n", + "\n", + "#calculations\n", + "rl=v/i\n", + "eg1=v+i*r+brush_drop\n", + "eg2=eg1*n2/n\n", + "ia=solve(eg2-2-ia*r-2.5*ia,ia)\n", + "\n", + "#result\n", + "print \"current delivered to the load=\",ia[0],\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "current delivered to the load= 69.7692307692308 A\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.3, Page Number:999" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=440#V\n", + "ra=0.8#ohm\n", + "rf=200#ohm\n", + "output=7.46#kW\n", + "efficiency=0.85\n", + "\n", + "#calculations\n", + "input_m=output*1000/efficiency\n", + "im=output*1000/(efficiency*v)\n", + "ish=v/rf\n", + "ia=im-ish\n", + "eb=v-ia*ra\n", + "\n", + "#results\n", + "print \"back emf=\",eb,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "back emf= 425.642780749 V\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.4, Page Number:1000" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=25#kW\n", + "v=250#V\n", + "ra=0.06#ohm\n", + "rf=100#ohm\n", + "\n", + "#calculations\n", + "#as generator\n", + "i=load*1000/v\n", + "ish=v/rf\n", + "ia=i+ish\n", + "eb=v+ia*ra\n", + "power=eb*ia/1000\n", + "\n", + "print \"As generator: power=\",power,\"kW\"\n", + "\n", + "#as motor\n", + "i=load*1000/v\n", + "ish=v/rf\n", + "ia=i-ish\n", + "eb=v-ia*ra\n", + "power=eb*ia/1000\n", + "\n", + "print \"As generator: power=\",power,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "As generator: power= 26.12424 kW\n", + "As generator: power= 23.92376 kW\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.5, Page Number:1000" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "p=a=4\n", + "z=32\n", + "v=200.0#V\n", + "i=12.0#A\n", + "ra=2.0#ohm\n", + "rf=200.0#ohm\n", + "n=1000.0#rpm\n", + "i2=5.0#A\n", + "#calculations\n", + "ia=i+v/rf\n", + "eg=v+ia*ra\n", + "phi=eg*a*60/(z*n*p)\n", + "#as motor\n", + "ia=i2-v/rf\n", + "eb=v-ia*ra\n", + "n=60*eb/(phi*z)\n", + "\n", + "#result\n", + "print \"flux per pole=\",phi,\"wb\"\n", + "print \"speed of the machine=\",math.ceil(n),\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "flux per pole= 0.42375 wb\n", + "speed of the machine= 850.0 rpm\n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.6, Page Number:1002" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "ia=110#A\n", + "v=480#V\n", + "ra=0.2#ohm\n", + "z=864\n", + "p=a=6\n", + "phi=0.05#Wb\n", + "\n", + "#calculations\n", + "eb=v-ia*ra\n", + "n=60*eb/(phi*z)\n", + "ta=0.159*phi*z*ia*p/a\n", + "\n", + "#result\n", + "print \"the speed=\",math.floor(n),\"rpm\"\n", + "print \"the gross torque=\",ta,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "the speed= 636.0 rpm\n", + "the gross torque= 755.568 N-m\n" + ] + } + ], + "prompt_number": 18 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.7, Page Number:1003" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250#V\n", + "z=782\n", + "ra=rf=0.5#ohm\n", + "ia=40#A\n", + "phi=25*0.001#Wb\n", + "p=4\n", + "a=2\n", + "#calculation\n", + "eb=v-ia*ra\n", + "n=60*eb/(phi*z)\n", + "ta=0.159*phi*z*ia*p/a\n", + "\n", + "print \"the speed=\",math.floor(n),\"rpm\"\n", + "print \"the gross torque=\",ta,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "the speed= 705.0 rpm\n", + "the gross torque= 248.676 N-m\n" + ] + } + ], + "prompt_number": 21 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.8, Page Number:1003" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "eb=250.0#V\n", + "n=1500.0#rpm\n", + "ia=50.0#A\n", + "\n", + "#calculations\n", + "pm=eb*ia\n", + "ta=9.55*eb*ia/n\n", + "\n", + "#result\n", + "print \"torque=\",ta,\"N-m\"\n", + "print \"machanical power=\",pm,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "torque= 79.5833333333 N-m\n", + "machanical power= 12500.0 W\n" + ] + } + ], + "prompt_number": 24 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.9, Page Number:1003" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=220#V\n", + "p=4\n", + "z=800\n", + "load=8.2#kW\n", + "ia=45#A\n", + "phi=25*0.001#Wb\n", + "ra=0.6#ohm\n", + "a=p/2\n", + "\n", + "#calculation\n", + "ta=0.159*phi*z*ia*p/a\n", + "eb=v-ia*ra\n", + "n=eb*a/(phi*z*p)\n", + "tsh=load*1000/(2*3.14*n)\n", + "\n", + "#result\n", + "print \"developed torque=\",ta,\"N-m\"\n", + "print \"shaft torque=\",tsh,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "developed torque= 286.2 N-m\n", + "shaft torque= 270.618131415 N-m\n" + ] + } + ], + "prompt_number": 32 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.10, Page Number:1003" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=220.0#V\n", + "n=500.0#rpm\n", + "i=50.0#A\n", + "ra=0.2#ohm\n", + "\n", + "#calculation\n", + "ia2=2*i\n", + "fb1=v-(i*ra)\n", + "eb2=v-(ia2*ra)\n", + "n2=eb2*n/fb1\n", + "#result\n", + "print \"speed when torque is doubled=\",n2,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed when torque is doubled= 476.19047619 N-m\n" + ] + } + ], + "prompt_number": 38 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.11, Page Number:1003" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "r=Symbol('r')\n", + "v=500#V\n", + "load=37.3#kW\n", + "n=1000#rpm\n", + "efficiency=0.90\n", + "ra=0.24#ohm\n", + "vd=2#v\n", + "i=1.8#A\n", + "ratio=1.5\n", + "\n", + "#calculation\n", + "input_m=load*1000/efficiency\n", + "il=input_m/v\n", + "tsh=9.55*load*1000/n\n", + "il=ratio*il\n", + "ia=il-i\n", + "r=solve(ia*(r+ra)+vd-v,r)\n", + "\n", + "#result\n", + "print \"full-load line current=\",il,\"A\"\n", + "print \"full-load shaft torque\",tsh,\"N-m\"\n", + "print \"total resistance=\",r[0],\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "full-load line current= 124.333333333 A\n", + "full-load shaft torque 356.215 N-m\n", + "total resistance= 3.82420021762787 ohm\n" + ] + } + ], + "prompt_number": 40 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.12, Page Number:1004" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=a=4\n", + "v=220#V\n", + "z=540\n", + "i=32#A\n", + "output=5.595#kW\n", + "ra=0.09#ohm\n", + "i_f=1#A\n", + "phi=30*0.001#Wb\n", + "\n", + "#calculation\n", + "ia=i-i_f\n", + "eb=v-ia*ra\n", + "n=eb*a*60/(phi*z*p)\n", + "tsh=9.55*output/n\n", + "\n", + "#result\n", + "print \"speed=\",n,\"rpm\"\n", + "print \"torque developed=\",tsh*1000,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 804.481481481 rpm\n", + "torque developed= 66.4182473183 N-m\n" + ] + } + ], + "prompt_number": 43 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.13(a), Page Number:1004" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=220.0#V\n", + "load=20.0#kW\n", + "i=5.0#A\n", + "ra=0.04#ohm\n", + "phi=0.04#Wb\n", + "z=160\n", + "il=95.0#A\n", + "inl=9.0#A\n", + "p=4\n", + "a=2\n", + "#calculation\n", + "#no load\n", + "ea0=v-(inl-i)*ra\n", + "n0=ea0*a*60/(phi*z*p)\n", + "#load\n", + "ea=v-(il-i)*ra\n", + "n=ea*n0/ea0\n", + "\n", + "#result\n", + "print \"no-load speed=\",n0,\"rpm\"\n", + "print \"load speed=\",n,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "no-load speed= 1030.5 rpm\n", + "load speed= 1014.375 rpm\n" + ] + } + ], + "prompt_number": 58 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.13(b), Page Number:1004" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=a=6\n", + "i=400#A\n", + "n=350#rpm\n", + "phi=80*0.001#Wb\n", + "z=600*2\n", + "loss=0.03#percentage\n", + "\n", + "#calculation\n", + "e=phi*z*n*p/(60*a)\n", + "pa=e*i\n", + "t=pa/(2*3.14*n/60)\n", + "t_net=0.97*t\n", + "bhp=t_net*36.67*0.001/0.746\n", + "#result\n", + "print \"brake-horse-power\",bhp,\"HP\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "brake-horse-power 291.551578696 HP\n" + ] + } + ], + "prompt_number": 66 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.13(c), Page Number:1004" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "z=774\n", + "phi=24*0.001#Wb\n", + "ia=50#A\n", + "a=2\n", + "#calculations\n", + "t=0.159*phi*z*ia*p/a\n", + "\n", + "#result\n", + "print \"torque=\",t,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "torque= 295.3584 N-m\n" + ] + } + ], + "prompt_number": 67 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.13(d), Page Number:1005" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=500.0#V\n", + "i=5.0#A\n", + "ra=0.15#ohm\n", + "rf=200.0#ohm\n", + "il=40.0#A\n", + "\n", + "#calculations\n", + "ih=v/rf\n", + "pi=v*i\n", + "cu_loss_f=cu_loss=v*ih\n", + "output=v*il\n", + "cu_loss_a=(il+ih)**2*ra\n", + "total_loss=cu_loss+cu_loss_a+cu_loss_f\n", + "efficiency=output/(output+total_loss)\n", + "#result\n", + "print \"efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 87.8312542029 %\n" + ] + } + ], + "prompt_number": 81 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.13(e), Page Number:1006" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable delcration\n", + "ia=40#A\n", + "v=220#V\n", + "n=800#rpm\n", + "ra=0.2#ohm\n", + "rf=0.1#ohm\n", + "loss=0.5#kW\n", + "\n", + "#calculations\n", + "eb=v-ia*(ra+rf)\n", + "ta=9.55*eb*ia/n\n", + "cu_loss=ia**2*(ra+rf)\n", + "total_loss=cu_loss+loss*1000\n", + "input_m=v*ia\n", + "output=input_m-total_loss\n", + "\n", + "#result\n", + "print \"output of the motor=\",output/1000,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "output of the motor= 7.82 kW\n" + ] + } + ], + "prompt_number": 88 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.14, Page Number:1006" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "f=400.0#N\n", + "d=10.0#cm\n", + "n=840#rpm\n", + "v=220.0#V\n", + "n1=1800#rpm\n", + "efficiency=.80\n", + "d2=24.0#cm\n", + "\n", + "#calculations\n", + "tsh=f*d*0.01/2\n", + "output=tsh*2*3.14*n/60\n", + "input_m=output/efficiency\n", + "i=input_m/v\n", + "d1=n*d2/n1\n", + "\n", + "#calculation\n", + "print \"current taken by the motor=\",round(i),\"A\"\n", + "print \"size of motor pulley=\",d1,\"cm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "current taken by the motor= 10.0 A\n", + "size of motor pulley= 11.2 cm\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.15, Page Number:1006" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=200.0#V\n", + "p=4\n", + "z=280\n", + "ia=45.0#A\n", + "phi=18*0.001#Wb\n", + "ra=0.5+0.3#ohm\n", + "loss=800.0#W\n", + "d=0.41\n", + "a=4\n", + "#calculation\n", + "eb=v-ia*ra\n", + "n=eb*60*a/(phi*z*p*4)\n", + "inpt=v*ia\n", + "cu_loss=ia**2*ra\n", + "total_loss=loss+cu_loss\n", + "output=inpt-total_loss\n", + "tsh=9.55*output/n\n", + "f=tsh*2/d\n", + "\n", + "#result\n", + "print \"pull at the rim of the pulley=\",f,\"N-m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "pull at the rim of the pulley= 628.016180845 N-m\n" + ] + } + ], + "prompt_number": 102 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.16, Page Number:1007" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "v=240#V\n", + "output=11.19#kW\n", + "n=1000#rpm\n", + "ia=50#A\n", + "i=1#A\n", + "z=540\n", + "ra=0.1#ohm\n", + "vd=1#V\n", + "a=2\n", + "#calculation\n", + "eb=v-ia*ra\n", + "ta=9.55*eb*ia/n\n", + "tsh=9.55*output*1000/n\n", + "phi=eb*60*a*1000/(z*n*p)\n", + "input_a=v*ia\n", + "cu_loss=ia**2*ra\n", + "brush_loss=ia*2\n", + "power=input_a-(cu_loss+brush_loss)\n", + "rotational_loss=power-output*1000\n", + "input_m=v*(ia+i)\n", + "efficiency=output*1000/input_m\n", + "\n", + "#result\n", + "print \"total torque=\",ta,\"N-m\"\n", + "print \"useful torque=\",tsh,\"N-m\"\n", + "print \"flux/pole=\",phi,\"mWb\"\n", + "print \"rotational losses=\",rotational_loss,\"W\"\n", + "print \"efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "total torque= 112.2125 N-m\n", + "useful torque= 106.8645 N-m\n", + "flux/pole= 13.0555555556 mWb\n", + "rotational losses= 460.0 W\n", + "efficiency= 91.4215686275 %\n" + ] + } + ], + "prompt_number": 106 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.17, Page Number:1007" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=460.0#v\n", + "n=500.0#rpm\n", + "i=40.0#A\n", + "i2=30.0#A\n", + "ra=0.8#ohm\n", + "\n", + "#calculation\n", + "t2_by_t1=i2**2/i**2\n", + "change=(1-t2_by_t1)*100#percentage\n", + "eb1=v-i*ra\n", + "eb2=v-i2*ra\n", + "n2=eb2*i*n/(eb1*i2)\n", + "#result\n", + "print \"speed=\",n2,\"rpm\"\n", + "print \"percentage change in torque=\",change,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 679.127725857 rpm\n", + "percentage change in torque= 43.75 %\n" + ] + } + ], + "prompt_number": 111 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.18, Page Number:1008" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=460.0#V\n", + "output=55.95#kW\n", + "n=750#rpm\n", + "I=252.8#kg-m2\n", + "ia1=1.4\n", + "ia2=1.8\n", + "\n", + "#calculations\n", + "ia=(ia1+ia2)/2\n", + "n=n/60.0\n", + "tsh=output*1000/(2*3.14*n)\n", + "torque_avg=(ia-1)*tsh\n", + "dt=(I*2*3.14*n)/torque_avg\n", + "\n", + "#result\n", + "print \"approximate time to attain full speed=\",dt,\"s\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "approximate time to attain full speed= 46.4050282991 s\n" + ] + } + ], + "prompt_number": 129 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.19, Page Number:1008" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "output=14.92#kW\n", + "v=400.0#V\n", + "n=400.0#rpm\n", + "i=40.0#A\n", + "I=7.5#kg-m2\n", + "ratio=1.2\n", + "\n", + "#calculations\n", + "n=n/60\n", + "t=output*1000/(2*3.14*n)\n", + "torque=(ratio-1)*t\n", + "dt=(I*2*3.14*n)/torque\n", + "\n", + "print \"time to attain full speed=\",dt,\"s\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "time to attain full speed= 4.4055406613 s\n" + ] + } + ], + "prompt_number": 138 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.20, Page Number:1009" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "z=944\n", + "phi=34.6*0.001#Wb\n", + "ta=209.0#N-m\n", + "v=500.0#V\n", + "ra=3.0#ohm\n", + "a=2\n", + "#calculation\n", + "ia=ta/(0.159*phi*z*(p/a))\n", + "ea=v-ia*ra\n", + "n=ea/(phi*z*(p/a))\n", + "\n", + "#result\n", + "print \"line current=\",ia,\"A\"\n", + "print \"speed=\",n*60,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "line current= 20.1219966813 A\n", + "speed= 403.798260345 rpm\n" + ] + } + ], + "prompt_number": 143 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.21, Page Number:1010" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250#v\n", + "n=1000#rpm\n", + "ia=8#A\n", + "ra=0.2#ohm\n", + "rf=250#ohm\n", + "i2=50#A\n", + "\n", + "#calculation\n", + "ish=v/rf\n", + "eb0=v-(ia-ish)*ra\n", + "eb=v-(i2-ish)*ra\n", + "n=eb*n/eb0\n", + "\n", + "#result\n", + "print \"speed when loaded=\",n,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed when loaded= 966.21078037 rpm\n" + ] + } + ], + "prompt_number": 144 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.22, Page Number:1010" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=800#rpm\n", + "ia=100#A\n", + "v=230#V\n", + "ra=0.15#ohm\n", + "rf=0.1#ohm\n", + "ia2=25#A\n", + "ratio=0.45\n", + "\n", + "#calculation\n", + "eb1=v-(ra+rf)*ia\n", + "eb2=v-ia2*(ra+rf)\n", + "n2=eb2*n/(eb1*ratio)\n", + "\n", + "#result\n", + "print \"speed at which motor runs=\",n2,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed at which motor runs= 1940.37940379 rpm\n" + ] + } + ], + "prompt_number": 148 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.23, Page Number:1010" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "ia2=Symbol('ia2')\n", + "#variable declaration\n", + "v=230.0#V\n", + "ra=0.5#ohm\n", + "rf=115.0#ohm\n", + "n1=1200#rpm\n", + "ia=2.5#A\n", + "n2=1120#rpm\n", + "\n", + "#calculation\n", + "eb1=v-ra*ia\n", + "x=n2*eb1/n1\n", + "ia2=solve((v-ra*ia2)-x,ia2)\n", + "ia=ia2[0]+(v/rf)\n", + "input_m=v*ia\n", + "\n", + "#result\n", + "print \"line current=\",round(ia,1),\"A\"\n", + "print \"power input=\",round(input_m,1),\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "line current= 35.0 A\n", + "power input= 8050.0 W\n" + ] + } + ], + "prompt_number": 158 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.24, Page Number:1010" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "power=100.0#kW\n", + "n1=300#rpm\n", + "v=220.0#V\n", + "load=10.0#kW\n", + "ra=0.025#ohm\n", + "rf=60.0#ohm\n", + "vd=1.0#V\n", + "\n", + "#calculation\n", + "i=power*1000/v\n", + "ish=v/rf\n", + "ia=i+ish\n", + "eb=v+ia*ra+2*vd\n", + "i=load*1000/v\n", + "ia2=i-ish\n", + "eb2=v-ia2*ra-2*vd\n", + "n2=eb2*n1/eb\n", + "\n", + "#result\n", + "print \"speed=\",n2,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 278.796797778 rpm\n" + ] + } + ], + "prompt_number": 174 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.25, Page Number:1011" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=250.0#V\n", + "n=1000.0#rpm\n", + "ra=0.5#ohm\n", + "rf=250.0#ohm\n", + "ia=4.0#A\n", + "i=40.0#A\n", + "ratio=0.04#percentage by whih armature reaction weakens field\n", + "\n", + "#calculations\n", + "ish=v/rf\n", + "ia2=ia-ish\n", + "eb0=v-ia2*ra\n", + "n0=n*eb0/v\n", + "ia=i-ish\n", + "eb=v-ia*ra\n", + "n=eb*n0/(eb0*(1-ratio))\n", + "\n", + "#result\n", + "print \"speed of machine=\",math.floor(n),\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed of machine= 960.0 rpm\n" + ] + } + ], + "prompt_number": 190 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.26, Page Number:1011" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250#V\n", + "ooutput=14.92#kW\n", + "n=1000#rpm\n", + "i=75#A\n", + "ra=0.25#ohm\n", + "ratio=0.20\n", + "\n", + "#calculation\n", + "eb1=v-i*ra\n", + "eb_inst=eb1*(1-ratio)\n", + "ia_inst=(v-eb_inst)/ra\n", + "t_inst=9.55*eb_inst*ia_inst/n\n", + "ia2=i/(1-ratio)\n", + "eb2=v-ia2*ra\n", + "n2=eb2*n/(eb1*(1-ratio))\n", + "\n", + "#result\n", + "print \"armature current=\",ia2,\"A\"\n", + "print \"speed=\",n2,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "armature current= 93.75 A\n", + "speed= 1224.66216216 rpm\n" + ] + } + ], + "prompt_number": 191 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.27, Page Number:1012" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=200.0#V\n", + "i=4.0#A\n", + "n=700.0#rpm\n", + "rf=100.0#A\n", + "v2=6.0#V\n", + "i2=10.0#A\n", + "input_m=8.0#kW\n", + "\n", + "#calculation\n", + "ish=v/rf\n", + "il=input_m*1000/v\n", + "ia=il-ish\n", + "ra=v2/i2\n", + "eb0=v-ish*ra\n", + "eb=v-ia*ra\n", + "n=eb*n/eb0\n", + "ta=9.55*eb*ia/n\n", + "inpt=v*i\n", + "cu_loss=ish**2*ra\n", + "constant_loss=inpt-cu_loss\n", + "cu_loss_arm=ia**2*ra\n", + "total_loss=constant_loss+cu_loss_arm\n", + "output=input_m*1000-total_loss\n", + "efficiency=output/(input_m*1000)\n", + "print \n", + "#result\n", + "print \"speed on load=\",n,\"rpm\"\n", + "print \"torque=\",ta,\"N-m\"\n", + "print \"efficiency=\",efficiency*100,\"%\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "speed on load= 623.943661972 rpm\n", + "torque= 103.0636 N-m\n", + "efficiency= 79.2 %\n" + ] + } + ], + "prompt_number": 197 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.28, Page Number:1012" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variabe declaration\n", + "v=220#V\n", + "load=11#kW\n", + "inl=5#A\n", + "n_nl=1150#rpm\n", + "ra=0.5#ohm\n", + "rsh=110#ohm\n", + "\n", + "#calculations\n", + "input_nl=v*inl\n", + "ish=v/rsh\n", + "ia0=inl-ish\n", + "cu_loss_nl=ia1**2*ra\n", + "constant_loss=input_nl-cu_loss_nl\n", + "i=load*1000/v\n", + "ia=i-ish\n", + "cu_loss_a=ia**2*ra\n", + "total_loss=cu_loss_a+constant_loss\n", + "output=load*1000-total_loss\n", + "efficiency=output*100/(load*1000)\n", + "eb_nl=v-(ia0*ra)\n", + "eb=v-ia*ra\n", + "n=n_nl*eb/eb_nl\n", + "ta=9.55*eb*ia/n\n", + "\n", + "#result\n", + "print \"torque developed=\",ta,\"N-m\"\n", + "print \"efficiency=\",efficiency,\"%\"\n", + "print \"the speed=\",n,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "torque developed= 87.096 N-m\n", + "efficiency= 79.5361818182 %\n", + "the speed= 1031.57894737 rpm\n" + ] + } + ], + "prompt_number": 200 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.29, Page Number:1013" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=18.65#kW\n", + "v=250.0#V\n", + "ra=0.1#ohm\n", + "vb=3#V\n", + "rf=0.05#ohm\n", + "ia=80.0#A\n", + "n=600.0#rpm\n", + "i2=100.0#A\n", + "\n", + "#calculation\n", + "eb1=v-ia*(ra+rf)\n", + "eb2=v-i2*(ra+rf)\n", + "n2=eb2*ia*n/(eb1*i2)\n", + "\n", + "#result\n", + "print \"speed when current is 100 A=\",n2,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed when current is 100 A= 473.949579832 rpm\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.30, Page Number:1013" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=220.0#V\n", + "n=800.0#rpm\n", + "i=100.0#A\n", + "ra=0.1\n", + "ratio=1.0/2.0\n", + "#calculation\n", + "ia1=i*math.sqrt(ratio)\n", + "eb1=v-i*ra\n", + "eb2=v-ia1*ra\n", + "n2=eb2*i*n/(eb1*ia1)\n", + "#result\n", + "print \"speed when motor will run when developing half the torque=\",round(n2,0),\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed when motor will run when developing half the torque= 1147.0 rpm\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.31, Page Number:1013" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "p=a=4\n", + "n=600#rpm\n", + "ia=25#A\n", + "v=450#V\n", + "z=500\n", + "phi=1.7*0.01*math.pow(ia,0.5)\n", + "\n", + "#calculation\n", + "eb=n*phi*z*p/(60*a)\n", + "iara=v-eb\n", + "ra=iara/ia\n", + "i=math.pow((phi*ia*math.sqrt(ia)/(phi*2)),2.0/3.0)\n", + "eb2=v/2-i*ra\n", + "phi2=1.7*0.01*math.pow(i,0.5)\n", + "n2=eb2*phi*n/(eb*phi2)\n", + "\n", + "#result\n", + "print \"speed at which motor will run=\",round(n2,0),\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed at which motor will run= 372.0 rpm\n" + ] + } + ], + "prompt_number": 224 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.32, Page Number:1017" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import math\n", + "#variable declaration\n", + "v=460.0#V\n", + "ra=0.5#ohm\n", + "\n", + "def f(ia,t):\n", + " n=(v*ia-ia**2*ra)*60/(2*3.14*t)\n", + " return(n)\n", + "\n", + "n1=f(20.0,128.8)\n", + "n2=f(30.0,230.5)\n", + "n3=f(40.0,349.8)\n", + "n4=f(50.0,469.2)\n", + "T=[128.8,230.5,349.8,469.2]\n", + "N=[n1,n2,n3,n4]\n", + "plt.plot(T,N)\n", + "plt.xlabel(\"Torque(NM.m)\") \n", + "plt.ylabel(\"Speed(rpm)\") \n", + "plt.xlim((0,500))\n", + "plt.ylim((0,800))\n", + "plt.show()\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEPCAYAAABcA4N7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH0VJREFUeJzt3XucVXW9//HXWxDvCpQNihcgJUSj1CBv5aaMPP0K7VGh\nHutQ9Kh+VkdPnUrwVz/m13mcQrucfvV7lF3Ug50kKROxzEBjm56j4AWviMjBUVGYxFsqKiCf3x/r\nO8xmnFnMDHvN3jP7/Xw89oO1116X7/6W+z3f9f2u71JEYGZm1pVdal0AMzOrbw4KMzPL5aAwM7Nc\nDgozM8vloDAzs1wOCjMzy1VoUEj6kqT7Jd0n6QpJu0kaLmmxpFWSFkkaWrH9LEkPS1opaUqRZTMz\ns+5RUfdRSBoJ3AwcERGvSroSuA44EtgQERdJOh8YFhEzJY0HrgAmAiOBG4CxEbG1kAKamVm3FH3p\naTCwp6TBwJ7Ak8BUYG76fC5welo+DZgXEZsjogVYDUwquHxmZrYDhQVFRDwBfA94jCwgnouIxUBT\nRLSmzVqBprR8ILC24hBryVoWZmZWQ4UFhaRhZK2HUWQhsLekj1duE9l1r7xrX55fxMysxgYXeOxT\ngEci4mkASb8DjgfWSxoREeslHQD8NW3/BHBwxf4HpXXbkeTwMDPrhYhQb/Yrso/iUeA4SXtIEllw\nrACuBaanbaYDC9LyQuBMSUMkjQYOB5Z1duCI8CuC2bNn17wM9fJyXbguXBf5r51RWIsiIpZJ+i1w\nF7Al/fszYB9gvqRPAy3AtLT9CknzycJkC/D52NlvZ2ZmO63IS09ERDPQ3GH1M2Sti862/xbwrSLL\nZGZmPeM7s/uxUqlU6yLUDddFO9dFO9dFdRR2w11RJPmKlJlZD0ki6rAz28zMBgAHhZmZ5XJQmJlZ\nLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4H\nhZmZ5XJQmJlZLgeFmZnlclCYmVmuQoNC0lskLa94PS/pXEnDJS2WtErSIklDK/aZJelhSSslTSmy\nfGZmtmN99ihUSbsATwCTgH8ENkTERZLOB4ZFxExJ44ErgInASOAGYGxEbK04jh+FambWQ/3lUain\nAKsj4nFgKjA3rZ8LnJ6WTwPmRcTmiGgBVpMFi5mZ1UhfBsWZwLy03BQRrWm5FWhKywcCayv2WUvW\nsjAzsxrpk6CQNAT4EPCbjp+l60h515J8ncnMrIYG99F5/g64MyKeSu9bJY2IiPWSDgD+mtY/ARxc\nsd9Bad12mpubty2XSiVKpVIRZTYz67fK5TLlcrkqx+qTzmxJvwb+GBFz0/uLgKcj4kJJM4GhHTqz\nJ9HemX1YZe+1O7PNzHpuZzqzCw8KSXsBjwKjI+KFtG44MB84BGgBpkXEc+mzC4AZwBbgvIj4U4fj\nOSjMzHqoroOi2hwUZmY911+Gx5qZWT/koDAzs1wOCjMzy+WgMAA2bap1CcysXjkojCeegEMPhW9+\nE555ptalMbN646AwRo6EJUvg0UfhsMPgy1+GtWt3vJ+ZNQYHhQEwbhxccgncey9IMGECzJgBDz5Y\n65KZWa05KGw7Bx0E3/serF4No0dDqQQf/jAsXVrrkplZrfiGO8u1cSNceil897tZcMycCVOmZK0O\nM+s/fGe2FW7zZrjySrjwQhg8OAuMj3wkWzaz+uegsD4TAdddB3PmwLp18JWvwCc/CbvvXuuSmVke\nB4XVxC23ZC2MO+6A886Dc86B/fardanMrDOe68lq4qST4NprYfFiWLECxozJLkmtW1frkplZNTko\nbKcddRRcfjnceWfW+X3kkfC5z2Ujp8ys/3NQWNWMGgU//CE89BA0NcHxx8MZZ8Bdd9W6ZGa2MxwU\nVnX7759NB/LII3DccTB1Krz//fDnP2ed4WbWv7gz2wq3aRP86ldZx/e++2b9GKefDrv4zxSzPuNR\nT9YvbN0K11yTDa19/nn42tfg7LNht91qXTKzgc9BYf1KBJTLWQvj/vvhS1+Cz34W9tmn1iUzG7jq\nenispKGSfivpQUkrJL1T0nBJiyWtkrRI0tCK7WdJeljSSklTii6f9T0JJk+G66/Phtfefns2tPYb\n34Cnnqp16cyso764Svx/gesi4ghgArASmAksjoixwI3pPZLGA2cA44FTgR9L8pXsAezoo+HXv4Zb\nb81C4i1vgS9+EVpaal0yM2tT6I+wpP2Ad0XEpQARsSUingemAnPTZnOB09PyacC8iNgcES3AamBS\nkWW0+nDYYXDxxdmNe/vsA8ceCx//ONx3X61LZmZF/7U+GnhK0mWS7pL0c0l7AU0R0Zq2aQWa0vKB\nQOUjc9YCIwsuo9WRESPg29+GNWvgrW/NZqr94Aez6ULMrDaKnvtzMHAM8MWIuF3SD0iXmdpEREjK\n651+3WfNzc3blkulEqVSqSqFtfqx335w/vnZHFJz52YTD44YkQ2t/cAHPLTWbEfK5TLlcrkqxyp0\n1JOkEcCtETE6vT8JmAWMASZHxHpJBwBLImKcpJkAETEnbX89MDsillYc06OeGtBrr8FVV2VDazdt\nykLkzDNh111rXTKz/qFuRz1FxHrgcUlj06pTgAeAa4Hpad10YEFaXgicKWmIpNHA4cCyIsto/cOg\nQTBtWjaf1Pe/D5ddlvVr/OhH2fxSZlacwu+jkPQ24BfAEOC/gU8Bg4D5wCFACzAtIp5L218AzAC2\nAOdFxJ86HM8tCgNg2bLsXoxbboEvfCEbLTV8eK1LZVaffMOdNbSVK+E734Grr876Mr785ezZ32bW\nrm4vPZn1hXHj4JJL4N57s07uCRNgxgx48MFal8xsYHBQ2IBx0EHw3e9mz8EYMwZKJfjwh2Hp0h3u\namY5fOnJBqyNG+HSS7PwGD06G1o7ZUo2hYhZo3EfhVmOzZth/vxsaO3gwdnQ2o9+NFs2axQOCrNu\niIDrrssC48kn4atfzTq/d9+91iUzK56DwqyHbrklG1p7xx3Z3d/nnJPdDW42UHnUk1kPnXRSNsX5\n4sXZRIRjxmSXpNatq3XJzOqPg8Ia2lFHweWXZ3d8v/wyHHkkfO5z8PDDtS6ZWf3wpSezCk89lU0L\n8pOfZHd5T56cvUolaGra4e5mdct9FGZVtnVrdgPfkiXZ6y9/gZEjtw+ON7yh1qU06z4HhVnBXnsN\nli9vD47//E8YNao9ON79bhg2rNalNOuag8Ksj23enPVrtAXHrbfC2LHtwfGud8G++9a6lGbtHBRm\nNbZpUzabbVtwLFuWdYy3BceJJ8Lee9e6lNbIHBRmdeaVV+C229qD46674G1vaw+OE06APfaodSmt\nkTgozOrcxo3Z5am24LjnHjjmmPbgOO443yFuxXJQmPUzL76YdYi3BceKFTBxYntwTJoEQ4bUupQ2\nkDgozPq5v/0Nbr65PThWrYLjj28Pjne8w5MY2s5xUJgNMM8+m9270RYcLS1Zh3hbcBx9dPYccbPu\nclCYDXAbNsBNN7UHx5NPZkNw24JjwoTs6X5mXanroJDUAvwNeA3YHBGTJA0HrgQOBVqAaRHxXNp+\nFjAjbX9uRCzqcDwHhTW81lYol9uDY8OG7Ka/tuA48kgHh22v3oPiEeDYiHimYt1FwIaIuEjS+cCw\niJgpaTxwBTARGAncAIyNiK0V+zoozDp48sn20CiXsz6Pk09uD45x4/xkv0bXH4LiHRHxdMW6lcDJ\nEdEqaQRQjohxqTWxNSIuTNtdDzRHxG0V+zoozHbgsce2b3G8+mo2P1VbcBx2mIOj0dR7UKwBnie7\nlPTTiPi5pGcjYlj6XMAzETFM0o+A2yLiV+mzXwB/jIirKo7noDDroUceaQ+NJUuydW2hMXly9kxx\nG9h2Jij6YsDdiRGxTtL+wOLUmtgmIkJS3i//6z5rbm7etlwqlSiVSlUqqtnANHp09poxI3sk7OrV\nWWAsXgwXXJDd7FcZHAcfXOsS284ql8uUy+WqHKvbLQpJewGvRMRrvT6ZNBt4EfgMUIqI9ZIOAJak\nS08zASJiTtr+emB2RCytOIZbFGZVFAErV27fx7Hffu3TqU+eDAceWOtS2s4q5NKTpEHAGcDZZJ3L\nm4DdgA3A78kuI63eQcH2BAZFxAspaBYB/wc4BXg6Ii5M4TC0Q2f2JNo7sw+rTAYHhVmxtm6FBx5o\nD46bboL99/dDnPq7ooLiJuBGYAHwQFtLQtIbgMnAWcCCiPhlTsFGA1ent4OBX0XEt9Pw2PnAIbx+\neOwFZMNjtwDnRcSfOhzTQWHWh/wQp4GhqKAYEhGbdnDiXSNic29O3FsOCrPa8kOc+qfCRz1JGkb2\n1/+2SQMi4q7enHBnOSjM6ktnD3EaMwYOPzzrQB8zpv116KGe7LBWCg0KSf8CfBJYA2y78S0iJvfm\nhDvLQWFW3zZtgvvugzVrtn898gisXQtvetP24TFmTHugvOlNvr+jKEUHxSrgqB1dhuorDgqz/mvL\nliwsKsOjMkw2btw+OCpfo0bBnnvW+hv0X0UHxe+AcyKitTcnqDYHhdnA9cILrw+PtkBpaYGhQztv\niYwZkw3h9fxWXSs6KN4BXAM8ALyaVkdETO3NCXeWg8KsMW3dCuvWdd0aefbZrA+kY2uk7f2++9b6\nG9RW0UGxArgYuJ/2PoqIiJt6c8Kd5aAws868/HLW6uisNbJmTXb3eWctkTFjsjvRB/qDoYoOitsj\nYmKvSlYAB4WZ9VQEPPVU162R9euze0O6uqw1fHj/72QvOii+T3bJaSHtl548PNbMBoxNm+DRRzvv\nH1mzJguarjrZDz0Udtut1t9gx4oOijKdTMzn4bFm1iiefbbzy1lr1sDjj28/5LdjmDQ11UdrpK6n\nGa82B4WZ1ZO2Ib9djdZ66aVsaG9nl7VGj4a99uqbchbdongjMBs4iaxlcTPwzcoHEfUlB4WZ9Scd\nh/xWLre0ZDP1dmyJjBsHxx9f3XIUHRQ3ADcB/wEI+HuyKcJP6c0Jd5aDwswGirYhvx1bI3vsAT/9\naXXPVXRQ3B8RR3VYd19EvLU3J9xZDgozs57bmaDozn2MiySdJWmX9DqD7LkSZmbWALrTongR2JP2\nm+12AV5KyxERfXq/o1sUZmY9V9gzsyUJGB8Rj/WqZGZm1u9159LTdYWXwszM6lZuUKRrPHdKmtRH\n5TEzszrTnT6Kh4DDgEfZvm9iQsFl66o87qMwM+uhwvookvf35sBtJA0C7gDWRsSHJA0HrgQOBVqA\naRHxXNp2FjADeA04NyI8usrMrMa6vPQkaW+AiGjp7JW22acb5zgPWEH7fFEzgcURMRa4Mb1H0njg\nDGA8cCrwY0l+DImZWY3l/RBfI+l7kt4tadtsJJLeLOnTkhaR/aB3SdJBwAeAX5Dd1Q0wFZiblucC\np6fl04B5EbE5BdFqwH0jZmY1lnfp6RSyH/n/CZyQLhltAR4C/gD8Q0Ss38Hx/w34KlB5r0VTxWNV\nW4GmtHwgcFvFdmuBkd35EmZmVpwugyL1GP8hvXpM0geBv0bEckmlrs4hKa9nutPPmpubty2XSiVK\npU4Pb2bWsMrlMuVyuSrH6nLUk6Rj6eKHGnb84CJJ3wI+QdYK2Z2sVfE7YCLZpILrJR0ALImIcZJm\npuPOSftfD8yOiKUdjutRT2ZmPVTIpIAVDyzaAzgWuDd9NAG4IyK6PQmupJOBr6RRTxcBT0fEhSkc\nhkbEzNSZfQVZv8RI4AbgsI6p4KAwM+u5QiYFjIhSeordk8AxEXFsRBwLHJ3W9VTbr/sc4H2SVgHv\nSe+JiBXAfLIRUn8EPu9EMDOrve7ccLciIsbvaF1fcYvCzKznir7h7l5Jv2D7Bxfd05uTmZlZ/9Od\nFsUewDnAu9KqvwA/iYhXCi5bV+Vxi8LMrIcKfcJdOsGewCERsbI3J6kmB4WZWc8V+oQ7SVOB5cD1\n6f3Rkhb25mRmZtb/dGcupWbgncCzABGxHBhTYJnMzKyOdCcoNrfN7lpha6dbmpnZgNOdUU8PSDob\nGCzpcOBc4L+KLZaZmdWL7rQo/hE4EngVmAf8DfinIgtlZmb1o1ujngAk7RURL+14y2J51JOZWc8V\nPerpBEkrgJXp/dsk/bg3JzMzs/6nO5eefkD2gKINABFxD3BykYUyM7P60a1HjUbEYx1WbSmgLGZm\nVoe6M+rpMUknAkgaQjbq6cFCS2VmZnWjOy2Kc4AvkD0j4gmyaca/UGShzMysfnR71FO98KgnM7Oe\nK3rU05slXStpg6SnJF0jyVN4mJk1iO5cerqC7MlzBwAHAr8hu/HOzMwaQHeeR3FvREzosO6eiHhb\noSXrujy+9GRm1kOFPo9C0oXAc7S3Is4AhgEXAUTEM705cW85KMzMeq7ooGgButooIqLT/gpJuwM3\nAbuRDcP9bUQ0SxoOXAkcCrQA09pmp5U0C5gBvAacGxGLOjmug8LMrIcKCQpJk4DHI2Jdev9J4CNk\nP+7NEfF0Nwq2Z0RslDQYuAU4Lx1jQ0RcJOl8YFhEzJQ0nqw/ZCLZUNwbgLERsbXDMR0UZmY9VNSo\np5+SzRiLpHcD3wb+HXg+fbZDEbExLQ4BdiVrmUwF5qb1c4HT0/JpwLyI2BwRLcBqYFI3v4eZmRUk\nLyh2qeh/OAP4aURcFRFfBw7vzsEl7SLpbqAVWBQRy4CmiGhNm7QCTWn5QGBtxe5ryVoWZmZWQ3lT\neAyStGtEbAZOAT7bzf22SZeN3i5pP+BqSUd1+Dwk5V1H6vSz5ubmbculUolSqdSd4piZNYxyuUy5\nXK7KsfL6KP4X8D/IZo09GDg2Iramp9z9e0Sc2KMTSd8ANgKfAUoRsV7SAcCSiBgnaSZARMxJ218P\nzI6IpR2O4z4KM7MeKqSPIiL+Ffhn4DLgpIpOZZE99W5HhXqjpKFpeQ/gfWSTCS4EpqfNpgML0vJC\n4ExJQySNJru8tazH38jMzKoq9xJSRNzaybpV3Tz2AcBcSYPIAunKiLhO0m3AfEmfJg2PTcddIWk+\nsIJsGvPPu+lgZlZ7nhTQzKwBFDopoJmZNTYHhZmZ5XJQmJlZLgeFmZnlclCYmVkuB4WZmeVyUJiZ\nWS4HhZmZ5XJQmJlZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgeFmZnlclCYmVku\nB4WZmeVyUJiZWa5Cg0LSwZKWSHpA0v2Szk3rh0taLGmVpEWShlbsM0vSw5JWSppSZPnMzGzHFBHF\nHVwaAYyIiLsl7Q3cCZwOfArYEBEXSTofGBYRMyWNB64AJgIjgRuAsRGxteKYUWSZzcwGIklEhHqz\nb6EtiohYHxF3p+UXgQfJAmAqMDdtNpcsPABOA+ZFxOaIaAFWA5OKLKOZmeXrsz4KSaOAo4GlQFNE\ntKaPWoGmtHwgsLZit7VkwWJmZjUyuC9Oki47XQWcFxEvSO2tn4gISXnXkl73WXNz87blUqlEqVSq\nWlnNzAaCcrlMuVyuyrEK7aMAkLQr8HvgjxHxg7RuJVCKiPWSDgCWRMQ4STMBImJO2u56YHZELK04\nnvsozMx6qG77KJQ1HS4BVrSFRLIQmJ6WpwMLKtafKWmIpNHA4cCyIstoZmb5ih71dBLwF+Be2i8h\nzSL78Z8PHAK0ANMi4rm0zwXADGAL2aWqP3U4plsUZmY9tDMtisIvPVWbg8LMrOfq9tKTmZn1fw4K\nMzPL5aAwM7NcDgozM8vloDAzs1wOCjMzy+WgMDOzXA4KMzPL5aAwM7NcDgozM8vloDAzs1wOCjMz\ny+WgMDOzXA4KMzPL5aAwM7NcDgozM8vloDAzs1wOCjMzy+WgMDOzXIUGhaRLJbVKuq9i3XBJiyWt\nkrRI0tCKz2ZJeljSSklTiiybmZl1T9EtisuAUzusmwksjoixwI3pPZLGA2cA49M+P5bkFo+ZWY0V\n+kMcETcDz3ZYPRWYm5bnAqen5dOAeRGxOSJagNXApCLLZ2ZmO1aLv9ibIqI1LbcCTWn5QGBtxXZr\ngZF9WTAzM3u9wbU8eUSEpMjbpLOVzc3N25ZLpRKlUqm6BTMz6+fK5TLlcrkqx1JE3u90FU4gjQKu\njYi3pvcrgVJErJd0ALAkIsZJmgkQEXPSdtcDsyNiaYfjRdFlNjMbaCQREerNvrW49LQQmJ6WpwML\nKtafKWmIpNHA4cCyGpTPzMwqFHrpSdI84GTgjZIeB/43MAeYL+nTQAswDSAiVkiaD6wAtgCfd9PB\nzKz2Cr/0VG2+9GRm1nP97dKTmZn1Iw4KMzPL5aAwM7NcDgozM8vloDAzs1wOCjMzy+WgMDOzXA4K\nMzPL5aAwM7NcDgozM8vloDAzs1wOCjMzy+WgMDOzXA4KMzPL5aAwM7NcDgozM8vloDAzs1wOCjMz\ny1V3QSHpVEkrJT0s6fxal8fMrNHVVVBIGgT8P+BUYDxwlqQjaluq+lUul2tdhLrhumjnumjnuqiO\nugoKYBKwOiJaImIz8GvgtBqXqW75P4J2rot2rot2rovqqLegGAk8XvF+bVpnZmY1Um9BEbUugJmZ\nbU8R9fPbLOk4oDkiTk3vZwFbI+LCim3qp8BmZv1IRKg3+9VbUAwGHgLeCzwJLAPOiogHa1owM7MG\nNrjWBagUEVskfRH4EzAIuMQhYWZWW3XVojAzs/pTb53ZuRrpZjxJl0pqlXRfxbrhkhZLWiVpkaSh\nFZ/NSvWyUtKU2pS6GJIOlrRE0gOS7pd0blrfcPUhaXdJSyXdneqiOa1vuLpoI2mQpOWSrk3vG7Iu\nJLVIujfVxbK0rjp1ERH94kV2KWo1MArYFbgbOKLW5Srw+74LOBq4r2LdRcDX0vL5wJy0PD7Vx66p\nflYDu9T6O1SxLkYAb0/Le5P1Yx3RwPWxZ/p3MHAb8M5GrYv0Hb8M/ApYmN43ZF0AjwDDO6yrSl30\npxZFQ92MFxE3A892WD0VmJuW5wKnp+XTgHkRsTkiWsj+R5/UF+XsCxGxPiLuTssvAg+S3V/TqPWx\nMS0OIfsPPWjQupB0EPAB4BdA24iehqyLpOOopqrURX8KCt+MB00R0ZqWW4GmtHwgWX20GbB1I2kU\nWUtrKQ1aH5J2kXQ32XdeFBHLaNC6AP4N+CqwtWJdo9ZFADdIukPSZ9K6qtRFXY162gH3uleIiNjB\nPSUDrr4k7Q1cBZwXES9I7X88NVJ9RMRW4O2S9gOulnRUh88boi4kfRD4a0Qsl1TqbJtGqYvkxIhY\nJ2l/YLGklZUf7kxd9KcWxRPAwRXvD2b7RGwErZJGAEg6APhrWt+xbg5K6wYMSbuShcQvI2JBWt2w\n9QEQEc8DS4D305h1cQIwVdIjwDzgPZJ+SWPWBRGxLv37FHA12aWkqtRFfwqKO4DDJY2SNAQ4A1hY\n4zL1tYXA9LQ8HVhQsf5MSUMkjQYOJ7tZcUBQ1nS4BFgRET+o+Kjh6kPSG9tGrkjaA3gfWZ9Nw9VF\nRFwQEQdHxGjgTODPEfEJGrAuJO0paZ+0vBcwBbiPatVFrXvqe9ir/3dkI15WA7NqXZ6Cv+s8srvT\nN5H1zXwKGA7cAKwCFgFDK7a/INXLSuD9tS5/leviJLJr0HcDy9Pr1EasD+CtwF3APemH4OtpfcPV\nRYd6OZn2UU8NVxfA6PTfx93A/W2/j9WqC99wZ2ZmufrTpSczM6sBB4WZmeVyUJiZWS4HhZmZ5XJQ\nmJlZLgeFmZnlclBYvyfpDWlq5eWS1klam5bvUvbUxL4qhyTdmKYaQdJWSd+t+Pwrkman5eb0+Zsr\nPv+ntO6YXp5/iKSbJA3a2e9iVslBYf1eRDwdEUdHxNHAxcD30/tjImJLV/tJqvb//z8A3B3ZDLeQ\n3Sz5YUlvaCtqh+3vI7ujuM3HyG6W6pWI2ATcSDZrgVnVOChsIJKk96ZWxb2SLknTvrQ93GWOpDuB\njyl7GNaDku6U9MOKh980S/rnigPeL+mQtPxxZQ8PWi7p4orA+XvgmopybAZ+BnypkzIG2XQKp6Vj\nvhl4Dnia108VjaSypO9Lul3SCknvkPS79ECaf6nYdAFwdm8qzawrDgobiHYHLgM+FhETyGZJPid9\nFsCGiDiW7Ef9Z8AH0/sm2v/q7/jXfwBIOgKYBpyQWjBbaf9hPhG4s8N+PwbOlrRvJ+X8G/CYpCPJ\nWgFXdnHutnWvRsREslbTNek7HQV8UtKwtN0DwMRO9jfrNQeFDUSDgDURsTq9nwu8u+Lzth/kccAj\nEfHf6f1/0Mlf8xUEvBc4FrhD0nLgPWTz7ED2dLGXKneIiBeAy4FzuzjmlcBZZA+UuXoH36ttEsz7\ngQciojVdbloDHJLO9xqwKU0MZ1YV/el5FGY9oQ7LlX+lv0TnKvfZwvZ/SO1esTw3Ii7oZP+u+kN+\nQDaR32Ud1gfwe+A7wO3R4RkbnXg1/bu1YrntfWUH9m7AK3kHMusJtyhsIHoNGFUxougTwE2dbLcy\nbTcmvT+L9kBpAY4BSKOQRqfPbgQ+mh4O0/bw+kPSPg9VjmJqExHPAvOBT1ccX4Ai4mWyZxn/a+++\n6vZSx/mG1LIwqwoHhQ1EL5NNy/4bSfeS/aV/cfpsW8siIl4BPgv8IXVut9LeqrgKGC7pfuALZNPb\nExEPAl8HFkm6h2zq5hFpnz8ApYpyVLZivge8scNnkY55ZaRngleS9PMuhspu27cTk8laKWZV42nG\nzRJJJwNfiYgP9XL/EcDlETGluiXrURmuAs6v6J8x22luUZhtr9d/OUXEeuDnbU8a62vpcbELHBJW\nbW5RmJlZLrcozMwsl4PCzMxyOSjMzCyXg8LMzHI5KMzMLJeDwszMcv1/2z+0oo1xQeUAAAAASUVO\nRK5CYII=\n", + "text": [ + "<matplotlib.figure.Figure at 0x7fb7a24a7450>" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.33, Page Number:1017" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import math\n", + "#variable declaration\n", + "output=5.968#kW\n", + "n=700#rpm\n", + "v1=500#V\n", + "n2=600#rpm\n", + "ra=3.5#ohm\n", + "loss=450#W\n", + "\n", + "#calculation\n", + "\n", + "def fp(i,v):\n", + " p=5.968*((n2*(v1-i*ra)/(v*n))**2)\n", + " return(p)\n", + "\n", + "def fm(i,v):\n", + " m=((v1-i*ra)*i-loss)/1000\n", + " return(m)\n", + "\n", + "p1=fp(7.0,347.0)\n", + "p2=fp(10.5,393.0)\n", + "p3=fp(14.0,434.0)\n", + "p4=fp(27.5,468.0)\n", + "\n", + "m1=fm(7.0,347.8)\n", + "m2=fm(10.5,393.0)\n", + "m3=fm(14.0,434.0)\n", + "m4=fm(27.5,468.0)\n", + "\n", + "#plot\n", + "I=[7,10.5,14,27.5]\n", + "P=[p1,p2,p3,p4]\n", + "M=[m1,m2,m3,m4]\n", + "plt.plot(I,P)\n", + "plt.plot(I,M)\n", + "plt.xlabel(\"Current\") \n", + "plt.ylabel(\"Power(kW)\") \n", + "plt.xlim((0,30))\n", + "plt.ylim((0,12))\n", + "plt.show()\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEPCAYAAABLIROyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XeYFFX69vHvQxQwsiiIICgqiAQJroogoxjANYBhDauw\nRkQy6k/FV8VdV13ELGZUwFUMiGsiCqMIKkgOg6hrRCUJkmGGed4/qkdHGJjYXd1d9+e65prumu6u\npyypu885VafM3RERkegpF3YBIiISDgWAiEhEKQBERCJKASAiElEKABGRiFIAiIhEVNwCwMyeM7Pl\nZrYg37L7zCzLzOaZ2Rtmtk+81i8iIrsXzxbA80DHHZZNAI5y9+bAUuCWOK5fRER2I24B4O5TgTU7\nLJvo7rmxp58CdeK1fhER2b0wxwCuAN4Lcf0iIpEWSgCY2a3ANnd/KYz1i4gIVEj0Cs3s78AZQIfd\nvEYTFImIlIC7W1Ffm9AWgJl1BG4EznH3Lbt7rbun7c8dd9wReg3aPm2bti/9foornqeBvgxMBxqa\n2fdmdgXwKLAnMNHM5pjZ4/Fav4iI7F7cuoDc/eICFj8Xr/WJiEjx6ErgEGRkZIRdQlyl8/al87aB\nti9qrCT9RvFmZp6MdYmIJDMzw5N1EFhERJKHAkBEJKIUACIiEaUAEBGJKAWAiEhEKQBERCJKASAi\nElEKABGRiFIAiIhElAJARCSiFAAiIhGlABARiSgFgIhIRCkAREQiSgEgIhJRCgARkYhSAIiIRJQC\nQEQkTpL9zoYKABGRMrZs3TIuGX0Jj854NOxSdksBICJSRrbmbOXej+6l+ZPNabBfA65scWXYJe1W\nhbALEBFJB2O/GEvfcX1pVKMRn171KQ2qNwi7pEIpAERESuGrX76i//j+LFm1hIc7PkynwzuFXVKR\nqQtIRKQENmVv4rbJt3Hss8fSpm4bFvRYkFIHf1ALQESkWNyd0VmjuX7C9bSp24a5186lzt51wi6r\nRBQAIiJFtHjlYnqP7c3KjSsZ0XkE7eu3D7ukUlEXkIhIIX7d8isDxg8g44UMOjfszOzus1P+4A9x\nDAAze87MlpvZgnzLqpvZRDNbamYTzGzfeK1fRKS0cj2X4XOHc+TQI1m/dT2LrltE72N7U6FcenSe\nWLyuVDOzdsAGYIS7N40tGwyscvfBZnYTsJ+731zAez3Zr6ATkfQ268dZ9Brbi1zP5bFOj3HMQceE\nXVKhzAx3tyK/Pp4HWjOrD7ydLwCWAO3dfbmZ1QIy3b1RAe9TAIhIKFZtWsWt79/KW0vf4u6T76bb\n0d0oZ6nRW17cAEj0VtV09+Wxx8uBmglev4hIgXJycxg6YyiNhzamSsUqZPXM4vIWl6fMwb8kQuvI\ncnc3M33NF5HQTf12Kr3H9ma/KvsxudtkmhzQJOySEiLRAbDczGq5+89mdiCwYlcvHDRo0G+PMzIy\nyMjIiH91IhIpP67/kRsn3sjUb6cy5LQhXND4AsyK3IMSuszMTDIzM0v8/kSPAQwGVrv7v83sZmBf\nDQKLSKJt276Nhz55iMHTBtO9VXcGthtItUrVwi6r1JJmENjMXgbaAzUI+vtvB/4LvAocDHwD/NXd\n1xbwXgWAiMTF+C/H02dcHw6vfjgPdXyIw6ofFnZJZSZpAqA0FAAiUta+XvM1/cf3Z+GKhTzU8SHO\nPOLMsEsqc8l+FpCISEJtyt7EHVPu4JhnjuHPB/2ZhdctTMuDf0mkx+VsIiI7cHfGLBnDgPEDOLbO\nsczpPoe6+9QNu6ykogAQkbSTtTKLPuP68NP6n3j+nOc56ZCTwi4pKakLSETSxrqt67hhwg2c+MKJ\nnHn4mczpPkcH/91QAIhIysv1XEbMG0Gjxxrxy+ZfWNhjIX2P60vF8hXDLi2pqQtIRFLa7J9m03ts\nb7Zt38aYC8dwbJ1jwy4pZSgARCQlrd60mlsn38qbS97krpPv4ooWV6T1vD3xoP9aIpJStudu54mZ\nT3Dk0COpVL4SWT2zuKrlVTr4l4BaACKSMqZ9N41eY3uxd+W9mdR1Es1qNgu7pJSmABCRpPfT+p/4\nv0n/x5Svp3DfqfdxUZOLUmrStmSlNpOIJK1t27cxZPoQmj7RlDp71WFJryVc3PRiHfzLiFoAIpKU\nJnw1gT5j+3Dofocy/crpHPGnI8IuKe0oAEQkqXyz9hsGjB/AvOXzeOj0YNI2feOPD3UBiUhS2Jy9\nmTsz76TV061oeWBLFl23iLManqWDfxypBSAioXJ33lzyJgMmDKB17dbM6T6Hg/c5OOyyIkEBICKh\nWbJqCX3H9eWHdT/w7FnP0uHQDmGXFCnqAhKRhFu/dT03TriRds+3o2ODjsztPlcH/xAoAEQkYdyd\nF+e/SKOhjVi1eRULeiyg//H9NWlbSNQFJCIJMffnufR6rxdbcrbw+gWvc3zd48MuKfIUACISV79s\n/oX/N/n/MTprNP886Z9c2eJKypcrH3ZZgrqARCROtudu56nPnuLIoUdSzsqR1TOLa1pdo4N/ElEL\nQETK3PTvp9N7bG+qVqzKhEsn0LxW87BLkgIoAESkzPy84WdumnQT7//vfQafOpiLm2jenmSmLiAR\nKbXs7dk88PEDNHm8CbWq1SKrZxaXNL1EB/8kpxaAiJTKpP9Nos/YPhy8z8FMu2IaDWs0DLskKSIF\ngIiUyLdrv+X6Cdcz+6fZPHj6g5zd8Gx9408x6gISkWLZkrOFf37wT1o93YpmNZux6LpFnNPoHB38\nU5BaAGnEHfRvUOLF3Xl76dv0G9ePlge2ZNY1s6i3b72wy5JSUACkicxMGDIERo+GypXDrkbSzdLV\nS+k7ri/frP2Gp896mlMOPSXskqQMhNIFZGb9zWyhmS0ws5fMTIesUmrbFqpUgfPPh23bwq5G0sWG\nbRu4edLNtBnWhlMOOYV5187TwT+NJDwAzOwgoDfQyt2bAuWBixJdR7qpUAFeein4feGFkJ0ddkWS\nytydlxa8RKPHGvHThp9Y0GMB17e5nkrlK4VdmpShsLqAKgBVzWw7UBVYFlIdaaViRXjlFTjvPLjk\nEnj55SAQRIpj/vL59B7bm/Vb1/PqBa/Spm6bsEuSOEl4C8DdlwH3A98BPwJr3X1SoutIV5Uqweuv\nw4YNcNllkJMTdkWSKtZsXkPv93pz6shTuaTJJcy8eqYO/mku4d8PzWw/4GygPvAr8JqZ/c3d/5P/\ndYMGDfrtcUZGBhkZGYkrMsVVrgxvvAFnnw2XXw4vvADlNf+W7ML23O08N+c5bptyG+ceeS6Lr1vM\nn6r+KeyypAgyMzPJzMws8fvN3cuumqKs0OwC4HR3vyr2/DLgOHfvme81nui60tGmTXDmmVCvHgwb\nBuV01Yfs4NMfPqXX2F5ULl+ZRzs9SosDW4RdkpSCmeHuRT4ZPIxDwrfAcWZWxYIrR04BFodQR9qr\nWhXefhu++gquvRZyc8OuSJLF8g3Lufy/l3Puq+fS99i+TL18qg7+ERTGGMAM4HVgNjA/tvjpRNcR\nFdWqwbvvwqJF0KtXcLGYRFf29mwe+uQhmjzRhBpVapDVM4tLm12qq3gjKuFdQEWhLqCyt24dnHYa\nHHssPPSQrhiOoslfT6bP2D7U3qs2j3R6hEY1GoVdkpSx4nYBKQAiZO1aOPVUaN8e7rtPIRAV3/36\nHTdMuIEZy2bw4OkP0rlRZ33jT1OpMAYgIdl3Xxg/Ht5/HwYOVHdQutuSs4V/ffgvWj7Vksb7N2Zx\nz8V0ObKLDv7yG10mFDHVq8OkSXDSScGFY//4R9gVSTy8s/Qd+o3rR9OaTZl59UwO2e+QsEuSJKQA\niKA//en3EKhQAW6/PeyKpKx8sfoL+o3vx5e/fMnQM4Zy+mGnh12SJDF1AUXUAQcEXUEvvQT33BN2\nNVJaG7ZtYOD7Azl+2PFk1MtgQY8FOvhLodQCiLBatWDyZMjICLqDbrgh7IqkuNydVxa9wo0Tb6R9\nvfbM7zGf2nvVDrssSREKgIirXTsIgfbtg+6gfv3CrkiKasHyBfQe25u1W9by8nkv0/bgtmGXJClG\nASDUqfPHlkDPnoW+RUK0dstabp9yO6MWjmJQxiC6t+pO+XKa7EmKr0gBYGbHAO2A2sBmYAEw0d3X\nxLE2SaB69f4YAtdcE3ZFsqNcz+X5Oc9z6+Rb6dyoM4t7LqZG1RphlyUpbLcBYGaXE9y85RvgM2AJ\nsAdBGNxkZguB29z9uzjXKQlwyCFBCOSdHXTFFWFXJHlmLJtBr/d6UaFcBd695F1a1W4VdkmSBgpr\nAVQFTnD3zQX90cxaAEcQzO0vaaBBg+AU0ZNPDkKga9ewK4q2FRtXcMukWxj75VjuPeVeLm12KeVM\nJ+9J2SgsAF7e1cEfwN3nlHE9kgSOOOKPIXDJJWFXFD05uTk8PvNx/vnhP+narCtZPbPYZ499wi5L\n0kxhAfC5ma0CPgKmA9PcfWn8y5KwNWoEEyfCKacEYwIXXBB2RdGR+U0mvcf2pma1mnzw9w9ovH/j\nsEuSNFXoZHBm1hBoE/s5HjgA+BiY7u7/jktRmgwuacybB6efDk88AV26hF1Nevth3Q/cMOEGPv7h\nYx447QHOPfJczdsjxRLX2UDNrAHwF6AvcJC771H8Eou0HgVAEpk9Gzp1gmeeCW4zKWVra85WHvj4\nAe7/+H6uO+Y6bm57M1UrVg27LElBZRoAZnYCv3/zrwv8D/iEoAUwx923lq7cXa5XAZBkZs6Ev/wl\nuL/wGWeEXU36eHfpu/Qb34/G+zfmwdMf5ND9Dg27JElhZR0AucAc4EFgjLtvLH2JRShKAZCUPvkk\naAG8+GJwcxkpuS9/+ZL+4/vz+arPeaTTI3Q8rGPYJUkaKOsAOJDfWwB/BioCswhaAB+7+/9KV+4u\n16sASFLTpkHnzjBqFHToEHY1qWfjto3cPfVunpr1FDe2uZF+x/WjcoXKYZclaSLeYwBVgSuAfsAh\n7h6X688VAMntww/h/PPhtdeCOYSkcO7Oa4tf44YJN9CuXjsGnzKYg/Y+KOyyJM2UdQtgH34/A6gN\n0AL4gt9PCX29dOXucr0KgCQ3eTJcdBG88Qa01Rxku7VwxUL6jO3D6s2rebTTo5xY78SwS5I0VdYB\nsJJg0Hc6MA34zN03lbrKwopSAKSEiRPhb3+Dt96C444Lu5rks3bLWgZlDuKlBS9xR/s76N66OxXK\naf5FiZ+yvifwAe5+FvCKu3+Y/+AfmyBOIuzUU2H48GBgeObMsKtJHnmTth059Eg2ZW9i0XWL6Pnn\nnjr4S9Ip0hiAmc0Gznb3H2LP2wND3b1JXIpSCyClvP02XHUVjB0LLVuGXU24Zi6bSe+xvQF47IzH\naF27dcgVSZTEZRA49m3/CeBMoCVwD3Cmu39f0kILWZ8CIMWMGQM9esD48dC8edjVJN7KjSsZ+P5A\n3vniHe7pcA9dm3fVpG2ScMUNgCK1Sd19ppn1ASYS3A/gVHdfUcIaJQ116QI5OdCxYzA20CQubcPk\nk5Obw5OfPcmdH9zJpU0vZUnPJZq0TVJGYfcDeHuHRVWAtcCw2Ld0TQwgv7nggiAETjstuOH8kUeG\nXVF8ffjth/R6rxc1qtYgs1smRx1wVNgliRRLYS2A+wtY5oDFfov8wcUXByFwyinBqaING4ZdUdlb\ntm4ZN068kY+++4j7T7uf8xufr0nbJCUVFgAfunvu7l5gZuUKe41Ey2WXQXZ2EAJTpsBhh4VdUdnY\nmrOVBz95kCHTh3Bt62t55qxnqFapWthliZRYYQEw2cxGA//Nf9tHM6tEcFvIbsAU4PnirNTM9gWe\nBY4iaElc4e6fFOczJLldcUXQEujQATIzg9tNprKxX4yl77i+NKrRiE+v+pQG1RuEXZJIqRUWAJ0I\npn542cwOJej/3wMoD0wAHizhXcEeBt5z9/PNrAKgr1Fp6JprghA4+eQgBOrVC7ui4vvql6/oP74/\nWauyeLjjw5xxuKZClfRR5LmAYt/6awCb3X1NiVcYTC8xx913Oe+tTgNNL488Av/+Nzz+OJxzTtjV\nFM2m7E3cM/UenvjsCW5ocwP9j+uvSdsk6ZX5dQCxb+gL3b1RaYuLfd7RwFPAYqA5weyifXe4ylgB\nkGY++ACuvhpatAgCoWbNsCsqmLszOms010+4njZ123DfqfdRZ+86YZclUiRlfh2Au+eY2edmVs/d\nvy1deb+tsyXQK3Z9wUPAzcDt+V80aNCg3x5nZGSQkZFRBquWsLRvH9xe8s47oVkzuO++YLA4mU6e\nWbxyMb3H9mbFxhUM7zycjPoZYZcksluZmZlkZmaW+P1FvRJ4KsFMoDOAvJvClOg6ADOrRXAvgUNi\nz9sCN7v7mfleoxZAGps9G668Eg44AJ56CurXD7eeX7f8yp0f3MnI+SO5/cTb6XFMD83bIykpLlcC\nA7cVsKxER2h3/9nMvjezI9x9KXAKsKgknyWpqWVLmDED7r8fWreG226DXr2gfFzuLrF7Y7LG0PO9\nnpxx+Bksum4RB1Q7IPFFiISkOIPA9YHD3H1S7MYwFdx9XYlWatac4DTQSsBXwOXu/mu+v6sFEBGf\nfx6MDWRnw7Bh0LhxYtb765Zf6TOuD9O+m8aILiNoU7dNYlYsEkdlPR103odeA7xGMHgLUAcYU/zy\nAu4+z92Pcffm7n5u/oO/REvDhsEpot26BeME//gHbNsW33VO/noyzZ5sRtUKVZl77Vwd/CWyijoG\nMI/gnsCfuHuL2LIF7t40LkWpBRBJ338fzCj67bdBa+DPfy7bz9+cvZmB7w/k1cWv8uxZz9Lp8E5l\nuwKRkMWlBQBsdfet+VZSAc0FJGWsbt3g3gIDBwY3mRkwADZuLPx9RTH7p9m0fqY1y9YvY/6183Xw\nF6HoAfCBmd0KVDWzUwm6g3acKVSk1MyCCeUWLoQVK6Bp02Bm0ZLKyc3hrg/vouOLHbm13a28cv4r\n/Knqn8quYJEUVtQuoHLAVcBpsUXjgWfj1U+jLiDJ8957cO21we0nhwyB/fYr+nuXrl5K1zFd2avy\nXjx/zvO6oEvSXry6gE4CRrr7+bGfZ3SElkQ44wxYtAiqVAluMvPGG4W/x915fObjtBnWhkubXcr4\nS8fr4C9SgKK2AEYAxwFrgA9jPx+VZk6gQtanfJGdfPRRcO/ho46Cxx6DAw/c+TXL1i3jireuYM3m\nNYzsMpKGNdLwhgQiuxCXFoC7d3X3I4AuwPfAUGBlyUoUKZm2bWHuXGjUKLjv8HPPQf7vCaMWjqLl\n0y1pU6cN066YpoO/SCGK2gK4DGgLNCM48H9E0AKYHpei1AKQQsydG0wnUb06/PuRX7hvcU/m/jyX\nkV1G0rp267DLEwlFmc8GGvvQ1QRX7D4BZLr71yUvsQhFKQCkCHJy4Noh43l+9ZWcUP083ut/L3vu\nUSXsskRCE69B4BoEN4bZA/iXmc0wsxdLUqBIWdi4bSN9x/dkQuWree7s4ZQb/zAd2ldh4cKwKxNJ\nHUUNgL2Ag4F6QH1gX0D3AZZQfPLDJ7R4qgXrtq1jfo/5dGvXgcmTgy6hk06CO+6ArVsL/xyRqCtq\nF9B8YBowleBG8T/EtSh1AUkBsrdn848P/sEzs5/hsTMe4/zG5+/0mmXL4Lrr4Msvg+kkjjsuhEJF\nQhKXMYB8H74XwX0ANpSkuGKsRwEgf7B45WIuG3MZtfasxbNnPcuBexVwDmiMO7z2GvTtCxdeCHfd\nBXvumcBiRUISr9lAm5rZHIJ5+xeb2Swza1LSIkWKKtdzefDjBznx+RPp3qo771z8zm4P/hBMJ/HX\nvwbTSaxZE0wnMWFCggoWSSFF7QL6GBjo7lNizzOAu909LvPoqgUgAN/9+h1/f/PvbN2+lRGdR9Cg\neoMSfc64ccF0EhkZ8MADwamjIukoXmcBVc07+AO4eyZQrZi1iRSJuzN87nBaPd2K0xqcxod//7DE\nB3+Ajh1hwQLYe+9gOonXXvvjBWQiUVXUFsCbwCxgJGDA34BW7t4lLkWpBRBZKzeupPs73fnily8Y\n2WUkR9c6ukw/f/r04GyhRo1g6FCoXbtMP14kVPFqAVwOHAC8AYwG9ie4LkCkzLyz9B2aP9mcw6of\nxmdXf1bmB3+ANm2Cq4ibNg2mk3j2WbUGJLp22wIwsyrAtcBhwHzgOXfPjntRagFEyvqt6xkwfgCT\nvp7E8M7DObHeiQlZ7/z5QWsgNxfatYNmzYJQaNw4mH1UJNWU6WmgZvYqsI1g7p+OwLfu3rfUVRZW\nlAIgMqZ+O5Vub3bj5ENO5oHTH2DvynsndP05OcE9iefOhXnzglBYuhQOOeT3QMj7fdBBwRlGIsmq\nrAPgt/v+xm4DOTPvnsDxpABIf1tztnL7lNsZOX8kT575JGc3PDvskn6zbRssWfJ7IOT9zs4OwiB/\nMBx1lFoLkjzKOgDm5D/g7/g8XhQA6W3ez/O4bMxlNKjegKfPfJr9q+0fdklFsnz5HwNh3rygtVC/\n/h9bCs2aQZ06ai1I4pV1AGwHNuVbVAXYHHvs7h6X9roCID1tz93OkOlDGPLxEIacOoSuzbtiKX6U\nzGst7BgM27bt3IWk1oLEW1yngkgUBUD6+d+a/9F1TFcqlq/IC+e8QL1964VdUlzltRbyB8PSpVCv\n3s7BoNaClBUFgCQVd2f4vOHcOPFGBrYdSN/j+lLOinr2cXrZtg0+/3znsYWtW3ceW2jSRK0FKT4F\ngCSNdVvX0ePdHsz9eS6jzhtF05pNwy4pKa1YsXMX0uefB62F5s3VWpCiUwBIUpi5bCYXj76YDod0\n4MGOD1K1YtWwS0op2dkFn4mUv7WQf2yhqv7zCgoACVmu5/LAxw8weNpghp4xlAuOuiDsktJKXmsh\nfyh8/jkcfPDOYwt166q1EDUpEwBmVh74DPjB3c/a4W8KgBS0YuMKur3ZjV+3/MpL571E/X3rh11S\nJGRn7zy2MG8ebNlS8JlIai2kr1QKgAFAK2Avdz97h78pAFLMpP9Notub3ejWvBt3ZtxJxfIVwy4p\n8tRaiJ6UCAAzqwO8APwLGKAWQOrK3p7N7VNuZ8T8EYzoPIIOh3YIuyTZjYJaC/Pnw+bNBZ+JpNZC\nakmVAHgNuBvYG7hBAZCavln7DRePvpj99tiPFzq/wAHVDgi7JCmhlSsLPhOpbt2dr3I++GC1FpJV\ncQOgQjyLKYiZnQmscPc5sTuLFWjQoEG/Pc7IyCAjY5cvlRC8tug1er7Xk5tOuIn+x/eP7Ln96WL/\n/aFDh+AnT15rIS8QHn88+L1pU8FjC9V0i6iEy8zMJDMzs8TvT3gLwMzuBi4DcoA9CFoBo929a77X\nqAWQpDZlb6LfuH5M/noyo84fRevarcMuSRIsr7WQv8WwZEnQWtgxGNRaSKyU6AL6beVm7VEXUMpY\nuGIhF75+IS1qteDxvzye8KmbJXllZwdTXew4trBxY8FjC2otxEcqBsD1Ogsoubk7T816itum3JY2\nk7hJYqxcGdyPOX8wLFkSXNG849hCvXpqLZRWSgXArigAkseazWu4+u2r+WrNV4w6bxQNazQMuyRJ\ncbtrLeTdqjMvGNRaKB4FgJSZad9N429v/I1zGp7D4FMHU7lC5bBLkjS2atXOYwtZWUFrYcexBbUW\nCqYAkFLbnrudez+6l0dnPMozZz3DWQ3PKvxNInGQk7Nza2HePNiwYedQUGtBASCl9OP6H7n0jUvJ\n9Vz+c+5/OGjvg8IuSWQnai0UTAEgJfbu0ne58q0rue6Y67i13a2UL1c+7JJEiqyg1sL8+bB+/c5n\nIjVtmp6tBQWAFNvWnK3c8v4tjM4azYtdXqRdvXZhlyRSZlat2vlMpKwsOOignc9Eql8/tVsLCgAp\nli9Wf8FFoy/i4H0OZtjZw6hepXrYJYnEXV5rYcfpL9avL/hMpD33DLviolEASJGNnDeSARMGcGfG\nnfRo3UPn9kvkrV6989jC4sVBa2HHsYVkbC0oAKRQ67eup+d7Pfnsx88Ydf4omtVsFnZJIkkrJwe+\n+GLnsYV164LWwo5jC2G2FhQAsluzf5rNRa9fxIn1TuThjg9TrVIajoSJJMDq1TuPLSxeDLVr/x4I\n55wDRx+duJoUAFIgd+fhTx/m7ql382inR7mwyYVhlySSdvJaC3mB0LYtnHFG4tavAJCdrNy4ksv/\nezkrN63k5fNe5tD9Dg27JBGJg+IGgCZxT3NTvp5Ci6dacNT+R/HR5R/p4C8iv0n4DWEkMXJyc7gz\n806GzRnGC51f4LQGp4VdkogkGQVAGvru1++4ZPQlVKtUjTnd51Bzz5phlyQiSUhdQGnmjaw3OOaZ\nYzi74dmM/dtYHfxFZJfUAkgTm7M3c/2E6xn35Tjeuugtjq1zbNgliUiSUwCkiVk/zWLtlrXM6T6H\nffbYJ+xyRCQF6DRQEZE0odNARUSkSBQAIiIRpQAQEYkoBYCISEQpAEREIkoBICISUQoAEZGIUgCI\niESUAkBEJKIUACIiEZXwADCzumY2xcwWmdlCM+uT6BpERCSEuYDMrBZQy93nmtmewCygs7tn5XuN\n5gISESmmpJ8LyN1/dve5sccbgCygdqLrEBGJulDHAMysPtAC+DTMOkREoii0AIh1/7wO9I21BERE\nJIFCuSGMmVUERgMvuvubBb1m0KBBvz3OyMggIyMjIbWJiKSKzMxMMjMzS/z+MAaBDRgOrHb3/rt4\njQaBRUSKqbiDwGEEQFvgQ2A+kLfyW9x9XL7XKABERIop6QOgKBQAIiLFl/SngYqISHJQAIiIRJQC\nQEQkohQAIiIRpQAQEYkoBYCISEQpAEREIkoBICISUQoAEZGIUgCIiESUAkBEJKIUACIiEaUAEBGJ\nKAWAiEhEKQBERCJKASAiElEKABGRiFIAiIhElAJARCSiFAAiIhGlABARiSgFgIhIRCkAREQiSgEg\nIhJRCgARkYhSAIiIRJQCQEQkohQAIiIRFUoAmFlHM1tiZl+Y2U1h1CAiEnUJDwAzKw88BnQEGgMX\nm9mRia4jTJmZmWGXEFfpvH3pvG2g7YuaMFoAfwa+dPdv3D0bGAWcE0IdoUn3/wnTefvSedtA2xc1\nYQTAQcC/vEDRAAAFQElEQVT3+Z7/EFsmIiIJFEYAeAjrFBGRHZh7Yo/HZnYcMMjdO8ae3wLkuvu/\n871GISEiUgLubkV9bRgBUAH4HOgA/AjMAC5296yEFiIiEnEVEr1Cd88xs17AeKA8MEwHfxGRxEt4\nC0BERJJD0l0JnO4XiZnZN2Y238zmmNmMsOspDTN7zsyWm9mCfMuqm9lEM1tqZhPMbN8wayyNXWzf\nIDP7Ibb/5phZxzBrLA0zq2tmU8xskZktNLM+seVpsQ93s30pvw/NbA8z+9TM5sa2bVBsebH2XVK1\nAGIXiX0OnAIsA2aSZuMDZvY10Mrdfwm7ltIys3bABmCEuzeNLRsMrHL3wbEA38/dbw6zzpLaxfbd\nAax39wdCLa4MmFktoJa7zzWzPYFZQGfgctJgH+5m+/5KGuxDM6vq7pti46ofAX2B8yjGvku2FkBU\nLhIr8ih9MnP3qcCaHRafDQyPPR5O8A8uJe1i+yB99t/P7j439ngDkEVwTU5a7MPdbB+kwT50902x\nh5WAigSn2Bdr3yVbAEThIjEHJpnZZ2Z2ddjFxEFNd18ee7wcqBlmMXHS28zmmdmwVO0e2ZGZ1Qda\nAJ+Shvsw3/Z9EluU8vvQzMqZ2VyCfTTB3WdQzH2XbAGQPP1R8XOCu7cAOgE9Y90MacmD/sV026dP\nAIcARwM/AfeHW07pxbpHRgN93X19/r+lwz6Mbd/rBNu3gTTZh+6e6+5HA3WAY82syQ5/L3TfJVsA\nLAPq5ntel6AVkDbc/afY75XAGIJur3SyPNb3ipkdCKwIuZ4y5e4rPAZ4lhTff2ZWkeDgP9Ld34wt\nTpt9mG/7XszbvnTbh+7+KzAFOJ1i7rtkC4DPgMPNrL6ZVQIuBN4KuaYyY2ZVzWyv2ONqwGnAgt2/\nK+W8BXSLPe4GvLmb16ac2D+qPF1I4f1nZgYMAxa7+0P5/pQW+3BX25cO+9DMauR1XZlZFeBUgjGO\nYu27pDoLCMDMOgEP8ftFYveEXFKZMbNDCL71Q3AR3n9SefvM7GWgPVCDoL/xduC/wKvAwcA3wF/d\nfW1YNZZGAdt3B5BB0HXgwNdA93x9rinFzNoCHwLz+b2r4BaCq/NTfh/uYvsGAheT4vvQzJoSDPKW\nJ/gi/4q732Vm1SnGvku6ABARkcRIti4gERFJEAWAiEhEKQBERCJKASAiElEKABGRiFIAiIhElAJA\nIsPMapnZKDP7MjYX07tmdngC19/ezI5P1PpECqMAkEiIXRU6Bpjs7oe5e2uCi56KNNGZmZXb3fMi\nOgloU4L3icSFAkCi4iRgm7s/nbfA3ecDFczs7bxlZvaYmXWLPf7GzO41s1nABQU8P83MppvZLDN7\nNTa9R977BsWWzzezhrHZKLsD/WM3IWmbuE0XKZgCQKKiCcENQQqTfwZFJ7i5Rit3fyX/c+B94Fag\nQ+z5LGBAvvetjC1/ArjB3b8BngQecPcW7v5RGW2XSIkl/KbwIiEp6Zwnr+zi+XFAY2B60LtEJWB6\nvte9Efs9Gzg33/KUvxGJpA8FgETFIuD8Apbn8MeWcJUd/r5xN88nuvslu1jf1tjv7ejfmSQpdQFJ\nJLj7ZKBy/ruwmVkzgm/kjc2sUmx63ZOL+JGfAieYWYPYZ1UrwhlF64G9il+9SHwoACRKugCnxE4D\nXQj8i+COUK8CCwm6d2bv5v2/dSPFbujzd+BlM5tH0P3TcBfvyXvf20CX2CDwCaXcFpFS03TQIiIR\npRaAiEhEKQBERCJKASAiElEKABGRiFIAiIhElAJARCSiFAAiIhGlABARiaj/D6p919PNp3KzAAAA\nAElFTkSuQmCC\n", + "text": [ + "<matplotlib.figure.Figure at 0x7fb783cd33d0>" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.34, Page Number:1022" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=500#V\n", + "i=3#A\n", + "ia=3.5#A\n", + "ib=4.5#A\n", + "\n", + "#calculation\n", + "loss=v*i\n", + "#B unexcited\n", + "loss1=v*(ia-i)\n", + "#B excited\n", + "loss2=v*(ib-i)\n", + "loss=loss2-loss1\n", + "\n", + "#result\n", + "print \"iron losses of B=\",loss,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "iron losses of B= 500.0 W\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.35, Page Number:1023" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=220.0#V\n", + "ra=0.2#ohm\n", + "rf=110.0#ohm\n", + "ia=5.0#A\n", + "n=1500#rpm\n", + "i2=52.0#A\n", + "\n", + "#calculation\n", + "ish=v/rf\n", + "ia1=ia-ish\n", + "ia2=i2-ish\n", + "eb1=v-ia1*ra\n", + "eb2=v-ia2*ra\n", + "n2=round(eb2*n/eb1,0)\n", + "input_nl=v*ia\n", + "cu_loss_nl=ia1**2*ra\n", + "constant_loss=input_nl-cu_loss_nl\n", + "cu_loss_l=ia2**2*ra\n", + "total_loss=constant_loss+cu_loss_l\n", + "input_l=v*i2\n", + "output=input_l-total_loss\n", + "tsh=9.55*output/n2\n", + "\n", + "#result\n", + "print \"speed=\",n2,\"rpm\"\n", + "print \"shaft torque=\",tsh,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.36, Page Number:1023" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250#V\n", + "n=1000#rpm\n", + "ia=5#A\n", + "ra=0.2#ohm\n", + "rf=250#ohm\n", + "i=50#A\n", + "ratio=0.03#percentage by which armature reaction weakens field\n", + "\n", + "#calculations\n", + "ish=v/rf\n", + "ia1=ia-ish\n", + "ia2=i-ish\n", + "eb1=v-ia1*ra\n", + "eb2=v-ia2*ra\n", + "n2=eb2*n/(eb1*(1-ratio))\n", + "\n", + "#result\n", + "print \"speed=\",round(n2,0),\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.37, Page Number:1023" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=500#V\n", + "ia=5#A\n", + "ra=0.22#A\n", + "rf=250#ohm\n", + "i=100#A\n", + "\n", + "#calculations\n", + "ish=v/rf\n", + "ia0=ia-ish\n", + "eb0=v-ia0*ra\n", + "cu_loss=ia0**2*ra\n", + "input_m=v*ia\n", + "constant_loss=input_m-cu_loss\n", + "ia=i-ish\n", + "eb=v-ia*ra\n", + "cu_loss=ia**2*ra\n", + "total_loss=cu_loss+constant_loss\n", + "input_m=v*i\n", + "output=input_m-total_loss\n", + "efficiency=output*100/input_m\n", + "per=(eb-eb0)*100/eb0\n", + "\n", + "#result\n", + "print \"efficiency=\",round(efficiency,1),\"%\"\n", + "print \"percentage change in speed=\",round(per,2),\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 90.8 %\n", + "percentage change in speed= -4.19 %\n" + ] + } + ], + "prompt_number": 244 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.38, Page Number:1024" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250#V\n", + "n=1000#rpm\n", + "i=25#A\n", + "i2=50#A\n", + "ratio=0.03#percentage by which the armature reaction weakens field\n", + "ra=0.2#ohm\n", + "rf=250#ohm\n", + "vd=1\n", + "#calculation\n", + "ish=v/rf\n", + "ia1=i-ish\n", + "ebh=v-ia1*ra-2*vd\n", + "ia2=i2-ish\n", + "eb2=v-ia2*ra-2*vd\n", + "n2=eb2*n/(ebh*(1-ratio))\n", + "ta1=9.55*eb1*ia1/n\n", + "ta2=9.55*eb2*ia2/n2\n", + "\n", + "#result\n", + "print \"speed=\",round(n2,0),\"rpm\"\n", + "print \"torque in first case=\",ta1,\"N-m\"\n", + "print \"torque in second case=\",ta2,\"N-m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 1010.0 rpm\n", + "torque in first case= 57.11664 N-m\n", + "torque in second case= 110.3912768 N-m\n" + ] + } + ], + "prompt_number": 247 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.39, Page Number:1024" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250.0#V\n", + "n1=1000.0#rpm\n", + "ra=0.5#ohm\n", + "rf=250.0#ohm\n", + "ia=4.0#A\n", + "i=40.0#A\n", + "ratio=0.04#percentage by which the armature reaction weakens field\n", + "eb1=250.0#V\n", + "\n", + "#calculation\n", + "ish=v/rf\n", + "eb2=v-(i-ish)*ra\n", + "n2=eb2*n/(eb1*(1-ratio))\n", + "cu_loss=(ia-ish)**2*ra\n", + "input_m=v*ia\n", + "constant_loss=input_m-cu_loss\n", + "cu_loss_a=(i-ish)**2*ra\n", + "total_loss=constant_loss+cu_loss_a\n", + "inpt=v*i\n", + "output=inpt-total_loss\n", + "efficiency=output*100/inpt\n", + "\n", + "#result\n", + "print \"speed=\",round(n2,0),\"rpm\"\n", + "print \"efficiency=\",efficiency,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 960.0 rpm\n", + "efficiency= 82.44 %\n" + ] + } + ], + "prompt_number": 254 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.40, Page Number:1025" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "v=250#V\n", + "z=120*8\n", + "a=4\n", + "phi=20*0.001#Wb\n", + "i=25#A\n", + "ra=0.1#ohm\n", + "rf=125#ohm\n", + "loss=810#W\n", + "\n", + "#calculations\n", + "ish=v/rf\n", + "ia=i-ish\n", + "eb=v-ia*ra\n", + "n=eb*a*60/(p*z*phi)\n", + "ta=9.55*eb*ia/n\n", + "cu_loss=ia**2*ra\n", + "cu_loss_shunt=v*ish\n", + "total_loss=loss+cu_loss+cu_loss_shunt\n", + "input_m=v*i\n", + "output=input_m-total_loss\n", + "tsh=9.55*output/n\n", + "efficiency=output*100/input_m\n", + "\n", + "#result\n", + "print \"gross torque=\",ta,\"N-m\"\n", + "print \"useful torque=\",tsh,\"N-m\"\n", + "print \"efficiency=\",efficiency,\"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "gross torque= 70.288 N-m\n", + "useful torque= 60.2946209124 N-m\n", + "efficiency= 78.1936 %\n" + ] + } + ], + "prompt_number": 256 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.41, Page Number:1025" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "output=14.92#kW\n", + "n=1150#rpm\n", + "p=4\n", + "a=2\n", + "z=620\n", + "ra=0.2#ohm\n", + "i=74.8#A\n", + "i2=3#A\n", + "v=230#V\n", + "#calculation\n", + "ia=i-i2\n", + "eb=v-ia*ra\n", + "phi=eb*a*60/(p*z*n)\n", + "ta=9.55*eb*ia/n\n", + "power=eb*ia\n", + "loss_rot=power-output*1000\n", + "input_m=v*i\n", + "total_loss=input_m-output*1000\n", + "per=total_loss*100/input_m\n", + "\n", + "#result\n", + "print \"flux per pole=\",phi*1000,\"mWb\"\n", + "print \"torque developed=\",ta,\"N-m\"\n", + "print \"rotational losses=\",loss_rot,\"W\"\n", + "print \"total losses expressed as a percentage of power=\",per,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "flux per pole= 9.07321178121 mWb\n", + "torque developed= 128.575818783 N-m\n", + "rotational losses= 562.952 W\n", + "total losses expressed as a percentage of power= 13.2759823297 %\n" + ] + } + ], + "prompt_number": 263 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.42, Page Number:1025" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "ia1=Symbol('ia1')\n", + "output=7.46#kW\n", + "v=250#V\n", + "i=5#A\n", + "ra=0.5#ohm\n", + "rf=250#ohm\n", + "\n", + "#calculation\n", + "input_m=v*i\n", + "ish=v/rf\n", + "ia=i-ish\n", + "cu_loss=v*ish\n", + "cu_loss_a=ra*ia**2\n", + "loss=input_m-cu_loss\n", + "ia1=solve(ra*ia1**2-v*ia1+output*1000+loss,ia1)\n", + "i2=ia1[0]+ish\n", + "input_m1=v*i2\n", + "efficiency=output*100000/input_m1\n", + "ia=math.sqrt((input_m-cu_loss_a)/ra)\n", + "input_a=v*ia\n", + "cu_loss=ia**2*ra\n", + "output_a=input_a-(cu_loss+loss)\n", + "\n", + "#result\n", + "print \"efficiency=\",efficiency,\"%\"\n", + "print \"output power at which efficiency is maximum=\",output_a/1000,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 79.5621535016683 %\n", + "output power at which efficiency is maximum= 10.2179357944 kW\n" + ] + } + ], + "prompt_number": 271 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.43, Page Number:1026" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n2_by_n1=1.0/2.0\n", + "ia2_by_ia1=phi1_by_phi2=1.0/2.0\n", + "v2_by_v1=n2_by_n1*phi1_by_phi2\n", + "reduction_v=(1-v2_by_v1)*100\n", + "reduction_i=(1-ia2_by_ia1)*100\n", + "\n", + "#result\n", + "print \"percentage reduction in the motor terminal voltage=\",reduction_v,\"%\"\n", + "print \"percentage fall in the motor current=\",reduction_i,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "percentage reduction in the motor terminal voltage= 75.0 %\n", + "percentage fall in the motor current= 50.0 %\n" + ] + } + ], + "prompt_number": 272 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.44, Page Number:1026" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=6\n", + "v=500#V\n", + "z=1200\n", + "phi=20*0.001#Wb\n", + "ra=0.5#ohm\n", + "rf=250#ohm\n", + "i=20#A\n", + "loss=900#W\n", + "a=2\n", + "#calculation\n", + "ish=v/rf\n", + "ia=i-ish\n", + "eb=v-ia*ra\n", + "n=eb*a*60/(p*z*phi)\n", + "ta=9.55*eb*ia/n\n", + "cu_loss=ia**2*ra\n", + "cu_loss_f=v*ish\n", + "total_loss=cu_loss+cu_loss_f+loss\n", + "input_m=v*i\n", + "output=input_m-total_loss\n", + "tsh=9.55*output/n\n", + "efficiency=output*100/input_m\n", + "\n", + "#result\n", + "print \"useful torque=\",ta,\"N-m\"\n", + "print \"output=\",output/1000,\"Kw\"\n", + "print \"efficiency==\",efficiency,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "useful torque= 206.28 N-m\n", + "output= 7.938 Kw\n", + "efficiency== 79.38 %\n" + ] + } + ], + "prompt_number": 275 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.45, Page Number:1027" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "ia1=Symbol('ia1')\n", + "output=37.3*1000#W\n", + "v=460#V\n", + "i=4#A\n", + "n=660#rpm\n", + "ra=0.3#ohm\n", + "rf=270#ohm\n", + "\n", + "#calculations\n", + "ish=v/rf\n", + "cu_loss=v*ish\n", + "ia=i-ish\n", + "cu_loss_a=ia**2*ra\n", + "input_a=loss=v*ia\n", + "ia1=solve(ra*ia1**2-v*ia1+output+loss,ia1)\n", + "i=ia1[0]+ish\n", + "eb1=v-(ia*ra)\n", + "eb2=v-(ia1[0]*ra)\n", + "n2=n*eb2/eb1\n", + "ia=math.sqrt((cu_loss+input_a)/ra)\n", + "\n", + "#result\n", + "print \"the current input=\",i,\"A\"\n", + "print \"speed=\",round(n2,0),\"rpm\"\n", + "print \"armature current at which efficiency is maximum=\",ia,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "the current input= 90.2860908863713 A\n", + "speed= 623.0 rpm\n", + "armature current at which efficiency is maximum= 78.3156008298 A\n" + ] + } + ], + "prompt_number": 280 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A Textbook of Electrical Technology AC and DC Machines/chapter30.ipynb b/A Textbook of Electrical Technology AC and DC Machines/chapter30.ipynb new file mode 100644 index 00000000..ce13ea95 --- /dev/null +++ b/A Textbook of Electrical Technology AC and DC Machines/chapter30.ipynb @@ -0,0 +1,2629 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:072a977ff7e7f41108f647b699866e16f58bf91b148a03cefc5a07bc1eeda05b" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 30:Speed Control of D.C. Motors" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.1, Page Number:1032" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=500#V\n", + "n=250#rpm\n", + "ia=200#A\n", + "ra=0.12#ohm\n", + "ratio=0.80\n", + "ia2=100#A\n", + "\n", + "#calculations\n", + "eb1=v-ia*ra\n", + "eb2=v-ia2*ra\n", + "n2=eb2*n/(eb1*ratio)\n", + "\n", + "#result\n", + "print \"speed=\",round(n2),\"rpm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 320.0 rpm\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.2, Page Number:1032" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250#V\n", + "ra=0.25#ohm\n", + "ia=50#A\n", + "n=750#rpm\n", + "ratio=1-0.10\n", + "\n", + "#calculation\n", + "ia2=ia/ratio\n", + "eb1=v-ia*ra\n", + "eb2=v-ia2*ra\n", + "n2=eb2*n/(eb1*ratio)\n", + "\n", + "#result\n", + "print \"speed=\",round(n2),\"rpm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 828.0 rpm\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.3, Page Number:1032" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=230.0#V\n", + "n=800#rpm\n", + "ia=50.0#A\n", + "n2=1000#rpm\n", + "ia2=80.0#A\n", + "ra=0.15#ohm\n", + "rf=250.0#ohm\n", + "\n", + "#calculation\n", + "eb1=v-ia*ra\n", + "eb2=v-ia2*ra\n", + "ish1=v/rf\n", + "r1=(n2*eb1*v)/(n*eb2*ish1)\n", + "r=r1-rf\n", + "ish2=v/r1\n", + "torque_ratio=ish2*ia2/(ish1*ia)\n", + "\n", + "#result\n", + "print \"resistance to be added=\",r,\"ohm\"\n", + "print \"ratio of torque=\",torque_ratio" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance to be added= 68.9506880734 ohm\n", + "ratio of torque= 1.25411235955\n" + ] + } + ], + "prompt_number": 19 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.3, Page Number:1033" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250.0#V\n", + "rf=250.0#ohm\n", + "ra=0.25#ohm\n", + "n=1500#rpm\n", + "ia=20.0#A\n", + "r=250.0#ohm\n", + "\n", + "#calculations\n", + "ish=v/rf\n", + "ish2=v/(rf+r)\n", + "ia2=ia*1/ish2\n", + "eb2=v-ia2*ra\n", + "eb1=v-ia*ra\n", + "n2=eb2*n/(eb1*ish2)\n", + "\n", + "#result\n", + "print \"new speed=\",round(n2),\"rpm\"\n", + "print \"new armature current=\",ia2,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "new speed= 2939.0 rpm\n", + "new armature current= 40.0 A\n" + ] + } + ], + "prompt_number": 23 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.5, Page Number:1033" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "rt=Symbol('rt')\n", + "v=250.0#V\n", + "ra=0.5#ohm\n", + "rf=250.0#ohm\n", + "n=600.0#rpm\n", + "ia=20.0#A\n", + "n2=800.0#rpm\n", + "\n", + "#calculation\n", + "ish1=v/rf\n", + "eb1=v-ia*ra\n", + "rt=solve(((n2*eb1*(v/rt))/(n*(v-(ia*ra/(v/rt)))))-1,rt)\n", + "r=rt[0]-rf\n", + "\n", + "#result\n", + "print \"resistance to be inserted=\",r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance to be inserted= 88.3128987990058 ohm\n" + ] + } + ], + "prompt_number": 37 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.6, Page Number:1034" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "x=Symbol('x')\n", + "v=220#V\n", + "ra=0.5#ohm\n", + "ia=40#A\n", + "ratio=1+0.50\n", + "\n", + "#calculation\n", + "eb1=v-ia*ra\n", + "x=solve((ratio*eb1/((v-ia*ra*x)*x))-1,x)\n", + "per=1-1/x[0]\n", + "\n", + "#result\n", + "print\"main flux has to be reduced by=\",per*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "main flux has to be reduced by= 37.2991677469778 %\n" + ] + } + ], + "prompt_number": 38 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.7, Page Number:1034" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=220#V\n", + "load=10#kW\n", + "i=41#A\n", + "ra=0.2#ohm\n", + "rw=0.05#ohm\n", + "ri=0.1#ohm\n", + "rf=110#ohm\n", + "ratio=1-0.25\n", + "r=1#ohm\n", + "ratio1=1-0.50\n", + "n=2500\n", + "#calculation\n", + "ish=v/rf\n", + "ia1=i-ish\n", + "ia2=ratio1*ia1/ratio\n", + "eb1=v-ia1*(ra+ri+rw)\n", + "eb2=v-ia2*(r+ra+ri+rw)\n", + "n2=eb2*n/(eb1*ratio)\n", + "\n", + "#result\n", + "print \"armature current=\",ia2,\"A\"\n", + "print \"motor speed=\",round(n2),\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "armature current= 26.0 A\n", + "motor speed= 2987.0 rpm\n" + ] + } + ], + "prompt_number": 40 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.8, Page Number:1035" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=220#V\n", + "load=15#kW\n", + "n=850#rpm\n", + "ia=72.2#A\n", + "ra=0.25#ohm\n", + "rf=100#ohm\n", + "n2=1650#rpm\n", + "ia2=40#A\n", + "\n", + "#calculation\n", + "ish=v/rf\n", + "ia1=ia-ish\n", + "eb1=v-ia1*ra\n", + "eb2=v-ia2*ra\n", + "ratio=(n*eb2)/(n2*eb1)\n", + "per=1-ratio\n", + "#result\n", + "print \"percentage reduction=\",per*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "percentage reduction= 46.5636857585 %\n" + ] + } + ], + "prompt_number": 46 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.9, Page Number:1035" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "ia2=Symbol('ia2')\n", + "v=220#V\n", + "ra=0.5#ohm\n", + "ia=40#A\n", + "ratio=0.50+1\n", + "\n", + "#calculation\n", + "eb1=v-ia*ra\n", + "ia2=solve((((v-ra*ia2)*ia2)/(eb1*ratio*ia))-1,ia2)\n", + "per=ia/ia2[0]\n", + "\n", + "#result\n", + "print \"mail flux should be reduced by=\",round(per,4)*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "mail flux should be reduced by= 62.7 %\n" + ] + } + ], + "prompt_number": 49 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.10, Page Number:1035" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "ia=20.0#A\n", + "v=220.0#V\n", + "ra=0.5#ohm\n", + "ratio=0.50\n", + "\n", + "#calculation\n", + "eb1=v-ia*ra\n", + "eb2=ratio*(v-ia*ra)\n", + "r=(v-eb2)/ia-ra\n", + "\n", + "#result\n", + "print \"resistance required in the series=\",r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance required in the series= 5.25 ohm\n" + ] + } + ], + "prompt_number": 53 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.11, Page Number:1036" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250#V\n", + "n=1000#rpm\n", + "ia=8#A\n", + "i_f=1#A\n", + "ra=0.2#ohm\n", + "rf=250#ohm\n", + "i=50#A\n", + "\n", + "#calculations\n", + "eb0=v-(ia-i_f)*ra\n", + "kpsi=eb0/1000\n", + "ia=i-i_f\n", + "eb1=v-ia*ra\n", + "n1=eb1/kpsi\n", + "\n", + "#result\n", + "print \"speed=\",round(n1,1),\"rpm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 966.2 rpm\n" + ] + } + ], + "prompt_number": 55 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.12, Page Number:1037" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=240#V\n", + "ra=0.25#ohm\n", + "n=1000#rpm\n", + "ia=40#A\n", + "n2=800#rpm\n", + "i2=20#A\n", + "#calculation\n", + "eb=v-ia*ra\n", + "eb2=n2*eb/n\n", + "r=(v-eb2)/(ia)-ra\n", + "eb3=v-i2*(r+ra)\n", + "n3=eb3*n/eb\n", + "\n", + "#result\n", + "print \"additional resistance=\",r,\"ohm\"\n", + "print \"speed=\",round(n3),\"rpm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "additional resistance= 1.15 ohm\n", + "speed= 922.0 rpm\n" + ] + } + ], + "prompt_number": 61 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.13, Page Number:1037" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=7.48#kW\n", + "v=220#V\n", + "n=990#rpm\n", + "efficiency=0.88\n", + "ra=0.08#ohm\n", + "ish=2#A\n", + "n2=450#rpm\n", + "\n", + "#calculation\n", + "input_p=load*1000/efficiency\n", + "losses=input_p-load*1000\n", + "i=input_p/v\n", + "ia=i-ish\n", + "loss=v*ish\n", + "cu_loss=ia**2*ra\n", + "loss_nl=losses-cu_loss-loss\n", + "eb1=v-20-(ia*ra)\n", + "eb2=n2*eb1/n\n", + "r=(eb1-eb2)/ia\n", + "total_loss=ia**2*(r+ra)+loss+loss_nl\n", + "output=input_p-total_loss\n", + "efficiency=output/(input_p)\n", + "\n", + "#result\n", + "print \"motor input=\",input_p/1000,\"kW\"\n", + "print \"armature current=\",ia,\"A\"\n", + "print \"external resistance=\",r,\"ohm\"\n", + "print \"efficiency=\",efficiency*100,\"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "motor input= 8.5 kW\n", + "armature current= 36.6363636364 A\n", + "external resistance= 2.93403113016 ohm\n", + "efficiency= 41.6691237902 %\n" + ] + } + ], + "prompt_number": 81 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.14, Page Number:1038" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "eb1=230.0#V\n", + "n=990.0#rpm\n", + "n2=500.0#rpm\n", + "ia=25.0#A\n", + "\n", + "#calculation\n", + "eb2=eb1*n2/n\n", + "r=(eb1-eb2)/ia\n", + "\n", + "#result\n", + "print \"resistance required in series=\",r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance required in series= 4.55353535354 ohm\n" + ] + } + ], + "prompt_number": 83 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.15, Page Number:1038" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=220.0#V\n", + "ra=0.4#ohm\n", + "rf=200.0#ohm\n", + "ia=20.0#A\n", + "n=600.0#rpm\n", + "n2=900.0#rpm\n", + "\n", + "#calculation\n", + "if1=v/rf\n", + "eb1=v-ia*ra\n", + "k2=eb1/(if1*n)\n", + "if2=n*if1/n2\n", + "rf1=v/if1\n", + "rf2=v/if2\n", + "r=rf2-rf1\n", + "\n", + "#result\n", + "print \"resistance to be added=\",r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance to be added= 100.0 ohm\n" + ] + } + ], + "prompt_number": 90 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.16, Page Number:1039" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "ia2=Symbol('ia2')\n", + "v=220.0#V\n", + "ra=0.4#ohm\n", + "rf=200.0#ohm\n", + "ia=22.0#A\n", + "n=600.0#rpm\n", + "n2=900.0#rpm\n", + "\n", + "#calculation\n", + "if1=v/rf\n", + "eb1=v-ia*ra\n", + "k1=eb1/(if1*n)\n", + "if2=n*if1/n2\n", + "if2=n2*ia/n\n", + "ia2=solve(v-ra*ia2-(k1*ia*if1*n2)/ia2,ia2)\n", + "if2=ia*if1/ia2[0]\n", + "r=v/if2\n", + "\n", + "#result\n", + "print \"new field resistance to be added=\",r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "new field resistance to be added= 306.828780053869 ohm\n" + ] + } + ], + "prompt_number": 103 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.17, Page Number:1040" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250#V\n", + "output=25#kW\n", + "efficiency=0.85\n", + "n=1000#rpm\n", + "ra=0.1#ohm\n", + "rf=125#ohm\n", + "ratio=1.50\n", + "\n", + "#calculation\n", + "input_p=output*1000/efficiency\n", + "i=input_p/v\n", + "if1=v/rf\n", + "ia=i-if1\n", + "il=ratio*ia\n", + "r=v/il\n", + "r_ext=r-ra\n", + "\n", + "#result\n", + "print \"starting resistance=\",round(r_ext,3),\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "starting resistance= 1.341 ohm\n" + ] + } + ], + "prompt_number": 105 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.18, Page Number:1042" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=200.0#V\n", + "n=1000.0#rpm\n", + "ia=17.5#A\n", + "n2=600.0#rpm\n", + "ra=0.4#ohm\n", + "\n", + "#calculation\n", + "eb1=v-ia*ra\n", + "rt=(v-(n2*eb1/n))/ia\n", + "r=rt-ra\n", + "#result\n", + "print \"resistance to be inserted=\",round(r,1),\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance to be inserted= 4.4 ohm\n" + ] + } + ], + "prompt_number": 111 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.19, Page Number:1042" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=500#V\n", + "ra=1.2#ohm\n", + "rf=500#ohm\n", + "ia=4#A\n", + "n=1000#rpm\n", + "i=26#A\n", + "r=2.3#ohm\n", + "ratio=0.15\n", + "\n", + "#calculation\n", + "ish=v/rf\n", + "ia1=ia-ish\n", + "eb1=v-ia1*ra\n", + "ia2=i-ish\n", + "eb2=v-ia2*ra\n", + "n2=n*eb2/eb1\n", + "eb2=v-ia2*(r+ra)\n", + "n2_=n*eb2/eb1\n", + "n2__=n*eb2/(eb1*(1-ratio))\n", + "\n", + "#result\n", + "print \"speed when resistance 2.3 ohm is connected=\",round(n2_),\"rpm\"\n", + "print \"speed when shunt field is reduced by 15%=\",round(n2__),\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed when resistance 2.3 ohm is connected= 831.0 rpm\n", + "speed when shunt field is reduced by 15%= 978.0 rpm\n" + ] + } + ], + "prompt_number": 113 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.20, Page Number:1043" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250.0#V\n", + "ia1=ia2=20.0#A\n", + "n=1000.0#rpm\n", + "ra=0.5#ohm\n", + "n2=500.0#ohm\n", + "\n", + "#calculation\n", + "eb1=v-ia1*ra\n", + "rt=(v-((n2/n)*eb1))/ia2\n", + "r=rt-ra\n", + "ia3=ia2/2\n", + "n3=n*(v-ia3*rt)/eb1\n", + "#result\n", + "print \"speed=\",round(n3),\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 771.0 rpm\n" + ] + } + ], + "prompt_number": 117 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.21, Page Number:1043" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250.0#V\n", + "ra1=0.5#ohm\n", + "n=600.0#rpm\n", + "ia2=ia1=20#A\n", + "r=1.0#ohm\n", + "\n", + "#calculations\n", + "eb1=v-ia1*ra1\n", + "ra2=r+ra1\n", + "eb2=v-ia2*ra2\n", + "n2=eb2*n/eb1\n", + "#torque is half the full-load torque\n", + "ia2=1.0/2.0*ia1\n", + "eb22=v-ia2*ra2\n", + "n2_=eb22*n/eb1\n", + "#result\n", + "print \"speed at full load torque=\",round(n2),\"rpm\"\n", + "print \"speed at half full-load torque=\",round(n2_),\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed at full load torque= 550.0 rpm\n", + "speed at half full-load torque= 588.0 rpm\n" + ] + } + ], + "prompt_number": 137 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.22, Page Number:1044" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=220.0#V\n", + "ra1=0.5#ohm\n", + "n=500.0#rpm\n", + "ia2=ia1=30.0#A\n", + "r=1.0#ohm\n", + "\n", + "#calculations\n", + "eb1=v-ia1*ra1\n", + "ra2=r+ra1\n", + "eb2=v-ia2*ra2\n", + "n2=eb2*n/eb1\n", + "\n", + "#torque is half the full-load torque\n", + "ia2=2.0*ia1\n", + "eb22=v-ia2*ra2\n", + "n2_=eb22*n/eb1\n", + "#result\n", + "print \"speed at full load torque=\",round(n2),\"rpm\"\n", + "print \"speed at double full-load torque=\",round(n2_),\"rpm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed at full load torque= 427.0 rpm\n", + "speed at double full-load torque= 317.0 rpm\n" + ] + } + ], + "prompt_number": 142 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.23, Page Number:1044" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=37.3*1000#W\n", + "v=500.0#V\n", + "n=750.0#rpm\n", + "efficiency=0.90\n", + "t2=250.0#N-m\n", + "r=5.0#ohm\n", + "ra=0.5#ohm\n", + "\n", + "#calculation\n", + "t1=load/(2*3.14*(n/60))\n", + "ia1=load/(efficiency*v)\n", + "ia2=ia1*math.sqrt(t2/t1)\n", + "eb1=v-ia1*ra\n", + "eb2=v-ia2*(r+ra)\n", + "n2=eb2*ia1*n/(eb1*ia2)\n", + "\n", + "#result\n", + "print \"speed at which machine will run=\",round(n2),\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed at which machine will run= 381.789716486 rpm\n" + ] + } + ], + "prompt_number": 157 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.24, Page Number:1044" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "output=7.46*1000#W\n", + "v=220.0#V\n", + "n=900.0#rpm\n", + "efficiency=0.88\n", + "ra=0.08#ohm\n", + "ish=2.0#A\n", + "n2=450.0#rpm\n", + "#calculation\n", + "i=output/(efficiency*v)\n", + "ia2=ia1=i-ish\n", + "eb1=v-ia2*ra\n", + "rt=(v-20-((n2/n)*eb1))/ia2\n", + "r=rt-ra\n", + "input_m=(v)*(ia2+ish)\n", + "total_loss=input_m-output\n", + "cu_loss=ia2**2*ra\n", + "cu_loss_f=v*ish\n", + "total_cu_loss=cu_loss+cu_loss_f\n", + "stray_loss=total_loss-total_cu_loss\n", + "stray_loss2=stray_loss*n2/n\n", + "cu_loss_a=ia1**2*rt\n", + "total_loss2=stray_loss2+cu_loss_f+cu_loss_a\n", + "output2=input_m-total_loss2\n", + "efficiency=output2*100/input_m\n", + "\n", + "#result\n", + "print \"motor output=\",output2,\"W\"\n", + "print \"armature current=\",ia2,\"A\"\n", + "print \"external resistance=\",r,\"ohm\"\n", + "print \"overall efficiency=\",efficiency,\"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "motor output= 4460.66115702 W\n", + "armature current= 36.5330578512 A\n", + "external resistance= 2.42352222599 ohm\n", + "overall efficiency= 52.619059225 %\n" + ] + } + ], + "prompt_number": 175 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.25, Page Number:1044" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=240.0#V\n", + "ia=15.0#A\n", + "n=800.0#rpm\n", + "ra=0.6#ohm\n", + "n2=400.0#rpm\n", + "\n", + "#calculation\n", + "eb1=v-ia*ra\n", + "r=((v-(n2*eb1/n))/ia)-ra\n", + "ia3=ia/2\n", + "eb3=v-ia3*(r+ra)\n", + "n3=eb3*n/eb1\n", + "\n", + "#result\n", + "print \"speed=\",n3,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 615.584415584 rpm\n" + ] + } + ], + "prompt_number": 187 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.26, Page Number:1045" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "r=Symbol('r')\n", + "v=400.0#V\n", + "inl=3.5#A\n", + "il=59.5#A\n", + "rf=267.0#ohm\n", + "ra=0.2#ohm\n", + "vd=2.0#V\n", + "ratio=0.02\n", + "speed_ratio=0.50\n", + "\n", + "#calculations\n", + "ish=v/rf\n", + "ia1=inl-ish\n", + "eb1=v-ia1*ra-vd\n", + "ia2=il-ish\n", + "eb2=v-ia2*ra-vd\n", + "n1_by_n2=eb1*(1-ratio)/eb2\n", + "per_change=(1-1/n1_by_n2)*100\n", + "r=solve(eb2*speed_ratio/(eb2-ia2*r)-1,r)\n", + "#result\n", + "print \"change in speed=\",per_change,\"%\"\n", + "print \"resistance to be added=\",r[0],\"ohm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "change in speed= 0.83357557339 %\n", + "resistance to be added= 3.33092370774547 ohm\n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.27, Page Number:1046" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaraion\n", + "v=200.0#V\n", + "i=50.0#A\n", + "n=1000.0#rpm\n", + "n2=800.0#rpm\n", + "ra=0.1#ohm\n", + "rf=100.0#ohm\n", + "\n", + "#calculations\n", + "ish=v/rf\n", + "ia1=i-ish\n", + "ia2=ia1*(n2/n)**2\n", + "eb1=v-ia1*ra\n", + "eb2=v-ia2*ra\n", + "rt=(v-(n2*eb1/n))/ia2\n", + "r=rt-ra\n", + "#result\n", + "print \"resustance that must be added=\",r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resustance that must be added= 1.32708333333 ohm\n" + ] + } + ], + "prompt_number": 16 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.28, Page Number:1047" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250#V\n", + "load=37.3#kW\n", + "efficiency=0.90\n", + "n=1000#rpm\n", + "ra=0.1#ohm\n", + "rf=115#ohm\n", + "ratio=1.5\n", + "\n", + "#calculation\n", + "tsh=9.55*load*1000/n\n", + "i=load*1000/(v*efficiency)\n", + "ish=v/rf\n", + "ia=i-ish\n", + "eb=v-ia*ra\n", + "ta=9.55*eb*ia/n\n", + "i_permissible=i*ratio\n", + "ia_per=i_permissible-ish\n", + "ra_total=v/ia_per\n", + "r_required=ra_total-ra\n", + "torque=ratio*ta\n", + "#result\n", + "print \"net torque=\",ta,\"N-m\"\n", + "print \"starting resistance=\",r_required,\"ohm\"\n", + "print \"torque developed at starting=\",torque,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "net torque= 365.403326173 N-m\n", + "starting resistance= 0.913513513514 ohm\n", + "torque developed at starting= 548.104989259 N-m\n" + ] + } + ], + "prompt_number": 22 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.29, Page Number:1047" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "I=Symbol('I')\n", + "v=200.0#V\n", + "rf=40.0#ohm\n", + "ra=0.02#ohm\n", + "i=55.0#A\n", + "n=595.0#rpm\n", + "r=0.58#ohm\n", + "n2=630.0#rpm\n", + "ia_=15.0#A\n", + "rd=5.0#ohm\n", + "ia2=50.0#A\n", + "\n", + "#calculation\n", + "ish=v/rf\n", + "ia1=i-ish\n", + "ra1=r+ra\n", + "eb1=v-ra1*ia1\n", + "ia2=ia1\n", + "eb2=eb1*(n2/n)\n", + "r=(v-eb2)/ia1\n", + "eb2_=v-ia_*ra1\n", + "n2=eb2_*n/eb1\n", + "eb3=eb1\n", + "IR=v-eb3-ia2*ra\n", + "pd=v-IR\n", + "i_d=pd/rd\n", + "i=ia2+i_d\n", + "R=IR/i\n", + "I=solve(rd*(I-ia_)-v+R*I,I)\n", + "eb4=v-R*I[0]-ia_*ra\n", + "n4=n*(eb4/eb1)\n", + "\n", + "#result\n", + "print \"armature circuit resistance should be reduced by=\",ra1-r,\"ohm\"\n", + "print \"speed when Ia=\",n2,\"rpm\"\n", + "print \"value of series resistance=\",R,\"ohm\"\n", + "print \"speed when motor current falls to 15A=\",n4,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "armature circuit resistance should be reduced by= 0.2 ohm\n", + "speed when Ia= 668.5 rpm\n", + "value of series resistance= 0.344418052257 ohm\n", + "speed when motor current falls to 15A= 636.922222222222 rpm\n" + ] + } + ], + "prompt_number": 36 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.31, Page Number:1051" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "i=15#A\n", + "n=600#rpm\n", + "\n", + "#calculation\n", + "ia2=math.sqrt(2*2**0.5*i**2)\n", + "n2=n*2*i/ia2\n", + "\n", + "#result\n", + "print \"speed=\",n2,\"rpm\"\n", + "print \"current=\",ia2,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 713.524269002 rpm\n", + "current= 25.2268924576 A\n" + ] + } + ], + "prompt_number": 37 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.32, Page Number:1052" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=707#rpm\n", + "ia1=100#A\n", + "v=85#V\n", + "rf=0.03#ohm\n", + "ra=0.04#ohm\n", + "\n", + "#calculation\n", + "ra_total=ra+(2*rf)\n", + "eb1=v-ia1*ra_total\n", + "ia2=ia1*2**0.5\n", + "rf=rf/2\n", + "eb2=v-ia2*(ra+rf)\n", + "n2=n*(eb2/eb1)*(2*ia1/ia2)\n", + "rt=(v-((n/n2)*eb2))/ia2\n", + "r=rt-ra-rf\n", + "\n", + "#result\n", + "print \"speed=\",n2,\"rpm\"\n", + "print \"additional resistance=\",r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 1029.46885374 rpm\n", + "additional resistance= 0.171040764009 ohm\n" + ] + } + ], + "prompt_number": 44 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.33, Page Number:1052" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#varable declaration\n", + "v=240.0#V\n", + "ia=40.0#A\n", + "ra=0.3#ohm\n", + "n=1500.0#rpm\n", + "n2=1000.0#rpm\n", + "#calculation\n", + "R=v/ia-ra\n", + "eb1=v-ia*ra\n", + "r=(v-((n2/n)*eb1))/ia-ra\n", + "\n", + "#result\n", + "print \"resistance to be added at starting=\",R,\"ohm\"\n", + "print \"resistance to be added at 1000 rpm\",r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance to be added at starting= 5.7 ohm\n", + "resistance to be added at 1000 rpm 1.9 ohm\n" + ] + } + ], + "prompt_number": 49 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.34, Page Number:1053" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=600.0#rpm\n", + "v=250.0#V\n", + "ia1=20.0#A\n", + "ratio=2.0\n", + "\n", + "#calculations\n", + "ia2=ia1*2**(3.0/4.0)\n", + "n2=n*ratio*ia1/ia2\n", + "\n", + "#result\n", + "print \"current=\",ia2,\"A\"\n", + "print \"speed=\",n2,\"rpm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "current= 33.6358566101 A\n", + "speed= 713.524269002 rpm\n" + ] + } + ], + "prompt_number": 50 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.35, Page Number:1053" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "V=Symbol('V')\n", + "ra=1.0#ohm\n", + "v=220.0#V\n", + "n=350.0#rpm\n", + "ia=25.0#A\n", + "n2=500.0#rpm\n", + "\n", + "#calculation\n", + "ia2=ia*(n2/n)\n", + "eb1=v-ia*ra\n", + "V=solve((n2*eb1*ia2/(n*ia))+ia2-V,V)\n", + "\n", + "#result\n", + "print \" current=\",ia2,\"A\"\n", + "print \"voltage=\",V[0],\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " current= 35.7142857143 A\n", + "voltage= 433.673469387755 V\n" + ] + } + ], + "prompt_number": 58 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.36, Page Number:1053" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=1000.0#rpm\n", + "ia=20.0#A\n", + "v=200.0#V\n", + "ra=0.5#ohm\n", + "rf=0.2#ohm\n", + "i=20.0#A\n", + "rd=0.2#ohm\n", + "i_f=10.0#A\n", + "ratio=0.70\n", + "\n", + "#calculation\n", + "eb1=v-(ra+rf)*ia\n", + "r_total=ra+rf/2\n", + "eb2=v-r_total*ia\n", + "n2=(eb2*n/(eb1*ratio))\n", + " \n", + "#result\n", + "print \"speed=\",round(n2),\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 1444.0 rpm\n" + ] + } + ], + "prompt_number": 61 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.37, Page Number:1054" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=200.0#V\n", + "ia=40.0#A\n", + "n=700.0#rpm\n", + "ratio=0.50+1\n", + "ra=0.15#ohm\n", + "rf=0.1#ohm\n", + "\n", + "#calculations\n", + "ia2=(ratio*2*ia**2)**0.5\n", + "eb1=v-ia*(ra+rf)\n", + "eb2=v-ia2*(ra+rf)\n", + "n2=(eb2/eb1)*(ia*2/ia2)*n\n", + "\n", + "#result\n", + "print \"speed=\",n2,\"rpm\"\n", + "print \"speed=\",ia2,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 777.147765122 rpm\n", + "speed= 69.2820323028 A\n" + ] + } + ], + "prompt_number": 63 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.38, Page Number:1055" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250#V\n", + "ia=20#A\n", + "n=900#rpm\n", + "r=0.025#ohm\n", + "ra=0.1#ohm\n", + "rd=0.2#ohm\n", + "\n", + "#calculation\n", + "#when divertor is added\n", + "eb1=v-ia*(ra+4*r)\n", + "ia2=(ia**2*(ra+rd)/rd)**0.5\n", + "ra_=rd*ra/(ra+rd)\n", + "eb2=v-ia2*ra_\n", + "n2=(eb2/eb1)*(ia*3/(2*ia2))*n\n", + "\n", + "#rearranged field coils in two series and parallel group\n", + "ia2=(ia**2*2)**0.5\n", + "r=ra+r\n", + "eb2=v-ia2*r\n", + "n2_=(eb2/eb1)*(ia*2/(ia2))*n\n", + "\n", + "#result\n", + "print \"speed when divertor was added=\",n2,\"rpm\"\n", + "print \"speed when field coils are rearranged=\",n2_,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed when divertor was added= 1112.87640676 rpm\n", + "speed when field coils are rearranged= 1275.19533144 rpm\n" + ] + } + ], + "prompt_number": 74 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.39, Page Number:1055" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=230.0#V\n", + "n=1000.0#rpm\n", + "i=12.0#A\n", + "rf=0.8#ohm\n", + "ra=1.0#ohm\n", + "il=20#A\n", + "ratio=0.15\n", + "\n", + "#calculation\n", + "eb1=v-i*(ra+rf)\n", + "eb2=v-il*(ra+rf/4)\n", + "n2=(eb2/eb1)*(1/(1-ratio))*n\n", + "\n", + "#result\n", + "print \"speed=\",n2,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 1162.92198261 rpm\n" + ] + } + ], + "prompt_number": 75 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.40, Page Number:1056" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "i2=Symbol('i2')\n", + "v=200.0#v\n", + "n=500.0#rpm\n", + "i=25.0#A\n", + "ra=0.2#ohm\n", + "rf=0.6#ohm\n", + "rd=10.0#ohm\n", + "\n", + "#calculation\n", + "r=ra+rf\n", + "eb1=v-i*r\n", + "i2=solve(((rd+rf)*i2**2)-(v*i2)-(i**2*rd),i2)\n", + "pd=v-i2[1]*rf\n", + "ia2=((rd+rf)*i2[1]-v)/rd\n", + "eb2=pd-ia2*ra\n", + "n2=(eb2/eb1)*(i/i2[1])*n\n", + "#result\n", + "print \"speed=\",n2,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 342.848235418389 rpm\n" + ] + } + ], + "prompt_number": 97 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.41, Page Number:1056" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=440#V\n", + "ra=0.3#ohm\n", + "i=20#A\n", + "n=1200#rpm\n", + "r=3#ohm\n", + "i2=15#A\n", + "ratio=0.80\n", + "\n", + "#calculation\n", + "eb1=v-i*ra\n", + "eb2=v-(r+ra)*i2\n", + "n2=n*(eb2/eb1)/ratio\n", + "power_ratio=(n*i)/(n2*i2*ratio)\n", + "\n", + "#result\n", + "print \"new speed=\",n2,\"rpm\"\n", + "print \"ratio of power outputs=\",power_ratio" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "new speed= 1349.65437788 rpm\n", + "ratio of power outputs= 1.48186086214\n" + ] + } + ], + "prompt_number": 99 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.42, Page Number:1057" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "i=50#A\n", + "v=460#V\n", + "ratio=1-0.25\n", + "\n", + "#calculation\n", + "I=(i**2*ratio**3)**0.5\n", + "eb2=I*ratio*v/i\n", + "R=(v-eb2)/I\n", + "pa=v*i/1000\n", + "power_n=pa*ratio**4\n", + "pa=eb2*I\n", + "\n", + "#result\n", + "print \"Resistance required=\",R,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Resistance required= 7.26432660412 ohm\n" + ] + } + ], + "prompt_number": 103 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.44, Page Number:1060" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=500#rpm\n", + "n2=550#rpm\n", + "i=50#A\n", + "v=500#V\n", + "r=0.5#ohm\n", + "\n", + "#calculation\n", + "eb1=v-i*r\n", + "kphi1=eb1/n\n", + "eb2=v-i*r\n", + "kphi2=eb2/n2\n", + "eb_=v-i*2*r\n", + "n=eb_/((eb1/n2)+(eb2/n))\n", + "#result\n", + "print \"speed=\",n,\"rpm\"\n", + "\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 248.120300752 rpm\n" + ] + } + ], + "prompt_number": 109 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.45, Page Number:1061" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=14.92#kW\n", + "v=250#V\n", + "n=1000#rpm\n", + "ratio1=5.0\n", + "ratio2=4.0\n", + "t=882#N-m\n", + "\n", + "#calculation\n", + "i=load*1000/v\n", + "k=v/(n*i/60)\n", + "I=(t/((ratio1+ratio2)*0.159*k))**0.5\n", + "nsh=v/((ratio1+ratio2)*k*I)\n", + "eb1=ratio1*k*I*nsh\n", + "eb2=ratio2*k*I*nsh\n", + "\n", + "#result\n", + "print \"current=\",I,\"A\"\n", + "print \"speed of shaft=\",round(nsh*60),\"rpm\"\n", + "print \"voltage across the motors=\",round(eb1),\"V,\",round(eb2),\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "current= 49.5202984449 A\n", + "speed of shaft= 134.0 rpm\n", + "voltage across the motors= 139.0 V, 111.0 V\n" + ] + } + ], + "prompt_number": 117 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.46, Page Number:1063" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=220#V\n", + "t=700#N-m\n", + "n=1200#rpm\n", + "ra=0.008#ohm\n", + "rf=55#ohm\n", + "efficiency=0.90\n", + "t2=375#N-m\n", + "n2=1050#rpm\n", + "\n", + "#calculation\n", + "output=2*3.14*n*t/60\n", + "power_m=output/efficiency\n", + "im=power_m/v\n", + "ish=v/rf\n", + "ia1=im-ish\n", + "eb1=v-ia1*ra\n", + "ia2=ia1*t2/t\n", + "eb2=eb1*n2/n\n", + "r=eb2/ia2-ra\n", + "\n", + "#result\n", + "print \"dynamic break resistance=\",r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "dynamic break resistance= 0.795525014538 ohm\n" + ] + } + ], + "prompt_number": 118 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.47, Page Number:1064" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=400.0#V\n", + "load=18.65#kW\n", + "n=450.0#rpm\n", + "efficiency=0.746\n", + "ra=0.2#ohm\n", + "\n", + "#calculations\n", + "I=load*1000/(efficiency*v)\n", + "eb=v-I*ra\n", + "vt=v+eb\n", + "i_max=2*I\n", + "r=vt/i_max\n", + "R=r-ra\n", + "N=n/60\n", + "phizp_by_a=eb/N\n", + "k4=phizp_by_a*v/(2*3.14*r)\n", + "k3=phizp_by_a**2/(2*3.14*r)\n", + "tb=k4+k3*N\n", + "tb0=k4\n", + "#result\n", + "print \"breaking resistance=\",R,\"ohm\"\n", + "print \"maximum breaking torque=\",tb,\"N-m\"\n", + "print \"maximum breaking torque when N=0 =\",tb0,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "breaking resistance= 6.1 ohm\n", + "maximum breaking torque= 1028.3970276 N-m\n", + "maximum breaking torque when N=0 = 522.360394972 N-m\n" + ] + } + ], + "prompt_number": 122 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.48, Page Number:1069" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=120#V\n", + "ra=0.5#ohm\n", + "l=20*0.001#H\n", + "ka=0.05#V/rpm motor constant\n", + "ia=20#A\n", + "\n", + "#calculations\n", + "vt=ia*ra\n", + "alpha=vt/v\n", + "#when alpha=1\n", + "eb=v-ia*ra\n", + "N=eb/ka\n", + "\n", + "#result\n", + "print \"range of speed control=\",0,\"to\",N,\"rpm\"\n", + "print \"range of duty cycle=\",(alpha),\"to\",1" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " range of speed control= 0 to 2200.0 rpm\n", + "range of duty cycle= 0.0833333333333 to 1\n" + ] + } + ], + "prompt_number": 124 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.49, Page Number:1080" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=7.46#kW\n", + "v=200#V\n", + "efficiency=0.85\n", + "ra=0.25#ohm\n", + "ratio=1.5\n", + "\n", + "#calculation\n", + "i=load*1000/(v*efficiency)\n", + "i1=ratio*i\n", + "r1=v/i1\n", + "r_start=r1-ra\n", + "eb1=v-i*r1\n", + "\n", + "#result\n", + "print \"starting resistance=\",r_start,\"ohm\"\n", + "print \"back emf=\",eb1,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "starting resistance= 2.78842716711 ohm\n", + "back emf= 66.6666666667 V\n" + ] + } + ], + "prompt_number": 125 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.50, Page Number:1080" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=220.0#V\n", + "ra=0.5#ohm\n", + "ia=40.0#A\n", + "n=7\n", + "\n", + "#calculations\n", + "r1=v/ia\n", + "k=(r1/ra)**(1.0/(n-1))\n", + "r2=r1/k\n", + "r3=r2/k\n", + "r4=r3/k\n", + "r5=r4/k\n", + "r6=r5/k\n", + "p1=r1-r2\n", + "p2=r2-r3\n", + "p3=r3-r4\n", + "p4=r4-r5\n", + "p5=r5-r6\n", + "p6=r6-ra\n", + "\n", + "#result\n", + "print \"resistance of 1st section=\",round(p1,3),\"ohm\"\n", + "print \"resistance of 2nd section=\",round(p2,3),\"ohm\"\n", + "print \"resistance of 3rd section=\",round(p3,3),\"ohm\"\n", + "print \"resistance of 4th section=\",round(p4,3),\"ohm\"\n", + "print \"resistance of 5th section=\",round(p5,3),\"ohm\"\n", + "print \"resistance of 6th section=\",round(p6,3),\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance of 1st section= 1.812 ohm\n", + "resistance of 2nd section= 1.215 ohm\n", + "resistance of 3rd section= 0.815 ohm\n", + "resistance of 4th section= 0.546 ohm\n", + "resistance of 5th section= 0.366 ohm\n", + "resistance of 6th section= 0.246 ohm\n" + ] + } + ], + "prompt_number": 132 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.51, Page Number:1081" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=6\n", + "load=3.73#kW\n", + "v=200#V\n", + "ratio=0.50\n", + "i1=0.6#A\n", + "efficiency=0.88\n", + "\n", + "#calculation\n", + "output=load/efficiency\n", + "total_loss=output-load\n", + "cu_loss=total_loss*ratio\n", + "i=output*1000/v\n", + "ia=i-i1\n", + "ra=cu_loss*1000/ia**2\n", + "i_per=i*2\n", + "ia_per=i_per-i1\n", + "r1=v/ia_per\n", + "k=(r1/ra)**(1.0/(n-1))\n", + "r2=r1/k\n", + "r3=r2/k\n", + "r4=r3/k\n", + "r5=r4/k\n", + "p1=r1-r2\n", + "p2=r2-r3\n", + "p3=r3-r4\n", + "p4=r4-r5\n", + "p5=r5-ra\n", + "\n", + "\n", + "#result\n", + "print \"resistance of 1st section=\",round(p1,3),\"ohm\"\n", + "print \"resistance of 2nd section=\",round(p2,3),\"ohm\"\n", + "print \"resistance of 3rd section=\",round(p3,3),\"ohm\"\n", + "print \"resistance of 4th section=\",round(p4,3),\"ohm\"\n", + "print \"resistance of 5th section=\",round(p5,3),\"ohm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance of 1st section= 1.627 ohm\n", + "resistance of 2nd section= 1.074 ohm\n", + "resistance of 3rd section= 0.709 ohm\n", + "resistance of 4th section= 0.468 ohm\n", + "resistance of 5th section= 0.309 ohm\n" + ] + } + ], + "prompt_number": 146 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.52, Page Number:1081" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=7\n", + "load=36.775#kW\n", + "v=400#V\n", + "ratio=0.05\n", + "rsh=200#ohm\n", + "efficiency=0.92\n", + "\n", + "#calculation\n", + "input_m=load*1000/efficiency\n", + "cu_loss=input_m*ratio\n", + "cu_loss_sh=v**2/rsh\n", + "cu_loss_a=cu_loss-cu_loss_sh\n", + "i=input_m/v\n", + "ish=v/rsh\n", + "ia=i-ish\n", + "ra=cu_loss_a/ia**2\n", + "k=(v/(ia*ra))**(1.0/(n))\n", + "i1=k*ia\n", + "r1=v/i1\n", + "r2=r1/k\n", + "r3=r2/k\n", + "r4=r3/k\n", + "r5=r4/k\n", + "r6=r5/k\n", + "r7=r5/k\n", + "p1=r1-r2\n", + "p2=r2-r3\n", + "p3=r3-r4\n", + "p4=r4-r5\n", + "p5=r5-r6\n", + "p6=r6-r7\n", + "p7=r7-ra\n", + "\n", + "#result\n", + "print \"resistance of 1st section=\",round(p1,3),\"ohm\"\n", + "print \"resistance of 2nd section=\",round(p2,3),\"ohm\"\n", + "print \"resistance of 3rd section=\",round(p3,3),\"ohm\"\n", + "print \"resistance of 4th section=\",round(p4,3),\"ohm\"\n", + "print \"resistance of 5th section=\",round(p5,3),\"ohm\"\n", + "print \"resistance of 6th section=\",round(p6,3),\"ohm\"\n", + "print \"resistance of 7th section=\",round(p7,3),\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance of 1st section= 0.974 ohm\n", + "resistance of 2nd section= 0.592 ohm\n", + "resistance of 3rd section= 0.36 ohm\n", + "resistance of 4th section= 0.219 ohm\n", + "resistance of 5th section= 0.133 ohm\n", + "resistance of 6th section= 0.0 ohm\n", + "resistance of 7th section= 0.081 ohm\n" + ] + } + ], + "prompt_number": 157 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.53, Page Number:1082" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "n=Symbol('n')\n", + "v=250.0#V\n", + "ra=0.125#ohm\n", + "i2=150.0#A\n", + "i1=200.0#A\n", + "\n", + "#calculation\n", + "r1=v/i1\n", + "n=solve((i1/i2)**(n-1)-(r1/ra),n)\n", + "k=i1/i2\n", + "r2=r1/k\n", + "r3=r2/k\n", + "r4=r3/k\n", + "r5=r4/k\n", + "r6=r5/k\n", + "r7=r6/k\n", + "r8=r7/k\n", + "p1=r1-r2\n", + "p2=r2-r3\n", + "p3=r3-r4\n", + "p4=r4-r5\n", + "p5=r5-r6\n", + "p6=r6-r7\n", + "p7=r7-r8\n", + "p8=r8-ra\n", + "#result\n", + "print \"resistance of 1st section=\",round(p1,3),\"ohm\"\n", + "print \"resistance of 2nd section=\",round(p2,3),\"ohm\"\n", + "print \"resistance of 3rd section=\",round(p3,3),\"ohm\"\n", + "print \"resistance of 4th section=\",round(p4,3),\"ohm\"\n", + "print \"resistance of 5th section=\",round(p5,3),\"ohm\"\n", + "print \"resistance of 6th section=\",round(p6,3),\"ohm\"\n", + "print \"resistance of 7th section=\",round(p7,3),\"ohm\"\n", + "print \"resistance of 8th section=\",round(p8,3),\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance of 1st section= 0.313 ohm\n", + "resistance of 2nd section= 0.234 ohm\n", + "resistance of 3rd section= 0.176 ohm\n", + "resistance of 4th section= 0.132 ohm\n", + "resistance of 5th section= 0.099 ohm\n", + "resistance of 6th section= 0.074 ohm\n", + "resistance of 7th section= 0.056 ohm\n", + "resistance of 8th section= 0.042 ohm\n" + ] + } + ], + "prompt_number": 163 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.54, Page Number:1083" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "n=Symbol('n')\n", + "v=500#V\n", + "z=20\n", + "ra=1.31#ohm\n", + "t=218#N-m\n", + "ratio=1.5\n", + "slot=60\n", + "phi=23*0.001#Wb\n", + "\n", + "#calculation\n", + "ia=t/(0.159*phi*slot*z)\n", + "i1=ia*ratio\n", + "i2=ia\n", + "k=i1/i2\n", + "r1=v/i1\n", + "n=solve(k**(n-1)-(r1/ra),n)\n", + "r2=r1/k\n", + "r3=r2/k\n", + "r4=r3/k\n", + "p1=r1-r2\n", + "p2=r2-r3\n", + "p3=r3-r4\n", + "p4=r4-ra\n", + "\n", + "#result\n", + "print \"resistance of 1st section=\",round(p1,3),\"ohm\"\n", + "print \"resistance of 2nd section=\",round(p2,3),\"ohm\"\n", + "print \"resistance of 3rd section=\",round(p3,3),\"ohm\"\n", + "print \"resistance of 4th section=\",round(p4,3),\"ohm\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance of 1st section= 2.237 ohm\n", + "resistance of 2nd section= 1.491 ohm\n", + "resistance of 3rd section= 0.994 ohm\n", + "resistance of 4th section= 0.678 ohm\n" + ] + } + ], + "prompt_number": 164 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.55, Page Number:1084" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=37.3#kW\n", + "v=440#V\n", + "drop=0.02\n", + "efficiency=0.95\n", + "i_per=1.30\n", + "\n", + "#calculation\n", + "il=load*1000/(v*efficiency)\n", + "i1=i_per*il\n", + "vd=drop*v\n", + "rm=vd/il\n", + "r1=v/i1\n", + "r=(r1-rm)/6\n", + "\n", + "#result\n", + "print \"resistance of each rheostat=\",r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance of each rheostat= 0.615721729566 ohm\n" + ] + } + ], + "prompt_number": 165 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.56, Page Number:1085" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=55.95#kW\n", + "v=650.0#V\n", + "r=0.51#ohm\n", + "i1=140.0#A\n", + "i2=100.0#A\n", + "per=0.20\n", + "\n", + "#calculation\n", + "ratio=i1/i2\n", + "r1=v/i1\n", + "r2=((per+1)/ratio-per)*r1\n", + "r3=(per+1)*r2/ratio-per*r1\n", + "r4=((per+1)*r3/ratio)-per*r1\n", + "\n", + "p1=r1-r2\n", + "p2=r2-r3\n", + "p3=r3-r4\n", + "\n", + "#result\n", + "print \"number of steps=\",3\n", + "print \"resistance of 1st section=\",round(p1,3),\"ohm\"\n", + "print \"resistance of 2nd section=\",round(p2,3),\"ohm\"\n", + "print \"resistance of 3rd section=\",round(p3,3),\"ohm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "number of steps= 3\n", + "resistance of 1st section= 1.592 ohm\n", + "resistance of 2nd section= 1.364 ohm\n", + "resistance of 3rd section= 1.17 ohm\n" + ] + } + ], + "prompt_number": 170 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A Textbook of Electrical Technology AC and DC Machines/chapter31.ipynb b/A Textbook of Electrical Technology AC and DC Machines/chapter31.ipynb new file mode 100644 index 00000000..aebdac51 --- /dev/null +++ b/A Textbook of Electrical Technology AC and DC Machines/chapter31.ipynb @@ -0,0 +1,1094 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:7d0991402755fd2e3c1083bccec70e0a43143da000e9a99e70877269e1fdc43a" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 31: Testing of DC Machines" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.1, Page Number:1092" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "l=38.1#kg\n", + "d=63.53*0.01#cm\n", + "v=12#rps\n", + "i=49#A\n", + "V=220#V\n", + "\n", + "#calculations\n", + "r=d/2\n", + "torque=l*r*9.81\n", + "power=torque*2*3.14*v\n", + "motor_input=i*V\n", + "efficiency=power*100/motor_input\n", + "\n", + "#result\n", + "print \"Output power=\",round(power),\"W\"\n", + "print \"Efficiency=\",round(efficiency),\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Output power= 8947.0 W\n", + "Efficiency= 83.0 %\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.2(a), Page Number:1093" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "spring_b1=10.0#kg\n", + "spring_b2=35.0#kg\n", + "d=40*0.01#m\n", + "v=950.0#rpm\n", + "V=200.0#V\n", + "i=30.0#A\n", + "\n", + "#calculations\n", + "F=(spring_b2-spring_b1)*9.81\n", + "N=v/60\n", + "R=d/2\n", + "tsh=F*R\n", + "omega=2*3.14*N\n", + "output=tsh*omega\n", + "motor_input=V*i\n", + "efficiency=output/motor_input\n", + "\n", + "#result\n", + "print \"output power=\",output,\"W\"\n", + "print \"efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "output power= 4877.205 W\n", + "efficiency= 81.28675 %\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.2(b), Page Number:1093" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "t1=2.9#kg\n", + "t2=0.17#kg\n", + "r=7*0.01#m\n", + "i=2.0#A\n", + "V=230.0#V\n", + "n=1500.0#rpm\n", + "\n", + "#calculations\n", + "force=(t1-t2)*9.81\n", + "torque=force*r\n", + "output=torque*2*3.14*n/60\n", + "efficiency=output/(V*i)\n", + "\n", + "#result\n", + "print \"torque=\",torque,\"N-m\"\n", + "print \"output\",output,\"W\"\n", + "print \"efficiency\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "torque= 1.874691 N-m\n", + "output 294.326487 W\n", + "efficiency 63.984018913 %\n" + ] + } + ], + "prompt_number": 15 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.3, Page Number:1095" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "V=220.0#V\n", + "i=2.5#A\n", + "ra=0.8#ohm\n", + "rsh=200.0#ohm\n", + "I=20.0#A\n", + "\n", + "#calculations\n", + "input_noload=V*i\n", + "ish=V/rsh\n", + "ia0=i-ish\n", + "culoss=ia0**2*ra\n", + "constant_loss=input_noload-culoss\n", + "ia=32-ish\n", + "cu_lossa=ia**2*ra\n", + "total_loss=cu_lossa+constant_loss\n", + "input_=V*I\n", + "output=input_-total_loss\n", + "efficiency=(output/input_)*100\n", + "\n", + "#result\n", + "print \"Efficiency=\",efficiency,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Efficiency= 70.1754545455 %\n" + ] + } + ], + "prompt_number": 22 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.4, Page Number:1096" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "V=400.0#V\n", + "i=5.0#A\n", + "ra=0.5#ohm\n", + "r=200.0#ohm\n", + "I=50.0#A\n", + "\n", + "#calculations\n", + "input_nl=V*i\n", + "ish=V/r\n", + "ia=i-ish\n", + "cu_loss=ia**2*ra\n", + "constant_loss=input_nl-cu_loss\n", + "Ia=I-ish\n", + "cu_lossa=Ia**2*ra\n", + "total_loss=constant_loss+cu_lossa\n", + "input_nl1=V*I\n", + "output=input_nl1-total_loss\n", + "efficiency=output/input_nl\n", + "Eb1=V-(ia*ra)\n", + "Eb2=V-(Ia*ra)\n", + "change=math.fabs((Eb1-Eb2)/Eb1)\n", + "\n", + "#result\n", + "print \"output=\",output,\"W\"\n", + "print \"efficiency=\",efficiency*10,\"%\"\n", + "print \"percentage change in speed=\",change*100,\"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "output= 16852.5 W\n", + "efficiency= 84.2625 %\n", + "percentage change in speed= 5.64617314931 %\n" + ] + } + ], + "prompt_number": 38 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.5, Page Number:1096" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "I=Symbol('I')\n", + "v=220#V\n", + "p=44.76#kW\n", + "i=13.25#A\n", + "ish=2.55#A\n", + "ra=0.032#ohm\n", + "bd=2#V\n", + "\n", + "#calculations\n", + "p_nl=v*i\n", + "ia=i-ish\n", + "cu_loss=ia**2*ra\n", + "bd_loss=2*ia\n", + "variable_loss=bd_loss+cu_loss\n", + "w=p_nl-variable_loss\n", + "ans=solve([v*(I+ish)-p*1000-w-2*I-ra*I**2],[I])\n", + "il=ans[0][0]+ish\n", + "pin=il*v\n", + "e=p*1000/pin\n", + "\n", + "#result\n", + "print \"Full load current=\",round(il),\"A\"\n", + "print \"Full load efficiency=\",round(e*100),\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Full load current= 226.0 A\n", + "Full load efficiency= 90.0 %\n" + ] + } + ], + "prompt_number": 15 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.6, Page Number:1097" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "I=Symbol('I')\n", + "v=200.0#V\n", + "o=17.158#kW\n", + "inpt=20.2#KW\n", + "rf=50.0#ohm\n", + "ra=0.06#ohm\n", + "o2=7.46#kW\n", + "\n", + "#calculations\n", + "loss1=inpt*1000.0-o*1000.0\n", + "ic=inpt*1000.0/v\n", + "ish=v/rf\n", + "ia=ic-ish\n", + "cu_loss=ia**2*ra\n", + "const_loss=loss1-cu_loss\n", + "ans=solve([v*(I+ish)-o2*1000.0-(ra*I**2)-const_loss],[I])\n", + "il=ans[0][0]+ish\n", + "pin=il*v/1000.0\n", + "e=o2*1000*100/(pin*1000)\n", + "\n", + "#result\n", + "print \"efficiency=\",round(e,1),\"%\"\n", + "print \"power input=\",round(il),\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 74.1 %\n", + "power input= 50.0 A\n" + ] + } + ], + "prompt_number": 23 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.7, Page Number:1097" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "I=Symbol('I')\n", + "v=200.0#V\n", + "p=14.92#kW\n", + "ia=6.5#A\n", + "ish=2.2#A\n", + "i=70.0#A\n", + "pd=3.0#V\n", + "\n", + "#calculations\n", + "ic_nl=ia+ish\n", + "pi=v*ic_nl\n", + "cu_loss=v*ish\n", + "cu_lossa=ia**2*pd/i\n", + "const_loss=pi-cu_lossa\n", + "ans=solve([v*I+cu_loss-p*1000-const_loss-(pd/i)*I**2],[I])\n", + "ic=ans[0][0]+ish\n", + "pin=v*ic\n", + "e=p*1000*100/pin\n", + "\n", + "#result\n", + "print \"efficiency=\",round(e),\"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 88.0 %\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.8, Page Number:1098" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=200*1000.0#W\n", + "v=250.0#V\n", + "i1=36.0#A\n", + "I1=12.0#A\n", + "v1=250.0#V\n", + "pd=6.0#V\n", + "i2=400.0#A\n", + "\n", + "#calculations\n", + "#no load\n", + "ia=i1-I1\n", + "ra=pd/i2\n", + "cu_loss=ia**2*ra\n", + "input_nl=v*i1\n", + "constant_loss=input_nl-cu_loss\n", + "\n", + "#full load\n", + "output_i=p/v\n", + "ia=output_i+I1\n", + "cu_lossa=ia**2*ra\n", + "total_loss=cu_lossa+constant_loss\n", + "efficiency=p/(p+total_loss)\n", + "#result\n", + "print \"efficiency at full load=\",efficiency*100,\"%\"\n", + "\n", + "#half load\n", + "output_i=p/(2*v)\n", + "ia=output_i+I1\n", + "cu_lossa=ia**2*ra\n", + "total_loss=cu_lossa+constant_loss\n", + "efficiency=p/((p/2+total_loss)*2)\n", + "\n", + "#result\n", + "print \"efficiency at half load=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency at full load= 91.3736344667 %\n", + "efficiency at half load= 89.6559292335 %\n" + ] + } + ], + "prompt_number": 42 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.9, Page Number:1098" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250.0#V\n", + "p=14.92*1000#W\n", + "e=0.88\n", + "n=700.0#rpn\n", + "rsh=100.0#ohm\n", + "i=78.0#A\n", + "\n", + "#calculations\n", + "input_=0.8*p/e\n", + "total_loss=input_-0.8*p\n", + "input_i=input_/v\n", + "ish=v/rsh\n", + "ia=input_i-ish\n", + "ra=total_loss/(2*(ia**2))\n", + "Ia=i-ish\n", + "total_loss2=Ia**2*ra+total_loss/2\n", + "input__=v*i\n", + "efficiency=(input__-total_loss2)*100/input__\n", + "Eb1=v-(ia*ra)\n", + "Eb2=v-(Ia*ra)\n", + "n2=(n*Eb2)/Eb1\n", + "\n", + "#result\n", + "print \"efficiency=\",efficiency,\"%\"\n", + "print \"speed=\",n2,\"r.p.m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 86.9450046554 %\n", + "speed= 678.443304738 r.p.m\n" + ] + } + ], + "prompt_number": 48 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.10(a), Page Number:1101" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=220.0#V\n", + "p=100*1000.0#W\n", + "i2=90.0#A\n", + "\n", + "#calculations\n", + "i1=p/v\n", + "efficiency=math.sqrt(i1/(i1+i2))*100\n", + "\n", + "#result\n", + "print \"efficiency=\",round(efficiency,1),\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 91.4 %\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.11, Page Number:1102" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "i=15#A\n", + "v=200#V\n", + "motor_i=100#A\n", + "shunt_i1=3#A\n", + "shunt_i2=2.5#A\n", + "ra=0.05#ohm\n", + "cu_loss=500#W\n", + "cu_lossa=361#W\n", + "ia=85#A\n", + "#calculations\n", + "mech_core_stray_loss=0.5*((v*i)-(motor_i**2*ra)-(ia**2*ra))\n", + "cu_motor=v*shunt_i1\n", + "generator_motor=v*shunt_i2\n", + "total_loss=mech_core_stray_loss+cu_motor+generator_motor\n", + "input_=v*i+cu_motor\n", + "output=v*ia*10**(-3)\n", + "loss=cu_loss*10**(-3)+1.07+0.36\n", + "efficiency=output*100/(output+loss)\n", + "\n", + "#result\n", + "print \"eficiency=\",efficiency,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "eficiency= 89.8045430534 %\n" + ] + } + ], + "prompt_number": 52 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.12, Page Number:1103" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=110#V\n", + "i=48#A\n", + "i1=3#a\n", + "i2=3.5#A\n", + "motor_i=230#A\n", + "ra=0.035#ohm\n", + "\n", + "#calculations\n", + "#motor\n", + "cu_loss=motor_i**2*ra\n", + "brush_loss=motor_i*2\n", + "totalarm_culoss=cu_loss+brush_loss\n", + "shunt_cu=v*i1\n", + "total_cu_lossm=totalarm_culoss+shunt_cu\n", + "#generator\n", + "arm_i=233-i+i2\n", + "cu_loss=arm_i**2*ra\n", + "brush_loss=arm_i*2\n", + "totalarm_culoss=cu_loss+brush_loss\n", + "shunt_cu=v*i2\n", + "total_cu_lossg=totalarm_culoss+shunt_cu\n", + "#set\n", + "totalcu_loss=total_cu_lossm+total_cu_lossg\n", + "total_input=v*i\n", + "stray_loss=total_input-totalcu_loss\n", + "strayloss_per=stray_loss/2\n", + "#motor efficiency\n", + "input_=233*v\n", + "output=input_-(total_cu_lossm+strayloss_per)\n", + "e=output/input_*100\n", + "print \"motor efficiency=\",e,\"%\"\n", + "#generator efficiency\n", + "input_=110*185\n", + "output=input_-(total_cu_lossg+strayloss_per)\n", + "e=output/input_*100\n", + "100\n", + "print \"generator efficiency=\",e,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "motor efficiency= 88.4590884705 %\n", + "generator efficiency= 88.5893642506 %\n" + ] + } + ], + "prompt_number": 56 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.13, Page Number:1103" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable series\n", + "v=500.0#A\n", + "p=100*1000.0#w\n", + "auxiliary_i=30.0#A\n", + "output_i=200.0#A\n", + "i1=3.5#A\n", + "i2=1.8#A\n", + "ra=0.075#ohm\n", + "vdb=2.0#V\n", + "\n", + "#calculations\n", + "motor_arm=output_i+auxiliary_i\n", + "motorarm_culoss=(motor_arm**2*ra)+(motor_arm*2)\n", + "motorfield_culoss=v*i2\n", + "generatorarm_culoss=(output_i**2*ra)+(output_i*2)\n", + "generatoefield_culoss=v*i1\n", + "total_culoss=motorarm_culoss+motorfield_culoss+generatorarm_culoss+generatoefield_culoss\n", + "power=v*auxiliary_i\n", + "stray_loss=power-total_culoss\n", + "permachine=stray_loss/2\n", + "total_loss=generatorarm_culoss+generatoefield_culoss+permachine\n", + "output=v*output_i\n", + "e=output/(output+total_loss)\n", + "\n", + "#result\n", + "print \"efficiency=\",e*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 93.1001175389 %\n" + ] + } + ], + "prompt_number": 58 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.14, Page Number:1104" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250.0#V\n", + "i=50.0#A\n", + "motor_i=400.0#A\n", + "i1=6.0#A\n", + "i2=5.0#A\n", + "ra=0.015#ohm\n", + "\n", + "#calculations\n", + "motora_culoss=motor_i**2*ra\n", + "generatora_culoss=(motor_i-i)**2*ra\n", + "power=v*i\n", + "stray_loss=power-(motora_culoss+generatora_culoss)\n", + "permachine=stray_loss/2\n", + "#motor\n", + "total_motor_loss=motora_culoss+(v*i2)+permachine\n", + "motor_input=(v*motor_i)+v*i2\n", + "motor_e=(motor_input-total_motor_loss)/motor_input\n", + "\n", + "#generator\n", + "total_gen_loss=generatora_culoss+(v*i1)+permachine\n", + "gen_output=v*(motor_i-i)\n", + "gen_e=(gen_output-total_gen_loss)/gen_output\n", + "\n", + "#result\n", + "print \"motor efficiency=\",motor_e*100,\"%\"\n", + "print \"generator efficiency\",gen_e*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "motor efficiency= 92.3148148148 %\n", + "generator efficiency 91.4642857143 %\n" + ] + } + ], + "prompt_number": 77 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.15, Page Number:1105" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250.0#V\n", + "i=50.0#A\n", + "ia=380.0#A\n", + "i1=5.0#A\n", + "i2=4.2#A\n", + "ra=0.2#ohm\n", + "\n", + "#calculations\n", + "motora_culoss=ia**2*ra\n", + "generatora_culoss=(ia-i)**2*ra\n", + "power=v*i\n", + "stray_loss=power-(motora_culoss+generatora_culoss)\n", + "permachine=stray_loss/2\n", + "#motor\n", + "total_motor_loss=motora_culoss+(v*i2)+permachine\n", + "motor_input=(v*ia)+v*i2\n", + "motor_e=(motor_input-total_motor_loss)/motor_input\n", + "\n", + "#generator\n", + "total_gen_loss=generatora_culoss+(v*i1)+permachine\n", + "gen_output=v*(ia-i)\n", + "gen_e=(gen_output-total_gen_loss)/gen_output\n", + "\n", + "#result\n", + "print \"motor efficiency=\",motor_e*100,\"%\"\n", + "print \"generator efficiency\",gen_e*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "motor efficiency= 88.7038001041 %\n", + "generator efficiency 95.2121212121 %\n" + ] + } + ], + "prompt_number": 81 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.16, Page Number:1107" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=220.0#V\n", + "v2=190.0#V\n", + "t=30#sec\n", + "t2=20#sec\n", + "i=20.0#A\n", + "\n", + "#calculations\n", + "avg_v=(v+v2)/2\n", + "avg_i=i/2\n", + "power=avg_v*avg_i\n", + "W=power*(t2/(t-t2))\n", + "\n", + "#result\n", + "print \"Stray loss=\",W,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Stray loss= 4100.0 W\n" + ] + } + ], + "prompt_number": 85 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.17, Page Number:1107" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variabledeclaration\n", + "n1=1525.0#rpm\n", + "n2=1475.0#ohm\n", + "dt=25.0#sec\n", + "p=1000.0#W\n", + "t2=20.0#sec\n", + "\n", + "#calculations\n", + "N=(n1+n2)/2\n", + "w=p*(t2/(dt-t2))\n", + "dN=n1-n2\n", + "I=(w*dt)/((2*3.14/60)**2*N*dN)\n", + "\n", + "#result\n", + "print \"Moment of Inertia=\",I,\"kg-m2\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Moment of Inertia= 121.708791432 kg-m2\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.18, Page Number:1108" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=240.0#V\n", + "v2=225.0#V\n", + "dt=25.0#sec\n", + "t2=6.0#ohm\n", + "iavg=10.0#A\n", + "i2=25.0#A\n", + "v3=250.0#V\n", + "ra=0.4#ohm\n", + "r=250.0#ohm\n", + "\n", + "#calculations\n", + "avg_v=(v+v2)/2\n", + "w_=avg_v*iavg\n", + "W=w_*(t2/(dt-t2))\n", + "ish=v3/r\n", + "ia=i2-ish\n", + "cu_loss=ia**2*ra\n", + "cu_shunt=v3*ia\n", + "total_loss=W+cu_loss+v3\n", + "e=((v*i2)-total_loss)/(v*i2)\n", + "\n", + "#result\n", + "print \"efficiency=\",e*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "734.210526316\n", + "efficiency= 79.7564912281 %\n" + ] + } + ], + "prompt_number": 97 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.19, Page Number:1108" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=1000#rpm\n", + "n1=1030#rpm\n", + "n2=970#rpm\n", + "t1=36#sec\n", + "t2=15#sec\n", + "t3=9#sec\n", + "i=10#A\n", + "v=219#V\n", + "\n", + "#calculations\n", + "W=v*i*(t2/(dt-t2))\n", + "dN=n1-n2\n", + "I=(W*t2)/((2*3.14/60)**2*n*dN)\n", + "Wm=W*t2/t1\n", + "iron_loss=W-Wm\n", + "\n", + "#result\n", + "print \"i)moment of inertia=\",I,\"kg.m2\"\n", + "print \"ii)iron loss=\",iron_loss,\"W\"\n", + "print \"iii)mechanical losses=\",Wm,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)moment of inertia= 74.9650087225 kg.m2\n", + "ii)iron loss= 1916.25 W\n", + "iii)mechanical losses= 1368.75 W\n" + ] + } + ], + "prompt_number": 99 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.20, Page Number:1110" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "iam=56.0#A\n", + "vam=590.0#V\n", + "vdm=40.0#V\n", + "iag=44.0#A\n", + "vag=400.0#V\n", + "vdg=40.0#V\n", + "r=0.3#ohm\n", + "\n", + "#calculations\n", + "input_total=(vdm+vam)*iam\n", + "output=vag*iag\n", + "total_loss=input_total-output\n", + "rse=vdg/iam\n", + "cu_loss=((r+2*rse)*iam**2)+(iag**2*r)\n", + "strayloss=total_loss-cu_loss\n", + "permachine=strayloss/2\n", + "#motor\n", + "inputm=vam*iam\n", + "culossm=(r+rse)*iam**2\n", + "totallossm=culossm+permachine\n", + "output=inputm-totallossm\n", + "em=output*100/inputm\n", + "#generator\n", + "inputg=vag*iag\n", + "culossg=(r)*iag**2\n", + "totalloss=culossg+permachine+(vdm*iam)\n", + "output=vag*iag\n", + "eg=output*100/(output+totalloss)\n", + "\n", + "print \n", + "#result\n", + "print \"motor efficiency=\",em,\"%\"\n", + "print \"generator efficiency=\",eg,\"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "motor efficiency= 72.6997578692 %\n", + "generator efficiency= 67.0220868241 %\n" + ] + } + ], + "prompt_number": 115 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A Textbook of Electrical Technology AC and DC Machines/chapter32.ipynb b/A Textbook of Electrical Technology AC and DC Machines/chapter32.ipynb new file mode 100644 index 00000000..461e0178 --- /dev/null +++ b/A Textbook of Electrical Technology AC and DC Machines/chapter32.ipynb @@ -0,0 +1,5438 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:bf02debec619fa2bf22f89d2133812e8ca761e7db78760c620e2f933509732ff" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 32: Transformer" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.1, Page Number:1123" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=250.0#V\n", + "v2=3000.0#V\n", + "f=50.0#Hz\n", + "phi=1.2#Wb-m2\n", + "e=8.0#V\n", + "\n", + "#calculations\n", + "n1=v1/e\n", + "n2=v2/e\n", + "a=v2/(4.44*f*n2*phi)\n", + "\n", + "#result\n", + "print \"primary turns=\",n1\n", + "print \"secondary turns=\",n2\n", + "print \"area of core=\",round(a,2),\"m2\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "primary turns= 31.25\n", + "secondary turns= 375.0\n", + "area of core= 0.03 m2\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.2, Page Number:1123" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=100#KVA\n", + "v1=11000#V\n", + "v2=550#V\n", + "f=50#Hz\n", + "bm=1.3#Tesla\n", + "sf=0.9\n", + "per=10#%\n", + "a=20*20*sf/10000#m2\n", + "\n", + "#calculation\n", + "n1=v1/(4.44*f*bm*a)\n", + "n2=v2/(4.44*f*bm*a)\n", + "e_per_turn=v1/n1\n", + "\n", + "#result\n", + "print \"HV TURNS=\",round(n1)\n", + "print \"LV TURNS=\",round(n2)\n", + "print \"EMF per turns=\",round(e_per_turn,1),\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "HV TURNS= 1059.0\n", + "LV TURNS= 53.0\n", + "EMF per turns= 10.4 V\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.3, Page Number:1123" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n1=400.0\n", + "n2=1000.0\n", + "a=60.0/10000.0#cm2\n", + "f=50.0#Hz\n", + "e1=520.0#V\n", + "\n", + "#calculations\n", + "k=n2/n1\n", + "e2=k*e1\n", + "bm=e1/(4.44*f*n1*a)\n", + "\n", + "#result\n", + "print \"peak value of flux density=\",bm,\"WB/m2\"\n", + "print \"voltage induced in the secondary winding=\",e2,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "peak value of flux density= 0.975975975976 WB/m2\n", + "voltage induced in the secondary winding= 1300.0 V\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.4, Page Number:1124" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=25.0#kVA\n", + "n1=500.0\n", + "n2=50.0\n", + "v=3000.0#V\n", + "f=50.0#Hz\n", + "\n", + "#calculations\n", + "k=n2/n1\n", + "i1=load*1000/v\n", + "i2=i1/k\n", + "e1=v/n1\n", + "e2=e1*n2\n", + "phim=v/(4.44*f*n1)\n", + "\n", + "#result\n", + "print \"primary and secondary currents=\",i1,\"A\", i2,\"A\"\n", + "print \"secondary emf=\",e2,\"V\"\n", + "print \"flux=\",phim*1000,\"mWB\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "primary and secondary currents= 8.33333333333 A 83.3333333333 A\n", + "secondary emf= 300.0 V\n", + "flux= 27.027027027 mWB\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.5, Page Number:1123" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "f=50#Hz\n", + "v1=11000#V\n", + "v2=550#V\n", + "load=300#kVA\n", + "phim=0.05#Wb\n", + "\n", + "#calculation\n", + "e=4.44*f*phim\n", + "e2=v2/1.732\n", + "t1=v1/e\n", + "t2=e2/e\n", + "output=load/3\n", + "HV=100*1000/v1\n", + "LV=100*1000/e2\n", + "\n", + "#result\n", + "print \"HV turns=\",t1\n", + "print \"LV turns=\",t2\n", + "print \"emf per turn=\",e2\n", + "print \"full load HV=\",HV\n", + "print \"full load LV=\",LV" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "HV turns= 990.990990991\n", + "LV turns= 28.6082849593\n", + "emf per turn= 317.551963048\n", + "full load HV= 9\n", + "full load LV= 314.909090909\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.6, Page Number:1124" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n1=500.0\n", + "n2=1200.0\n", + "a=80.0/10000.0#m2\n", + "f=50.0#Hz\n", + "v=500.0#V\n", + "\n", + "#calculation\n", + "phim=n1/(4.44*f*n1)\n", + "bm=phim/a\n", + "v2=n2*v/n1\n", + "\n", + "#result\n", + "print \"peak flux-density=\",bm,\"Wb\"\n", + "print \"voltage induced in the secondary=\",v2,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "peak flux-density= 0.563063063063 Wb\n", + "voltage induced in the secondary= 1200.0 V\n" + ] + } + ], + "prompt_number": 15 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.7, Page Number:1125" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#varible declaration\n", + "load=25.0#kVA\n", + "n1=250.0\n", + "n2=40.0\n", + "v=1500.0#V\n", + "f=50.0#Hz\n", + "\n", + "#calculation\n", + "v2=n2*v/n1\n", + "i1=load*1000/v\n", + "i2=load*1000/v2\n", + "phim=v/(4.44*f*n1)\n", + "\n", + "#result\n", + "print \"i)primary current an secondary current=\",i1,\"A\",i2,\"A\"\n", + "print \"ii)seconary emf=\",v2,\"V\"\n", + "print \"iii)maximum flux=\",phim*1000,\"mWb\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)primary current an secondary current= 16.6666666667 A 104.166666667 A\n", + "ii)seconary emf= 240.0 V\n", + "iii)maximum flux= 27.027027027 mWb\n" + ] + } + ], + "prompt_number": 18 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.8, Page Number:1125" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "f=50.0#Hz\n", + "a=20.0*20.0/10000#m2\n", + "phim=1.0#Wbm2\n", + "v1=3000.0#V\n", + "v2=220.0#V\n", + "\n", + "#calculation\n", + "t2=v2/(4.44*f*phim*a)\n", + "t1=t2*v1/v2\n", + "n1=t1/2\n", + "n2=t2/2\n", + "\n", + "#result\n", + "print \"HV turns=\",n1\n", + "print \"LV turns=\",n2" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "HV turns= 168.918918919\n", + "LV turns= 12.3873873874\n" + ] + } + ], + "prompt_number": 22 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.9, Page Number:1126" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=2200.0#V\n", + "v2=200.0#V\n", + "i1=0.6#A\n", + "p=400.0#W\n", + "v3=250.0#V\n", + "i0=0.5#A\n", + "pf=0.3\n", + "\n", + "#calculation\n", + "il=p/v1\n", + "imu=(i1**2-il**2)**0.5\n", + "iw=i0*pf\n", + "imu2=(i0**2-iw**2)**0.5\n", + "\n", + "#result\n", + "print \"magnetising currents=\",imu,\"A\"\n", + "print \"iron loss current=\",il,\"A\"\n", + "print \"magnetising components of no load primary current=\",imu2,\"A\"\n", + "print \"working components of no-load primary current=\",iw,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "magnetising currents= 0.571788552492 A\n", + "iron loss current= 0.181818181818 A\n", + "magnetising components of no load primary current= 0.476969600708 A\n", + "working components of no-load primary current= 0.15 A\n" + ] + } + ], + "prompt_number": 24 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.10, Page Number:1127" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n1=500.0\n", + "n2=40.0\n", + "l=150.0#cm\n", + "airgap=0.1#mm\n", + "e1=3000.0#V\n", + "phim=1.2#Wb/m2\n", + "f=50.0#Hz\n", + "d=7.8#grma/cm3\n", + "loss=2.0#watt/kg\n", + "\n", + "#calculation\n", + "a=e1/(4.44*f*n1*phim)\n", + "k=n2/n1\n", + "v2=k*e1\n", + "iron=l*5\n", + "air=phim*airgap/(1000*4*3.14*10**(-7))\n", + "bmax=iron+air\n", + "imu=bmax/(n1*2**0.5)\n", + "volume=l*a\n", + "im=volume*d*10\n", + "total_i=im*2\n", + "iw=total_i/(e1)\n", + "i0=(imu**2+iw**2)**0.5\n", + "pf=iw/i0\n", + "\n", + "#result\n", + "print \"a)cross sectional area=\",a*10000,\"cm2\"\n", + "print \"b)no load secondary voltage=\",v2,\"V\"\n", + "print \"c)no load current=\",imu,\"A\"\n", + "print \"d)power factor=\",pf" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a)cross sectional area= 225.225225225 cm2\n", + "b)no load secondary voltage= 240.0 V\n", + "c)no load current= 1.19577611723 A\n", + "d)power factor= 0.145353269536\n" + ] + } + ], + "prompt_number": 42 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.11, Page Number:1127" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "n1=1000\n", + "n2=200\n", + "i=3#A\n", + "pf=0.2\n", + "i2=280#A\n", + "pf2=0.8\n", + "\n", + "#calculations\n", + "phi1=math.acos(pf2)\n", + "i2_=i2/5\n", + "phi2=math.acos(pf)\n", + "sinphi=math.sin(phi2)\n", + "sinphi2=math.sin(math.acos(phi1))\n", + "i1=i*complex(pf,-sinphi)+i2_*complex(pf2,-sinphi2)\n", + "\n", + "#result\n", + "print \"primary current=\",abs(i1),\"/_\",math.degrees(phi1),\"degrees\"\n", + "\n", + "\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "primary current= 64.4918252531 /_ 36.8698976458 degrees\n" + ] + } + ], + "prompt_number": 51 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.12, Page Number:1130" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=440.0#v\n", + "v2=110.0#V\n", + "i0=5.0#A\n", + "pf=0.2\n", + "i2=120.0#A\n", + "pf2=0.8\n", + "\n", + "#calculation\n", + "phi2=math.acos(pf2)\n", + "phi0=math.acos(pf)\n", + "k=v2/v1\n", + "i2_=k*i2\n", + "angle=phi2-phi0\n", + "i1=(i0**2+i2_**2+(2*i0*i2_*math.cos(angle)))**0.5\n", + "\n", + "#result\n", + "print \"current taken by the primary=\",i1,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "current taken by the primary= 33.9022604184 A\n" + ] + } + ], + "prompt_number": 53 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.13, Page Number:1130" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n1=800.0\n", + "n2=200.0\n", + "pf=0.8\n", + "i1=25.0#A\n", + "pf2=0.707\n", + "i2=80.0#A\n", + "#calculations\n", + "k=n2/n1\n", + "i2_=i2*k\n", + "phi2=math.acos(pf)\n", + "phi1=math.acos(pf2)\n", + "i0pf2=i1*pf2-i2_*pf\n", + "i0sinphi=i1*pf2-i2_*math.sin(math.acos(pf))\n", + "phi0=math.atan(i0sinphi/i0pf2)\n", + "i0=i0sinphi/math.sin(phi0)\n", + "\n", + "#result\n", + "print \"no load current=\",i0,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "no load current= 5.91703050525 A\n" + ] + } + ], + "prompt_number": 59 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.14, Page Number:1131" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "i=10#A\n", + "pf=0.2\n", + "ratio=4\n", + "i2=200#A\n", + "pf=0.85\n", + "\n", + "#calculations\n", + "phi0=math.acos(pf)\n", + "phil=math.acos(pf)\n", + "i0=complex(2,-9.8)\n", + "i2_=complex(42.5,-26.35)\n", + "i1=i0+i2_\n", + "phi=math.acos(i1.real/57.333)\n", + "\n", + "#result\n", + "print \"primary current=\",i1,\"A\"\n", + "print \"power factor=\",math.degrees(phi),\"degrees\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "primary current= (44.5-36.15j) A\n", + "power factor= 39.0890154959 degrees\n" + ] + } + ], + "prompt_number": 60 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.15, Page Number:1136" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable decaration\n", + "load=30.0#KVA\n", + "v1=2400.0#V\n", + "v2=120.0#V\n", + "f=50.0#Hz\n", + "r1=0.1#ohm\n", + "x1=0.22#ohm\n", + "r2=0.034#ohm\n", + "x2=0.012#ohm\n", + "\n", + "#calculations\n", + "k=v2/v1\n", + "r01=r1+r2/k**2\n", + "x01=x1+x2/k**2\n", + "z01=(r01**2+x01**2)**0.5\n", + "r02=r2+r1*k**2\n", + "x02=x2+x1*k**2\n", + "z02=(r02**2+x02**2)**0.5\n", + "\n", + "#result\n", + "print \"high voltage side:\"\n", + "print \"equivalent winding resistance=\",r01,\"ohm\"\n", + "print \"reactance=\",x01,\"ohm\"\n", + "print \"impedence=\",z01,\"ohm\"\n", + "print \"low voltage side:\"\n", + "print \"equivalent winding resistance=\",r02,\"ohm\"\n", + "print \"reactance=\",x02,\"ohm\"\n", + "print \"impedence=\",z02,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "high voltage side:\n", + "equivalent winding resistance= 13.7 ohm\n", + "reactance= 5.02 ohm\n", + "impedence= 14.5907642021 ohm\n", + "low voltage side:\n", + "equivalent winding resistance= 0.03425 ohm\n", + "reactance= 0.01255 ohm\n", + "impedence= 0.0364769105051 ohm\n" + ] + } + ], + "prompt_number": 64 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.16, Page Number:1136" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=50.0#KVA\n", + "v1=4400.0#V\n", + "v2=220.0#V\n", + "r1=3.45#ohm\n", + "r2=0.009#ohm\n", + "x1=5.2#ohm\n", + "x2=0.015#ohm\n", + "\n", + "#calculations\n", + "i1=load*1000/v1\n", + "i2=load*1000/v2\n", + "k=v2/v1\n", + "r01=r1+r2/k**2\n", + "r02=r2+k**2*r1\n", + "x01=x1+x2/k**2\n", + "x02=x2+x1*k**2\n", + "z01=(r01**2+x01**2)**0.5\n", + "z02=(r02**2+x02**2)**0.5\n", + "cu_loss=i1**2*r01\n", + "\n", + "#result\n", + "print \"i)resistance=\"\n", + "print \"primary=\",r01,\"ohm\"\n", + "print \"secondary=\",r02,\"ohm\"\n", + "print \"iii)reactance=\"\n", + "print \"primary=\",x01,\"ohm\"\n", + "print \"secondary=\",x02,\"ohm\"\n", + "print \"iv)impedence=\"\n", + "print \"primary=\",z01,\"ohm\"\n", + "print \"secondary=\",z02,\"ohm\"\n", + "print \"v)copper loss=\",cu_loss,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance=\n", + "primary= 7.05 ohm\n", + "secondary= 0.017625 ohm\n", + "reactance=\n", + "primary= 11.2 ohm\n", + "secondary= 0.028 ohm\n", + "impedence=\n", + "primary= 13.2341414531 ohm\n", + "secondary= 0.0330853536327 ohm\n", + "copper loss= 910.382231405 W\n" + ] + } + ], + "prompt_number": 68 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.17, Page Number:1137" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "ratio=10.0\n", + "load=50.0#KVA\n", + "v1=2400.0#V\n", + "v2=240.0#V\n", + "f=50.0#Hz\n", + "v=240.0#V\n", + "\n", + "#calculation\n", + "i2=load*1000/v\n", + "z2=v/(i2)\n", + "k=v2/v1\n", + "z2_=z2/k**2\n", + "i2_=k*i2\n", + "\n", + "#result\n", + "print \"a)load impedence=\",z2,\"ohm\"\n", + "print \"b)impedence referred to high tension side=\",z2_,\"ohm\"\n", + "print \"c)the value of current referred to the high tension side=\",i2_,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a)load impedence= 1.152 ohm\n", + "b)impedence referred to high tension side= 115.2 ohm\n", + "c)the value of current referred to the high tension side= 20.8333333333 A\n" + ] + } + ], + "prompt_number": 70 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.18, Page Number:1137" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=100.0#kVA\n", + "v1=11000.0#V\n", + "v2=317.0#V\n", + "load2=0.62#kW\n", + "lvload=0.48#kW\n", + "\n", + "#calculations\n", + "k=v1/v2\n", + "i1=load*1000/v1\n", + "i2=load*1000/v2\n", + "r1=load2*1000/i**2\n", + "r2=lvload*1000/i2**2\n", + "r2_=r2*k**2\n", + "x01=4*v1/(i1*100)\n", + "x2_=x01*r2_/(r1+r2_)\n", + "x1=x01-x2_\n", + "x2=x2_*10/k**2\n", + "\n", + "#result\n", + "print \"i)r1=\",r1,\"ohm\"\n", + "print \"r2=\",r2,\"ohm\"\n", + "print \"r2_=\",r2_,\"ohm\"\n", + "print \"ii)reactance=\",x01,\"ohm\"\n", + "print \"x1=\",x1,\"ohm\"\n", + "print \"x2=\",x2,\"ohm\"\n", + "print \"x2_=\",x2_,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)r1= 7.502 ohm\n", + "r2= 0.004823472 ohm\n", + "r2_= 5.808 ohm\n", + "ii)reactance= 48.4 ohm\n", + "x1= 27.28 ohm\n", + "x2= 0.175398981818 ohm\n", + "x2_= 21.12 ohm\n" + ] + } + ], + "prompt_number": 76 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.19, Page Number:1137" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declarations\n", + "k=19.5\n", + "r1=25.0#ohm\n", + "x1=100.0#ohm\n", + "r2=0.06#ohm\n", + "x2=0.25#ohm\n", + "i=1.25#A\n", + "angle=30#degrees\n", + "i2=200#A\n", + "v=50#V\n", + "pf2=0.8\n", + "\n", + "#calculations\n", + "v2=complex(500,0)\n", + "i2=i2*complex(0.8,-0.6)\n", + "z2=complex(r2,x2)\n", + "e2=v2+i2*z2\n", + "beta=math.atan(e2.imag/e2.real)\n", + "e1=e2*k\n", + "i2_=i2/k\n", + "angle=beta+math.radians(90)+math.radians(angle)\n", + "i0=i*complex(math.cos(angle),math.sin(angle))\n", + "i1=-i2_+i0\n", + "v2=-e1+i1*complex(r1,x1)\n", + "phi=math.atan(v2.imag/v2.real)-math.atan(i1.imag/i1.real)\n", + "pf=math.cos(phi)\n", + "power=abs(v2)*i*math.cos(math.radians(60))\n", + "r02=r2+r1/k**2\n", + "cu_loss=abs(i2)**2*r02\n", + "output=500*abs(i2)*pf2\n", + "loss=cu_loss+power\n", + "inpt=output+loss\n", + "efficiency=output*100/inpt\n", + "\n", + "#result\n", + "print \"primary applied voltage=\",v2,\"V\"\n", + "print \"primary pf=\",pf\n", + "print \"efficiency=\",efficiency,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "primary applied voltage= (-11464.2126901-1349.15424294j) V\n", + "primary pf= 0.698572087114\n", + "efficiency= 86.7261056254 %\n" + ] + } + ], + "prompt_number": 94 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.20, Page Number:1138" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable description\n", + "load=100#KVA\n", + "v1=1100#V\n", + "v2=220#V\n", + "f=50#Hz\n", + "zh=complex(0.1,0.4)\n", + "zl=complex(0.006,0.015)\n", + "\n", + "#calculations\n", + "k=v1/v2\n", + "#HV \n", + "r1=zh.real+zl.real*k**2\n", + "x1=zh.imag+zl.imag*k**2\n", + "z1=(r1**2+x1**2)**0.5\n", + "#LV\n", + "r2=r1/k**2\n", + "x2=x1/k**2\n", + "z2=z1/k**2\n", + "\n", + "#result\n", + "print \"HV:\"\n", + "print \"resistance=\",r1,\"ohm\"\n", + "print \"reactance=\",x1,\"ohm\"\n", + "print \"impedence=\",z1,\"ohm\"\n", + "print \"LV:\"\n", + "print \"resistance=\",r2,\"ohm\"\n", + "print \"reactance=\",x2,\"ohm\"\n", + "print \"impedence=\",z2,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "HV:\n", + "resistance= 0.25 ohm\n", + "reactance= 0.775 ohm\n", + "impedence= 0.814324873745 ohm\n", + "LV:\n", + "resistance= 0.01 ohm\n", + "reactance= 0.031 ohm\n", + "impedence= 0.0325729949498 ohm\n" + ] + } + ], + "prompt_number": 96 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.21, Page Number:1141" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=230#V\n", + "v2=460#V\n", + "r1=0.2#ohm\n", + "x1=0.5#ohm\n", + "r2=0.75#ohm\n", + "x2=1.8#ohm\n", + "i=10#A\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "k=v2/v1\n", + "r02=r2+k**2*r1\n", + "x02=x2+k**2*x1\n", + "vd=i*(r02*pf+x02*math.sin(math.acos(pf)))\n", + "vt2=v2-vd\n", + "\n", + "#result\n", + "print \"secondary terminal voltage=\",vt2,\"V\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "secondary terminal voltage= 424.8 V\n" + ] + } + ], + "prompt_number": 97 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.22, Page Number:1141" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "r=1.0#%\n", + "x=5.0#%\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "mu=r*pf+x*math.sin(math.acos(pf))\n", + "mu2=r**2+x*0\n", + "mu3=r*pf-x*math.sin(math.acos(pf))\n", + "\n", + "#result\n", + "print \"regulation at pf=0.8 lag:\",mu,\"%\"\n", + "print \"regulation at pf=1:\",mu2,\"%\"\n", + "print \"regulation at pf=0.8 lead:\",mu3,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "regulation at pf=0.8 lag: 3.8 %\n", + "regulation at pf=1: 1.0 %\n", + "regulation at pf=0.8 lead: -2.2 %\n" + ] + } + ], + "prompt_number": 98 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.23, Page Number:1141" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "x=5#%\n", + "r=2.5#%\n", + "\n", + "#calculation\n", + "phi=math.atan(x/r)\n", + "cosphi=math.cos(phi)\n", + "sinphi=math.sin(phi)\n", + "regn=r*cosphi+x*sinphi\n", + "\n", + "#result\n", + "print \"regulation=\",regn,\"%\"\n", + "print \"pf=\",cosphi" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "regulation= 5.59016994375 %\n", + "pf= 0.4472135955\n" + ] + } + ], + "prompt_number": 100 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.24, Page Number:1142" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "r=2.5#%\n", + "x=5#%\n", + "load1=500#KVA\n", + "load2=400#KVA\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "kw=load2*pf\n", + "kvar=load2*math.sin(math.acos(pf))\n", + "drop=(r*kw/load1)+(x*kvar/load1)\n", + "\n", + "#result\n", + "print \"percentage voltage drop=\",drop,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "percentage voltage drop= 4.0 %\n" + ] + } + ], + "prompt_number": 102 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.25, Page Number:1144" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "f=50.0#Hz\n", + "v1=2300.0#V\n", + "v2=230.0#V\n", + "r1=0.286#ohm\n", + "r2_=0.319#ohm\n", + "ro=250.0#ohm\n", + "x1=0.73#ohm\n", + "x2_=0.73#ohm\n", + "xo=1250.0#ohm\n", + "z1=complex(r1,x1)\n", + "z2_=complex(r2_,x2_)\n", + "zl=complex(0.387,0.29)\n", + "ym=complex(0.004,-0.0008)\n", + "\n", + "#calculations\n", + "k=v2/v1\n", + "zl_=zl/(k**2)\n", + "zm=1/ym\n", + "x=zm+zl_+z2_\n", + "i1=v1/(z1+(zm*(z2_+zl_))/(zm+z2_+zl_))\n", + "i2_=i1*zm/(zm+z2_+zl_)\n", + "io=i1*(z2_+zl_)/(zm+z2_+zl_)\n", + "pf=i1.real/abs(i1)\n", + "pi=v1*abs(i1)*pf/1000\n", + "po=abs(i2_)**2*zl_.real/1000\n", + "cu_loss=abs(i1)**2*r1\n", + "cu_loss2=abs(i2_)**2*r2_\n", + "core_loss=io.real**2*240\n", + "e=po*100/pi\n", + "v2_=i2_*zl_\n", + "reg=(v1-v2_.real)*100/v2_.real\n", + "\n", + "#result\n", + "print \"Power input=\",round(pi.real,1),\"kW\"\n", + "print \"Power output=\",round(po,1),\"kW\"\n", + "print \"Primary Cu loss=\",round(cu_loss),\"W\"\n", + "print \"Secondary Cu loss=\",round(cu_loss2),\"W\"\n", + "print \"Efficiency=\",round(e.real,2),\"%\"\n", + "print \"Regulation=\",round(reg.real),\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Power input= 104.6 kW\n", + "Power output= 82.5 kW\n", + "Primary Cu loss= 854.0 W\n", + "Secondary Cu loss= 680.0 W\n", + "Efficiency= 78.91 %\n", + "Regulation= 3.0 %\n" + ] + } + ], + "prompt_number": 42 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.26, Page Number:1145" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v1=600#V\n", + "v2=1080#V\n", + "v=720#V\n", + "load=8#W\n", + "load2=10#kVA\n", + "\n", + "#calculation\n", + "ir2=load*1000/v2\n", + "il2=load*1000/v\n", + "ir2_=ir2*v2/v1\n", + "il2_=il2*v/v1\n", + "ir2=math.sqrt(ir2_**2+il2_**2)\n", + "s=complex(load,load2)\n", + "s=abs(s)\n", + "pf=load/s\n", + "i=s*load2*100/v1\n", + "\n", + "#result\n", + "print \"primary current=\",i,\"A\"\n", + "print \"power factor=\",pf" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "primary current= 21.3437474581 A\n", + "power factor= 0.624695047554\n" + ] + } + ], + "prompt_number": 103 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.27, Page Number:1046" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=220#V\n", + "v1=110#V\n", + "i=0.5#A\n", + "p=30#W\n", + "r=0.6#ohm\n", + "\n", + "#calculation\n", + "ratio=v/v1\n", + "pf=p/(i*v)\n", + "sinphi=math.sqrt(1-pf**2)\n", + "ip=i*sinphi\n", + "iw=i*pf\n", + "cu_loss=i**2*r\n", + "iron_loss=p-cu_loss\n", + "\n", + "#result\n", + "print \"i)turns ratio=\",ratio\n", + "print \"ii)magnetising component of no-load current=\",ip,\"A\"\n", + "print \"iii)working component of no-load current=\",iw,\"A\"\n", + "print \"iv)the iron loss=\",iron_loss,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)turns ratio= 2\n", + "ii)magnetising component of no-load current= 0.481045692921 A\n", + "iii)working component of no-load current= 0.136363636364 A\n", + "iv)the iron loss= 29.85 W\n" + ] + } + ], + "prompt_number": 104 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.28, Page Number:1047" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=5.0#kVA\n", + "v1=200.0#V\n", + "v2=1000.0#V\n", + "f=50.0#Hz\n", + "vo=2000.0#V\n", + "io=1.2#A\n", + "po=90.0#W\n", + "vs=50.0#V\n", + "i_s=5.0#A\n", + "ps=110.0#W\n", + "p=3.0#kW\n", + "pf=0.8\n", + "v=200.0#V\n", + "\n", + "#calculation\n", + "r0=v**2/po\n", + "ia0=v/r0\n", + "ip=math.sqrt(io**2-ia0**2)\n", + "xm=v/ip\n", + "z=vs/i_s\n", + "r=ps/25\n", + "x=math.sqrt(z**2-r**2)\n", + "r1=r*(v1/v2)**2\n", + "x1=x*(v1/v2)**2\n", + "i_lv1=load*1000/v\n", + "i_lv=(p*1000/pf)/v\n", + "sinphi=math.sin(math.acos(pf))\n", + "reg=i_lv*(r1*pf+x1*sinphi)/v\n", + "vt=v2-reg*1000/v\n", + "\n", + "#result\n", + "print \"LV crrent at rated load=\",i_lv1,\"A\"\n", + "print \"LV current at 3kW at 0.8 lagging pf\",i_lv,\"A\"\n", + "print \"output secondary voltage=\",vt,\"V\"\n", + "print \"percentage regulation=\",reg*100,\"%\"\n", + "\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "LV crrent at rated load= 25.0 A\n", + "LV current at 3kW at 0.8 lagging pf 18.75 A\n", + "output secondary voltage= 999.832975251 V\n", + "percentage regulation= 3.34049498886 %\n" + ] + } + ], + "prompt_number": 105 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.29, Page Number:1048" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "A=Symbol('A')\n", + "B=Symbol('B')\n", + "loss1=52.0#W\n", + "f1=40.0#Hz\n", + "loss2=90.0#W\n", + "f2=60.0#Hz\n", + "f=50.0#Hz\n", + "\n", + "#calculation\n", + "ans=solve([(loss1/f1)-(A+f1*B),(loss2/f2)-(A+f2*B)],[A,B])\n", + "wh=ans[A]*f\n", + "we=ans[B]*f**2\n", + "\n", + "#result\n", + "print \"hysteresis=\",round(wh),\"W\"\n", + "print \"eddy current=\",round(we),\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "hysteresis= 45.0 W\n", + "eddy current= 25.0 W\n" + ] + } + ], + "prompt_number": 107 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.30, Page Number:1048" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "A=Symbol('A')\n", + "B=Symbol('B')\n", + "m=10#kg\n", + "f=50.0#Hz\n", + "f1=25.0\n", + "f2=40.0\n", + "f3=50.0\n", + "f4=60.0\n", + "f5=80.0\n", + "l1=18.5/f1\n", + "l2=36.0/f2\n", + "l3=50.0/f3\n", + "l4=66.0/f4\n", + "l5=104.0/f5\n", + "#calculation\n", + "ans=solve([l1/f1-(A+f1*B),l2/f2-(A+f2*B)],[A,B])\n", + "eddy_loss_per_kg=ans[B]*f**2/m\n", + "\n", + "#result\n", + "print\"eddy current loss per kg at 50 Hz=\",eddy_loss_per_kg,\"W\"\n", + "\n", + "#plot\n", + "F=[f1,f2,f3,f4,f5]\n", + "L=[l1,l2,l3,l4,l5]\n", + "plt.plot(F,L)\n", + "plt.xlabel(\"f -->\") \n", + "plt.ylabel(\"Wi/f\") \n", + "plt.xlim((0,100))\n", + "plt.ylim((0.74,2))\n", + "plt.show()\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "eddy current loss per kg at 50 Hz= -0.118333333333333 W\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEPCAYAAACp/QjLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGNpJREFUeJzt3XmUXVWZ9/HvIwQUI4OCKIMrvhLmgIBDEJoUwsIAEscG\nQdoBlSwHyIuCTC0ppWlEYYmKAw4gL0q6XWILUURRrBZRQIRAIAOTGkI0ICAC3QFCnvePfUNCnVSl\nqqhT51bd72etWrnDrnufOqmqX+2zhxOZiSRJq3te0wVIktqP4SBJqjAcJEkVhoMkqcJwkCRVGA6S\npIrawiEito6IX0XE7RFxW0Qc20e7L0XEnRFxS0TsVlc9kqSBW7fG134KOC4z50TEeOAPEXFVZs5f\n2SAiDgK2ycyJEfF64GvA5BprkiQNQG09h8z8a2bOad1+DJgPbNGr2TTgolab64GNI2LzumqSJA3M\niIw5RMQEYDfg+l5PbQncu9r9xcBWI1GTJKlvtYdD65TSD4AZrR5EpUmv++7nIUkNq3PMgYgYB1wK\nfDczf7SGJvcBW692f6vWY71fx8CQpCHIzN5/gA9InbOVAvg2MC8zz+2j2eXAe1rtJwN/z8yla2qY\nmX5kMnPmzMZraJcPj4XHwmPR/8dzUWfPYS/gSODWiLi59dgpwCsAMvP8zLwiIg6KiLuAx4H311iP\nJGmAaguHzPwNA+iZZObH6qpBkjQ0rpAeZbq6upouoW14LFbxWKzisRge8VzPS42EiMjRUKcktZOI\nINttQFqSNHoZDpKkCsNBklRhOEiSKgwHSVKF4SBJqjAcJEkVhoMkqcJwkCRVGA6SpArDQZJUYThI\nkioMB0lSheEgSaowHCRJFYaDJKnCcJAkVRgOkqQKw0GSVGE4SJIqDAdJUoXhIEmqMBwkSRWGgySp\nwnCQJFXUGg4RcUFELI2IuX08v1FEzI6IORFxW0S8r856JEkDU3fP4UJgaj/PfxS4LTNfDXQB50TE\nujXXJElai1rDITOvAR7up8kKYMPW7Q2BBzNzeZ01SZLWrum/0s8DZkfEEuBFwKEN1yNJovlwmArc\nlJn7RsSrgKsiYtfMfLR3w+7u7mdud3V10dXVNWJFStJo0NPTQ09Pz7C8VmTmsLxQn28QMQGYnZmT\n1vDcj4EzM/Pa1v1fAidm5o292mXddUrSWBMRZGYM5XObnsq6CNgfICI2B7YD7mm0IklSvT2HiJgF\nTAE2BZYCM4FxAJl5fkS8HPgO8HIgKL2IS9bwOvYcJGmQnkvPofbTSsPBcJCkwRvNp5UkSW3IcJAk\nVRgOkqQKw0GSVGE4SJIqDAdJUoXhIEmqMBwkSRWGgySpwnCQJFUYDpKkCsNBklRhOEiSKgwHSVKF\n4SBJqjAcJEkVhoMkqcJwkCRVGA6SpArDQZJUYThIkioMB0lSheEgSaowHCRJFYaDJKnCcJAkVdQa\nDhFxQUQsjYi5/bTpioibI+K2iOipsx5J0sBEZtb34hH/BDwG/L/MnLSG5zcGrgXelJmLI2LTzPzb\nGtplnXVK0lgUEWRmDOVza+05ZOY1wMP9NDkCuDQzF7faV4JBkjTymh5zmAi8OCJ+FRE3RsS/NFyP\nJAlYt+H3HwfsDuwHbAD8LiKuy8w7ezfs7u5+5nZXVxddXV0jVKIkjQ49PT309PQMy2vVOuYAEBET\ngNl9jDmcCLwgM7tb978FXJmZP+jVzjEHSRqkth1zGIDLgL0jYp2I2AB4PTCv4ZokqePVelopImYB\nU4BNI+JeYCblVBKZeX5mLoiIK4FbgRXANzPTcJCkhtV+Wmk4eFpJkgZvNJ9WkiS1IcNBklRhOEiS\nKgwHSVKF4SBJqjAcJEkVhoMkqcJwkCRVGA6SpArDQZJUYThIkioMB0lSheEgSaowHCRJFYaDJKnC\ncJAkVRgOkqQKw0GSVGE4SJIqDAdJUoXhIEmqMBwkSRWGgySpwnCQJFUYDpKkCsNBklRRazhExAUR\nsTQi5q6l3WsjYnlEvL3OeiRJA1N3z+FCYGp/DSJiHeAs4Eogaq5HkjQAfYZDRJzV+vfQob54Zl4D\nPLyWZscAPwAeGOr7SJKGV389h4MjIoCT63rziNgSeAvwtdZDWdd7SZIGbt1+nvsp5a/+8RHxaK/n\nMjM3HIb3Pxc4KTOzFUSeVpKkNtBnOGTmCcAJEXF5Zk6r6f33AP6j5AKbAgdGxFOZeXnvht3d3c/c\n7urqoqurq6aSJGl06unpoaenZ1heKzLXfCYnIn5GGSS+MjPnD/kNIiYAszNz0lraXdhq98M1PJd9\n1SlJWrOIIDOHdEamv9NK76PMNJoZEdsB11NONf0iMx8fYGGzgCnAphFxLzATGAeQmecPpWBJUv36\n7Dk8q1GZbvp64EDgjcAy4GeZ+bl6y3vm/e05SNIgPZeew4DCYQ1vuBlwQGZ+byhvOoT3MxwkaZBq\nOa0UESdm5lkR8eU1PJ2ZeexQ3lCS1P76G3NYLyJeB9wKPLna44HrESRpTOsvHDamrEPYAZgLXAv8\nFrg2Mx8agdokSQ1Z65hDRKwPvAbYE3hD69+/Z+YO9Zf3TA2OOUjSINU1lXWlFwAbAhu1PpZQTjVJ\nksao/hbBfRPYEXgUuAH4HXBdZq5tI71hZ89BkgbvufQc+tt47xXA+sBfgftaH38fyptIkkaXfscc\nIuJ5wE6sGm+YBDxI6UGcNiIVYs9Bkoai9kVwEbE1JRz2At4MvCQzNxrKGw6F4SBJg1dLOETEDFbN\nTlpOaxpr69/bMvPpoZU7hCINB0katLpmK00Avg8cl5lLhvLikqTRaUh7K400ew6SBmLFCnhef9Ns\nOkxds5UkaVRYsQIuuQS23x7uuqvpasaGgSyCk6S2lAlXXAGnngrPfz6cfz5ss03TVY0NhoOkUek3\nv4GTT4aHHoJ//3eYNg3Cq9APG8NB0qhyyy1wyikwbx58+tPw7nfDOus0XdXY45iDpFHhrrvgiCNg\n6tTysWABvOc9BkNdDAdJbW3JEvjwh2HyZNhxR7jzTjjmGFh//aYrG9sMB0lt6eGH4aSTYNIkGD8e\nFi6Ef/3Xclv1MxwktZXHH4czz4Rtty2DzbfcAp//PLzkJU1X1lkMB0lt4ckn4atfhYkTYc4cuPZa\n+MY3YKutmq6sMzlbSVKjVqyAWbPgtNNKb+HHP4bdd2+6KhkOkhqRCT/5SZmWOn48XHABTJnSdFVa\nyXCQNOJ+/euygO0f/4AzzoBDDnEBW7sxHCSNmDlzSk9hwQL4zGfg8MNdp9CuHJCWVLs77yxBcOCB\ncPDBJRyOPNJgaGe1hkNEXBARSyNibh/PvzsibomIWyPi2ojYpc56JI2s++6D6dNhzz1h551LSHz0\no7Deek1XprWpu+dwITC1n+fvAfbJzF2A04Fv1FyPpBHw0ENw4omwyy6w8cZwxx1l51QXsI0etYZD\nZl4DPNzP87/LzEdad68HnNEsjWKPP152SN1uO3jkEbj1VjjrLHjxi5uuTIPVTmMOHwCuaLoISYP3\n5JNw3nllAdvcufDb38LXvw5bbtl0ZRqqtpitFBH7AkcBe/XVpru7+5nbXV1ddHV11V6XpP49/XS5\nAtvMmeUqbD/5Cey2W9NVda6enh56enqG5bVqv4Z0REwAZmfmpD6e3wX4ITA1M9d4gT+vIS21l0yY\nPbuMI2y4YdkLaZ99mq5KvT2Xa0g32nOIiFdQguHIvoJBUnv57/8uC9gee6yEwsEHu4BtLKq15xAR\ns4ApwKbAUmAmMA4gM8+PiG8BbwMWtT7lqcx83Rpex56D1LCbbioL2O64A04/vaxbeF47jVqq4rn0\nHGo/rTQcDAepOXfcAZ/6FFxzTbmewgc/6DqF0eK5hIO5L2mNFi+Go4+GvfaCV7+6LGD7yEcMhk5h\nOEh6lgcfhBNOgF13LesTFi4sYwwvfGHTlWkkGQ6SgDLA/G//VhawPfZYWa/w2c+6gK1TGQ5Sh3vi\nCfjyl8sCtvnz4brr4Gtfgy22aLoyNaktFsFJGnlPPw3f+15ZwLbTTnDlleVUkgSGg9RxMuGyy8rM\no002gYsvhr33broqtRvDQeogv/pVGVz+3/+Fz32uXF/BBWxaE8NB6gB/+ENZwHb33eUKbO96lwvY\n1D+/PaQxbOFCOPRQmDYN3vpWmDcPjjjCYNDa+S0ijUGLF8OHPlTGEvbYoyxg+/CHXcCmgTMcpDHk\nb3+D448vs44226xsfXHiibDBBk1XptHGcJDGgEcfLWMJ229fBptvu61ckW2TTZquTKOV4SCNYk88\nAV/8YlnAdscdcP318JWvwMtf3nRlGu2crSSNQk8/XdYndHfDpEnw85/DLrs0XZXGEsNBGkUy4Uc/\nKgvYXvKSssJ5rz4vrisNneEgjRJXX10WsD3xBJx9Nkyd6gI21cdwkNrcjTeWBWz33FN2TT30UNcp\nqH5+i0ltasECeOc7y+K1d7yj7JjqymaNFL/NpDazaBF84AOwzz7wuteVWUjTp8O4cU1Xpk5iOEht\n4oEH4OMfh912g5e9rITCJz/pAjY1w3CQGvboo/DpT8MOO8CTT8Ltt8MZZ8DGGzddmTqZ4SA1ZNky\nOPfcsoDtrrvghhvgvPNKr0FqmrOVpBG2fPmqBWy77gpXXVUWskntxHCQRkgm/Nd/wamnwktfCrNm\nwRve0HRV0poZDtII+OUvywK25cvhC1+AN73JBWxqb4aDVKPf/76EwqJFcPrp8M//7DoFjQ61fptG\nxAURsTQi5vbT5ksRcWdE3BIRu9VZjzRS5s8vC9fe9jY47LAyA+mwwwwGjR51f6teCEzt68mIOAjY\nJjMnAkcDX6u5HqlWixbBUUfBlCkweXK5AtuHPuQCNo0+tYZDZl4DPNxPk2nARa221wMbR8TmddYk\n1eGBB+C448oCti22KAvYTjgBXvCCpiuThqbpTu6WwL2r3V8MbNVQLdKg/eMfZUrq9tuXayzMm1c2\nx3MBm0a7psMBoPecjWykCmkQli0rs44mToQ//rHsnPqlL8Hm9ns1RjQ9W+k+YOvV7m/Veqyiu7v7\nmdtdXV10dXXVWZe0RsuXw0UXle0udt+9TFHdeeemq5KKnp4eenp6huW1IrPeP9QjYgIwOzMra0Bb\nA9Ify8yDImIycG5mTl5Du6y7Tqk/mfDDH5YFbC97GZx5Juy5Z9NVSf2LCDJzSCtqau05RMQsYAqw\naUTcC8wExgFk5vmZeUVEHBQRdwGPA++vsx5pKH7xi7JWYcUK+OIX4YADXMCmsa/2nsNwsOegJtxw\nQwmFxYvLIPM73uE6BY0uz6Xn4Le61Mu8efD2t5cwOPzwsoDNlc3qNH67Sy1//jO8//3Q1QV77VXW\nKnzwg7Bu09M2pAYYDup4998PM2aU2Udbb11WNX/iEy5gU2czHNSxHnkETjutXIENyumkz3wGNtqo\n2bqkdmA4qOMsWwbnnAPbblv2QvrDH8osJBewSat4NlUdY/ly+M53Su9gjz3g6qthp52arkpqT4aD\nxrwVK+DSS+FTnyqb4n3/+2XHVEl9Mxw0ZmWW6zOfckq5/+Uvw/77u4BNGgjDQWPSddeVBWxLlsAZ\nZ5Q1C4aCNHAOSGtMuf12eOtby6K1I48s99/5ToNBGizDQWPCn/4E730vvPGNsM8+Za3CBz7gAjZp\nqAwHjWpLl8Kxx8JrXgMTJpRQ+PjH4fnPb7oyaXQzHDQqPfJImX20445lz6N588o1FjbcsOnKpLHB\ncNCosnw5fOUrZQHb4sVw001w7rnw0pc2XZk0tnhGVqNCJvz0p3D88WWtwlVXwS67NF2VNHYZDmp7\nc+eWjfAWLYKzz4aDD3b2kVQ3TyupbS1dCtOnw377wSGHlJB485sNBmkkGA5qO8uWwWc/W/Y9Gj8e\nFi6EY46BceOarkzqHJ5WUtvILPsenXQS7LYb/O53MHFi01VJnclwUFu4/no47rjSa7jwwnI1NknN\n8bSSGrVoEbz73eWazUcfDTfeaDBI7cBwUCMefRROPbWcPtpmmzKu8L73lQVtkprnj6JG1NNPw7e/\nDdttB/feC7fcUlY2jx/fdGWSVueYg0bM1VeXfY9e9CK4/PKyH5Kk9mQ4qHYLF8IJJ5Ttsz/3uTK+\n4FoFqb15Wkm1efBBmDED9t67bKM9b54X3ZFGC8NBw+7JJ8tmeDvsUDbKmzev7Im0/vpNVyZpoGoN\nh4iYGhELIuLOiDhxDc9vFBGzI2JORNwWEe+rsx7VKxMuuwx23hl+/nPo6Sk7qG62WdOVSRqsyMx6\nXjhiHWAhsD9wH/B74PDMnL9am1OAF2XmyRGxaav95pm5vNdrZV11anjcfHPZHO/+++Gcc+BNb2q6\nIkkRQWYO6URunT2H1wF3ZeafMvMp4D+At/RqswJYeXmWDYEHeweD2ttf/gJHHQUHHgiHHQZz5hgM\n0lhQZzhsCdy72v3FrcdWdx6wY0QsAW4BZtRYj4bR//wPnH56OYW02WZlRtL06V6zWRor6vxRHsh5\noKnATZm5b0S8CrgqInbNzEd7N+zu7n7mdldXF13usdCIFSvgkkvglFNgzz3LdhevfGXTVUkC6Onp\noaenZ1heq84xh8lAd2ZObd0/GViRmWet1ubHwJmZeW3r/i+BEzPzxl6v5ZhDG/jNb8oiNoAvfAH2\n2qvZeiT1r13HHG4EJkbEhIhYDzgMuLxXm0WUAWsiYnNgO+CeGmvSENxzDxx6KBxxRFm3cN11BoM0\n1tUWDq2B5Y8BPwPmAf+ZmfMjYnpETG81Ox14Q0TcCvwC+GRmPlRXTRqcRx6BT34SXvvacr3mBQvK\nDqpujieNfbWdVhpOnlYaWcuXw7e+Bd3d5XrNp58OW2zRdFWSBuu5nFZybome5cory3qFzTcvt1/9\n6qYrktQEw0FA2RTv+OPh7rvh7LPhkEPcA0nqZJ49HmWGa5raSg88AB/5COy7L0ydCrfdBtOmjY5g\nGO5jMZp5LFbxWAwPw2GUGa5v/CeegM9/vmyON25cGWyeMQPWW29YXn5E+EtgFY/FKh6L4eFppQ6T\nCZdeWmYhTZoE115brsomSaszHDrIsmVwwAFliuo3vwn77dd0RZLa1aiZytp0DZI0Gg11KuuoCAdJ\n0shyQFqSVGE4SJIq2joc1naZ0bEsIraOiF9FxO2tS6ge23r8xRFxVUTcERE/j4iNm651pETEOhFx\nc0TMbt3vyGMRERtHxA8iYn5EzIuI13fwsTiu9fMxNyIuiYj1O+VYRMQFEbE0Iuau9lifX3tEnNz6\nXbogIg5Y2+u3bTi0LjN6HuWaDzsCh0fEDs1WNaKeAo7LzJ2AycBHW1//ScBVmbkt8MvW/U4xg7KJ\n48qBsk49Fl8ErsjMHYBdgAV04LGIiC2BY4A9MnMSsA7wLjrnWFxI+f24ujV+7RGxI2Vn7B1bn/PV\niOj393/bhgMDu8zomJWZf83MOa3bjwHzKVfSmwZc1Gp2EfDWZiocWRGxFXAQ8C1g5eyLjjsWEbER\n8E+ZeQGU3Y8z8xE68Fi0rAtsEBHrAhsAS+iQY5GZ1wAP93q4r6/9LcCszHwqM/8E3EX5Hdundg6H\ngVxmtCNExARgN+B6YPPMXNp6aimweUNljbQvACdQrju+Uicei1cCD0TEhRFxU0R8MyJeSAcei8y8\nDziHcl2YJcDfM/MqOvBYrKavr30Lyu/Qldb6+7Sdw8E5tkBEjAcuBWb0vnxqax/zMX+cIuLNwP2Z\neTOreg3P0inHgvKX8u7AVzNzd+Bxep026ZRjERGbUP5SnkD55Tc+Io5cvU2nHIs1GcDX3u9xaedw\nuA/YerX7W/Ps5BvzImIcJRguzswftR5eGhEvaz3/cuD+puobQW8ApkXEH4FZwBsj4mI681gsBhZn\n5u9b939ACYu/duCx2B/4Y2Y+2Lq42A+BPenMY7FSXz8TvX+fbtV6rE/tHA4DuczomBURAXwbmJeZ\n56721OXAe1u33wv8qPfnjjWZeUpmbp2Zr6QMOF6dmf9CZx6LvwL3RsS2rYf2B24HZtNhxwL4MzA5\nIl7Q+nnZnzJhoROPxUp9/UxcDrwrItaLiFcCE4Eb+nuhtl4hHREHAudSZiF8OzPPbLikERMRewO/\nBm5lVffvZMp/6PeBVwB/Ag7NzL83UWMTImIK8InMnBYRL6YDj0VE7EoZmF8PuBt4P+VnpBOPRTfl\nD8flwE3AB4EX0QHHIiJmAVOATSnjC6cBl9HH1x4RpwBHUY7VjMz8Wb+v387hIElqRjufVpIkNcRw\nkCRVGA6SpArDQZJUYThIkioMB0lSheEg9SEijm1tiX1x07VII811DlIfImI+sF9mLhnk522Smb13\ny5RGFXsO0hpExNeB/wNcGRH/d5Cf/vuI+G5E7Nva1kEadew5SH1obfS3R2Y+NMjPex5wIGWrgh2A\ni4HvZOZfhr9KqR72HKRhlpkrMvMnmfkOYB/gVcCiiHhNw6VJA2Y4SIPUunbvzRHx44jYKiLmtO4f\nvVqbjSJiOmU3zFdRNseb29drSu3G00pSH57DaaXvUq77/X3KbsJ311GfVKd1my5AamND/cvpP4H3\nZOaKtbaU2pQ9B0lShWMOkqQKw0GSVGE4SJIqDAdJUoXhIEmqMBwkSRWGgySpwnCQJFX8fyk/juvE\nTvrvAAAAAElFTkSuQmCC\n", + "text": [ + "<matplotlib.figure.Figure at 0x7f4da5922310>" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.31, Page Number:1148" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "A=Symbol('A')\n", + "B=Symbol('B')\n", + "v1=440#V\n", + "f1=50#Hz\n", + "p1=2500#W\n", + "v2=220#V\n", + "f2=25#Hz\n", + "p2=850#z\n", + "\n", + "#calculation\n", + "ans=solve([(p1/f1)-(A+f1*B),(p2/f2)-(A+f2*B)],[A,B])\n", + "wh=ans[A]*f\n", + "we=ans[B]*f**2\n", + "\n", + "#result\n", + "print \"hysteresis=\",round(wh),\"W\"\n", + "print \"eddy current=\",round(we),\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "hysteresis= 900.0 W\n", + "eddy current= 1600.0 W\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.32, Page Number:1149" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=1000.0#V\n", + "f1=50.0#Hz\n", + "core=1000.0#W\n", + "wh=650.0#W\n", + "we=350.0#W\n", + "v2=2000.0#V\n", + "f2=100.0#Hz\n", + "\n", + "#calculation\n", + "a=wh/f1\n", + "b=we/f1**2\n", + "wh=a*f2\n", + "we=b*f2**2\n", + "new_core=wh+we\n", + "\n", + "#result\n", + "print \"new core loss=\",new_core,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " new core loss= 2700.0 W\n" + ] + } + ], + "prompt_number": 111 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.33, Page Number:1149" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "phi=1.4#Wb/m2\n", + "we=1000.0#W\n", + "wh=3000.0#W\n", + "per=10.0#%\n", + "\n", + "#calculation\n", + "wh1=wh*1.1**1.6\n", + "we1=we*1.1**2\n", + "wh2=wh*0.9**(-0.6)\n", + "wh3=wh*1.1**1.6*1.1**(-0.6)\n", + "#result\n", + "print \"a)wh and we when applied voltage is increased by 10%=\",wh1,\"W\",\"and\",we1,\"W\"\n", + "print \"b)wh when frequency is reduced by 10%=\",wh2,\"W\"\n", + "print \"c)wh and we when both voltage and frequency are increased y 10%=\",wh3,\"W\",\"and\",we1,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a)wh and we when applied voltage is increased by 10%= 3494.21441464 W and 1210.0 W\n", + "b)wh when frequency is reduced by 10%= 3195.77171838 W\n", + "c)wh and we when both voltage and frequency are increased y 10%= 3300.0 W and 1210.0 W\n" + ] + } + ], + "prompt_number": 119 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.34, Page Number:1150" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=2200.0#V\n", + "f=40.0#Hz\n", + "loss=800.0#W\n", + "wh=600.0#W\n", + "we=loss-wh\n", + "v2=3300.0#V\n", + "f2=60.0#Hz\n", + "\n", + "#calculations\n", + "a=wh/f\n", + "b=we/f**2\n", + "core_loss=a*f2+b*f2**2\n", + "\n", + "#result\n", + "print \"core loss at 60 Hz=\",core_loss,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "core loss at 60 Hz= 1350.0 W\n" + ] + } + ], + "prompt_number": 122 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.35, Page Number:1151" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=30.0#KvA\n", + "v1=6000.0#V\n", + "v2=230.0#V\n", + "r1=10.0#ohm\n", + "r2=0.016#ohm\n", + "x01=34.0#ohm\n", + "\n", + "#calculations\n", + "k=v2/v1\n", + "r01=r1+r2/k**2\n", + "z01=(r01**2+x01**2)**0.5\n", + "i1=load*1000/v1\n", + "vsc=i1*z01\n", + "pf=r01/z01\n", + "\n", + "#result\n", + "print \"primary voltage=\",vsc,\"V\"\n", + "print \"pf=\",pf" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "primary voltage= 199.519931911 V\n", + "pf= 0.523468222173\n" + ] + } + ], + "prompt_number": 124 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.36, Page Number:1152" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=200.0#V\n", + "v2=400.0#V\n", + "f=50.0#Hz\n", + "vo=200.0#V\n", + "io=0.7#A\n", + "po=70.0#W\n", + "vs=15.0#v\n", + "i_s=10.0#A\n", + "ps=85.0#W\n", + "load=5.0#kW\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "cosphi0=po/(vo*io)\n", + "sinphi0=math.sin(math.acos(cosphi0))\n", + "iw=io*cosphi0\n", + "imu=io*sinphi0\n", + "r0=v1/iw\n", + "x0=v1/imu\n", + "z02=vs/i_s\n", + "k=v2/v1\n", + "z01=z02/k**2\n", + "r02=ps/i_s**2\n", + "r01=r02/k**2\n", + "x01=(z01**2-r01**2)**0.5\n", + "output=load/pf\n", + "i2=output*1000/v2\n", + "x02=(z02**2-r02**2)**0.5\n", + "drop=i2*(r02*pf+x02*math.sin(math.acos(pf)))\n", + "v2=v2-drop\n", + "print z02\n", + "#result\n", + "print \"secondary voltage=\",v2,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "1.5\n", + "secondary voltage= 377.788243349 V\n" + ] + } + ], + "prompt_number": 130 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.37, Page Number:1152" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "k=1.0/6\n", + "r1=0.9#ohm\n", + "x1=5.0#ohm\n", + "r2=0.03#ohm\n", + "x2=0.13#ohm\n", + "vsc=330.0#V\n", + "f=50.0#Hz\n", + "\n", + "#calculations\n", + "r01=r1+r2/k**2\n", + "x01=x1+x2/k**2\n", + "z01=(r01**2+x01**2)**0.5\n", + "i1=vsc/z01\n", + "i2=i1/k\n", + "cosphisc=i1**2*r01/(vsc*i1)\n", + "\n", + "#result\n", + "print \"current in low voltage winding=\",i2,\"A\"\n", + "print \"pf=\",round(cosphisc,1)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "current in low voltage winding= 200.396236149 A\n", + "pf= 0.2\n" + ] + } + ], + "prompt_number": 132 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.38, Page Number:1153" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=10.0#kVA\n", + "v1=500.0#V\n", + "v2=250.0#V\n", + "f=50.0#Hz\n", + "r1=0.2#ohm\n", + "x1=0.4#ohm\n", + "r2=0.5#ohm\n", + "x2=0.1#ohm\n", + "r0=1500.0#ohm\n", + "x0=750.0#ohm\n", + "\n", + "#calculation\n", + "k=v2/v1\n", + "imu=v1/x0\n", + "iw=v1/r0\n", + "i0=(iw**2+imu**2)**0.5\n", + "pi=v1*iw\n", + "r01=r1+r2/k**2\n", + "x01=x1+x2/k**2\n", + "z01=(r01**2+x01**2)**0.5\n", + "i1=load*1000/v1\n", + "vsc=i1*z01\n", + "power=i1**2*r01\n", + "\n", + "#result\n", + "print \"reading of instruments=\",vsc,\"V,\",i1,\"A,\",power,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "reading of instruments= 46.8187996429 V, 20.0 A, 880.0 W\n" + ] + } + ], + "prompt_number": 140 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.39, Page Number:1153" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "x=Symbol('x')\n", + "y=Symbol('y')\n", + "load=1000#kVA\n", + "v1=110#V\n", + "v2=220#V\n", + "f=50#Hz\n", + "per1=98.5#%\n", + "pf=0.8\n", + "per2=98.8#%\n", + "\n", + "#calculaions\n", + "output=load*1\n", + "inpt=output*100/per2\n", + "loss=inpt-output\n", + "inpt_half=(load/2)*pf*100/per1\n", + "loss2=inpt_half-400\n", + "ans=solve([x+y-loss,(x/4)+y-loss2],[x,y])\n", + "kva=load*(ans[y]/ans[x])*0.5\n", + "output=kva*1\n", + "cu_loss=ans[y]\n", + "total_loss=2*cu_loss\n", + "efficiency=output/(output+total_loss)\n", + "#result\n", + "print \"full load copper loss=\",cu_loss,\"kW\"\n", + "print \"maximum efficiency=\",efficiency,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "full load copper loss= 4.07324441521606 kW\n", + "maximum efficiency= 0.968720013059872 %\n" + ] + } + ], + "prompt_number": 148 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.40, Page Number:1154" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=200.0#v\n", + "v2=400.0#V\n", + "r01=0.15#ohm\n", + "x01=0.37#ohm\n", + "r0=600.0#ohm\n", + "x0=300.0#ohm\n", + "i2=10.0#A\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "imu=v1/x0\n", + "iw=v1/r0\n", + "i0=(imu**2+iw**2)**0.5\n", + "tantheta=iw/imu\n", + "theta=math.atan(tantheta)\n", + "theta0=math.radians(90)-theta\n", + "angle=theta0-math.acos(pf)\n", + "k=v2/v1\n", + "i2_=i2*k\n", + "i1=(i0**2+i2_**2+2*i0*i2_*math.cos(angle))**0.5\n", + "r02=k**2*r01\n", + "x02=x01*k**2\n", + "vd=i2*(r02*pf+x02*math.sin(math.acos(pf)))\n", + "v2=v2-vd\n", + "\n", + "#result\n", + "print \"i)primary current=\",i1,\"A\"\n", + "print \"ii)secondary terminal voltage=\",v2,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)primary current= 20.6693546639 A\n", + "ii)secondary terminal voltage= 386.32 V\n" + ] + } + ], + "prompt_number": 149 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.43, Page Number:1158" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=100.0#kVA\n", + "n1=400.0\n", + "n2=80.0\n", + "r1=0.3#ohm\n", + "r2=0.01#ohm\n", + "x1=1.1#ohm\n", + "x2=0.035#ohm\n", + "v1=2200.0#V\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "k=n2/n1\n", + "r01=r1+r2/k**2\n", + "x01=x1+x2/k**2\n", + "z01=complex(r01,x01)\n", + "z02=k**2*z01\n", + "v2=k*v1\n", + "i2=load*1000/v2\n", + "vd=i2*(z02.real*pf-z02.imag*math.sin(math.acos(pf)))\n", + "regn=vd*100/v2\n", + "v2=v2-vd\n", + "\n", + "#result\n", + "print \"i)equivalent impedence=\",z02,\"ohm\"\n", + "print \"ii)voltage regulation=\",regn,\"%\"\n", + "print \"secondary terminal voltage=\",v2,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)equivalent impedence= (0.022+0.079j) ohm\n", + "ii)voltage regulation= -1.53925619835 %\n", + "secondary terminal voltage= 446.772727273 V\n" + ] + } + ], + "prompt_number": 158 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.44, Page Number:1158" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=10.0#kVA\n", + "va=450.0#V\n", + "vb=120.0#V\n", + "v1=120.0#V\n", + "i1=4.2#A\n", + "w1=80.0#W\n", + "v2=9.65#V\n", + "i2=22.2#A\n", + "w2=120.0#W\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "k=vb/va\n", + "i0=i1*k\n", + "cosphi0=w1/(va*i0)\n", + "phi0=math.acos(cosphi0)\n", + "sinphi0=math.sin(phi0)\n", + "iw=i0*cosphi0\n", + "imu=i0*sinphi0\n", + "r0=va/iw\n", + "x0=va/imu\n", + "z01=v2/i2\n", + "r01=vb/i2**2\n", + "x01=(z01**2-r01**2)**0.5\n", + "i1=load*1000/va\n", + "drop=i1*(r01*pf+x01*math.sin(math.acos(pf)))\n", + "regn=drop*100/va\n", + "loss=w1+w2\n", + "output=load*1000*pf\n", + "efficiency=output/(output+loss)\n", + "iron_loss=w1\n", + "cu_loss=(0.5**2)*w2\n", + "total_loss=iron_loss+cu_loss\n", + "output=load*1000*pf/2\n", + "efficiency2=output/(output+total_loss)\n", + "\n", + "#result\n", + "print \"i)equivalent circuit constants=\"\n", + "print \"z01=\",z01,\"ohm\"\n", + "print \"x01=\",x01,\"ohm\"\n", + "print \"r01=\",r01,\"ohm\"\n", + "print \"ii)efficiency and voltage regulation at pf=0.8=\",efficiency*100,\"%\",regn,\"%\"\n", + "print \"iii)efficiency at half load and pf=0.8=\",efficiency2*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)equivalent circuit constants=\n", + "z01= 0.434684684685 ohm\n", + "x01= 0.360090249002 ohm\n", + "r01= 0.243486729973 ohm\n", + "ii)efficiency and voltage regulation at pf=0.8= 97.5609756098 % 2.02885695496 %\n", + "iii)efficiency at half load and pf=0.8= 97.3236009732 %\n" + ] + } + ], + "prompt_number": 162 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.45, Page Number:1159" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=20.0#kVA\n", + "va=2200.0#V\n", + "vb=220.0#V\n", + "f=50.0#Hz\n", + "v1=220.0#V\n", + "i1=4.2#A\n", + "w1=148.0#W\n", + "v2=86.0#V\n", + "i2=10.5#A\n", + "w2=360.0#W\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "z01=v2/i2\n", + "r01=w2/i2**2\n", + "x01=(z01**2-r01**2)**0.5\n", + "i1=load*1000/va\n", + "drop=i1*(r01*pf+x01*math.sin(math.acos(pf)))\n", + "regn=drop*100/va\n", + "pf=r01/z01\n", + "\n", + "#result\n", + "print \"regulation=\",regn,\"%\"\n", + "print \"pf=\",round(pf,1),\"lag\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "regulation= 2.94177963326 %\n", + "pf= 0.4 lag\n" + ] + } + ], + "prompt_number": 172 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.46, Page Number:1159" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=10.0#kVA\n", + "v1=2000.0#V\n", + "v2=400.0#V\n", + "v=60.0#V\n", + "i=4.0#A\n", + "w=100.0#W\n", + "pf=0.8\n", + "v_=400.0#V\n", + "\n", + "#calculations\n", + "z01=v/i\n", + "r01=w/i**2\n", + "x01=(z01**2-r01**2)**0.5\n", + "i1=load*1000/v1\n", + "vd=i1*(r01*pf+x01*math.sin(math.acos(pf)))\n", + "\n", + "#result\n", + "print \"voltage applied to hv side=\",v1+vd,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "voltage applied to hv side= 2065.90767043 V\n" + ] + } + ], + "prompt_number": 182 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.47, Page Number:1159" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=250.0#V\n", + "v2=500.0#V\n", + "vs=20.0#V\n", + "i_s=12.0#A\n", + "ws=100.0#W\n", + "vo=250.0#V\n", + "io=1.0#A\n", + "wo=80.0#W\n", + "i2=10#A\n", + "v2=500#V\n", + "pg=0.8\n", + "\n", + "#calculation\n", + "cosphi0=wo/(vo*io)\n", + "iw=io*cosphi0\n", + "imu=(1-iw**2)**0.5\n", + "r0=v1/iw\n", + "x0=v1/imu\n", + "r02=ws/i_s**2\n", + "z02=vs/i_s\n", + "x02=(z02**2-r02**2)**0.5\n", + "k=v2/v1\n", + "r01=r02/k**2\n", + "x01=x02/k**2\n", + "z01=z02/k**2\n", + "cu_loss=i2**2*r02\n", + "iron_loss=wo\n", + "total_loss=iron_loss+cu_loss\n", + "efficiency=i2*v2*pf/(i2*v2*pf+total_loss)\n", + "v1_=((vo*pf+x01)**2+(vo*math.sin(math.acos(pf))+i1*x01)**2)**0.5\n", + "\n", + "#result\n", + "print \"applied voltage=\",v1_,\"V\"\n", + "print \"efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "applied voltage= 251.442641983 V\n", + "efficiency= 96.3984469139 %\n" + ] + } + ], + "prompt_number": 190 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.48, Page Number:1160" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=230.0#V\n", + "v2=230.0#V\n", + "load=3.0#kVA\n", + "vo=230.0#V\n", + "io=2.0#A\n", + "wo=100.0#W\n", + "vs=15.0#V\n", + "i_s=13.0#A\n", + "ws=120.0#W\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "i=load*1000/v1\n", + "cu_loss=ws\n", + "core_loss=wo\n", + "output=load*1000*pf\n", + "efficiency=output*100/(output+cu_loss+core_loss)\n", + "z=vs/i_s\n", + "r=ws/(vs**2)\n", + "x=(z**2-r**2)**0.5\n", + "regn=i*(r*pf+x*math.sin(math.acos(pf)))*100/v1\n", + "\n", + "#result\n", + "print \"regulation=\",regn,\"%\"\n", + "print \"efficiency=\",efficiency,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "regulation= 5.90121149256 %\n", + "efficiency= 91.6030534351 %\n" + ] + } + ], + "prompt_number": 194 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.49, Page Number:1161" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=10.0#kVA\n", + "v1=500.0#V\n", + "v2=250.0#V\n", + "efficiency=0.94\n", + "per=0.90\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "output=per*load*1000\n", + "inpt=output/efficiency\n", + "loss=inpt-output\n", + "core_loss=loss/2\n", + "pc=core_loss/per**2\n", + "output=load*1000*pf\n", + "cu_loss=pc\n", + "efficiency=output/(output+cu_loss+core_loss)\n", + "\n", + "#result\n", + "print \"efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 92.5728354534 %\n" + ] + } + ], + "prompt_number": 196 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.50, Page Number:1161" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=10.0#kVA\n", + "f=50.0#Hz\n", + "v1=2300.0#V\n", + "v2=230.0#V\n", + "r1=3.96#ohm\n", + "r2=0.0396#ohm\n", + "x1=15.8#ohm\n", + "x2=0.158#ohm\n", + "pf=0.8\n", + "v=230.0#V\n", + "\n", + "#calculations\n", + "i=load*1000/v\n", + "r=r2+r1*(v2/v1)**2\n", + "x=x1*(v2/v1)**2+x2\n", + "v1_=v2+i*(r*pf+x*math.sin(math.acos(pf)))\n", + "v1=v1_*(v1/v2)\n", + "phi=math.atan(r/x)\n", + "pf=math.cos(phi)\n", + "#result\n", + "print \"a)HV side voltage necessary=\",v1,\"V\"\n", + "print \"b)pf=\",round(pf,2)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a)HV side voltage necessary= 2409.9826087 V\n", + "b)pf= 0.97\n" + ] + } + ], + "prompt_number": 199 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.51, Page Number:1162" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=5.0#kVA\n", + "v1=2200.0#V\n", + "v2=220.0#v\n", + "r1=3.4#ohm\n", + "x1=7.2#ohm\n", + "r2=0.028#ohm\n", + "x2=0.060#ohm\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "i=load*1000/v2\n", + "r=r1*(v2/v1)**2+r2\n", + "x=x1*(v2/v1)**2+x2\n", + "ad=i*r*pf\n", + "dc=i*x*math.sin(math.acos(pf))\n", + "oc=v2+ad+dc\n", + "bd=i*r*math.sin(math.acos(pf))\n", + "b_f=x*pf\n", + "cf=b_f-bd\n", + "v1_=(oc**2+cf**2)**0.5\n", + "v1=v1_*(v1/v2)\n", + "\n", + "#result\n", + "print \"terminal voltage on hv side=\",v1,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "terminal voltage on hv side= 2229.28500444 V\n" + ] + } + ], + "prompt_number": 200 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.52, Page Number:1163" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=4.0#kVA\n", + "v1=200.0#V\n", + "v2=400.0#V\n", + "i1=0.7#A\n", + "w1=65.0#W\n", + "v=15.0#V\n", + "i2=10.0#A\n", + "w2=75.0#W\n", + "pf=0.80\n", + "#calculation\n", + "il=load*1000/v1\n", + "ih=load*1000/v2\n", + "cu_loss=w2\n", + "constant_loss=w1\n", + "z=v/i2\n", + "r=w2/i2**2\n", + "x=(z**2-r**2)**0.5\n", + "efficiency=load*100000/(load*1000+cu_loss+constant_loss)\n", + "regn=i2*(r*pf+x*math.sin(math.acos(pf)))\n", + "\n", + "#result\n", + "print \"full load efficiency=\",efficiency,\"%\"\n", + "print \"full load regulation=\",regn,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "full load efficiency= 96.6183574879 %\n", + "full load regulation= 13.7942286341 V\n" + ] + } + ], + "prompt_number": 209 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.53, Page Number:1164" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=3300.0#V\n", + "v2=230.0#V\n", + "load=50.0#kVA\n", + "z=4\n", + "cu_loss=1.8\n", + "\n", + "#calculations\n", + "x=(z**2-cu_loss**2)**0.5\n", + "i1=load*1000/v1\n", + "r01=cu_loss*v1/(100*i1)\n", + "x01=x*v1/(100*i1)\n", + "z01=z*v1/(100*i1)\n", + "isc=i1*100/z\n", + "print \n", + "#result\n", + "print \"%x=\",x,\"%\"\n", + "print \"resistance=\",r01,\"ohm\"\n", + "print \"reactance=\",x01,\"ohm\"\n", + "print \"impedence=\",z01,\"ohm\"\n", + "print \"primary sc current=\",isc,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "%x= 3.5721142199 %\n", + "resistance= 3.9204 ohm\n", + "reactance= 7.78006477094 ohm\n", + "impedence= 8.712 ohm\n", + "primary sc current= 378.787878788 A\n" + ] + } + ], + "prompt_number": 214 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.54, Page Number:1164" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=20.0#kVA\n", + "v1=2200.0#V\n", + "v2=220.0#V\n", + "f=50.0#Hz\n", + "vo=220.0#V\n", + "i_o=4.2#A\n", + "wo=148.0#W\n", + "vs=86.0#V\n", + "i_s=10.5#A\n", + "ws=360.0#W\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "k=v2/v1\n", + "r01=ws/i_s**2\n", + "r02=k**2*r01\n", + "z10=vs/i_s\n", + "x01=(z10**2-r01**2)**0.5\n", + "x02=k**2*x01\n", + "i1=load*1000/v1\n", + "v1_=((v1*pf+i1*r01)**2+(v1*math.sin(math.acos(pf))+i1*x01)**2)**0.5\n", + "regn1=(v1_-v1)/v1\n", + "i2=i1/k\n", + "core_loss=wo\n", + "cu_loss=i1**2*r01\n", + "cu_loss_half=(i1/2)**2*r01\n", + "efficiency=load*1000*pf*100/(load*1000*pf+core_loss+cu_loss)\n", + "efficiency_half=(load/2)*1000*pf*100/((load/2)*1000*pf+core_loss+cu_loss)\n", + "print v1_ \n", + "#result\n", + "print \"a)core loss=\",wo,\"W\"\n", + "print \"b)equivalent resistance primary=\",r01,\"ohm\"\n", + "print \"c)equivalent resistance secondary=\",r02,\"ohm\"\n", + "print \"d)equivalent reactance primary=\",x01,\"ohm\"\n", + "print \"e)equivalent reactance secondary=\",x02,\"ohm\"\n", + "print \"f)regulation=\",regn1*100,\"%\"\n", + "print \"g)efficiency at full load=\",efficiency,\"%\"\n", + "print \"h)efficiency at half load=\",efficiency_half,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "2265.01840886\n", + "a)core loss= 148.0 W\n", + "b)equivalent resistance primary= 3.26530612245 ohm\n", + "c)equivalent resistance secondary= 0.0326530612245 ohm\n", + "d)equivalent reactance primary= 7.51143635755 ohm\n", + "e)equivalent reactance secondary= 0.0751143635755 ohm\n", + "f)regulation= 2.95538222101 %\n", + "g)efficiency at full load= 97.4548448466 %\n", + "h)efficiency at half load= 95.0360304208 %\n" + ] + } + ], + "prompt_number": 222 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.55, Page Number:1165" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "er=1.0/100\n", + "ex=5.0/100\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "regn=er*pf+ex*math.sin(math.acos(pf))\n", + "regn2=er*1\n", + "regn3=er*pf-ex*math.sin(math.acos(pf))\n", + "\n", + "#result\n", + "print \"i)regulation with pf=0.8 lag=\",regn*100,\"%\"\n", + "print \"ii)regulation with pf=1=\",regn2*100,\"%\"\n", + "print \"iii)regulation with pf=0.8 lead=\",regn3*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)regulation with pf=0.8 lag= 3.8 %\n", + "ii)regulation with pf=1= 1.0 %\n", + "iii)regulation with pf=0.8 lead= -2.2 %\n" + ] + } + ], + "prompt_number": 223 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.56, Page Number:1165" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=500#kVA\n", + "v1=3300#V\n", + "v2=500#V\n", + "f=50#Hz\n", + "per=0.97\n", + "ratio=3.0/4\n", + "zper=0.10\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "output=load*ratio*1\n", + "x=0.75\n", + "pi=0.5*(output*(1/per-1))\n", + "pc=pi/x**2\n", + "i1=load*1000/v1\n", + "r=pc*1000/i1**2\n", + "er=i1*r/v1\n", + "ez=zper\n", + "ex=(ez**2-er**2)**0.5\n", + "regn=er*pf+ex*math.sin(math.acos(pf))\n", + "\n", + "#result\n", + "print \"regulation=\",regn*100,\"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "regulation= 7.52529846012 %\n" + ] + } + ], + "prompt_number": 225 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.57, Page Number:1166" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "cu_loss=1.5#%\n", + "xdrop=3.5#%\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "pur=cu_loss/100\n", + "pux=xdrop/100\n", + "regn2=pur*pf+pux*math.sin(math.acos(pf))\n", + "regn1=pur*1\n", + "regn3=pur*pf-pux*math.sin(math.acos(pf))\n", + "\n", + "#result\n", + "print \"i)regulation at unity pf=\",regn1*100,\"%\"\n", + "print \"ii)regulation at 0.8 lag=\",regn2*100,\"%\"\n", + "print \"iii)regulation at 0.8 lead=\",regn3*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)regulation at unity pf= 1.5 %\n", + "ii)regulation at 0.8 lag= 3.3 %\n", + "iii)regulation at 0.8 lead= -0.9 %\n" + ] + } + ], + "prompt_number": 226 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.58, Page Number:1168" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=250#KVA\n", + "w1=5.0#kW\n", + "w2=7.5#kW\n", + "efficiency=0.75\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "total_loss=w1+w2\n", + "loss=total_loss/2\n", + "cu_loss=efficiency**2*w2/2\n", + "output=load*efficiency*pf\n", + "efficiency=output*100/(output+cu_loss+2.5)\n", + "\n", + "#result\n", + "print \"efficiency=\",efficiency,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 97.0186963113 %\n" + ] + } + ], + "prompt_number": 229 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.59, Page Number:1170" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=25.0#kVA\n", + "v1=2000.0#V\n", + "v2=200.0#V\n", + "w1=350.0#W\n", + "w2=400.0#W\n", + "\n", + "#calculation\n", + "total_loss=w1+w2\n", + "output=load*1000*1\n", + "efficiency=output/(output+total_loss)\n", + "cu_loss=w2*(0.5)**2\n", + "total_loss=cu_loss+w1\n", + "efficiency2=(load*1000/2)/((load*1000/2)+total_loss)\n", + "\n", + "#result\n", + "print \"i)efficiency at full load=\",efficiency*100,\"%\"\n", + "print \"ii)efficiency at half load=\",efficiency2*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)efficiency at full load= 97.0873786408 %\n", + "ii)efficiency at half load= 96.5250965251 %\n" + ] + } + ], + "prompt_number": 232 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.60, Page Number:1170" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "efficiency=0.75\n", + "\n", + "#calculation\n", + "ratio=efficiency**2\n", + "\n", + "#result\n", + "print \"ratio of P1 and P2=\",ratio" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "ratio of P1 and P2= 0.5625\n" + ] + } + ], + "prompt_number": 233 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.61, Page Number:1170" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=11000.0#V\n", + "v2=230.0#V\n", + "load1=150.0#KVA\n", + "f=50.0#Hz\n", + "loss=1.4#kW\n", + "cu_loss=1.6#kW\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "load=load1*(cu_loss/loss)**0.5\n", + "total_loss=loss*2\n", + "output=load*1\n", + "efficiency=output/(output+total_loss)\n", + "cu_loss=cu_loss*(0.5)**2\n", + "total_loss=total_loss+cu_loss\n", + "output2=(load/2)*pf\n", + "efficiency2=output2/(output2+total_loss)\n", + "\n", + "#result\n", + "print \"i)kVA load for max efficiency=\",load1,\"kVA\"\n", + "print \"max efficiency=\",efficiency*100,\"%\"\n", + "print \"ii)efficiency at half load=\",efficiency2*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)kVA load for max efficiency= 150.0 kVA\n", + "max efficiency= 98.283858876 %\n", + "ii)efficiency at half load= 95.2481856352 %\n" + ] + } + ], + "prompt_number": 237 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.62, Page Number:1171" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "#variable declaration\n", + "load=5#kVA\n", + "v1=2300#V\n", + "v2=230#V\n", + "f=50#Hz\n", + "iron_loss=40#W\n", + "cu_loss=112#W\n", + "pf=0.8\n", + "#calculations\n", + "def e(k):\n", + " e=k*pf*1000*100/(k*pf*1000+(cu_loss*(k/5)**2+40))\n", + " return(e)\n", + "\n", + "e1=e(1.25)\n", + "e2=e(2.5)\n", + "e3=e(3.75)\n", + "e4=e(5.0)\n", + "e5=e(6.25)\n", + "e6=e(7.5)\n", + "\n", + "K=[1.25,2.5,3.75,5.0,6.25,7.5]\n", + "E=[e1,e2,e3,e4,e5,e6]\n", + "plt.plot(K,E)\n", + "plt.xlabel(\"load,kVA\") \n", + "plt.ylabel(\"Efficiency\") \n", + "plt.xlim((0,8))\n", + "plt.ylim((92,98))\n", + "plt.show()\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEPCAYAAABFpK+YAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAG69JREFUeJzt3XuUXFWd9vHvQxoIIQgGuQoRRCUy3CEEMyQ0vKAYIzcD\nyAveGODFMJiFLG/ga9phgQO+6oy4RlEECQKDtFyEKAGUDkHkTggBuS4Qwi0wIQmEBDrJ7/1jn6Y7\nTXV3dbpOn+o6z2etXl116pyq3wr0s0/ts8/eigjMzKw81im6ADMzG1wOfjOzknHwm5mVjIPfzKxk\nHPxmZiXj4DczK5lcg1/SNEkPS5ovaVq2bXdJd0l6UNK9ksbmWYOZma0pt+CXtDNwIjAW2A2YLGkH\n4HxgekTsAXwve25mZoOkKcf3HgPcHRErACTNBo4EVgEbZ/tsAryQYw1mZtaN8rpzV9IY4HrgE8AK\n4M/APcDPgVmASN84PhERz+dShJmZvUduwQ8g6QRgKrAMeAR4mxT2bRFxraSjgJMj4uDcijAzszXk\nGvxrfJB0DrAA+EFEbJJtE7A4IjausL8nETIzWwsRod5ez3tUz+bZ79Gk/v0rgBcl7Z/tciDwRE/H\nR0Td/0yfPr3wGhqhRtfpOuv9Z6jUWY08L+4CtEraFGgHpkbEEkknAf8pqQlYDpyccw1mZtZFrsEf\nERMrbPsrsHeen2tmZj3znbsD1NzcXHQJfRoKNYLrrDXXWVtDpc5qDNrF3f6SFPVam5lZvZJEFHlx\n18zM6o+D38ysZBz8ZmYl4+A3MysZB7+ZWck4+M3MSsbBb2ZWMg5+M7OScfCbmZWMg9/MrGQc/GZm\nJePgNzMrGQe/mVnJOPjNzErGwW9mVjIOfjOzknHwm5mVjIPfzKxkHPxmZiXj4DczKxkHv5lZyTj4\nzcxKxsFvZlYyDn4zs5Jx8JuZlYyD38ysZHINfknTJD0sab6kadm2qyQ9mP08I+nBPGswM7M1NeX1\nxpJ2Bk4ExgLtwE2SboyIY7rs8/+AxXnVYGZm75XnGf8Y4O6IWBERq4DZwJEdL0oScDRwZY41mJlZ\nN3kG/3xggqRRkkYAnwG26fL6BOCViHg6xxrMzKyb3Lp6IuIxSecBNwPLgAeB1V12ORa4Iq/PNzOz\nynILfoCIuBi4GEDSucBz2eMm4Ahgz96Ob2lpefdxc3Mzzc3NOVVqZjY0tbW10dbW1q9jFBH5VANI\n2jwiFkoaDcwCxkXEUkmHAN+KiAN6OTbyrM3MrBFJIiLU2z65nvEDrZI2JY3qmRoRS7Ptx+CLumZm\nhcj1jH8gfMZvZtZ/1Zzx+85dM7OScfCbmZWMg9/MrGQc/GZmJePgNzMrGQe/mVnJ5D2O3xpMBPz0\np3Dmmen5euvBuuum3wN9XMv36v543XVhHZ/mmAEOfuuHlSth2jSYPRvmzYMtt4R33kk/7e19P652\nv7feGtjxlR63t0NTU8+Nw/DhsMceMHFi+tlhB1CvI6HNhi7fwGVVWboUjjkmnfFfdRVsvHHRFfVP\nRGq4empEli2D++5Ljdrs2emYjkZg4kT4+Mf9jcGGhmpu4HLwW5+eew4mT4b99kvdPE0N/j0xAp55\nBm6/Pf3Mng1LlsCECakR2H9/2G03GDas6ErN3svBbwN2771w+OHwjW+kbp6ydn8sWABz5nQ2Bi+8\nAOPHd34j2Hvv1GVkVjQHvw3INdfAKafARRfBoYcWXU19efXVNRuCJ56AffZJ3wYmToRx42DEiKKr\ntDJy8NtaiYAf/hAuuACuvx727HXVBANYvBjuvLOza2jePNh9986uofHj4X3vK7pKKwMHv/VbeztM\nnZq6eG68EbbZpu9j7L2WLYO77ur8RnDvvTBmTGfX0H77wQc+UHSV1ogc/NYvixfDlCmwwQZw5ZUw\ncmTRFTWOt99O4d/RENx5J4we3dk1NGECbL110VVaI3DwW9WeeQY+8xn45CfhRz/yiJW8rVwJc+d2\ndg3NmQObbtr5jWD//eFDHyrvxXRbew5+q8rf/gZHHgnf/S6cemrR1ZTT6tXwyCNrDiFdb7017yXY\ncUc3BNY3B7/16aqr4LTT4De/gUmTiq7GOkTAk092NgS3357uaO74NjBxIuyyi28qs/dy8FuPIuCc\nc+BXv4IbboBddy26IuvLP/6xZkOwcGG6SNzxjWDPPdM0FFZuDn6r6J134OSTYf78FPpbbVV0RbY2\nXn45XRuYPTs1BM8+C/vu29kQjBsH669fdJU22Bz89h6LFqX+/FGj4LLLYMMNi67IamXRIrjjjs5r\nBE89labaOOqodNF++PCiK7TB4OC3NTz5ZBq5c9hhcN557h9udC++mO6+bm1NI4gmTUrDdQ85xHcV\nNzIHv71rzpx05vdv/5a6eaxcXn4ZrrsuNQL33guf+lRqBCZN8v0ajcbBbwD89rfw9a/D5ZfDwQcX\nXY0V7dVX01Qcra3pRrKDDkqNwOTJnlaiETj4Sy4CWlpSX/6NN8JOOxVdkdWbRYvgD39IjcDtt8MB\nB6RG4LOfhU02Kbo6WxsO/hJbsQJOOCHdkXvddbDFFkVXZPVu8eI0yqu1FW67LU0jMWVKuiY0alTR\n1Vm1HPwl9eqrcMQR8MEPphuzNtig6IpsqFm6FGbOTI3ArbemYaJTpqS1GTbbrOjqrDcO/hJ67LE0\ncufzn4ezz/bIHRu4N9+EP/0pNQI33ZQWnZkyJZ1cbLll0dVZdw7+kvnLX+DYY9NQzS9/uehqrBG9\n9RbMmpUagZkz05oDU6ake0M8u2h9KDz4JU0DTgQE/Coi/jPbfhowFVgFzIyIb1U41sHfD5dcAt/+\ndpp7p7m56GqsDFasgFtugauv7hw8MGUKfO5zsO22RVdXXoUGv6SdgSuBsUA7cBNwCjAaOBOYFBHt\nkjaLiFcrHO/gr8Lq1XDWWemPb+bMNIOj2WB7+23485/TN4Hrr4ePfrSzEdh++6KrK5eig38KcEhE\nnJg9/y7wNrA3cGFE/KWP4x38fVi+HL74RXjppTRyxys6WT1ob0+jglpb4dpr07oCU6akn498pOjq\nGl81wZ/npb/5wARJoySNACYB2wIfAyZKuktSm6S9c6yhYb3ySurSWX/9dKbl0Ld6se66aW6gX/4y\nnZScfz4891yaSXSPPdKssI8/XnSV5daU1xtHxGOSzgNuBpYBc0l9+k3A+yNiX0ljgd8BH670Hi0t\nLe8+bm5uptmd10BasGPy5HQB93vf8+IcVr+amuDAA9PPBRfAX/+avgkceGC6N6Djm8BOO/n/47XV\n1tZGW1tbv44ZtFE9ks4BFgCHAv8eEbOz7U8B4yLif7rt766eCm6+GY4/Hn7yEzjuuKKrMVs7q1en\nld9aW9PPyJGdjcCuu7oRGIh6GNWzeUQslDQamAWMA44Fto6I6ZI+BtwaEaMrHOvg7+bCC2H69PSH\nst9+RVdjVhurV6eJ4zoagaamzkZgzz3dCPRXPQT/7cCmpFE9p0fEbZLWBS4GdgfeAc6IiLYKxzr4\nM6tWwTe/mYbMzZzpC2TWuCLggQdSA3D11alR6GgExo51I1CNwoN/IBz8ybJlqUtnyRL4/e89Z4qV\nRwTMm9fZCKxYAV/4Qvr52MeKrq5+OfiHuBdfhEMPTYtqX3ghrLde0RWZFSMCHnoIZsyAK66AD384\nDWU++mifDHXn4B/CHnooTY371a+mO3L9FdcsaW9PgxxmzEhzBx18MHzpS2llMS827+AfsmbOhK98\nBX72s3RGY2aVLV4Mv/tdagSeeCLNVfWlL6X7Bcp6suTgH4IuuAB+8IO0Vuq++xZdjdnQ8dRTadGh\nGTNgww1TV9Dxx5dv8jgH/xCyahWcfnq6C/fGGz2/idnaWr063Sg2Y0YaEDF2bGoEDj88NQiNzsE/\nRLzxRvqK+s476Wurl7wzq43ly9OkcTNmpBvGjjgiNQITJzbuWhUO/iHg+efTRdxx41Kfvi9OmeXj\npZfSiKBLL00rjDXq0NCiJ2mzPtx/P3ziE+l/vl/8wqFvlqettoIzzkj3Blx3XbpHZuJEGD8+/f0t\nWlR0hYPHZ/wFuf56OPHENIPhEUcUXY1ZOa1cmYaGXnpp4wwNrUlXj6RdIuLhmlZWhUYN/og0wdqP\nf5zOOvb2pNRmdaFRhobWKvjvANYHLgEuj4gltSux189tuOBvb4fTTksXmW680cvTmdWroTw0tGYX\nd7NZNE8AjgLuAS6JiJtrUmXPn9lQwb9kSboZa9iwtC7uRhsVXZGZ9WUoDg2t6ageSU3A4cBPgSWk\nC8NnRsTvB1poD5/XMMH/7LNp4ZQDDkjdPE25LX9jZnkZKkNDa9XVsxvwZWAycAtwUUQ8IGlr4K5K\nc+nXQiMF/2WXweuvw9e+VnQlZlYL9Tw0tFbBPxv4NdAaEW91e+2LETFjwJVW/tyGCX4za1xz53bO\nGrr99ulbwDHHFDdraK2CfySwPCJWZc+HAcMjYlnNKq38uQ5+Mxsy6mVoaK2C/y7goIh4M3u+ETAr\nIsbXrNLKn+vgN7MhafHitHjMpZcO/tDQWt25O7wj9AEi4g1gxECLMzNrVJtsAiedBHfckS4Ev//9\nafnIXXaB889PiywVqZrgXyZpr44nkvYGludXkplZ49hhB2hpgaefhp//HJ58EnbeGT71qeKmiaim\nq2cs8N/AS9mmrYBjIuK+XAtzV4+ZNajly9N1gMMPr33XTy1v4FoP2BEI4PGIaK9Nib1+poPfzKyf\nahn844HtgSZS+JPXMM4un+ngNzPrp2qCv897SCX9FvgwMBdY1eWlXIPfzMzyUc3kAXsBO/n028ys\nMVQzqmc+6YKumZk1gGrO+DcDHpV0D/B2ti0i4tD8yjIzs7xUE/wt2e8A1OWxmZkNQdWO6tkO+EhE\n3CppBNAUEUtzLcyjeszM+q0mUzZIOhm4Grgw27QNcG2VBUyT9LCk+ZKmZdtaJC2Q9GD2c0g172Vm\nZrVRTVfPqcA+wF0AEfGEpM37OkjSzsCJwFigHbhJ0o2kbqIfR8SP17pqMzNba9WM6nk7Ijou6nas\nxFVNH8wY4O6IWJFN6TwbOLLjbfpdqZmZ1UQ1wT9b0lnACEkHk7p9bqjiuPnABEmjsusCk4CO5cVP\nk/SQpF9L2mStKjczs7VSzSRtw4B/AT6ZbZpFWn6xz7N+SScAU4FlwCOk4aDnAq9lu5wNbBUR/1Lh\n2Jg+ffq7z5ubm2lubu7rI83MSqWtrY22trZ3n3//+9+v3WLrAyXpXOC5iPhFl23bATdExC4V9veo\nHjOzfhrQXD2Sro6IoyTN5719+hERu1ZRwOYRsVDSaOAIYJykrSKiY4rnI4CH+3ofMzOrnd5G9UzL\nfk8ewPu3StqUNKpnakQslfQzSbuTGpNngP8zgPc3M7N+qqaPf3vg5YhYnj3fANgiIp7NtTB39ZiZ\n9Vut1txtZc3pmFdn28zMbAiqJviHRcQ7HU+yMf3r5leSmZnlqZrgf03SYR1Pssev9bK/mZnVsWr6\n+D8CXA5snW1aAHwhIp7KtTD38ZuZ9VvN1tzN3mwkQES8WYPaqvk8B7+ZWT8NdBz/FyLiMkln0GUc\nvySRxvF7kjUzsyGot3H8I7LfG+GFV8zMGkZvwb9D9vvRiPjdYBRjZmb5621Uz6SsW+c7g1WMmZnl\nr7cz/j8BrwMjJb3R7bWIiPflV5aZmeWlx1E9koZHxApJ10fEYRV3ypFH9ZiZ9d9Ap2y4M/vd/Wzf\nzMyGsN66etaXdBwwXtKRrLlcYkTENfmWZmZmeegt+E8BjgM2Bj5b4XUHv5nZEFTNlA0nRsRFg1RP\n1891H7+ZWT8NqI9f0jcBIuIiSUd1e+3c2pRoZmaDrbeLu8d2eXxmt9c+nUMtZmY2CKqZltnMzBqI\ng9/MrGR6u4FrFfBW9nQDYHmXlzeIiN5GBA28MF/cNTPrtwFNyxwRw2pfkpmZFc1dPWZmJePgNzMr\nGQe/mVnJOPjNzErGwW9mVjIOfjOzknHwm5mVTK7BL2mapIclzZc0rdtrZ0haLWlUnjWYmdmacgt+\nSTsDJwJjgd2AyZJ2yF7bFjgY+Eden29mZpXlecY/Brg7IlZExCpgNnBk9tqPgW/m+NlmZtaDPIN/\nPjBB0ihJI4BJwLaSDgMWRMS8HD/bzMx6kNtEaxHxmKTzgJuBZcBcYH3gO8Anu+za42RCLS0t7z5u\nbm6mubk5j1LNzIastrY22tra+nVMn0sv1oqkc4BXgLPonPVzG+AFYJ+IWNhtf8/OaWbWT9XMzplr\n8EvaPCIWShoNzALGRcTSLq8/A+wVEYsqHOvgNzPrpwFNy1wjrZI2BdqBqV1DP+NkNzMbZIPW1dNf\nPuM3M+u/as74feeumVnJOPjNzErGwW9mVjIOfjOzknHwm5mVjIPfzKxkHPxmZiXj4DczKxkHv5lZ\nyTj4zcxKxsFvZlYyDn4zs5Jx8JuZlYyD38ysZBz8ZmYl4+A3MysZB7+ZWck4+M3MSsbBb2ZWMg5+\nM7OScfCbmZWMg9/MrGQc/GZmJePgNzMrGQe/mVnJOPjNzErGwW9mVjIOfjOzksk1+CVNk/SwpPmS\npmXbzpb0kKQHJc2StFWeNZiZ2ZoUEfm8sbQzcCUwFmgHbgJOARZGxBvZPqcBO0XEVyscH3nVZmbW\nqCQREeptnzzP+McAd0fEiohYBcwGjuwI/cxIYHWONZiZWTd5Bv98YIKkUZJGAJ8BtgGQdI6k54D/\nDXwvxxrMzKyb3Lp6ACSdAEwFlgGPAG9HxOldXv82MDwiWioc664eM7N+qqarpynPAiLiYuDirJhz\ngee67XIFMBNoqXR8S0vn5ubmZpqbm3Oo0sxs6Gpra6Otra1fx+R9xr95RCyUNBqYBYwDtoiIJ7PX\nTwMmRMTRFY71Gb+ZWT8VfsYPtEralDSqZ2pELJV0saQdSRd1nyWN9DEzs0GS6xn/QPiM38ys/4oe\nzmlmZnXIwW9mVjIOfjOzknHwm5mVjIPfzKxkHPxmZiXj4DczKxkHv5lZyTj4zcxKxsFvZlYyDn4z\ns5Jx8JuZlYyD38ysZBz8ZmYl4+A3MysZB7+ZWck4+M3MSsbBb2ZWMg5+M7OScfCbmZWMg9/MrGQc\n/GZmJePgNzMrGQe/mVnJOPjNzErGwW9mVjIOfjOzknHwm5mVTO7BL2mapIclzZc0Ldv2Q0l/l/SQ\npGskbZx3HWZmluQa/JJ2Bk4ExgK7AZMl7QDcDPxTROwGPAF8J8868tTW1lZ0CX0aCjWC66w111lb\nQ6XOauR9xj8GuDsiVkTEKmA2cGRE3BIRq7N97ga2ybmO3AyF/xmGQo3gOmvNddbWUKmzGnkH/3xg\ngqRRkkYAn+G9IX8C8Mec6zAzs0xTnm8eEY9JOo/UtbMMeBDoONNH0lnAOxFxRZ51mJlZJ0XE4H2Y\ndC7wXET8QtKXgZOA/xURKyrsO3iFmZk1kIhQb6/nHvySNo+IhZJGA7OAccB44EfA/hHxWq4FmJnZ\nGgYj+G8HNgXagdMj4jZJTwLrAYuy3f4WEVNzLcTMzIBB7uoxM7Pi1d2du5IOkfSYpCclfavoeiqR\ndLGkVyQ9XHQtvZG0raTbJD2S3UD3taJrqkTScEl3S5qb1dlSdE09kTRM0oOSbii6lt5IelbSvKzW\ne4qupxJJm0hqzW7mfFTSvkXX1J2kHbN/w46fJXX8d3R69vfzsKQrJK3f4771dMYvaRjwOHAQ8AJw\nL3BsRPy90MK6kTQBeBOYERG7FF1PTyRtCWwZEXMljQTuBw6vt39PAEkjIuItSU3AHcC0iLi76Lq6\nk/R1YC9go4g4tOh6eiLpGWCviFjU584FkXQpMDsiLs7+u28YEUuKrqsnktYh5dI+EfF80fV0JemD\nwBzg4xHxtqSrgD9GxKWV9q+3M/59gKci4tmIaAf+Gzis4JreIyLmAK8XXUdfIuLliJibPX4T+Duw\ndbFVVRYRb2UP1wPWpcuw33ohaRtgEnAR0OuoiTpRtzVm07RMiIiLASJiZT2HfuYg4Ol6C/0umoAR\nWSM6gtRIVVRvwf9BoOs/6oJsmw2QpO2APUh3StcdSetImgu8AtwcEfcWXVMFPwG+QR02ShUEcKuk\n+ySdVHQxFWwPvCrpEkkPSPpVdpNnPfs8UJf3HEXEC6SRks8BLwKLI+LWnvavt+Cvn36nBpJ187SS\nuk/eLLqeSiJidUTsTrqze5ykfyq6pq4kTQYWRsSD1PGZdBf/HBF7AJ8GTs26J+tJE7An8F8RsSfp\nBs9vF1tSzyStB3wWuLroWiqR9H7gUGA70rf6kZKO62n/egv+F4BtuzzflnTWb2tJ0rrA74HfRsR1\nRdfTl+zr/m3AIUXX0s144NCs7/xK4EBJMwquqUcR8VL2+1XgWlI3aj1ZACzo8s2uldQQ1KtPA/dn\n/5716CDgmYj4n4hYCVxD+n+2onoL/vuAj0raLmthjwH+UHBNQ5YkAb8GHo2I/yi6np5I+oCkTbLH\nGwAHk65H1I2IODMito2I7Ulf+f8SEV8suq5KJI2QtFH2eEPgk0BdjUCLiJeB5yV9LNt0EPBIgSX1\n5VhSg1+v/gHsK2mD7O/+IODRnnbOda6e/oqIlZL+lXSH7zDg13U6AuVKYH9gU0nPA9+LiEsKLquS\nfwaOB+ZJejDb9p2IuKnAmirZCrg0G9W1DnBVRNT7xH313C25BXBt+vunCbg8Im4utqSKTgMuz07y\nnga+UnA9FWWN50GkKWbqUkTcI6kVeABYmf3+ZU/719VwTjMzy1+9dfWYmVnOHPxmZiXj4DczKxkH\nv5lZyTj4zcxKxsFvZlYyDn5raJJqMkWFpBZJZ1TY/htJn+u2bXq2zGjXbbtLerTL87nZ/SBmg87B\nb42uVjeq9PQ+lbZfQbrrvKt3J/iS9HHS395+Q2BiMmtADn4rBSU/zBapmCfp6Gz7SEm3Sro/235o\nl2POkvS4pDnAjr28fWT7ny3pYtJdqK9L6jo/zlF03vJ/LHAZcAt1OO24Nb66mrLBLEdHArsBuwKb\nAfcqrQf9KnBERLwh6QPA34A/SNqLdNa+G2l9gAdIc0lVIkk/JC0kckK24UrSWf492cpSiyLi6Wz/\no0lTAHycNG2Bu3xsUPmM38piP+CKSBYCs4GxpCmWfyDpIdIZ+NaStgAmANdExIqIeIM0WWCl6ZgF\n/F/gfRExtcv2q4Ap2YRZXbt59gZei4gFwF+APbIpdc0GjYPfyiKoHNzHAx8A9szmr18IDK+wf09z\n8AdpidC9ugZ4FuzPAM2kbxtXZS8dC4zJpnd+CtgIWOPisFneHPxWFnOAY7KVvjYDJpJWI3sfaYGV\nVZIOAD5ECvPbgcOVFoLfCJhMZ1/+v0o6tct73wT8OzAzW/Smw5WkVbuejogXszVbjwJ2jojtsyme\nDyc1BmaDxsFvjS4AIuJaYB7wEPBn4BtZl8/lwN6S5gFfIFsHIFtp66ps/z8C93R5zzHAa10/IyJa\ngV+Rrg8Mz7a3AjvR2Yc/gbT4yMtdjp0D7JR1L5kNCk/LbNZPkm4gXRBeWXQtZmvDwW9mVjLu6jEz\nKxkHv5lZyTj4zcxKxsFvZlYyDn4zs5Jx8JuZlYyD38ysZP4/yRihRWdm7REAAAAASUVORK5CYII=\n", + "text": [ + "<matplotlib.figure.Figure at 0x7f4da73a6050>" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.63, Page Number:1171" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=200.0#kVA\n", + "efficiency=0.98\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "output=load*pf\n", + "inpt=output/efficiency\n", + "loss=inpt-output\n", + "x=loss*1000/(1+9.0/16)\n", + "y=(9.0/16)*x\n", + "cu_loss=x*(1.0/2)**2\n", + "total_loss=cu_loss+y\n", + "output=load*pf*0.5\n", + "efficiency=output/(output+total_loss/1000)\n", + "\n", + "#result\n", + "print \"efficiency at hald load=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency at hald load= 97.9216626699 %\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.64, Page Number:1172" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=25.0#kVA\n", + "v1=2200.0#V\n", + "v2=220.0#V\n", + "r1=1.0#ohm\n", + "r2=0.01#ohm\n", + "pf=0.8\n", + "loss=0.80\n", + "\n", + "#calculations\n", + "k=v2/v1\n", + "r02=r2+k**2*r1\n", + "i2=load*1000/v2\n", + "cu_loss=i2**2*r02\n", + "iron_loss=loss*cu_loss\n", + "total_loss=cu_loss+iron_loss\n", + "output=load*pf*1000\n", + "efficiency=output/(output+total_loss)\n", + "\n", + "#result\n", + "print \"secondary resistance=\",r02,\"ohm\"\n", + "print \"efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "secondary resistance= 0.02 ohm\n", + "efficiency= 97.7284199899 %\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.65, Page Number:1172" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=4.0#kVA\n", + "v1=200.0#V\n", + "v2=400.0#V\n", + "r01=0.5#ohm\n", + "x01=1.5#ohm\n", + "ratio=3.0/4\n", + "pf=0.8\n", + "v=220.0#V\n", + "loss=100.0#W\n", + "\n", + "#calculations\n", + "k=v2/v1\n", + "r02=k**2*r01\n", + "x02=k**2*x01\n", + "i2=1000*load*ratio/v2\n", + "drop=i2*(r02*pf+x02*math.sin(math.acos(pf)))\n", + "v2=v2-drop\n", + "cu_loss=i2**2*r02\n", + "total_loss=loss+cu_loss\n", + "output=load*ratio*pf\n", + "inpt=output*1000+total_loss\n", + "efficiency=output*1000/(inpt)\n", + "#result\n", + "print \"output=\",output,\"w\"\n", + "print \"efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "output= 2.4 w\n", + "efficiency= 91.8660287081 %\n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.66, Page Number:1172" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=20.0#KVA\n", + "v1=440.0#V\n", + "v2=220.0#V\n", + "f=50.0#Hz\n", + "loss=324.0#W\n", + "cu_loss=100.0#W\n", + "pf=0.8\n", + "#calculations\n", + "cu_loss=4*cu_loss\n", + "efficiency=load*pf/(load*pf+cu_loss/1000+loss/1000)\n", + "per=(loss/cu_loss)**0.5\n", + "\n", + "#result\n", + "print \"i)efficiency=\",efficiency*100,\"%\"\n", + "print \"ii)percent of full-load=\",per*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)efficiency= 95.6708921311 %\n", + "ii)percent of full-load= 90.0 %\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.67, Page Number:1173" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "load=4.0#kVA\n", + "v1=200.0#V\n", + "v2=400.0#V\n", + "pf=0.8\n", + "vo=200.0#V\n", + "io=0.8#A\n", + "wo=70.0#W\n", + "vs=20.0#V\n", + "i_s=10.0#A\n", + "ws=60.0#W\n", + "\n", + "#calculation\n", + "i2=load*1000/v2\n", + "loss=ws+wo\n", + "output=load*pf\n", + "efficiency=output/(output+loss/1000)\n", + "z02=vs/i_s\n", + "r02=ws/i2**2\n", + "x02=(z02**2-r02**2)**0.5\n", + "drop=i2*(r02*pf+x02*math.sin(math.acos(pf)))\n", + "v2=v2-drop\n", + "i1=load*1000/v1\n", + "load=load*(wo/ws)**0.5\n", + "load=load*1\n", + "\n", + "#result\n", + "print \"efficiency=\",efficiency*100,\"%\"\n", + "print \"secondary voltage=\",v2,\"V\"\n", + "print \"current=\",i1,\"A\"\n", + "print \"load at unity pf=\",load,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 96.0960960961 %\n", + "secondary voltage= 383.752729583 V\n", + "current= 20.0 A\n", + "load at unity pf= 4.32049379894 kW\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.68, Page Number:1173" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "Wi=Symbol('Wi')\n", + "Wcu=Symbol('Wcu')\n", + "P=600.0#kVA\n", + "e=0.92#efficiency\n", + "pf=0.8\n", + "x=0.6\n", + "\n", + "#calculations\n", + "ans=solve([(e*(1*P*1+Wi+1**2*Wcu))-(1*P*1),(e*(0.5*P*1+Wi+0.5*0.5*Wcu))-(0.5*P*1)],[Wi,Wcu])\n", + "e2=(x*P*pf*100)/((x*P*pf)+ans[Wi]+(x**2*ans[Wcu]))\n", + "\n", + "#result\n", + "print \"Efficiency=\",round(e2,1),\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Efficiency= 90.6 %\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.69, Page Number:1174" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "x=Symbol('x')\n", + "y=Symbol('y')\n", + "load=600.0#KVA\n", + "efficiency=0.92\n", + "per=0.60\n", + "\n", + "#calculation\n", + "inpt=load/efficiency\n", + "loss1=inpt-load\n", + "inpt2=load/(2*efficiency)\n", + "loss2=inpt2-load/2\n", + "ans=solve([x+y-loss1,x+y/4-loss2],[x,y])\n", + "cu_loss=ans[y]*0.36\n", + "loss=cu_loss+ans[x]\n", + "output=load*per\n", + "efficiency=output/(output+loss)\n", + "\n", + "#result\n", + "print \"efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "389.913043478261\n", + "efficiency= 92.3282783229260 %\n" + ] + } + ], + "prompt_number": 21 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.70, Page Number:1174" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=100#kVA\n", + "e1=0.98\n", + "e2=0.80\n", + "pf=8\n", + "z=0.05\n", + "pf1=0.8\n", + "\n", + "#calculations\n", + "output=load*pf1*e2\n", + "inpt=output/e1\n", + "loss=-output+inpt\n", + "cu_loss=loss/2\n", + "cu_loss_full=cu_loss/pf1**2\n", + "r=round(cu_loss_full*100/load)\n", + "sin=math.sin(math.acos(pf1))\n", + "regn=(r*pf1+5*sin)+(1.0/200)*(5*pf1-r*sin)**2\n", + "#result\n", + "print \"voltage regulation=\",regn,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "voltage regulation= 3.8578 %\n" + ] + } + ], + "prompt_number": 37 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.71, Page Number:1174" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=10.0#KVA\n", + "v1=5000.0#V\n", + "v2=440.0#V\n", + "f=25.0#Hz\n", + "cu_loss=1.5\n", + "we=0.5\n", + "wh=0.6\n", + "v2=10000.0\n", + "#calculations\n", + "cu_loss1=cu_loss*load/100\n", + "we1=we*load/100\n", + "wh1=wh*load/100\n", + "cu_loss2=cu_loss1\n", + "we2=(we1*(50.0/25.0)**2)\n", + "wh2=(wh1*(50.0/25))\n", + "e1=load*100/(load+cu_loss1+we1+wh1)\n", + "e2=load*2*100/(load*2+cu_loss2+we2+wh2)\n", + "\n", + "#result\n", + "print \"full load efficiency in first case=\",e1,\"%\"\n", + "print \"full load efficiency in second case=\",e2,\"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "20.47 0.06 0.05\n", + "full load efficiency in first case= 97.4658869396 %\n", + "full load efficiency in second case= 97.7039570103 %\n" + ] + } + ], + "prompt_number": 47 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.72, Page Number:1175" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=300#KVA\n", + "r=1.5#%\n", + "load1=173.2#kVA\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "cu_loss=r*load*1000/100\n", + "iron_loss=(load1/load)**2*cu_loss\n", + "total_loss=cu_loss+iron_loss\n", + "efficiency=(load*pf)*100/((load*pf)+(total_loss/1000))\n", + "\n", + "#result\n", + "print \"efficiency=\",efficiency,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 97.5610105096 %\n" + ] + } + ], + "prompt_number": 53 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.73, Page Number:1175" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=100#kVA\n", + "v1=2300#V\n", + "v2=230.0#V\n", + "f=50#Hz\n", + "phim=1.2#Wb/m2\n", + "a=0.04#m2\n", + "l=2.5#m\n", + "bm=1200\n", + "inpt=1200#W\n", + "pi=400#W\n", + "efficiency=0.75\n", + "pf=0.8\n", + "f2=100#Hz\n", + "\n", + "#calculation\n", + "n1=v1/(4.44*f*phim*a)\n", + "k=v2/v1\n", + "n2=k*n1\n", + "i=1989/n1\n", + "cu_loss=efficiency**2*inpt\n", + "total_loss=pi+cu_loss\n", + "output=load*efficiency*pf\n", + "efficiency=output*100/(output+total_loss/1000)\n", + "\n", + "#result\n", + "print \"a)n1=\",round(n1)\n", + "print \" n2=\",round(n2)\n", + "print \"b)magnetising current=\",i,\"A\"\n", + "print \"c)efficiency=\",efficiency,\"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "0.00643416423287\n", + "a)n1= 216.0\n", + " n2= 22.0\n", + "b)magnetising current= 9.21512347826 A\n", + "c)efficiency= 98.2398690135 %\n" + ] + } + ], + "prompt_number": 58 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.74, Page Number:1176" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "r=1.8\n", + "x=5.4\n", + "\n", + "#calculation\n", + "pf=r/x\n", + "phi=math.atan(pf)\n", + "phi2=math.atan(x/r)\n", + "regn=r*math.cos(phi2)+x*math.sin(phi2)\n", + "efficiency=100/(100+r*2)\n", + "\n", + "#result\n", + "print \"a)i)phi=\",math.degrees(phi),\"degrees\"\n", + "print \" ii)regulation=\",regn,\"%\"\n", + "print \"b)efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a)i)phi= 18.4349488229 degrees\n", + " ii)regulation= 5.6920997883 %\n", + "b)efficiency= 96.5250965251 %\n" + ] + } + ], + "prompt_number": 60 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.75, Page Number:1176" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=10.0#kVA\n", + "f=50.0#Hz\n", + "v1=500.0#V\n", + "v2=250.0#V\n", + "vo=250.0#V\n", + "io=3.0#A\n", + "wo=200.0#W\n", + "vsc=15.0#V\n", + "isc=30.0#A\n", + "wsc=300.0#W\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "i=load*1000/v2\n", + "cu_loss=(i/isc)**2*wsc\n", + "output=load*1000*pf\n", + "efficiency=output*100/(output+cu_loss+wo)\n", + "z=vsc/isc\n", + "r=wsc/isc**2\n", + "x=(z**2-r**2)**0.5\n", + "regn=(i/v2)*(r*pf-x*math.sin(math.acos(pf)))*v2\n", + "\n", + "#result\n", + "print \"efficiency=\",efficiency,\"%\"\n", + "print \"regulation=\",regn,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 91.6030534351 %\n", + "regulation= 1.72239475667 %\n" + ] + } + ], + "prompt_number": 64 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.76, Page Number:1177" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=40.0#kVA\n", + "loss=400.0#W\n", + "cu_loss=800.0#W\n", + "\n", + "#calculation\n", + "x=(loss/cu_loss)**0.5\n", + "output=load*x*1\n", + "efficiency=output/(output+load*2/100)\n", + "\n", + "#result\n", + "print \"efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 97.2493723732 %\n" + ] + } + ], + "prompt_number": 71 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.77, Page Number:1178" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=10#kVA\n", + "v1=500#V\n", + "v2=250#V\n", + "vsc=60#V\n", + "isc=20#A\n", + "wsc=150#W\n", + "per=1.2\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "i=load*1000/v1\n", + "cu_loss=per**2*wsc\n", + "output=per*load*1.0\n", + "efficiency=output*100/(output+cu_loss*2/1000)\n", + "output=load*1000*pf\n", + "e2=output*100/(output+cu_loss+wsc)\n", + "\n", + "#result\n", + "print \"maximum efficiency=\",efficiency,\"%\"\n", + "print \"full-load efficiency=\",e2,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "maximum efficiency= 96.5250965251 %\n", + "full-load efficiency= 95.6251494143 %\n" + ] + } + ], + "prompt_number": 75 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.78, Page Number:1181" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=500.0#kVA\n", + "cu_loss=4.5#kW\n", + "iron_loss=3.5#kW\n", + "t1=6.0#hrs\n", + "t2=10.0#hrs\n", + "t3=4.0#hrs\n", + "t4=4.0#hrs\n", + "load1_=400.0#kW\n", + "load2_=300.0#kW\n", + "load3_=100.0#kW\n", + "pf1=0.8\n", + "pf2=0.75\n", + "pf3=0.8\n", + "\n", + "#calculations\n", + "load1=load1_/pf1\n", + "load2=load2_/pf2\n", + "load3=load3_/pf3\n", + "wc1=cu_loss\n", + "wc2=cu_loss*(load2/load1)**2\n", + "wc3=cu_loss*(load3/load1)**2\n", + "twc=(t1*wc1)+(t2*wc2)+(t3*wc3)+(t4*0)\n", + "iron_loss=24*iron_loss\n", + "total_loss=twc+iron_loss\n", + "output=(t1*load1_)+(t2*load2_)+(t3*load3_)\n", + "efficiency=output*100/(output+total_loss)\n", + "\n", + "#result\n", + "print \"efficiency=\",round(efficiency,1),\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 97.6 %\n" + ] + } + ], + "prompt_number": 86 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.79, Page Number:1182" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=100.0#kVA\n", + "loss=3.0#kW\n", + "tf=3.0#hrs\n", + "th=4.0#hrs\n", + "\n", + "#calculation\n", + "iron_loss=loss*24/2\n", + "wcf=loss*tf/2\n", + "wch=loss/8\n", + "wch=wch*4\n", + "total_loss=iron_loss+wch+wcf\n", + "output=load*tf+load*th/2\n", + "efficiency=output*100/(output+total_loss)\n", + "\n", + "#result\n", + "print \"efficiency=\",efficiency,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 92.2509225092 %\n" + ] + } + ], + "prompt_number": 89 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.80, Page Number:1182" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=100.0#KW\n", + "efficiency=0.98\n", + "tf=4.0#hrs\n", + "th=6.0#hrs\n", + "t10=14.0#hrs\n", + "\n", + "#calculations\n", + "#1st transformer\n", + "inpt=load/efficiency\n", + "tloss=inpt-load\n", + "y=tloss/2\n", + "x=y\n", + "iron_loss=x*24\n", + "cu_loss=x*tf+th*(x/2**2)+t10*(x/10**2)\n", + "loss=iron_loss+cu_loss\n", + "output=tf*load+th*load/2+t10*10\n", + "e1=output/(output+loss)\n", + "#2nd transformer\n", + "y=tloss/(1+1.0/4)\n", + "x=(tloss-y)\n", + "iron_loss=x*24\n", + "wc=tf*y+th*(y/2**2)+t10*(y/10**2)\n", + "loss=iron_loss+wc\n", + "e2=output/(output+loss)\n", + "\n", + "#result\n", + "print \"efficiency of forst transformer=\",e1*100,\"%\"\n", + "print \"efficiency ofsecond transformer=\",e2*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "0.408163265306 1.63265306122\n", + "efficiency of forst transformer= 96.5245532574 %\n", + "efficiency ofsecond transformer= 97.7876610788 %\n" + ] + } + ], + "prompt_number": 96 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.81, Page Number:1183" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=5.0#kVA\n", + "efficiency=0.95\n", + "nl=10.0#hrs\n", + "ql=7.0#hrs\n", + "hl=5.0#hrs\n", + "fl=2.0#hrs\n", + "\n", + "#calculations\n", + "inpt=load/efficiency\n", + "loss=inpt-load\n", + "wc_fl=loss/2\n", + "iron_loss=loss/2\n", + "wc_fl_4=(1.0/4)**2*wc_fl\n", + "wc_fl_2=(1.0/2)**2*wc_fl\n", + "wc_ql=ql*wc_fl_4\n", + "wc_hl=hl*wc_fl_2\n", + "wc_fl_2=fl*wc_fl\n", + "wc=wc_ql+wc_hl+wc_fl_2\n", + "wh=wc\n", + "loss=wh+24*iron_loss\n", + "output=load*1\n", + "half_output=(output/2)\n", + "q_load=(load/4)\n", + "output=ql*q_load+hl*half_output+fl*output\n", + "e=output*100/(output+loss)\n", + "\n", + "#result\n", + "print \"efficiency=\",e,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 89.5592740985 %\n" + ] + } + ], + "prompt_number": 115 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.82, Page Number:1183" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "efficiency=0.98\n", + "load=15#kVA\n", + "t1=12.0#hrs\n", + "t2=6.0#hrs\n", + "t3=6.0#hrs\n", + "pf1=0.5\n", + "pf2=0.8\n", + "k1=2#kW\n", + "k2=12#kW\n", + "\n", + "#calculations\n", + "output=load*1\n", + "inpt=output/efficiency\n", + "loss=inpt-output\n", + "wc=loss/2\n", + "wi=loss/2\n", + "w1=k1/pf1\n", + "w2=k2/pf2\n", + "wc1=wc*(4/load)\n", + "wc2=wc\n", + "wc12=t1*wc1\n", + "wc6=t2*wc2\n", + "wc=(wc12+wc6)\n", + "wi=24*wi\n", + "output=(k1*t1)+(t2*k2)\n", + "inpt=output+wc+wi\n", + "e=output*100/inpt\n", + "\n", + "#result\n", + "print \"efficiency=\",e,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "0.918367346939 3.67346938776\n", + "efficiency= 95.4351795496 %\n" + ] + } + ], + "prompt_number": 120 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.83, Page Number:1184" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=150.0#KVA\n", + "l1_=100.0#kVA\n", + "t=3.0#hrs\n", + "loss=1.0#KW\n", + "\n", + "#calculations\n", + "l1=l1_/2\n", + "l2=l1_\n", + "output=load*1\n", + "loss=loss*2\n", + "e1=output/(output+loss)\n", + "wc1=t*(1.0/3)**2*1\n", + "wc2=8*(2.0/3)**2*1\n", + "wc=wc1+wc2\n", + "wi=24*1\n", + "loss=wc+wi\n", + "output=3*(l1*1)+8*(l2*1)\n", + "e2=(output*100)/(output+loss)\n", + "\n", + "#result\n", + "print \"ordinary efficiency=\",e1*100,\"%\"\n", + "print \"all day efficiency=\",e2,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "ordinary efficiency= 98.6842105263 %\n", + "all day efficiency= 97.1480513578 %\n" + ] + } + ], + "prompt_number": 127 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.84, Page Number:1184" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=50#KVA\n", + "efficiency=0.94#%\n", + "nl=10\n", + "hl=5.0\n", + "ql=6.0\n", + "fl=3.0\n", + "\n", + "#calculations\n", + "pi=0.5*(load*1000)*(1-efficiency)/efficiency\n", + "wch=(0.5)**2*pi\n", + "eh=wch*hl/1000\n", + "wcq=(0.25)**2*pi\n", + "eq=ql*wcq/1000\n", + "e3=pi*3/1000\n", + "e2=pi*24/1000\n", + "e=25*hl+12.5*ql+50*fl\n", + "efficiency=e/(e+e2+eh+eq+e3)\n", + "\n", + "#result\n", + "print \"efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 88.4557217274 %\n" + ] + } + ], + "prompt_number": 129 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.85, Page Number:1185" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=10.0#kVA\n", + "t1=7.0#hrs\n", + "t2=4.0#hrs\n", + "t3=8.0#hrs\n", + "t4=5.0#hrs\n", + "k1=3.0#kW\n", + "k2=8.0#kW\n", + "pf1=0.6\n", + "pf2=0.8\n", + "\n", + "#calculations\n", + "x1=k1/(pf1*load)\n", + "x2=k2/(pf2*load)\n", + "x3=load/(1*load)\n", + "pc1=(0.5)**2*0.1\n", + "pc2=pc3=0.10\n", + "o1=k1*t1\n", + "o2=k2*t2\n", + "o3=k2*load\n", + "output=o1+o2+o3\n", + "wc1=pc1*t1\n", + "wc2=pc2*t2\n", + "wc3=pc3*t3\n", + "cu_loss=wc1+wc2+wc3\n", + "loss=400.0*24/10000\n", + "efficiency=output/(output+loss+cu_loss)\n", + "\n", + "#result\n", + "print \"efficency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficency= 98.27465179 %\n" + ] + } + ], + "prompt_number": 142 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.86, Page Number:1185" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "efficiency=.98\n", + "load=15.0#kVA\n", + "t1=12.0\n", + "t2=6.0\n", + "t3=6.0\n", + "pf1=0.8\n", + "pf2=0.8\n", + "pf3=0.9\n", + "k1=2.0\n", + "k2=12.0\n", + "k3=18.0\n", + "#calculations\n", + "output=load*1000\n", + "inpt=output/efficiency\n", + "loss=inpt-output\n", + "cu_loss=loss/2\n", + "x1=k1/(0.5*load)\n", + "x2=k2/(pf2*load)\n", + "x3=k3/(pf3*load)\n", + "wc1=0.131\n", + "wc2=0.918\n", + "wc3=1.632\n", + "o1=t1*k1\n", + "o2=t2*k2\n", + "o3=t3*k3\n", + "output=o1+o2+o3\n", + "loss=wc1+wc2+wc3+0.153*24\n", + "efficiency=(output*100)/(output+loss)\n", + "\n", + "#result\n", + "print \"efficiency=\",efficiency,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 96.9798386522 %\n" + ] + } + ], + "prompt_number": 143 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.87, Page Number:1188" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=3.0#kW\n", + "v1=115.0#V\n", + "v2=230.0#V\n", + "\n", + "#calculation\n", + "k=v1/v2\n", + "power=load*(1-k)\n", + "power2=k*load\n", + "\n", + "#result\n", + "print \"a)power transferred inductively=\",power,\"kW\"\n", + "print \"b)power transferred conductively=\",power2,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a)power transferred inductively= 1.5 kW\n", + "b)power transferred conductively= 1.5 kW\n" + ] + } + ], + "prompt_number": 145 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.88, Page Number:1188" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=500.0#V\n", + "v2=400.0#V\n", + "i=100.0#A\n", + "\n", + "#calculations\n", + "k=v2/v1\n", + "i1=k*i\n", + "saving=k*100\n", + "\n", + "#result\n", + "print \"economy of cu=\",saving" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "economy of cu= 80.0\n" + ] + } + ], + "prompt_number": 147 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.89, Page Number:1188" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=500.0#KVA\n", + "f=50.0#Hz\n", + "v1=6600.0#V\n", + "v2=5000.0#V\n", + "e=8.0#V\n", + "phim1=1.3#Wb/m2\n", + "\n", + "#calculations\n", + "phim=e/(4.44*f)\n", + "area=phim/phim1\n", + "n1=v1/e\n", + "n2=v2/e\n", + "\n", + "#result\n", + "print \"core area=\",area*10000,\"m2\"\n", + "print \"number of turns on the hv side=\",n1\n", + "print \"number of turns on the lv side=\",n2" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "core area= 277.2002772 m2\n", + "number of turns on the hv side= 825.0\n", + "number of turns on the lv side= 625.0\n" + ] + } + ], + "prompt_number": 150 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.90, Page Number:1189" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=20.0#KVA\n", + "v1=2400.0#V\n", + "v2=240.0#V\n", + "\n", + "#calculation\n", + "i1=round(load*1000/v1,1)\n", + "k=v2/v1\n", + "i2=i1/k\n", + "kva=2640*i2*0.001\n", + "kva_per=kva*100/load\n", + "i1_=kva*1000/v1\n", + "ic=i1_-i2\n", + "over=ic*100/i1\n", + "\n", + "#result\n", + "print \"i)i1=\",i1,\"A\"\n", + "print \"ii)i2=\",i2,\"A\"\n", + "print \"iii)kVA rating=\",kva,\"kVA\"\n", + "print \"iv)per cent increase in kVA=\",kva_per,\"%\"\n", + "print \"v)I1=\",i1_,\"A\"\n", + "print \" Ic=\",ic,\"A\"\n", + "print \"vi)per cent overload=\",over,\"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)i1= 8.3 A\n", + "ii)i2= 83.0 A\n", + "iii)kVA rating= 219.12 kVA\n", + "iv)per cent increase in kVA= 1095.6 %\n", + "v)I1= 91.3 A\n", + " Ic= 8.3 A\n", + "vi)per cent overload= 100.0 %\n" + ] + } + ], + "prompt_number": 159 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.91, Page Number:1190" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=20.0#KVA\n", + "v1=2400.0#V\n", + "v2=240.0#V\n", + "\n", + "#calculation\n", + "i1=round(load*1000/v1,1)\n", + "k=v2/v1\n", + "i2=i1/k\n", + "kva=2160*i2*0.001\n", + "kva_per=kva*100/load\n", + "i1_=kva*1000/v1\n", + "ic=i2-i1_\n", + "over=ic*100/i1\n", + "\n", + "#result\n", + "print \"i)i1=\",i1,\"A\"\n", + "print \"ii)i2=\",i2,\"A\"\n", + "print \"iii)kVA rating=\",kva,\"kVA\"\n", + "print \"iv)per cent increase in kVA=\",kva_per,\"%\"\n", + "print \"v)I1=\",i1_,\"A\"\n", + "print \" Ic=\",ic,\"A\"\n", + "print \"vi)per cent overload=\",over,\"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)i1= 8.3 A\n", + "ii)i2= 83.0 A\n", + "iii)kVA rating= 179.28 kVA\n", + "iv)per cent increase in kVA= 896.4 %\n", + "v)I1= 74.7 A\n", + " Ic= 8.3 A\n", + "vi)per cent overload= 100.0 %\n" + ] + } + ], + "prompt_number": 160 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.92, Page Number:1190" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=5.0#kVA\n", + "v1=110.0#V\n", + "v2=110.0#V\n", + "f=50.0#Hz\n", + "efficiency=0.95\n", + "iron_loss=50.0#W\n", + "v=220.0#V\n", + "\n", + "#calculations\n", + "cu_loss=load*1000/efficiency-load*1000-iron_loss\n", + "efficiency=load*1000/(load*1000+cu_loss/4+iron_loss)\n", + "i2=(load*1000+cu_loss/4+iron_loss)/v\n", + "\n", + "#result\n", + "print \"efficiency=\",efficiency*100,\"%\"\n", + "print \"current drawn on hv side=\",i2,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 97.9760216579 %\n", + "current drawn on hv side= 23.1967703349 A\n" + ] + } + ], + "prompt_number": 163 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.93, Page Number:1191" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=11500#V\n", + "v2=2300#V\n", + "\n", + "#calculations\n", + "kva=(v1+v2)*50*0.001\n", + "\n", + "#result\n", + "print \"voltage output=\",v1+v2,\"V\"\n", + "print \"kVA rating of auto transformer=\",kva,\"kVA\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "voltage output= 13800 V\n", + "kVA rating of auto transformer= 690.0 kVA\n" + ] + } + ], + "prompt_number": 164 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.94, Page Number:1191" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=11500.0#V\n", + "v2=2300.0#V\n", + "load=100.0#KVA\n", + "\n", + "#calculations\n", + "i1=load*100/v1\n", + "i2=load*100/v2\n", + "kva1=(v1+v2)*i1/(100)\n", + "kva2=(v1+v2)*i2/(100)\n", + "#result\n", + "print \"voltage ratios=\",(v1+v2)/v1,\"or\",(v1+v2)/v2\n", + "print \"kVA rating in first case=\",kva1\n", + "print \"kVA rating in second case=\",kva2" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "voltage ratios= 1.2 or 6.0\n", + "kVA rating in first case= 120.0\n", + "kVA rating in second case= 600.0\n" + ] + } + ], + "prompt_number": 167 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.95, Page Number:1192" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=2400.0#v\n", + "v2=240.0#V\n", + "load=50.0#kVA\n", + "\n", + "#calculations\n", + "i1=load*1000/v1\n", + "i2=load*1000/v2\n", + "output=2640*i2\n", + "i=i2*2640/v1\n", + "k=2640/v1\n", + "poweri=v1*i1*0.001\n", + "power=output/1000-poweri\n", + "\n", + "#result\n", + "print \"rating of the auto-transformer=\",output/1000,\"kVA\"\n", + "print \"inductively transferred powers=\",poweri,\"kW\"\n", + "print \"conductively transferred powers=\",power,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "rating of the auto-transformer= 550.0 kVA\n", + "inductively transferred powers= 50.0 kW\n", + "conductively transferred powers= 500.0 kW\n" + ] + } + ], + "prompt_number": 169 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.96, Page Number:1196" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "za=complex(0.5,3)\n", + "zb=complex(0.,10)\n", + "load=100#KW\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "s=load/pf*complex(pf,math.sin(math.acos(pf)))\n", + "sa=s*zb/(za+zb)\n", + "sb=s*za/(za+zb)\n", + "\n", + "#result\n", + "print \"SA=\",abs(sa)*math.cos(math.atan(sa.imag/sa.real)),\"kW\"\n", + "print \"SB=\",abs(sb)*math.cos(math.atan(sb.imag/sb.real)),\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "96.082805253\n", + "SA= 74.5937961595 kW\n", + "SB= 25.4062038405 kW\n" + ] + } + ], + "prompt_number": 174 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.97, Page Number:1197" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "r1=0.005#ohm\n", + "r2=0.01#ohm\n", + "x1=0.05#ohm\n", + "x2=0.04#ohm\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "za=complex(r1,x1)\n", + "zb=complex(r2,x2)\n", + "pf=math.cos(math.degrees((-1)*math.acos(pf))*math.degrees(math.atan((za/zb).imag/(za/zb).real)))\n", + "\n", + "#result\n", + "print \"load of B=\",abs(za/zb)\n", + "print \"pf of B=\",pf" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "load of B= 1.21872643265\n", + "pf of B= 0.613584256393\n" + ] + } + ], + "prompt_number": 202 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.98, Page Number:1197" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=250#kVA\n", + "za=complex(1,6)\n", + "zb=complex(1.2,4.8)\n", + "load1=500#kVA\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "s=load1*complex(-pf,math.sin(math.acos(pf)))\n", + "sa=s*zb/(za+zb)\n", + "sb=s*za/(za+zb)\n", + "\n", + "#result\n", + "print \"SA=\",abs(sa),math.degrees(math.atan(sa.imag/sa.real)),\"degrees\"\n", + "print \"SB=\",abs(sb),math.degrees(math.atan(sb.imag/sb.real)),\"degrees\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "SA= 224.451917244 -39.3923099293\n", + "SB= 275.942423833 -34.8183886694\n" + ] + } + ], + "prompt_number": 205 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.99, Page Number:1197" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variabledeclaration\n", + "load=100.0#KW\n", + "r1=0.5\n", + "x1=8.0\n", + "r2=0.75\n", + "x2=4.0\n", + "load1=180.0#kW\n", + "pf=0.9\n", + "\n", + "#calculations\n", + "load=load1/pf\n", + "s=load*complex(pf,-math.sin(math.acos(pf)))\n", + "z1=complex(r1,x1)\n", + "z2=complex(r2,x2)\n", + "s1=s*z2/(z1+z2)\n", + "s2=s*z1/(z1+z2)\n", + "kw1=abs(s1)*math.cos(math.atan(s1.imag/s1.real))\n", + "kw2=abs(s2)*math.cos(math.atan(s2.imag/s2.real))\n", + "\n", + "#result\n", + "print \"kW1=\",kw1,\"kW\"\n", + "print \"kW2=\",kw2,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(1.25+12j)\n", + "kW1= 58.119626171 kW\n", + "kW2= 121.880373829 kW\n" + ] + } + ], + "prompt_number": 214 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.100, Page Number:1197" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=200.0#kW\n", + "pf=0.85\n", + "za=complex(1,5)\n", + "zb=complex(2,6)\n", + "\n", + "#calculations\n", + "s=load/pf*complex(0.85,-0.527)\n", + "sa=s*zb/(za+zb)\n", + "sb=s*za/(za+zb)\n", + "\n", + "#result\n", + "print \"kVA for A=\",abs(sa),math.cos(math.atan(sa.imag/sa.real)),\"lag\"\n", + "print \"kVA for B=\",abs(sb),math.cos(math.atan(sb.imag/sb.real)),\"lag\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "kVA for A= 130.53263665 0.819364787986 lag\n", + "kVA for B= 105.238776124 0.884143252833 lag\n" + ] + } + ], + "prompt_number": 216 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.101, Page Number:1198" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=2200.0#V\n", + "v2=110.0#V\n", + "load=125.0#kVA\n", + "pf=0.8\n", + "za=complex(0.9,10)\n", + "zb=(100/50)*complex(1.0,5)\n", + "\n", + "#calculation\n", + "s=load*complex(pf,-math.sin(math.acos(pf)))\n", + "sa=s*zb/(za+zb)\n", + "sb=s*za/(za+zb)\n", + "\n", + "#result\n", + "print \"SA=\",abs(sa),math.degrees(math.atan(sa.imag/sa.real)),\"degrees\"\n", + "print \"SB=\",abs(sb),math.degrees(math.atan(sb.imag/sb.real)),\"degrees\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "SA= 63.0780848499 -39.929442891 degrees\n", + "SB= 62.1031510961 -33.7622749748 degrees\n" + ] + } + ], + "prompt_number": 218 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.102, Page Number:1199" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load1=500#kVA\n", + "za=complex(1,5)\n", + "load2=250#kVA\n", + "zb=complex(1.5,4)\n", + "v2=400#V\n", + "load=750#kVA\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "zb=(500/load2)*zb\n", + "s=load*complex(pf,-math.sin(math.acos(pf)))\n", + "sa=s*zb/(za+zb)\n", + "sb=s*za/(za+zb)\n", + "\n", + "#result\n", + "print \"SA=\",abs(sa),math.degrees(math.atan(sa.imag/sa.real)),\"degrees\"\n", + "print \"SB=\",abs(sb),math.degrees(math.atan(sb.imag/sb.real)),\"degrees\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "SA= 471.125736359 -40.3232138964 degrees\n", + "SB= 281.165527855 -31.0771011508 degrees\n" + ] + } + ], + "prompt_number": 219 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.103, Page Number:1199" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "i=1000#A\n", + "pf=0.8\n", + "za=complex(2,3)\n", + "zb=complex(2.5,5)\n", + "\n", + "#calculations\n", + "i=i*complex(pf,-math.sin(math.acos(pf)))\n", + "ratio=zb/za\n", + "ib=i/(1+ratio)\n", + "ia=i-ib\n", + "ratio=ia.real/ib.real\n", + "\n", + "#result\n", + "print \"IA=\",ia\n", + "print \"IB=\",ib\n", + "print \"ratio of output=\",ratio" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "IA= (504.451038576-341.246290801j)\n", + "IB= (295.548961424-258.753709199j)\n", + "ratio of output= 1.70682730924\n" + ] + } + ], + "prompt_number": 220 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.104, Page Number:1200" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=1000.0#V\n", + "v2=500.0#V\n", + "load=100.0#kVA\n", + "za=complex(1.0,5.0)\n", + "zb=complex(2.0,2.0)\n", + "load1=300.0#kVA\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "zb=(100.0/250)*zb\n", + "s=load1*complex(pf,-math.sin(math.acos(pf)))\n", + "sa=s*zb/(za+zb)\n", + "sb=s*za/(za+zb)\n", + "zab=za*zb/(za+zb)\n", + "drop=zab.real*240/100+zab.imag*180/100\n", + "v2=v2-v2*drop/100\n", + "\n", + "#result\n", + "print \"SA=\",abs(sa),math.degrees(math.atan(sa.imag/sa.real)),\"degrees\"\n", + "print \"SB=\",abs(sb),math.degrees(math.atan(sb.imag/sb.real)),\"degrees\"\n", + "print \"secondary voltage=\",v2,\"V\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "SA= 55.8895719399 -64.6284382469 degrees\n", + "SB= 251.890896741 -30.9383707209 degrees\n", + "secondary voltage= 486.177874187 V\n" + ] + } + ], + "prompt_number": 223 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.105, Page Number:1200" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n11=5000.0\n", + "n12=440.0\n", + "load1=200#kVA\n", + "n21=5000.0\n", + "n22=480.0\n", + "load2=350#kVA\n", + "x=3.5\n", + "\n", + "#calculation\n", + "i1=load1*1000/n12\n", + "i2=load2*1000/n22\n", + "x1=x*n12/(100*i1)\n", + "x2=x*n22/(100*i2)\n", + "ic=(n22-n12)/0.057\n", + "\n", + "#result\n", + "print \"no-load circulation current=\",ic/i1,\"times the normal current of 200 kVA unit\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "no-load circulation current= 1.54385964912 times the normal current of 200 kVA unit\n" + ] + } + ], + "prompt_number": 225 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.106, Page Number:1203" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variabe declaration\n", + "ea=6600#V\n", + "eb=6400#V\n", + "za=complex(0.3,3)\n", + "zb=complex(0.2,1)\n", + "zl=complex(8.0,6.0)\n", + "ia=(ea*zb+(ea-eb)*zl)/(za*zb+zl*(za+zb))\n", + "ib=(eb*za-(ea-eb)*zl)/(za*zb+zl*(za+zb))\n", + "\n", + "#result\n", + "print \"IA=\",abs(ia),\"A\"\n", + "print \"IB=\",abs(ib),\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "IA= 195.492387533 A\n", + "IB= 422.567795916 A\n" + ] + } + ], + "prompt_number": 227 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.107, Page Number:1204" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load1=100.0#kVA\n", + "load2=50.0#kVA\n", + "v1=1000.0#V\n", + "v2=950.0#V\n", + "r1=2.0\n", + "r2=2.5\n", + "x1=8.0\n", + "x2=6.0\n", + "\n", + "#calculations\n", + "ia=load1*1000/v1\n", + "ra=v1*r1/(100*ia)\n", + "xa=v1*x1/(100*ia)\n", + "ib=load2*1000/v2\n", + "rb=v2*r2/(100*ib)\n", + "xb=v2*x2/(100*ib)\n", + "z=((ra+rb)**2+(xa+xb)**2)**0.5\n", + "ic=(v1-v2)/z\n", + "alpha=math.atan((xa+xb)/(ra+rb))\n", + "\n", + "#result\n", + "print \"no load circulating current=\",ic,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "no load circulating current= 25.0948635944 A\n" + ] + } + ], + "prompt_number": 231 + }, + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Example Number 32.108, Page Number:1204" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load1=1000.0#KVA\n", + "load2=500.0#kVA\n", + "v1=500.0#V\n", + "v2=510.0#V\n", + "z1=3.0\n", + "z2=5.0\n", + "r=0.4\n", + "\n", + "#calculation\n", + "ia=load1*1000/480\n", + "ib=load2*1000/480\n", + "za=z1*v1/(100*ia)\n", + "zb=z2*v2/(100*ib)\n", + "ic=(v2-v1)/(za+zb)\n", + "\n", + "#result\n", + "print \"cross current=\",ic,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "cross current= 315.656565657 A\n" + ] + } + ], + "prompt_number": 233 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.109, Page Number:1204" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "loada=500.0#KVA\n", + "loadb=250.0#kVA\n", + "load=750.0#KVA\n", + "pf=0.8\n", + "v1=405.0#V\n", + "v2=415.0#V\n", + "ra=1.0\n", + "rb=1.5\n", + "xa=5.0\n", + "xb=4.0\n", + "\n", + "#calculations\n", + "ia=loada*1000/400\n", + "ra=400/(100*ia)\n", + "xa=xa*400/(100*ia)\n", + "ib=loadb*1000/400\n", + "rb=rb*400/(100*ib)\n", + "xb=xb*400/(100*ib)\n", + "za=complex(ra,xa)\n", + "zb=complex(rb,xb)\n", + "zl=400**2*0.001/load*complex(pf,math.sin(math.acos(pf)))\n", + "ic=(v1-v2)/(za+zb)\n", + "ia=(v1*zb+(v1-v2)*zl)/(za*zb+zl*(za+zb))\n", + "ib=(v2*za-(v1-v2)*zl)/(za*zb+zl*(za+zb))\n", + "sa=400*ia/1000\n", + "sb=400*ib/1000\n", + "pf1=math.cos(math.atan(sa.imag/sa.real))\n", + "pf2=math.cos(math.atan(sb.imag/sb.real))\n", + "\n", + "#result\n", + "print \"a)cross current=\",-abs(ic),math.degrees(math.atan(ic.imag/ic.real))\n", + "print \"b)SA=\",abs(sa),pf1,\"lag\"\n", + "print \" SB=\",abs(sb),pf2,\"lag\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a)cross current= -229.754569404 -72.8972710309\n", + "b)SA= 387.844943528 0.820048560714 lag\n", + " SB= 351.964386212 0.738709225528 lag\n" + ] + } + ], + "prompt_number": 243 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.110, Page Number:1205" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "zl=complex(2.0,1.5)\n", + "za=complex(0.15,0.5)\n", + "zb=complex(0.1,0.6)\n", + "ea=207#V\n", + "eb=205#V\n", + "\n", + "#calculations\n", + "ia=(ea*zb+(ea-eb)*zl)/(za*zb+zl*(za+zb))\n", + "ib=(eb*za-(ea-eb)*zl)/(za*zb+zl*(za+zb))\n", + "v2_=(ia+ib)*zl\n", + "angle=math.atan(v2_.imag/v2_.real)-math.atan(ia.imag/ia.real)\n", + "pfa=math.cos(angle)\n", + "angle=math.atan(v2_.imag/v2_.real)-math.atan(ib.imag/ib.real)\n", + "pfb=math.cos(angle)\n", + "pa=abs(v2_)*abs(ia)*pfa\n", + "pb=abs(v2_)*abs(ib)*pfb\n", + "\n", + "#result\n", + "print \"power output:\"\n", + "print \" A:\",pa,\"W\"\n", + "print \" B:\",pb,\"W\"\n", + "print \"power factor:\"\n", + "print \" A:\",pfa\n", + "print \" B:\",pfb\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "power output:\n", + " A: 6535.37583042 W\n", + " B: 4925.36941503 W\n", + "power factor:\n", + " A: 0.818428780129\n", + " B: 0.775705655277\n" + ] + } + ], + "prompt_number": 248 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.111, Page Number:1206" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "ia=200.0#A\n", + "ib=600.0#A\n", + "ra=0.02#ohm\n", + "rb=0.025#ohm\n", + "xa=0.05#ohm\n", + "xb=0.06#ohm\n", + "ea=245.0#V\n", + "eb=240.0#V\n", + "zl=complex(0.25,0.1)\n", + "\n", + "#calculation\n", + "za=(ea/ia)*complex(ra,xa)\n", + "zb=(eb/ib)*complex(rb,xb)\n", + "i=(ea*zb+eb*za)/(za*zb+zl*(za+zb))\n", + "v2=i*zl\n", + "\n", + "#result\n", + "print \"terminal voltage=\",round(abs(v2)),round(math.degrees(math.atan(v2.imag/v2.real))),\"degrees\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "terminal voltage= 230.0 -3.0 degrees\n" + ] + } + ], + "prompt_number": 251 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A Textbook of Electrical Technology AC and DC Machines/chapter33.ipynb b/A Textbook of Electrical Technology AC and DC Machines/chapter33.ipynb new file mode 100644 index 00000000..495cee05 --- /dev/null +++ b/A Textbook of Electrical Technology AC and DC Machines/chapter33.ipynb @@ -0,0 +1,1433 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:62e227cc38186a0706017dd159987c82bd21be1d7e8602e20c55cf079ab30efe" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 33: Transformer:Three Phase" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.1, Page Number:1216" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "p=3\n", + "f=50.0#Hz\n", + "vd=22000.0#V\n", + "vs=400.0#V\n", + "phi=0.8\n", + "i=5.0#A\n", + "\n", + "#calcuations\n", + "v_phase_secondary=vs/math.sqrt(3)\n", + "K=(vs/vd)/math.sqrt(3)\n", + "i_primary=i/math.sqrt(3)\n", + "i_secondary=i_primary/K\n", + "il=i_secondary\n", + "output=math.sqrt(3)*il*vs*phi\n", + "\n", + "#result\n", + "print \"Output=\",output/10000,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Output= 15.2420471066 kW\n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.2, Page Number:1217" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "w=500.0#kVA\n", + "f=50.0#Hz\n", + "vls=11.0#kV\n", + "vld=33.0#kV\n", + "rh=35.0#ohm\n", + "rl=0.876#ohm\n", + "iron_loss=3050.0#W\n", + "phi1=1.0\n", + "phi2=0.8\n", + "\n", + "#calculations\n", + "\n", + "K=(vls*1000)/(math.sqrt(3)*vld*1000)\n", + "r02=rl+K**2*rh\n", + "i_Secondary=(w*1000)/(math.sqrt(3)*vls*1000)\n", + "#full load\n", + "fl_culoss=3*((w/(vls*math.sqrt(3)))**2)*r02\n", + "fl_totalloss=fl_culoss+iron_loss\n", + "fl_efficiency1=w*1000/(w*1000+fl_totalloss)\n", + "fl_efficiency2=(phi2*w*1000)/(w*phi2*1000+fl_totalloss)\n", + "#half load\n", + "cu_loss=.5**2*fl_culoss\n", + "totalloss=cu_loss+iron_loss\n", + "efficiency1=(w*1000/2)/((w*1000/2)+totalloss)\n", + "efficiency2=(w*1000*phi2/2)/((phi2*w*1000/2)+totalloss)\n", + "#result\n", + "print \"full load efficiency at p.f. 1=\",fl_efficiency1*100,\"%\"\n", + "print \"full load efficiency at p.f. 0.8=\",fl_efficiency2*100,\"%\"\n", + "print \"half load efficiency at p.f. 1=\",efficiency1*100,\"%\"\n", + "print \"half load efficiency at p.f. 0.8=\",round(efficiency2*100),\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "full load efficiency at p.f. 1= 98.5147491838 %\n", + "full load efficiency at p.f. 0.8= 98.1503046336 %\n", + "half load efficiency at p.f. 1= 98.3585709725 %\n", + "half load efficiency at p.f. 0.8= 98.0 %\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.3, Page Number:1218" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "r=0.02\n", + "va=2000\n", + "reactance=0.1\n", + "pf=0.8\n", + "phi=math.acos(pf)\n", + "#calculation\n", + "cu_loss=r*100*va/100\n", + "regn=r*100*math.cos(phi)+reactance*100*math.sin(phi)\n", + "\n", + "#result\n", + "print \"Cu loss=\",cu_loss,\"kW\"\n", + "print \"Regulation=\",regn,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Cu loss= 40.0 kW\n", + "Regulation= 7.6 %\n" + ] + } + ], + "prompt_number": 39 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.4, Page Number:1218" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "w=120.0#kVA\n", + "v1=6000.0\n", + "v2=400.0\n", + "f=50.0#Hz\n", + "iron_loss=1600.0#W\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "cu_loss_fl=iron_loss*((4/3)**2)\n", + "fl_output=w*pf*1000\n", + "total_loss=iron_loss+cu_loss_fl\n", + "efficiency1=fl_output/(fl_output+total_loss)\n", + "cu_loss_hl=0.5**2*cu_loss_fl\n", + "total_loss2=cu_loss_hl+iron_loss\n", + "efficiency2=(w*1000/2)/((w*1000/2)+total_loss2)\n", + "total_loss3=2*iron_loss\n", + "output=(3.0/4)*w*1000\n", + "inpt=output+total_loss3\n", + "efficiency=output/inpt\n", + "\n", + "\n", + "#result\n", + "print \"full load efficiency=\",efficiency1*100,\"%\"\n", + "print \"half load efficiency=\",efficiency2*100,\"%\"\n", + "print \"3/4 load efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "full load efficiency= 96.7741935484 %\n", + "half load efficiency= 96.7741935484 %\n", + "3/4 load efficiency= 96.5665236052 %\n" + ] + } + ], + "prompt_number": 46 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.5, Page Number:1218" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "rp=8.0#ohm\n", + "rs=0.08#ohm\n", + "z=0.07\n", + "pf=0.75\n", + "v1=33.0\n", + "v2=6.6\n", + "w=2*10.0**6\n", + "phi=math.acos(pf)\n", + "#calculations\n", + "fl_i=w/(math.sqrt(3)*v2*10**3)\n", + "K=v2/(math.sqrt(3)*v1)\n", + "r02=rs+(rp*(K*K))\n", + "z_drop=z*v2*1000/math.sqrt(3)\n", + "z02=z_drop/fl_i\n", + "x02=math.sqrt((z02*z02)-(r02*r02))\n", + "drop=fl_i*(r02*math.cos(phi)+x02*math.sin(phi))\n", + "secondary_v=v2*1000/math.sqrt(3)\n", + "V2=secondary_v-drop\n", + "line_v=V2*math.sqrt(3)\n", + "regn=drop*100/secondary_v\n", + "\n", + "#result\n", + "print \"secondary voltage\",line_v,\"V\"\n", + "print \"regulation=\",regn,\"%\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "secondary voltage 6254.29059005 V\n", + "regulation= 5.23802136291 %\n" + ] + } + ], + "prompt_number": 59 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.6, Page Number:1219" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "w=100.0#kWA\n", + "f=50.0#Hz\n", + "v1=3300.0#V\n", + "v2=400.0#V\n", + "rh=3.5#ohm\n", + "rl=0.02#ohm\n", + "pf=0.8\n", + "efficiency=0.958\n", + "\n", + "#calculations\n", + "output=0.8*100\n", + "inpt=output/efficiency\n", + "total_loss=(inpt-output)*1000\n", + "K=v2/(math.sqrt(3)*v1)\n", + "r02=rl+K**2*rh\n", + "i2=((w*1000)/math.sqrt(3))/v2\n", + "cu_loss=3*i2**2*r02\n", + "iron_loss=total_loss-cu_loss\n", + "#result\n", + "print \"ironloss=\",iron_loss,\"W\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "0.0371411080502\n", + "2321.31925314\n", + "ironloss= 1185.98763622 W\n" + ] + } + ], + "prompt_number": 75 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.7, Page Number:1219" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "w=5000.0#kVA\n", + "v1=6.6#kV\n", + "v2=33.0#kV\n", + "nl=15.0#kW\n", + "fl=50.0#kW\n", + "drop=0.07\n", + "load=3200.0#kw\n", + "pf=0.8\n", + "phi=math.acos(pf)\n", + "#calculations\n", + "i2=w*1000/(math.sqrt(3)*v2*1000)\n", + "impedence_drop=drop*(v2/math.sqrt(3))*1000\n", + "z02=impedence_drop/i2\n", + "cu_loss=fl-nl\n", + "r02=cu_loss*1000/(3*i2**2)\n", + "x02=math.sqrt(z02**2-r02**2)\n", + "print \"full-load x02:\",x02\n", + "\n", + "#when load=3200#kW\n", + "i2=load/(math.sqrt(3)*v2*0.8)\n", + "drop_=drop*1000*(r02*math.cos(phi)+z02*math.sin(phi))\n", + "regn=(drop_*100)/(v2*1000/math.sqrt(3))\n", + "vp=v1+regn/100*v1\n", + "print \"Primary voltage=\",vp*1000,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "full-load x02: 15.1695784661\n", + "Primary voltage= 6851.39317975 V\n" + ] + } + ], + "prompt_number": 95 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.8, Page Number:1219" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "r=1\n", + "x=6\n", + "v=6600#V\n", + "v2=4800#V\n", + "pf=0.8\n", + "phi=math.acos(pf)\n", + "#calculations\n", + "regn=(r*math.cos(phi)+z*math.sin(phi))\n", + "secondary_v=v2+regn/100*v2\n", + "secondary_vp=secondary_v/math.sqrt(3)\n", + "K=secondary_vp/v\n", + "\n", + "#result\n", + "print \"Transformation Ratio=\",K" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Transformation Ratio= 0.423426587968\n" + ] + } + ], + "prompt_number": 96 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.9, Page Number:1220" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "w=2000#kVA\n", + "v1=6600#V\n", + "v2=400#V\n", + "pf=0.8\n", + "scv=400#V\n", + "sci=175#A\n", + "scw=17#kW\n", + "ocv=400#V\n", + "oci=150#A\n", + "ocw=15#kW\n", + "phi=math.acos(pf)\n", + "#calculations\n", + "i1=sci/math.sqrt(3)\n", + "z01=scv/i1\n", + "r01=scw*1000/(3*i1*i1)\n", + "x01=math.sqrt(z01**2-r01**2)\n", + "r=i1*r01*100/v1\n", + "x=i1*x01*100/v1\n", + "regn=(r*math.cos(phi)-x*math.sin(phi))\n", + "I1=w*1000/(math.sqrt(3)*v1)\n", + "total_loss=scw+ocw\n", + "fl_output=w*pf\n", + "efficiency=fl_output/(fl_output+total_loss)\n", + "\n", + "#result\n", + "print \"% resistance=\",r,\"%\"\n", + "print \"% reactance=\",x,\"%\"\n", + "print \"% efficiency=\",efficiency*100,\"%\"\n", + "print \"%regulation=\",regn,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "% resistance= 0.849779616989 %\n", + "% reactance= 6.00073499035 %\n", + "% efficiency= 98.0392156863 %\n", + "%regulation= -2.92061730062 %\n" + ] + } + ], + "prompt_number": 109 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.10, Page Number:1220" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v1=11000.0#V\n", + "v2=440.0#V\n", + "i=5.0#A\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "secondary_rating=v2/math.sqrt(3)\n", + "primary_i=i/math.sqrt(3)\n", + "voltsamps=v1*5/math.sqrt(3)\n", + "i2=voltsamps/secondary_rating\n", + "output=pf*voltsamps/1000\n", + "\n", + "#result\n", + "print \"Each coil current=\",i2,\"A\"\n", + "print \"Total output=\",output,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Each coil current= 125.0 A\n", + "Total output= 25.4034118443 kW\n" + ] + } + ], + "prompt_number": 116 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.12, Page Number:1224" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=40#kVA\n", + "\n", + "#calculations\n", + "kVA_per_transformer=load/2*1.15\n", + "delta_delta_rating=kVA_per_transformer*3\n", + "increase=(delta_delta_rating-load)*100/load\n", + "\n", + "#result\n", + "print \"increase=\",increase,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "increase= 72.5 %\n" + ] + } + ], + "prompt_number": 126 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.13, Page Number:1224" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "w=20#kVA\n", + "v1=2300#v\n", + "v2=230#V\n", + "load=40#kVA\n", + "\n", + "#calculations\n", + "kva_load=load/math.sqrt(3)\n", + "percent_rated=kva_load*100/w\n", + "kvarating_vv=2*w*0.866\n", + "vv_delta=kvarating_vv*100/60\n", + "percentage_increase=kva_load/(load/3)\n", + "\n", + "#result\n", + "print \"i)kVA load of each transformer=\",kva_load,\"kVA\"\n", + "print \"ii)per cent of rated load carried by each transformer=\",percent_rated,\"%\"\n", + "print \"iii)total kVA rating of the V-V bank\",kvarating_vv,\"kVA\"\n", + "print \"iv)ratio of the v-v bank to delta-delta bank\",vv_delta,\"%\"\n", + "print \"v)percent increase in load=\",percentage_increase*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)kVA load of each transformer= 23.0940107676 kVA\n", + "ii)per cent of rated load carried by each transformer= 115.470053838 %\n", + "iii)total kVA rating of the V-V bank 34.64 kVA\n", + "iv)ratio of the v-v bank to delta-delta bank 57.7333333333 %\n", + "v)percent increase in load= 177.646236674 %\n" + ] + } + ], + "prompt_number": 130 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.14, Page Number:1225" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "load=150.0#kW\n", + "v1=1000.0#V\n", + "pf=0.866\n", + "v=2000.0#V\n", + "\n", + "#calculations\n", + "il=load*1000/(pf*math.sqrt(3)*1000)\n", + "ip=il/math.sqrt(3)\n", + "ratio=v1/v\n", + "ip=ip*ratio\n", + "I=il\n", + "Ip=I*ratio\n", + "pf=86.6/100*pf\n", + "\n", + "#result\n", + "print \"delta-delta:current in the windings=\",ip,\"A\"\n", + "print \"v-v:current in the windings=\",Ip,\"A\"\n", + "print \"Power factor\",pf" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "delta-delta:current in the windings= 28.8683602771 A\n", + "v-v:current in the windings= 50.0014667312 A\n", + "Power factor 0.749956\n" + ] + } + ], + "prompt_number": 133 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.15, Page Number:1225" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "load=3000#kW\n", + "v=11#kV\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "I=load*1000/(math.sqrt(3)*v*1000*pf)\n", + "transformer_pf=86.6/100*pf\n", + "additional_load=72.5/100*load\n", + "total_load=additional_load+load\n", + "il=total_load*1000/(math.sqrt(3)*v*1000*pf)\n", + "\n", + "#result\n", + "print \"Il=\",il,\"A\"\n", + "print \"phase current=\",il/math.sqrt(3),\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Il= 339.521323075 A\n", + "phase current= 196.022727273 A\n" + ] + } + ], + "prompt_number": 134 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.16, Page Number:1225" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "load=400#kVA\n", + "pf=0.866\n", + "v=440#V\n", + "\n", + "#calculations\n", + "kVA_each=(load/2)/pf\n", + "phi=math.acos(pf)\n", + "p1=kVA_each*math.cos(math.radians(30-phi))\n", + "p2=kVA_each*math.cos(math.radians(30+phi))\n", + "p=p1+p2\n", + "\n", + "#result\n", + "print \"kVA supplied by each transformer=\",kVA_each,\"kVA\"\n", + "print \"kW supplied by each transformer=\",p,\"kW\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "kVA supplied by each transformer= 230.946882217 kVA\n", + "kW supplied by each transformer= 399.995027715 kW\n" + ] + } + ], + "prompt_number": 136 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.17, Page Number:1228" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=400.0#V\n", + "load=33.0#kVA\n", + "v2=3300.0#V\n", + "\n", + "#calculations\n", + "vl=0.866*v2\n", + "ilp=load*1000/(math.sqrt(3)*v2)\n", + "ils=ilp/(440/v2)\n", + "main_kva=v2*ilp*0.001\n", + "teaser_kva=0.866*main_kva\n", + "\n", + "#result\n", + "print \"voltage rating of each coil=\",vl\n", + "print \"current rating of each coil=\",ils\n", + "print \"main kVA=\",main_kva,\"kVA\"\n", + "print \"teaser kVA=\",teaser_kva,\"kVA\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "voltage rating of each coil= 2857.8\n", + "current rating of each coil= 43.3012701892\n", + "main kVA= 19.0525588833 kVA\n", + "teaser kVA= 16.4995159929 kVA\n" + ] + } + ], + "prompt_number": 139 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.18, Page Number:1231" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=440.0#V\n", + "v2=200.0#V\n", + "output=150.0#kVA\n", + "\n", + "#calculations\n", + "ratio=v2/v\n", + "i2=output*1000/(2*v2)\n", + "i1=i2*ratio\n", + "primary_volts=(math.sqrt(3)*v)/2\n", + "ratio=v2/primary_volts\n", + "\n", + "#result\n", + "print \"primary current=\",i1,\"A\"\n", + "print \"turns ratio\",ratio" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "primary current= 170.454545455 A\n", + "turns ratio 0.524863881081\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.19, Page Number:1231" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=100.0#V\n", + "v2=3300.0#V\n", + "p=400.0#kW\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "K=v/v2\n", + "i2=p*1000/(pf*v)\n", + "ip=1.15*K*i2\n", + "I2m=K*i2\n", + "i2=ip/2\n", + "i1m=math.sqrt(I2m**2+i2**2)\n", + "\n", + "#reslult\n", + "print \"Current=\",i1m,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Current= 174.77684841 A\n" + ] + } + ], + "prompt_number": 150 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.20, Page Number:1232" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "w1=300#kW\n", + "w2=450#kW\n", + "v1=100#V\n", + "pf=0.707\n", + "v2=3300#V\n", + "\n", + "#calculations\n", + "K=v/v2\n", + "i2t=(w2*1000)/(100*pf)\n", + "i1t=1.15*K*i2t\n", + "I2m=(K*w1*1000)/(100*pf)\n", + "i2=i1t/2\n", + "i1m=math.sqrt(I2m**2+i2**2)\n", + "\n", + "#result\n", + "print \"Current=\",i1m,\"A\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Current= 169.804606659 A\n" + ] + } + ], + "prompt_number": 163 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.21, Page Number:1233" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v1=80.0#V\n", + "v2=11000.0#V\n", + "w1=500.0#kW\n", + "w2=800.0#kW\n", + "pf=0.5\n", + "\n", + "#calculations\n", + "K=v1/v2\n", + "#unity pf\n", + "i2t=w1*1000/v1\n", + "i1t=1.15*K*i2t\n", + "i2m=K*w2*1000/v1\n", + "i1t_half=i1t/2\n", + "ip=math.sqrt(i2m**2+i1t_half**2)\n", + "\n", + "print \"unity pf\"\n", + "print \"one 3 phase line carries\",i1t,\"A whereas the other 2 carry\",ip,\"A each\"\n", + "#0.5 pf\n", + "i2t=w1*1000/(v1*pf)\n", + "i1t=1.15*K*i2t\n", + "i2m=K*w2*1000/(v1*pf)\n", + "i1t_half=i1t/2\n", + "ip=math.sqrt(i2m**2+i1t_half**2)\n", + "print \"0.5 pf\"\n", + "print \"one 3 phase line carries\",i1t,\"A whereas the other 2 carry\",ip,\"A each\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "unity pf\n", + "one 3 phase line carries 52.2727272727 A whereas the other 2 carry 77.281082436 A each\n", + "0.5 pf\n", + "one 3 phase line carries 104.545454545 A whereas the other 2 carry 154.562164872 A each\n" + ] + } + ], + "prompt_number": 171 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.22, Page Number:1234" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v1=50#V\n", + "v2=4.6*1000#V\n", + "load=350#kW\n", + "w=200#kW\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "K=v1/v2\n", + "i2t=w*1000/(v1*pf)\n", + "i1t=1.15*K*i2t\n", + "i2m=load*1000/(v1*pf)\n", + "Ki2m=K*i2m\n", + "i1t_half=i1t/2\n", + "i1m=math.sqrt(Ki2m**2+i1t_half**2)\n", + "\n", + "#result\n", + "print \"current in line A=\",i1t\n", + "print \"current in line B=\",i1m\n", + "print \"current in line C=\",i1m" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "current in line A= 62.5\n", + "current in line B= 100.11107076\n", + "current in line C= 100.11107076\n" + ] + } + ], + "prompt_number": 173 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.23, Page Number:1234" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=231#V\n", + "v2=6600#v\n", + "volt_induced=8#v\n", + "\n", + "#calculations\n", + "hv=v2/volt_induced\n", + "vl=v*math.sqrt(3)\n", + "n_lv1=vl/volt_induced\n", + "n_lv2=math.sqrt(3)*n_lv1/2\n", + "n=2*n_lv2/3\n", + "\n", + "#result\n", + "print \"neutral point is located on the\",math.ceil(n),\"th turn from A downwards\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "neutral point is located on the 29.0 th turn from A downwards\n" + ] + } + ], + "prompt_number": 176 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.24, Page Number:1235" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=6000.0#V\n", + "v2=440.0#V\n", + "f=50.0#Hz\n", + "area=300.0#cm2\n", + "flux=1.2#Wb/m2\n", + "\n", + "#calculations\n", + "n1=v/(4.44*f*flux*area*0.0001*0.9)\n", + "K=v2/v\n", + "n2=n1*K\n", + "n_lv=math.sqrt(3)*n2/2\n", + "turns=n_lv*2/3\n", + "\n", + "#result\n", + "print \"NUmber of turns in AN=\",math.floor(turns)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " NUmber of turns in AN= 35.0\n" + ] + } + ], + "prompt_number": 183 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.25, Page Number:1235" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=250.0#V\n", + "load=30.0#kVA\n", + "v2=250.0#V\n", + "\n", + "#calculations\n", + "il=load*1000/(math.sqrt(3)*v2)\n", + "vl=0.866*v2\n", + "kva=il*vl*(0.001)\n", + "\n", + "#result\n", + "print \"Voltage=\",vl,\"V\"\n", + "print \"kVA rating\",kva,\"kVA\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Voltage= 216.5 V\n", + "kVA rating 14.9995599935 kVA\n" + ] + } + ], + "prompt_number": 185 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.26, Page Number:1237" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import cmath\n", + "#vaiable declaration\n", + "load=500#kVA\n", + "pf=0.8\n", + "za=complex(2,6)\n", + "zb=complex(2,5)\n", + "phi=math.acos(pf)\n", + "#calculations\n", + "s=load*complex(math.cos(phi),math.sin(phi))\n", + "z1=za/zb\n", + "z2=zb/za\n", + "sa=s/(1+z1)\n", + "sb=s/(1+z2)\n", + "pfa=cmath.phase(sa)\n", + "pfb=cmath.phase(sb)\n", + "#result\n", + "print \"sa=\",abs(sa)\n", + "print \"sb=\",abs(sb)\n", + "print \"cos phi_a=\",pfa\n", + "print \"cos phi_b=\",pfb" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "sa= 230.042839552\n", + "sb= 270.171613479\n", + "cos phi_a= 0.611765735265\n", + "cos phi_b= 0.670521557981\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.27, Page Number:1237" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import cmath\n", + "#variable declaration\n", + "w=2000#kVA\n", + "w1=4000#kVA\n", + "w2=5000#kVA\n", + "pf=0.8\n", + "za=complex(2,8)\n", + "zb=complex(1.6,3)\n", + "\n", + "#calculations\n", + "za_per=(w1/w)*za\n", + "zb_per=zb\n", + "z=za_per+zb_per\n", + "s=complex(w1,w-w2)\n", + "sb=s*(za/z)\n", + "sa=s-sb\n", + "\n", + "#result\n", + "print \"sa=\",sa\n", + "print \"sb=\",sb" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "sa= (2284.2287695-1821.49046794j)\n", + "sb= (1715.7712305-1178.50953206j)\n" + ] + } + ], + "prompt_number": 211 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.28, Page Number:1237" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import cmath\n", + "#variable declaration\n", + "load=1400#kVA\n", + "pf=0.866\n", + "w1=1000#kVA\n", + "w2=500#kVA\n", + "v1=6600\n", + "v2=400\n", + "za=complex(0.001,0.003)\n", + "zb=complex(0.0028,0.005)\n", + "phi=math.acos(pf)\n", + "#calculations\n", + "zb=(w1/w2)*zb\n", + "z=za/(za+zb)\n", + "x=math.cos(-phi)\n", + "y=math.sin(-phi)*1j\n", + "s=load*(x+y)\n", + "sb=s*z\n", + "sa=s-sb\n", + "\n", + "#result\n", + "print \"sa=\",sa\n", + "print \"sb=\",sb" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "sa= (929.911014012-588.664867724j)\n", + "sb= (282.488985988-111.396729565j)\n" + ] + } + ], + "prompt_number": 240 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.29, Page Number:1238" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import cmath\n", + "#variable declaration\n", + "load=750#kVA\n", + "pf=0.707\n", + "w1=500#kVA\n", + "w2=250#kVA\n", + "v1=3300\n", + "v2=400\n", + "za=complex(2,3)\n", + "zb=complex(1.5,4)\n", + "phi=math.acos(pf)\n", + "#calculations\n", + "zb=(w1/w2)*zb\n", + "z=za/(za+zb)\n", + "x=math.cos(-phi)\n", + "y=math.sin(-phi)*1j\n", + "s=load*(x+y)\n", + "sb=s*z\n", + "sa=s-sb\n", + "per_r=za.real*(sa.real)/w1\n", + "per_x=(za.imag)*(sa.imag)/w1\n", + "total_per=per_r+per_x\n", + "vl=v2-(total_per*4)\n", + "#result\n", + "print \"sa=\",sa\n", + "print \"sb=\",sb" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "sa= (399.511103547-348.770523615j)\n", + "sb= (130.738896453-181.639636072j)\n" + ] + } + ], + "prompt_number": 242 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.30, Page Number:1240" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "ratio=100/5\n", + "i=5#A\n", + "i1=3.5#A\n", + "\n", + "#calculations\n", + "il=i1*ratio\n", + "\n", + "#result\n", + "print \"Line current=\",il,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Line current= 70.0 A\n" + ] + } + ], + "prompt_number": 214 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.31, Page Number:1240" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "i1=2000#A\n", + "i2=2500#A\n", + "i=5#A\n", + "\n", + "#calculations\n", + "ratio1=i1/i\n", + "ratio2=i2/i\n", + "\n", + "#result\n", + "print \"ratio in first case=\",ratio1\n", + "print \"ratio in second case=\",ratio2" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "ratio in first case= 400\n", + "ratio in second case= 500\n" + ] + } + ], + "prompt_number": 216 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A Textbook of Electrical Technology AC and DC Machines/chapter34.ipynb b/A Textbook of Electrical Technology AC and DC Machines/chapter34.ipynb new file mode 100644 index 00000000..d43ac823 --- /dev/null +++ b/A Textbook of Electrical Technology AC and DC Machines/chapter34.ipynb @@ -0,0 +1,3109 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:6eddcd87c5c220a184bc6a72a3af06c45a444c1fd08c6f0e5d7d854e3ce98ba8" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 34:Induction Motors" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.1, Page Number:1255" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=290.0#rpm\n", + "f=50.0#Hz\n", + "Ns=300.0#rpm(considered)\n", + "#calculation\n", + "P=120*f/Ns\n", + "s=(Ns-n)/Ns\n", + "\n", + "#result\n", + "print \"no. of poles=\",P\n", + "print \"slip=\",s*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "no. of poles= 20.0\n", + "slip= 3.33333333333 %\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.2, Page Number:1255" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=3\n", + "slot=3\n", + "f=50#Hz\n", + "\n", + "#calculation\n", + "P=2*n\n", + "slots_total=slot*P*n\n", + "Ns=120*f/P\n", + "\n", + "#result\n", + "print \"No. of stator poles=\",P\n", + "print \"Total number of slots=\",slots_total\n", + "print \"Speed=\",Ns,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " No. of stator poles= 6\n", + "Total number of slots= 54\n", + "Speed= 1000 rpm\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.3, Page Number:1255" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "n=3\n", + "f=50#Hz\n", + "slip1=0.04\n", + "slip2=0.03\n", + "\n", + "#calculation\n", + "Ns=120*f/p\n", + "N=Ns*(1-slip1)\n", + "f1=slip2*f*60\n", + "#at standstill s=1\n", + "f2=1*f\n", + "\n", + "#calculation\n", + "print \"speed at which magnetic field of the stator is rotating=\",Ns,\"rpm\"\n", + "print \"speed of the rotor when the slip is 0.04=\",N\n", + "print \"frequency of rotor current=\",f1,\"rpm\"\n", + "print \"frequency of the rotor current at standstill=\",f2,\"Hz\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed at which magnetic field of the stator is rotating= 1500 rpm\n", + "speed of the rotor when the slip is 0.04= 1440.0\n", + "frequency of rotor current= 90.0 rpm\n", + "frequency of the rotor current at standstill= 50 Hz\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.4, Page Number:1255" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=3.0\n", + "p=4.0\n", + "f=50.0#Hz\n", + "slip=0.04\n", + "n=600.0#rpm\n", + "\n", + "#calculations\n", + "Ns=120*f/p\n", + "N=Ns*(1-slip)\n", + "s=(Ns-n)/Ns\n", + "f1=s*f\n", + "\n", + "#result\n", + "print \"the synchronous speed=\",Ns,\"rpm\"\n", + "print \"the rotor speed=\",N,\"rpm\"\n", + "print \"the rotor frequency when n=600 rpm=\",f1,\"Hz\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "the synchronous speed= 1500.0 rpm\n", + "the rotor speed= 1440.0 rpm\n", + "the rotor frequency when n=600 rpm= 30.0 Hz\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.5, Page Number:1256" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=12\n", + "n=3\n", + "N=500#rpm\n", + "p2=8\n", + "slip=0.03\n", + "\n", + "#calculation\n", + "f=p*N/120\n", + "Ns=120*f/p2\n", + "N=Ns-slip*Ns\n", + "\n", + "#result\n", + "print \"full load speed of the motor=\",N,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "full load speed of the motor= 727.5 rpm\n" + ] + } + ], + "prompt_number": 20 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.6, Page Number:1258" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "e=80#V\n", + "r=1#ohm\n", + "x=4#ohm\n", + "rheo=3#ohm\n", + "\n", + "#calculation\n", + "E=e/(3)**0.5\n", + "z=(r**2+x**2)**0.5\n", + "i=E/z\n", + "pf=r/z\n", + "R=rheo+r\n", + "z2=(R**2+x**2)**0.5\n", + "i2=E/z2\n", + "\n", + "pf2=R/z2\n", + "\n", + "#result\n", + "print \"slip rings are short circuited:\"\n", + "print \"current/phase\",i,\"A\"\n", + "print \"pf=\",pf\n", + "print \"slip rings are onnected to a star-connected rheostat of 3 ohm\",\n", + "print \"current/phase\",i2,\"A\"\n", + "print \"pf=\",pf2" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "slip rings are short circuited:\n", + "current/phase 11.2022406722 A\n", + "pf= 0.242535625036\n", + "slip rings are onnected to a star-connected rheostat of 3 ohm current/phase 8.16496580928 A\n", + "pf= 0.707106781187\n" + ] + } + ], + "prompt_number": 25 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.7, Page Number:1258" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=3\n", + "v=400#V\n", + "ratio=6.5\n", + "r=0.05#ohm\n", + "x=0.25#ohm\n", + "\n", + "#calculations\n", + "k=1/ratio\n", + "e2=v*k/(3**0.5)\n", + "R=x-r\n", + "r2=x\n", + "z=(x**2+r2**2)**0.5\n", + "i2=e2/z\n", + "\n", + "#result\n", + "print \"external resistance=\",R,\"ohm\"\n", + "print \"starting current=\",i2,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "external resistance= 0.2 ohm\n", + "starting current= 100.491886883 A\n" + ] + } + ], + "prompt_number": 26 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.8, Page Number:1259" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=1100#V\n", + "f=50#Hz\n", + "ratio=3.8\n", + "r=0.012#ohm\n", + "x=0.25#ohm\n", + "s=0.04\n", + "#calculation\n", + "e=v/ratio\n", + "z=(r**2+x**2)**0.5\n", + "i=e/z\n", + "pf=r/z\n", + "xr=s*x\n", + "zr=(r**2+xr**2)**0.5\n", + "er=s*e\n", + "i2=er/zr\n", + "pf2=r/zr\n", + "i2=100*ratio\n", + "z2=e/i2\n", + "r2=(z2**2-x**2)**0.5\n", + "R=r2-r\n", + "\n", + "#result\n", + "print \"current with slip rings shorted=\",i,\"A\"\n", + "print \"pf with slip rings shorted=\",pf\n", + "print \"current with slip=4% and slip rings shorted=\",i2\n", + "print \"pf withslip=4% and slip rings shorted=\",pf2\n", + "print \"external resistance=\",R,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "current with slip rings shorted= 1156.56314266 A\n", + "pf with slip rings shorted= 0.0479447993684\n", + "current with slip=4% and slip rings shorted= 380.0\n", + "pf withslip=4% and slip rings shorted= 0.768221279597\n", + "external resistance= 0.70758173952 ohm\n" + ] + } + ], + "prompt_number": 41 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.9, Page Number:1259" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=15#kW\n", + "v=3000#V\n", + "f=50#Hz\n", + "p=6\n", + "ratio=3.6\n", + "r=0.13#ohm\n", + "l=3.61*0.001#H\n", + "\n", + "#calculation\n", + "v=v/3**0.5\n", + "x2=2*3.14*l*f\n", + "k=1/ratio\n", + "r2_=0.1/k**2\n", + "x2_=ratio**2*x2\n", + "is1=v/((r**2+x2_**2)**0.5)\n", + "ns=120*f/p\n", + "ts=(3*3/(2*3.14*f))*((v**2)*r2_)/(r2_**2+x2_**2)\n", + "\n", + "#result\n", + "print \"starting current=\",is1,\"A\"\n", + "print \"ts=\",ts,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "starting current= 117.896733436 A\n", + "ts= 512.375725888 N-m\n" + ] + } + ], + "prompt_number": 49 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.10, Page Number:1261" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "zs=complex(0.4,4)\n", + "zr=complex(6,2)\n", + "v=80#V\n", + "s=0.03\n", + "\n", + "#calculation\n", + "e2=v/3**0.5\n", + "i=e2/abs(zr+zs)\n", + "er=s*e2\n", + "xr=s*zs.imag\n", + "ir=er/abs(complex(zs.real,xr))\n", + "\n", + "#result\n", + "print \"rotor current at standstill=\",i,\"A\"\n", + "print \"rotor current when slip-rings are short-circuited=\",ir,\"A\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "rotor current at standstill= 5.26498126493 A\n", + "rotor current when slip-rings are short-circuited= 3.31800758166 A\n" + ] + } + ], + "prompt_number": 51 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.11, Page Number:1261" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=3\n", + "e=120#V\n", + "r2=0.3#ohm\n", + "x2=1.5#ohm\n", + "s=0.04\n", + "\n", + "#calculations\n", + "e2=e/3**0.5\n", + "er=s*e2\n", + "xr=s*x2\n", + "zr=(r2**2+xr**2)**0.5\n", + "i=er/zr\n", + "s=r2/x2\n", + "xr=s*x2\n", + "zr=(xr**2+r2**2)**0.5\n", + "er=s*e2\n", + "i2=er/zr\n", + "\n", + "#result\n", + "print \"rotor when running short-circuited=\",i,\"A\"\n", + "print \"slip=\",s\n", + "print \"current when torque is maximum=\",i2,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "rotor when running short-circuited= 9.05821627316 A\n", + "slip= 0.2\n", + "current when torque is maximum= 32.6598632371 A\n" + ] + } + ], + "prompt_number": 54 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.12, Page Number:1264" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=8\n", + "f=50.0#Hz\n", + "s=0.04\n", + "tb=150.0#kg-m\n", + "n=660.0#rpm\n", + "r=0.5#ohm\n", + "\n", + "#calculation\n", + "ns=120*f/p\n", + "sb=(ns-n)/ns\n", + "x2=r/sb\n", + "t=tb*(2/((sb/s)+s/sb))\n", + "\n", + "#result\n", + "print \"torque=\",t,\"kg-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "torque= 90.0 kg-m\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.13(a), Page Number:1266" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variablde declaration\n", + "n=3\n", + "vd=0.90\n", + "\n", + "#calculation\n", + "ratio_s=(1/vd)**2\n", + "ratio_i=ratio_s*vd\n", + "cu_loss_increase=ratio_i**2\n", + "\n", + "#result\n", + "print \"increase in motor copper losses=\",cu_loss_increase" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "increase in motor copper losses= 1.23456790123\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.13(b), Page Number:1264" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=230.0#V\n", + "p=6\n", + "f=50.0#Hz\n", + "p1=15.0#kW\n", + "n=980.0#rpm\n", + "efficiency=0.93\n", + "vd=0.10\n", + "fd=0.05\n", + "\n", + "#calculation\n", + "v2=(1-vd)*v\n", + "f2=(1-fd)*f\n", + "n1=120*f/p\n", + "n2=120*f2/p\n", + "s1=(n1-n)/n1\n", + "ratio_f=s1*(v*(1-vd)/v)**2*f2/f\n", + "n2=n2*(1-ratio_f)\n", + "p2=p1*n2/n1\n", + "#result\n", + "print \"the new operating speed=\",n2,\"rpm\"\n", + "print \"the new output power=\",p2,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "the new operating speed= 935.3795 rpm\n", + "the new output power= 14.0306925 kW\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.14(a), Page Number:1267" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=3\n", + "v1=400#V\n", + "v2=200#V\n", + "r=0.06#ohm\n", + "x=0.3#ohm\n", + "a=1\n", + "#calculations\n", + "r=x-r\n", + "\n", + "#result\n", + "print \"additional resistance=\",r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "additional resistance= 0.24 ohm\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.14(b), Page Number:1267" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=3\n", + "f=50#Hz\n", + "p=8\n", + "s=0.02\n", + "r=0.001#ohm\n", + "x=0.005#ohm\n", + "\n", + "#calculation\n", + "ns=120*f/p\n", + "a=r/x\n", + "n2=(1-s)*ns\n", + "ratio=2*s**2*a/(a**2+s**2)\n", + "\n", + "#result\n", + "print \"ratio of the maximum to full-load torque=\",ratio*1000,\"10^-3\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "ratio of the maximum to full-load torque= 3.9603960396 10^-3\n" + ] + } + ], + "prompt_number": 13 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.14(c), Page Number:1267" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=12\n", + "v=600#V\n", + "f=50#Hz\n", + "r=0.03#ohm\n", + "x=0.5#ohm\n", + "n=495#rpm\n", + "s=0.01\n", + "#calculation\n", + "Ns=120*f/p\n", + "a=r/x\n", + "n=Ns*(1-a)\n", + "ratio=2*a*s/(a**2+s**2)\n", + "\n", + "#result\n", + "print \"speed of max torque=\",n,\"rpm\"\n", + "print \"ratio of torques=\",ratio" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed of max torque= 470.0 rpm\n", + "ratio of torques= 0.324324324324\n" + ] + } + ], + "prompt_number": 15 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.15, Page Number:1267" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=746.0#kW\n", + "f=50.0#Hz\n", + "p=16\n", + "zr=complex(0.02,0.15)\n", + "n=360.0#rpm\n", + "\n", + "#calculation\n", + "ns=120*f/p\n", + "s=(ns-n)/ns\n", + "a=zr.real/zr.imag\n", + "ratio=2*a*s/(a**2+s**2)\n", + "N=ns*(1-a)\n", + "R=zr.imag-zr.real\n", + "\n", + "#result\n", + "print \"ratio of torques=\",ratio\n", + "print \"speed at maximum torque=\",N,\"rpm\"\n", + "print \"rotor resistance=\",R,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "ratio of torques= 0.550458715596\n", + "speed at maximum torque= 325.0 rpm\n", + "rotor resistance= 0.13 ohm\n" + ] + } + ], + "prompt_number": 19 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.16, Page Number:1268" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "a=Symbol('a')\n", + "p=4\n", + "f=50.0#Hz\n", + "r=0.025#ohm\n", + "x=0.12#ohm\n", + "ratio=3.0/4.0\n", + "\n", + "#calculations\n", + "s=r/x\n", + "ns=120*f/p\n", + "n=ns*(1-s)\n", + "a=solve(ratio-(2*a/(1+a**2)),a)\n", + "r=a[0]*x-r\n", + "\n", + "#result\n", + "print \"speed at maximum torque=\",n,\"rpm\"\n", + "print \"additional resistance=\",r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed at maximum torque= 1187.5 rpm\n", + "additional resistance= 0.0291699475574164 ohm\n" + ] + } + ], + "prompt_number": 24 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.17, Page Number:1268" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "f=50#Hz\n", + "s=0.04\n", + "r=0.01#ohm\n", + "x=0.1#ohm\n", + "p=8\n", + "#calculation\n", + "a=r/x\n", + "t_ratio=2*a*s/(a**2+s**2)\n", + "ns=120*f/p\n", + "n=(1-a)*ns\n", + "\n", + "#result\n", + "print \"ratio of torques=\",1/t_ratio\n", + "print \"speed=\",n,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "ratio of torques= 1.45\n", + "speed= 675.0 rpm\n" + ] + } + ], + "prompt_number": 26 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.18, Page Number:1268" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "a=Symbol('a')\n", + "a2=Symbol('a2')\n", + "p=3\n", + "t_ratio=2.5\n", + "t_ratio2=1.5\n", + "s=0.03\n", + "\n", + "#calculation\n", + "t_ratio3=t_ratio2/t_ratio\n", + "a=solve(t_ratio3-(2*a/(1+a**2)),a)\n", + "a2=solve(a2**2-0.15*a2+0.0009,a2)\n", + "r_red=(a[0]-a2[1])/a[0]\n", + "#result\n", + "print \"percentage reduction in rotor circuit resistance=\",r_red*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "percentage reduction in rotor circuit resistance= 56.8784093726987 %\n" + ] + } + ], + "prompt_number": 46 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.19, Page Number:1269" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=8\n", + "f=50#Hz\n", + "r=0.08#ohm\n", + "n=650.0#rpm\n", + "\n", + "#calculation\n", + "ns=120*f/p\n", + "sb=(ns-n)/ns\n", + "x2=r/sb\n", + "a=1\n", + "r=a*x2-r\n", + "#result\n", + "print \"extra resistance=\",r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "extra resistance= 0.52 ohm\n" + ] + } + ], + "prompt_number": 51 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.20, Page Number:1269" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "R=Symbol('R')\n", + "p=4\n", + "f=50.0#Hz\n", + "t=162.8#N-m\n", + "n=1365.0#rpm\n", + "r=0.2#ohm\n", + "\n", + "#calculations\n", + "ns=120*f/p\n", + "sb=(ns-n)/ns\n", + "x2=r/sb\n", + "R=solve(1.0/(4*x2)-((r+R)/((r+R)**2+x2**2)),R)\n", + "\n", + "#result\n", + "print \"resistance to be added=\",round(R[0],1),\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance to be added= 0.4 ohm\n" + ] + } + ], + "prompt_number": 56 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.21, Page Number:1270" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4.0\n", + "f=50.0#Hz\n", + "load=7.46#kW\n", + "t_ratios=1.60\n", + "t_ratiom=2.0\n", + "\n", + "#calcualtion\n", + "t_ratio=t_ratios/t_ratiom\n", + "#0.8a2-2*a+0.8 a=0.04\n", + "#0.5=2*a*sf/a2+sf2 sf=0.01\n", + "a=0.04\n", + "sf=0.01\n", + "ns=120*f/p\n", + "n=ns-sf*ns\n", + "N=ns-a*ns\n", + "\n", + "#result\n", + "print \"full-load speed=\",n,\"rpm\"\n", + "print \"speed at maximum torque=\",N,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "full-load speed= 1485.0 rpm\n", + "speed at maximum torque= 1440.0 rpm\n" + ] + } + ], + "prompt_number": 15 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.22, Page Number:1270" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=6\n", + "v=240#V\n", + "f=50#Hz\n", + "r=0.12#ohm\n", + "x=0.85#ohm\n", + "ratio=1.8\n", + "s=0.04\n", + "\n", + "#calculations\n", + "k=1/ratio\n", + "e2=k*(v/3**0.5)\n", + "ns=120*f/p\n", + "tf=(3/(2*3.14*f/3))*(s*e2*e2*r/(r**2+(s*x)**2))\n", + "s=r/x\n", + "tmax=(3/(2*3.14*f/3))*(s*e2*e2*r/(r**2+(s*x)**2))\n", + "n=ns*(1-s)\n", + "\n", + "#result\n", + "print \"developed torque=\",tf,\"N-m\"\n", + "print \"maximum torque=\",tmax,\"N-m\"\n", + "print \"speed at maximum torque=\",n,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "developed torque= 52.4097855621 N-m\n", + "maximum torque= 99.9125764956 N-m\n", + "speed at maximum torque= 858.823529412 rpm\n" + ] + } + ], + "prompt_number": 16 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.23, Page Number:1270" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "r=0.015#ohm\n", + "x=0.09#ohm\n", + "s=0.03\n", + "\n", + "#calculation\n", + "ns=100#rpm considered\n", + "n=(1-s)*ns\n", + "n2=n/2\n", + "s2=(ns-n2)/ns\n", + "ratio=((s2/s)*(r**2+(s*x)**2)/(r**2+(s2*x)**2))**0.5\n", + "per=1-1/ratio\n", + "phi=math.atan(s2*x/r)\n", + "pf=math.cos(phi)\n", + "\n", + "#result\n", + "print \"percentage reduction=\",per*100,\"%\"\n", + "print \"pf=\",pf\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "percentage reduction= 22.8528060715 %\n", + "pf= 0.307902262948\n" + ] + } + ], + "prompt_number": 17 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.26, Page Number:1272" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=440#V\n", + "f=50#Hz\n", + "p=4\n", + "t=100#N-m\n", + "n=1200#rpm\n", + "\n", + "#calculation\n", + "e2=v/2\n", + "ns=120*f/p\n", + "n=ns-n\n", + "n2=n+ns/2\n", + "\n", + "#result\n", + "print \"stator supply voltage=\",e2,\"V\"\n", + "print \"new speed=\",n2,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "stator supply voltage= 220 V\n", + "new speed= 1050 rpm\n" + ] + } + ], + "prompt_number": 18 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.24, Page Number:1274" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable delclaration\n", + "v=400.0#V\n", + "f=60.0#Hz\n", + "p=8.0\n", + "n=1140.0#rpm\n", + "e=440.0#V\n", + "e2=550.0#V\n", + "\n", + "#calculations\n", + "ns=120*f/p\n", + "s1=(ns-n)/ns\n", + "s2=s1*(e/e2)**2\n", + "n2=ns*(1-s2)\n", + "\n", + "#result\n", + "print \"speed=\",n2,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 1053.6 rpm\n" + ] + } + ], + "prompt_number": 21 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.25, Page Number:1274" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=450.0#V\n", + "f=60.0#Hz\n", + "p=8.0\n", + "n=873.0#rpm\n", + "t=23.0#degrees\n", + "n2=864.0#rpm\n", + "alpha=1.0/234.0#per degrees centrigrade\n", + "\n", + "#calculation\n", + "s1=(900-n)/900\n", + "s2=(900-n2)/900\n", + "ratio=s2/s1-1\n", + "t2=(s2/s1-1)/alpha+23 \n", + "\n", + "#result\n", + "print \"increase in rotor resistance=\",ratio*100,\"%\"\n", + "print \"approx temperature=\",t2,\"degrees centigrade\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "increase in rotor resistance= 33.3333333333 %\n", + "approx temperature= 101.0 degrees centigrade\n" + ] + } + ], + "prompt_number": 24 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.27, Page Number:1283" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=440.0#V\n", + "f=500.0#Hz\n", + "p=6.0\n", + "load=80.0#kW\n", + "alt=100.0\n", + "ns=120.0*f/60.0\n", + "#calculation\n", + "s=alt/(60.0*f)\n", + "n=(1-s)*ns\n", + "cu_loss=(1.0/3.0)*load*1000/3.0\n", + "\n", + "#result\n", + "print \"slip=\",s*1000,\"%\"\n", + "print \"rotor speed=\",n,\"rpm\"\n", + "print \"rotor copper loss=\",cu_loss/10000,\"kW\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "slip= 3.33333333333 %\n", + "rotor speed= 996.666666667 rpm\n", + "rotor copper loss= 0.888888888889 kW\n" + ] + } + ], + "prompt_number": 36 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.28, Page Number:1283" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=440.0#V\n", + "f=50.0#Hz\n", + "p=4.0\n", + "n=1425.0#rpm\n", + "z=complex(0.4,4)\n", + "ratio=0.8\n", + "loss=500.0#W\n", + "\n", + "#calculation\n", + "ns=120*f/p\n", + "s=75/ns\n", + "e1=v/3**0.5\n", + "tf=(3*2/(2*3.14*f))*(((e1*ratio)**2)*z.real*s)/(z.real**2+(s*z.imag)**2)\n", + "ir=s*ratio*e1/(z.real**2+(s*z.imag)**2)**0.5\n", + "cu_loss=3*ir**2*z.real\n", + "pm=2*3.4*(n/60)*tf\n", + "pout=pm-loss\n", + "s=z.real/z.imag\n", + "tmax=(3*2/(2*3.14*f))*(((e1*ratio)**2)*z.real*s)/(z.real**2+(s*z.imag)**2)\n", + "nmax=ns-s*ns\n", + "i=ratio*e1/abs(z)\n", + "tst=(3*2/(2*3.14*f))*(((e1*ratio)**2)*z.real)/(z.real**2+(z.imag)**2)\n", + "\n", + "#result\n", + "print \" full load torque=\",tf,\"N-m\"\n", + "print \"rotor current=\",ir,\"A\"\n", + "print \"cu_loss=\",cu_loss,\"W\"\n", + "print \"power output=\",pout,\"W\"\n", + "print \"max torque=\",tmax,\"N-m\"\n", + "print \"speed at max torque=\",nmax,\"rpm\"\n", + "print \"starting current=\",i,\"A\"\n", + "print \"starting torque=\",tst,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " full load torque= 78.9197452229 N-m\n", + "rotor current= 22.7215022978 A\n", + "cu_loss= 619.52 W\n", + "power output= 12245.5388535 W\n", + "max torque= 98.6496815287 N-m\n", + "speed at max torque= 1350.0 rpm\n", + "starting current= 50.5546790867 A\n", + "starting torque= 19.5345904017 N-m\n" + ] + } + ], + "prompt_number": 47 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.29, Page Number:1285" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "P=23#kW\n", + "p=4\n", + "e=0.92\n", + "n=1440#r.p.m\n", + "loss=0.25\n", + "\n", + "#calculations\n", + "motor_input=P/e\n", + "total_loss=motor_input-P\n", + "friction_loss=total_loss/p\n", + "Pm=P+friction_loss\n", + "Psw=Pm*1500/n\n", + "ws=2*3.14*1500/60\n", + "Tsw=Psw*1000/ws\n", + "\n", + "#result\n", + "print \"Synchronous torque=\",round(Tsw),\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Synchronous torque= 156.0 N-m\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.30, Page Number:1286" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=60#kW\n", + "loss=1#kW\n", + "s=0.03\n", + "\n", + "#calculations\n", + "p2=load-loss\n", + "pm=(1-s)*p2\n", + "cu_loss=s*p2\n", + "rotor_loss=cu_loss*1000/3\n", + "\n", + "#result\n", + "print \"mechanical power developed=\",pm,\"kW\"\n", + "print \"rotor copper loss=\",rotor_loss,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "mechanical power developed= 57.23 kW\n", + "rotor copper loss= 590.0 W\n" + ] + } + ], + "prompt_number": 52 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.31, Page Number:1287" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=400#V\n", + "f=50#Hz\n", + "p=6\n", + "load=20#KW\n", + "s=0.03\n", + "i=60#A\n", + "\n", + "#calculation\n", + "fr=s*f\n", + "ns=120*f/p\n", + "n=ns*(1-s)\n", + "cu_loss=s*load*1000\n", + "r2=cu_loss/(3*i**2)\n", + "\n", + "#result\n", + "print \"frequency of rotor current=\",fr,\"Hz\"\n", + "print \"rotor copper loss=\",cu_loss,\"W\"\n", + "print \"rotor resistance=\",r2,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "frequency of rotor current= 1.5 Hz\n", + "rotor copper loss= 600.0 W\n", + "rotor resistance= 0.0555555555556 ohm\n" + ] + } + ], + "prompt_number": 54 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.32, Page Number:1287" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=6\n", + "f=50#Hz\n", + "load=3.73#KW\n", + "n=960#rpm\n", + "loss=280#W\n", + "\n", + "#calculation\n", + "ns=120*f/p\n", + "input_r=load*1000*ns/n\n", + "input_s=input_r+loss\n", + "\n", + "#result\n", + "print \"stator input=\",input_s,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "stator input= 4165.41666667 W\n" + ] + } + ], + "prompt_number": 55 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.33, Page Number:1287" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=400.0#V\n", + "f=50.0#Hz\n", + "p=6.0\n", + "p2=75.0#KW\n", + "alt=100.0\n", + "\n", + "#calculations\n", + "f1=alt/60\n", + "s=f1/f\n", + "ns=120*f/p\n", + "n=ns*(1-s)\n", + "cu_loss_r_per_phase=s*p2/3\n", + "pm=(1-s)*p2\n", + "\n", + "#result\n", + "print \"slip=\",s*100,\"%\"\n", + "print \"rotor speed=\",n,\"rpm\"\n", + "print \"rotor copper loss per phase=\",cu_loss_r_per_phase,\"kW\"\n", + "print \"mechancal power=\",pm,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "slip= 3.33333333333 %\n", + "rotor speed= 966.666666667 rpm\n", + "rotor copper loss per phase= 0.833333333333 kW\n", + "mechancal power= 72.5 kW\n" + ] + } + ], + "prompt_number": 57 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.34, Page Number:1287" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=500.0#V\n", + "f=50.0#Hz\n", + "p=6.0\n", + "n=975.0#rpm\n", + "p1=40.0#KW\n", + "loss_s=1.0#kW\n", + "loss=2.0#KW\n", + "\n", + "#calculation\n", + "ns=120*f/p\n", + "s=(ns-n)/ns\n", + "p2=p1-loss_s\n", + "cu_loss=s*p2\n", + "pm=p2-cu_loss\n", + "pout=pm-loss\n", + "efficiency=pout/p1\n", + "\n", + "#result\n", + "print \"slip=\",s*100,\"%\"\n", + "print \"rotor copper loss=\",cu_loss,\"kW\"\n", + "print \"shaft power=\",pout,\"kW\"\n", + "print \"efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "slip= 2.5 %\n", + "rotor copper loss= 0.975 kW\n", + "shaft power= 36.025 kW\n", + "efficiency= 90.0625 %\n" + ] + } + ], + "prompt_number": 59 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.35, Page Number:1287" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "output=100#KW\n", + "v=3300#V\n", + "f=50#Hz\n", + "n=500#rpm\n", + "s=0.018\n", + "pf=0.85\n", + "cu_loss=2440#W\n", + "iron_loss=3500#W\n", + "rotational_loss=1200#W\n", + "\n", + "#calculations\n", + "pm=output+rotational_loss/1000\n", + "cu_loss_r=(s/(1-s))*pm\n", + "p2=pm+cu_loss_r\n", + "input_s=p2+cu_loss/1000+iron_loss/1000\n", + "il=input_s*1000/(3**0.5*v*pf)\n", + "efficiency=output/input_s\n", + "\n", + "#result\n", + "print \"rotor copper loss=\",cu_loss_r,\"kW\"\n", + "print \"line current=\",il,\"A\"\n", + "print \"efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "rotor copper loss= 1.85132382892 kW\n", + "line current= 22.1989272175 A\n", + "efficiency= 92.7202341611 %\n" + ] + } + ], + "prompt_number": 62 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.36, Page Number:1288" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=440.0#V\n", + "f=50.0#Hz\n", + "p=6.0\n", + "p2=100.0#W\n", + "c=120.0\n", + "\n", + "#calculations\n", + "s=c/(f*60)\n", + "ns=120*f/p\n", + "n=ns*(1-s)\n", + "pm=(1-s)*p2\n", + "cu_loss=s*p2/3\n", + "n2=ns-n\n", + "\n", + "#result\n", + "print \"slip=\",s*100,\"%\"\n", + "print \"rotor speed=\",n,\"rpm\"\n", + "print \"mechanical power=\",pm,\"kW\"\n", + "print \"copper loss=\",cu_loss,\"kW\"\n", + "print \"speed of stator field with respect to rotor=\",n2,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "slip= 4.0 %\n", + "rotor speed= 960.0 rpm\n", + "mechanical power= 96.0 kW\n", + "copper loss= 1.33333333333 kW\n", + "speed of stator field with respect to rotor= 40.0 rpm\n" + ] + } + ], + "prompt_number": 69 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.37, Page Number:1288" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "efficiency=0.9\n", + "output=37#kW\n", + "ratio=1.0/3.0\n", + "\n", + "#calculation\n", + "input_m=output*1000/efficiency\n", + "total_loss=input_m-output*1000\n", + "x=total_loss/(3+0.5)\n", + "input_r=output*1000+x/2+x\n", + "s=x/input_r\n", + "\n", + "#result\n", + "print \"slip=\",s*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "slip= 3.0303030303 %\n" + ] + } + ], + "prompt_number": 74 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.38, Page Number:1289" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=400#V\n", + "f=50#Hz\n", + "p=6\n", + "load=45#KW\n", + "i=75#A\n", + "s=0.03\n", + "iron_loss=1200#kW\n", + "loss=900#kW\n", + "r=0.12#ohm\n", + "\n", + "#calculations\n", + "pf=load*1000/(3**0.5*v*i)\n", + "r=r*3/2\n", + "cu_loss=3*(i/3**0.5)**2*r\n", + "cu_loss_r=s*42788\n", + "pm=42788-cu_loss_r\n", + "output_s=pm-loss\n", + "efficiency=output_s/(load*1000)\n", + "t=(output_s*60)/(2*3.14*970)\n", + "\n", + "#result\n", + "print \"pf=\",pf\n", + "print \"rotor cu loss=\",cu_loss_r,\"W\"\n", + "print \"p out=\",output_s,\"W\"\n", + "print \"efficiency=\",efficiency*100,\"%\"\n", + "print \"torque=\",t,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "pf= 0.866025403784\n", + "rotor cu loss= 1283.64 W\n", + "p out= 40604.36 W\n", + "efficiency= 90.2319111111 %\n", + "torque= 399.937881673 N-m\n" + ] + } + ], + "prompt_number": 78 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.39(a), Page Number:1287" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4.0\n", + "v=220.0#V\n", + "f=50.0#Hz\n", + "r=0.1#ohm\n", + "x=0.9#ohm\n", + "ratio=1.75\n", + "s=0.05\n", + "\n", + "#calculations\n", + "k=1/ratio\n", + "e1=v/3**0.5\n", + "e2=k*e1\n", + "z=(r**2+(s*x)**2)**0.5\n", + "i2=s*e2/z\n", + "pcr=3*i2**2*r\n", + "pm=pcr*(1-s)/s\n", + "ns=120*f/p\n", + "n=ns*(1-s)\n", + "tg=9.55*pm/n\n", + "sm=r/x\n", + "n=ns*(1-sm)\n", + "e3=sm*e2\n", + "\n", + "#result\n", + "print \"load torque=\",tg/9.81,\"kg-m\"\n", + "print \"speed at maximum torque=\",n,\"rpm\"\n", + "print \"rotor emf at max torque=\",e3,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "load torque= 4.26478644041 kg-m\n", + "speed at maximum torque= 1333.33333333 rpm\n", + "rotor emf at max torque= 8.06457518868 V\n" + ] + } + ], + "prompt_number": 88 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.39(b), Page Number:1290" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=400#V\n", + "f=50#Hz\n", + "p=4\n", + "i=10#A\n", + "pf=0.86\n", + "loss=0.05\n", + "cu_r=0.04\n", + "m_loss=0.03\n", + "\n", + "#calculation\n", + "input_m=3**0.5*v*i*pf\n", + "loss_s=loss*input_m\n", + "input_r=input_m-loss_s\n", + "cu_lossr=cu_r*input_r\n", + "mec_loss=m_loss*input_r\n", + "output_shaft=input_r-cu_lossr-mec_loss\n", + "s=cu_lossr/input_r\n", + "ns=120*f/p\n", + "n=ns*(1-s)\n", + "wr=2*3.14*n/60\n", + "output_r=input_r-cu_lossr\n", + "tr=output_r/wr\n", + "tin=output_shaft/wr\n", + "\n", + "#result\n", + "print \"slip=\",s*100,\"%\"\n", + "print \"rotor speed=\",n,\"rpm\"\n", + "print \"torque developed in the rotor=\",tr,\"Nw-m\"\n", + "print \"shaft torque=\",tin,\"Nw-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "slip= 4.0 %\n", + "rotor speed= 1440.0 rpm\n", + "torque developed in the rotor= 36.0531340072 Nw-m\n", + "shaft torque= 34.9264735695 Nw-m\n" + ] + } + ], + "prompt_number": 91 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.40, Page Number:1291" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=440.0#V\n", + "p=40.0\n", + "f=50.0#Hz\n", + "r=0.1#ohm\n", + "x=0.9#ohm\n", + "ratio=3.5\n", + "s=0.05\n", + "\n", + "#calculation\n", + "e1=v/3**0.5\n", + "k=1/ratio\n", + "e2=k*e1\n", + "er=s*e2\n", + "z=(r**2+(s*x)**2)**0.5\n", + "i2=er/z\n", + "cu_loss=3*i2**2*r\n", + "output=cu_loss*(1-s)/s\n", + "sm=r/x\n", + "er=sm*e2\n", + "zr=(r**2+(x*sm)**2)**0.5\n", + "i2=er/zr\n", + "cu_loss=3*i2**2*r\n", + "input_r=cu_loss/sm\n", + "\n", + "#result\n", + "print \"gross output at 5% slip=\",output,\"W\"\n", + "print \"maximum torque=\",input_r,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "gross output at 5% slip= 6242.77652849 W\n", + "maximum torque= 8780.04535147 W\n" + ] + } + ], + "prompt_number": 107 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.41, Page Number:1291" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "pout=18.65#kW\n", + "p=4.0\n", + "f=50.0#Hz\n", + "loss=0.025\n", + "s=0.04\n", + "\n", + "#calculations\n", + "pw=loss*pout*1000\n", + "pm=pout*1000+pw\n", + "cu_loss=s*pm/(1-s)\n", + "p2=cu_loss/s\n", + "ns=120*f/p\n", + "n=ns*(1-s)\n", + "tsh=9.55*pout*1000/n\n", + "tg=9.55*pm/n\n", + "\n", + "#result\n", + "print \"rotor cu loss=\",cu_loss,\"W\"\n", + "print \"rotor input=\",p2,\"W\"\n", + "print \"shaft torque=\",tsh,\"N-m\"\n", + "print \"gross electromagnetic torque=\",tg,\"N-m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "rotor cu loss= 796.510416667 W\n", + "rotor input= 19912.7604167 W\n", + "shaft torque= 123.685763889 N-m\n", + "gross electromagnetic torque= 126.777907986 N-m\n" + ] + } + ], + "prompt_number": 109 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.42, Page Number:1291" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=8\n", + "f=50.0#Hz\n", + "n=710#rpm\n", + "load=35#kW\n", + "loss=1200#W\n", + "loss_r=600#W\n", + "\n", + "#calculation\n", + "p2=load*1000-loss\n", + "ns=120*f/p\n", + "s=(ns-n)/ns\n", + "cu_loss=s*p2\n", + "pm=p2-cu_loss\n", + "tg=9.55*pm/n\n", + "pout=pm-loss_r\n", + "tsh=9.55*pout/n\n", + "\n", + "#result\n", + "print \"rotor copper loss=\",cu_loss/1000,\"kW\"\n", + "print \"gross torque=\",tg,\"N-m\"\n", + "print \"mechanical power=\",pm,\"W\"\n", + "print \"net torque=\",tsh,\"N-m\"\n", + "print \"mechanical power output=\",pout,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "rotor copper loss= 1.80266666667 kW\n", + "gross torque= 430.386666667 N-m\n", + "mechanical power= 31997.3333333 W\n", + "net torque= 422.316244131 N-m\n", + "mechanical power output= 31397.3333333 W\n" + ] + } + ], + "prompt_number": 113 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.43, Page Number:1292" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=6\n", + "f=50.0#Hz\n", + "s=0.04\n", + "tsh=149.3#N-m\n", + "loss=200#W\n", + "cu_loss=1620#W\n", + "\n", + "#calculations\n", + "ns=120*f/p\n", + "n=ns*(1-s)\n", + "pout=tsh*2*3.14*(n/60)\n", + "output=pout+loss\n", + "p2=output*ns/n\n", + "cu_lossr=p2-output\n", + "p1=p2+cu_loss\n", + "efficiency=pout*100/p1\n", + "\n", + "#result\n", + "print \"output power=\",pout/1000,\"kW\"\n", + "print \"rotor cu loss=\",cu_lossr,\"W\"\n", + "print \"the efficiency=\",efficiency,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "output power= 15.001664 kW\n", + "rotor cu loss= 633.402666667 W\n", + "the efficiency= 85.9444669361 %\n" + ] + } + ], + "prompt_number": 116 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.44, Page Number:1291" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "pout=18.65#kW\n", + "p=6\n", + "f=50.0#Hz\n", + "n=960#rpm\n", + "i2=35#A\n", + "loss=1#kW\n", + "\n", + "#calculation\n", + "pm=pout+loss\n", + "ns=120*f/p\n", + "s=(ns-n)/ns\n", + "cu_lossr=pm*s*1000/(1-s)\n", + "r2=cu_lossr/(3*i2**2)\n", + "\n", + "#result\n", + "print \"resistane per phase=\",r2,\"ohm/phase\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistane per phase= 0.222789115646 ohm/phase\n" + ] + } + ], + "prompt_number": 120 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.45, Page Number:1291" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "sf=Symbol('sf')\n", + "v=400#V\n", + "p=4\n", + "f=50#Hz\n", + "r=0.01#ohm\n", + "x=0.1#ohm\n", + "ratio=4\n", + "\n", + "#calculation\n", + "e1=v/3**0.5\n", + "e2=e1/ratio\n", + "sm=r/x\n", + "ns=120*f/p\n", + "tmax=(3/(2*3.14*25))*(e2**2/(2*x))\n", + "a=r/x\n", + "sf=solve(0.5*(a**2+sf**2)-2*a*sf,sf)\n", + "n=ns*(1-sf[0])\n", + "tf=tmax/2\n", + "output=2*3.14*n*tf/60\n", + "\n", + "#result\n", + "print \"maximum torque=\",tmax,\"N-m\"\n", + "print \"full load slip=\",sf[0]\n", + "print \"power output=\",output,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "maximum torque= 318.47133758 N-m\n", + "full load slip= 0.0267949192431123\n", + "power output= 24330.1270189222 W\n" + ] + } + ], + "prompt_number": 129 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.46, Page Number:1291" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "f=50.0#Hz\n", + "v=200.0#V\n", + "r=0.1#ohm\n", + "x=0.9#ohm\n", + "k=0.67\n", + "s=0.04\n", + "#calculations\n", + "e1=v/3**0.5\n", + "e2=e1*k\n", + "z=(r**2+(s*x)**2)**0.5\n", + "i2=s*e2/z\n", + "cu_loss=3*i2**2*r\n", + "pm=cu_loss*(1-s)/s\n", + "ns=120*f/p\n", + "n=ns*(1-s)\n", + "tg=9.55*pm/n\n", + "sm=r/x\n", + "er=sm*e2\n", + "zr=(r**2+(sm*x)**2)**0.5\n", + "i2=er/zr\n", + "cu_lossr=3*i2**2*r\n", + "output=cu_lossr*(1-sm)/sm\n", + "n=(1-sm)*ns\n", + "tmax=9.55*output/n\n", + "\n", + "#result\n", + "print \"torque=\",tg,\"N-m\"\n", + "print \"maximum torque=\",tmax,\"N-m\"\n", + "print \"speed at max torque=\",n,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "torque= 40.4815391879 N-m\n", + "maximum torque= 63.511037037 N-m\n", + "speed at max torque= 1333.33333333 rpm\n" + ] + } + ], + "prompt_number": 143 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.47, Page Number:1293" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "r=0.015#ohm\n", + "x=0.09#ohm\n", + "f=50#Hz\n", + "s=0.04\n", + "p=4\n", + "e2=110#V\n", + "\n", + "#calculations\n", + "z=(r**2+x**2)**0.5\n", + "pf=r/z\n", + "xr=s*x\n", + "zr=(r**2+xr**2)**0.5\n", + "pf2=r/zr\n", + "ns=120*f/p\n", + "n=ns*(1-s)\n", + "er=s*e2\n", + "i2=er/zr\n", + "cu_loss=3*i2**2*r\n", + "pm=cu_loss*(1-s)/s\n", + "tg=9.55*pm/n\n", + "\n", + "#result\n", + "print \"pf of motor at start=\",pf\n", + "print \"pf of motor at s=4%\",pf2\n", + "print \"full load torque=\",tg,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "pf of motor at start= 0.164398987305\n", + "pf of motor at s=4% 0.972387301981\n", + "full load torque= 582.728189612 N-m\n" + ] + } + ], + "prompt_number": 144 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.48, Page Number:1294" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=6.0\n", + "f=50.0#Hz\n", + "tsh=162.84#N-m\n", + "c=90.0\n", + "t=20.36#N-m\n", + "loss=830.0#W\n", + "\n", + "#calculation\n", + "ns=120*f/p\n", + "fr=c/60\n", + "s=fr/f\n", + "n=ns*(1-s)\n", + "output=2*3.14*n*tsh/60\n", + "tg=tsh+t\n", + "p2=tg*ns/9.55\n", + "cu_lossr=s*p2\n", + "p1=p2+cu_lossr\n", + "efficiency=output*100/p1\n", + "\n", + "#result\n", + "print \"motor output=\",output,\"W\"\n", + "print \"cu loss=\",cu_lossr,\"W\"\n", + "print \"motor input\",p1,\"W\"\n", + "print \"efficiency=\",efficiency,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "motor output= 16532.6024 W\n", + "cu loss= 575.497382199 W\n", + "motor input 19758.7434555 W\n", + "efficiency= 83.6723369441 %\n" + ] + } + ], + "prompt_number": 146 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.49, Page Number:1294" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=18.65#kW\n", + "v=420.0#V\n", + "p=6\n", + "f=50.0#Hz\n", + "r=1.0#ohm\n", + "z=complex(0.25,0.75)\n", + "zr=complex(0.173,0.52)\n", + "v1=420.0#V\n", + "v2=350.0#V\n", + "\n", + "#calculations\n", + "k=v2/v1\n", + "r02=zr.real+k**2*z.real\n", + "x02=zr.imag+k**2*z.imag\n", + "z02=((r+r02)**2+x02**2)**0.5\n", + "i2=v2/(3**0.5*z02)\n", + "cu_loss=i2**2*(r+zr.real)\n", + "p2=cu_loss*3\n", + "ns=120*f/p\n", + "tst=9.55*p2/(ns*9.81)\n", + "#result\n", + "print \"torque=\",tst,\"kg-m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "torque= 48.2909354778 kg-m\n" + ] + } + ], + "prompt_number": 157 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.50, Page Number:1295" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=8\n", + "load=37.3#ohm\n", + "v=280#V\n", + "f=50.0#Hz\n", + "i=200#A\n", + "pf=0.25\n", + "r=0.15#ohm\n", + "k=1.0/3\n", + "#calculation\n", + "wsc=2*v*i*pf\n", + "power_phase=v*i*pf\n", + "R=power_phase/i**2\n", + "r2_=R-r\n", + "r2=k**2*r2_\n", + "p2=3*i**2*r2_\n", + "ns=120*f/p\n", + "t=9.55*p2/ns\n", + "\n", + "#result\n", + "print \"resistance perphaseof therotor winding=\",r2,\"ohm\"\n", + "print \"startingtorque=\",t,\"N-m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance perphaseof therotor winding= 0.0222222222222 ohm\n", + "startingtorque= 305.6 N-m\n" + ] + } + ], + "prompt_number": 158 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.51, Page Number:1295" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "ratios=1.6\n", + "ratiom=2.0\n", + "sf=0.01\n", + "sb=0.04\n", + "#calculation\n", + "i=(ratios/sf)**0.5\n", + "\n", + "#result\n", + "print \"slip at full load=\",sf\n", + "print \"slip at maximum torque=\",sb\n", + "print \"rotor current=\",i" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "slip at full load= 0.01\n", + "slip at maximum torque= 0.04\n", + "rotor current= 12.6491106407\n" + ] + } + ], + "prompt_number": 159 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.52, Page Number:1297" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=200#km/h\n", + "f=100#Hz\n", + "\n", + "#calculation\n", + "w=v*5.0/18/(2*f)\n", + "\n", + "#result\n", + "print \"pole pitch=\",w*1000,\"mm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "pole pitch= 277.777777778 mm\n" + ] + } + ], + "prompt_number": 162 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.53, Page Number:1297" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "w=6#mm\n", + "f=25#Hz\n", + "p=6#kW\n", + "loss=1.2#kW\n", + "v=2.4#m/s\n", + "\n", + "#calculation\n", + "vs=2*f*w/100\n", + "s=(vs-v)/vs\n", + "p2=p-loss\n", + "pcr=s*p2\n", + "pm=p2-pcr\n", + "f=p2*1000/vs\n", + "\n", + "#result\n", + "print \"synchronous speed=\",vs,\"m/s\"\n", + "print \"slip=\",s\n", + "print \"cu loss=\",pcr,\"kW\"\n", + "print \"mechanical power=\",pm,\"kW\"\n", + "print \"thrust=\",f/1000,\"kN\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "synchronous speed= 3 m/s\n", + "slip= 0.2\n", + "cu loss= 0.96 kW\n", + "mechanical power= 3.84 kW\n", + "thrust= 1.6 kN\n" + ] + } + ], + "prompt_number": 163 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.54, Page Number:1304" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "s=0.12\n", + "r=0.08#ohm/phase\n", + "pg=9000.0#W\n", + "\n", + "#calculations\n", + "rl=r*(1/s-1)\n", + "v=(pg*rl/3)**0.5\n", + "il=v/rl\n", + "\n", + "#result\n", + "print \"load resistance=\",rl,\"ohm\"\n", + "print \"load voltage=\",v,\"V\"\n", + "print \"load current=\",il,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "load resistance= 0.586666666667 ohm\n", + "load voltage= 41.9523539268 V\n", + "load current= 71.5096941934 A\n" + ] + } + ], + "prompt_number": 166 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.55, Page Number:1305" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=400.0#V\n", + "f=50.0#Hz\n", + "p=4\n", + "r1=0.15#ohm\n", + "x1=0.45#ohm\n", + "r2_=0.12#ohm\n", + "x2_=0.45#ohm\n", + "xm=complex(0,28.5)#ohm\n", + "s=0.04\n", + "#calculations\n", + "rl_=r2_*(1/s-1)\n", + "i2_=(v/3**0.5)/complex(r1+rl_,x1)\n", + "i0=(v/3**0.5)/xm\n", + "i1=i0+i2_\n", + "pf=math.cos(math.atan(i1.imag/i1.real))\n", + "\n", + "#result\n", + "print \"stator current=\",i1,\"A\"\n", + "print \"power factor=\",pf" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "stator current= (74.5730253701-19.1783634605j) A\n", + "power factor= 0.968485280755\n" + ] + } + ], + "prompt_number": 177 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.56, Page Number:1305" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=220#V\n", + "p=4\n", + "f=50#Hz\n", + "power=3.73#kW\n", + "r1=0.45#ohm\n", + "x1=0.8#ohm\n", + "r2_=0.4#ohm\n", + "x2_=0.8#ohm\n", + "b0=-1.0/30\n", + "loss=50#W\n", + "lossr=150#W\n", + "s=0.04\n", + "\n", + "#calculations\n", + "zab=complex(30*complex(r2_/s,x2_))/complex(r2_/s,x2_-1/b0)\n", + "z01=complex(r1,x1)+zab\n", + "vph=v/3**0.5\n", + "i1=v1/z01\n", + "pf=math.cos(math.atan(i1.imag/i1.real))\n", + "p2=3*i1.real**2*zab.real\n", + "pm=(1-s)*p2\n", + "ns=120*f/p\n", + "n=ns*(1-s)\n", + "tg=9.55*pm/n\n", + "power_o=pm-lossr\n", + "cu_loss=3*i1.real**2*r1\n", + "cu_lossr=s*p2\n", + "total_loss=loss+cu_loss+cu_lossr+lossr\n", + "efficiency=power_o/(power_o+total_loss)\n", + "\n", + "#result\n", + "print \"input current=\",i1,\"A\"\n", + "print \"pf=\",pf\n", + "print \"air gap power=\",p2,\"W\"\n", + "print \"mechanical power=\",pm,\"W\"\n", + "print \"electro magnetic torque=\",tg,\"N-m\"\n", + "print \"output power=\",power_o,\"W\"\n", + "print \"efficiency=\",efficiency*100,\"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "input current= (21.9914486234+42.6194245913j) A\n", + "pf= 0.45854949826\n", + "air gap power= 5173.46132109 W\n", + "mechanical power= 4966.52286825 W\n", + "electro magnetic torque= 32.9377037443 N-m\n", + "output power= 4816.52286825 W\n", + "efficiency= 81.9644851937 %\n" + ] + } + ], + "prompt_number": 184 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.57, Page Number:1306" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=440#V\n", + "f=50#Hz\n", + "load=37.3#kW\n", + "r1=0.1#ohm\n", + "x1=0.4#ohm\n", + "r2_=0.15#ohm\n", + "x2_=0.44#ohm\n", + "loss=1250#W\n", + "lossr=1000#W\n", + "i=20#A\n", + "pf=0.09\n", + "s=0.03\n", + "\n", + "#calculation\n", + "v1=v/3**0.5\n", + "i2_=v1/complex(r1+r2_/s,x1+x2_)\n", + "i1=i2_+complex(1.78,19.9)\n", + "pf=math.cos(math.atan(i1.imag/i1.real))\n", + "p2=3*i2_.real**2*r2_/s\n", + "ns=120*f/p\n", + "tg=9.55*p2/ns\n", + "pm=p2*(1-s)\n", + "pout=pm-1000\n", + "cu_losss=3*i1.real**2*r1\n", + "cu_lossr=s*p2\n", + "total_loss=loss+cu_losss+cu_lossr+lossr\n", + "efficiency=pout/(pout+total_loss)\n", + "\n", + "#result\n", + "print \"line current=\",i1,\"A\"\n", + "print \"pf=\",pf\n", + "print \"electromagnetic torque=\",tg,\"N-m\"\n", + "print \"output=\",pout,\"W\"\n", + "print \"efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "line current= (50.2750367599+11.9125821807j) A\n", + "pf= 0.973057118792\n", + "electromagnetic torque= 224.593900377 N-m\n", + "output= 33218.2329894 W\n", + "efficiency= 89.0932246577 %\n" + ] + } + ], + "prompt_number": 186 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.58, Page Number:1306" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=400#V\n", + "z=complex(0.06,0.2)\n", + "zr=complex(0.06,0.22)\n", + "\n", + "#calculation\n", + "r01=z.real+zr.real\n", + "x01=z.imag+zr.imag\n", + "z01=(r01**2+x01**2)**0.5\n", + "s=z.real/(z.real+z01)\n", + "v1=v/3**0.5\n", + "pmax=3*v1**2/(2*(r01+z01))\n", + "\n", + "#result\n", + "print \"maximum gross power=\",pmax,\"W\"\n", + "print \"slip=\",s" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "maximum gross power= 143676.459572 W\n", + "slip= 0.120771344025\n" + ] + } + ], + "prompt_number": 188 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.59, Page Number:1307" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v1=115#V\n", + "f=60.0#Hz\n", + "p=6\n", + "z=complex(0.07,0.3)\n", + "zr=complex(0.08,0.3)\n", + "gd=0.022#mho\n", + "bo=0.158#mho\n", + "s=0.02\n", + "\n", + "#calculation\n", + "rl_=1/bo*(1/s-1)\n", + "z=complex(z.real+zr.real+rl_,0.6)\n", + "v=v1/3**0.5\n", + "i2=complex(16,-2.36)\n", + "io=v*complex(gd,-bo)\n", + "i1=io+i2\n", + "pf=math.cos(math.atan(i1.imag/i1.real))\n", + "pg=3*abs(i2)**2*rl_/100\n", + "ns=120*f/p\n", + "n=(1-s)*ns\n", + "tg=9.55*pg/n\n", + "p2=3**0.5*v1*abs(i1)*pf\n", + "efficiency=pg*100/p2\n", + "\n", + "#result\n", + "print \"secondary current=\",i2,\"A\"\n", + "print \"primary current=\",i1,\"A\"\n", + "print \"pf=\",pf\n", + "print \"power output=\",pg,\"W\"\n", + "print \"torque=\",tg,\"N-m\"\n", + "print \"input=\",p2,\"W\"\n", + "print \"efficiency=\",efficiency,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "secondary current= (16-2.36j) A\n", + "primary current= (17.460696181-12.8504543912j) A\n", + "pf= 0.805393212665\n", + "power output= 2433.59058228 W\n", + "torque= 19.7625765823 N-m\n", + "input= 3477.92348593 W\n", + "efficiency= 69.9725164204 %\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.60, Page Number:1308" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=400.0#V\n", + "z=complex(0.4,1)\n", + "zr=complex(0.6,1)\n", + "zm=complex(10.0,50.0)\n", + "s=0.05\n", + "\n", + "#calculation\n", + "sm=zr.real/(z.real**2+(z.imag+zr.imag)**2)**0.5\n", + "v1=v/3**0.5\n", + "i2=v1/((z.real+zr.real)**2+(zr.imag+z.imag)**2)**0.5\n", + "tgmax=3*i2**2*z.real*60.0/(sm*2*3.14*1500)\n", + "#result\n", + "print \"maximum torque=\",tgmax,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "maximum torque= 277.144160399 N-m\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A Textbook of Electrical Technology AC and DC Machines/chapter35.ipynb b/A Textbook of Electrical Technology AC and DC Machines/chapter35.ipynb new file mode 100644 index 00000000..99cfc3c1 --- /dev/null +++ b/A Textbook of Electrical Technology AC and DC Machines/chapter35.ipynb @@ -0,0 +1,1258 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:add10f49c90b647cf79b01d40fd4e1ca71068a8e9a13aad0c70f06cfeaabeda4" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 35: Computations and Circle Diagrams" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.1, Page Number:1316" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "i=10#A\n", + "p=450#W\n", + "v=110#V\n", + "r=0.05#ohm\n", + "loss=135#w\n", + "\n", + "#calculations\n", + "cu_loss=3*i**2*r\n", + "core_loss=p-loss-cu_loss\n", + "volt=v/math.sqrt(3)\n", + "g=core_loss/(3*(v/math.sqrt(3))**2)\n", + "y=i*math.sqrt(3)/v\n", + "b=math.sqrt(y**2-g**2)\n", + "\n", + "#result\n", + "print \"exciting conductance=\",g,\"seimens/phase\"\n", + "print \"susceptance/phase=\",b,\"seimens/phase\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "exciting conductance= 0.0247933884298 seimens/phase\n", + "susceptance/phase= 0.155494939853 seimens/phase\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.2, Page Number:1317" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=110.0#V\n", + "i=25.0#A\n", + "v2=30.0#V\n", + "inpt=440.0#W\n", + "loss=40.0#W\n", + "r=0.1#ohm\n", + "ratio=1.6\n", + "\n", + "#calculations\n", + "vs=v2/math.sqrt(3)\n", + "z01=vs/i\n", + "losses=inpt-loss\n", + "r01=losses/(3*i**2)\n", + "x01=math.sqrt(z01**2-r01**2)\n", + "dc_r=r/2.0\n", + "ac_r=dc_r*ratio\n", + "effective_r=r01-ac_r\n", + "\n", + "#result\n", + "print \"x01=\",x01,\"ohm\"\n", + "print \"r1=\",ac_r,\"ohm\"\n", + "print \"r2=\",effective_r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "x01= 0.659157711696 ohm\n", + "r1= 0.08 ohm\n", + "r2= 0.133333333333 ohm\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.10, Page Number:1333" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "ratio=1/4.0\n", + "slip=3.0\n", + "ratio2=4.0\n", + "\n", + "#calculations\n", + "K=math.sqrt(ratio/((ratio2**2)*0.01*slip))\n", + "\n", + "#result\n", + "print \"Percentage Tapping=\",K*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Percentage Tapping= 72.1687836487 %\n" + ] + } + ], + "prompt_number": 18 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.11, Page Number:1333" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "load=14.92#kW\n", + "v1=400#V\n", + "n=950#rpm\n", + "f=50.0#Hz\n", + "v2=400#V\n", + "ratio=1.8\n", + "i=30#A\n", + "\n", + "#calculations\n", + "v=v1/math.sqrt(ratio)\n", + "If=6*v*i/v1\n", + "K=v/v1\n", + "kisc=K**2*6*i\n", + "ts_tf=(1/6.0)*6**2*(f/1000.0)\n", + "\n", + "#result\n", + "print \"a)voltage=\",v,\"V\"\n", + "print \"b)current=\",If,\"A\"\n", + "print \"c)line current=\",kisc,\"A\"\n", + "print \"d)percentage=\",ts_tf*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a)voltage= 298.142397 V\n", + "b)current= 134.16407865 A\n", + "c)line current= 100.0 A\n", + "d)percentage= 30.0 %\n" + ] + } + ], + "prompt_number": 22 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.12, Page Number:1334" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "ratio=5.0\n", + "per=5\n", + "\n", + "#calculations\n", + "k=math.sqrt(ratio/3)\n", + "tst_tf=(3.0/5)*5**2*0.01*per*100\n", + "\n", + "#result\n", + "print \"auto-transformation ratio=\",tst_tf,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "auto-transformation ratio= 75.0 %\n" + ] + } + ], + "prompt_number": 29 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.13, Page Number:1334" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=400.0#V\n", + "per=3.5\n", + "v2=92.0#V\n", + "\n", + "#calculations\n", + "k=math.sqrt(2/(v/v2))\n", + "ts_tf=k**2*(v/v2)**2*0.01*per\n", + "\n", + "#result\n", + "print \"auto-transformation ratio=\",ts_tf*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "auto-transformation ratio= 30.4347826087 %\n" + ] + } + ], + "prompt_number": 31 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.14, Page Number:1336" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "load=12.0#kW\n", + "v=440.0#V\n", + "efficiency=0.85\n", + "pf=0.8\n", + "i=45.0#A\n", + "v2=220.0#V\n", + "\n", + "#calculations\n", + "isc=i*v/v2\n", + "if_=load*1000/(efficiency*math.sqrt(3)*pf*v)\n", + "ist=isc/math.sqrt(3)\n", + "ratio=ist/if_\n", + "\n", + "#result\n", + "print \"ratio=\",ratio" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "ratio= 2.244\n" + ] + } + ], + "prompt_number": 34 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.15, Page Number:1336" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "i=60.0#A\n", + "n1=940.0#rpm\n", + "t=150.0#N-m\n", + "i2=300.0#A\n", + "\n", + "#calculations\n", + "sf=(1000-n1)/1000\n", + "tst=t*(i2/i)**2*sf\n", + "s_i=i2/3\n", + "sd_tst=tst/3\n", + "\n", + "#result\n", + "print \"Starting torque=\",tst,\"N-m\"\n", + "print\"when star/delta is used:\"\n", + "print \"starting current=\",s_i,\"A\"\n", + "print \"starting torque=\",sd_tst,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Starting torque= 225.0 N-m\n", + "when star/delta is used:\n", + "starting current= 100.0 A\n", + "starting torque= 75.0 N-m\n" + ] + } + ], + "prompt_number": 37 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.16, Page Number:1336" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "tapping=70.7\n", + "ratio=6.0\n", + "slip=4.0\n", + "\n", + "#calculation\n", + "tst_tf=(1.0/3.0)*ratio**2.0*slip*0.01\n", + "tst_tf2=(1.0/2)*ratio**2.0*slip*0.01\n", + "\n", + "#result\n", + "print \"star-delta switch:starting torque=\",tst_tf*100,\"%\"\n", + "print \"auto-transformer switch:starting torque=\",tst_tf2*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "star-delta switch:starting torque= 48.0 %\n", + "auto-transformer switch:starting torque= 72.0 %\n" + ] + } + ], + "prompt_number": 48 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.17, Page Number:1337" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "load=11.2#W\n", + "f=50.0#Hz\n", + "v=400.0#V\n", + "n=960.0#rpm\n", + "i=86.4#A\n", + "efficiency=0.88\n", + "pf=0.85\n", + "\n", + "#calculations\n", + "isc=i/math.sqrt(3)\n", + "ist=isc/math.sqrt(3)\n", + "il=load*1000/(efficiency*pf*math.sqrt(3)*v)\n", + "iph=il/math.sqrt(3)\n", + "tst_tf=(ist*math.sqrt(3)/il)**2*0.05\n", + "\n", + "#result\n", + "print \"starting torque=\",tst_tf*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "starting torque= 26.6369577796 %\n" + ] + } + ], + "prompt_number": 49 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.18, Page Number:1337" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "output=10.0#kW\n", + "v=400.0#V\n", + "pf=0.85\n", + "efficiency=0.88\n", + "v2=200.0#V\n", + "i=40.0#A\n", + "\n", + "#calculations\n", + "il=load*1000/(efficiency*math.sqrt(3)*v*pf)\n", + "isc=i*v/v2\n", + "iscp=isc/math.sqrt(3)\n", + "ist=iscp/math.sqrt(3)\n", + "ratio=ist/il\n", + "\n", + "#result\n", + "print \"ratio=\",ratio" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "ratio= 1.23388000387\n" + ] + } + ], + "prompt_number": 53 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.19, Page Number:1337" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=3.73*1000#W\n", + "v=400.0#V\n", + "f=50.0#Hz\n", + "slip=4.5\n", + "t=250.0\n", + "i=650.0\n", + "tap=60.0\n", + "\n", + "#calculation\n", + "il=i/3\n", + "im=i/3\n", + "tst=t/3\n", + "ilm=(tap/100)**2*i\n", + "imk=(tap/100)*i\n", + "tstk=(tap/100)**2*t\n", + "\n", + "#result\n", + "print \"star/delta:\"\n", + "print \"line current=\",il,\"%\"\n", + "print \"motor current=\",im,\"%\"\n", + "print \"starting torque=\",tst,\"%\"\n", + "print \"60% taps:\"\n", + "print \"line current=\",ilm,\"%\"\n", + "print \"motor current=\",imk,\"%\"\n", + "print \"starting torque=\",tstk,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " star/delta:\n", + "line current= 216.666666667 %\n", + "motor current= 216.666666667 %\n", + "starting torque= 83.3333333333 %\n", + "60% taps:\n", + "line current= 234.0 %\n", + "motor current= 390.0 %\n", + "starting torque= 90.0 %\n" + ] + } + ], + "prompt_number": 55 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.20, Page Number:1338" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=180.0\n", + "flt=35.0\n", + "tap=75.0\n", + "\n", + "#calculations\n", + "isc=load*3.0/100\n", + "isck=tap**2*isc/100\n", + "sf=flt*3\n", + "tst_tf=tap**2*sf/100\n", + "#result\n", + "print \"starting current=\",isck,\"%\"\n", + "print \"starting torque=\",tst_tf/100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "starting current= 303.75 %\n", + "starting torque= 59.0625 %\n" + ] + } + ], + "prompt_number": 68 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.21, Page Number:1338" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "#variable declaration\n", + "w=7.46#kW\n", + "ic=1.7\n", + "t=35.0\n", + "ratio=60.0\n", + "\n", + "#calculations\n", + "sf=t*3/100\n", + "il1=ic*3\n", + "tst=(ratio/1000)**2*sf*10000\n", + "il2=(ratio/100)*3*ic\n", + "\n", + "#results\n", + "print \"auto-starter:\"\n", + "print \"line-current=\",il1,\"%\"\n", + "print \"torque=\",tst,\"%\"\n", + "print \"voltage decreased to 60%\"\n", + "print \"line-current\",il2,\"%\"\n", + "print \"torque=\",tst,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "auto-starter:\n", + "line-current= 5.1 %\n", + "torque= 37.8 %\n", + "voltage decreased to 60%\n", + "line-current 3.06 %\n", + "torque= 37.8 %\n" + ] + } + ], + "prompt_number": 71 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.22, Page Number:1342" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#variable declaration\n", + "slip=2.0\n", + "r=0.02#ohm\n", + "n=6.0\n", + "#calculations\n", + "smax=r2=slip/100.0\n", + "R1=r2/smax\n", + "K=math.pow(smax,1.0/5)\n", + "R2=K*R1\n", + "R3=K*R2\n", + "R4=K*R3\n", + "R5=K*R4\n", + "p1=R1-R2\n", + "p2=R2-R3\n", + "p3=R3-R4\n", + "p4=R4-R5\n", + "p5=R5-r2\n", + "\n", + "#result\n", + "print \"resistances of various starter sections:\"\n", + "print \"p1=\",p1,\"ohm\"\n", + "print \"p2=\",p2,\"ohm\"\n", + "print \"p3=\",p3,\"ohm\"\n", + "print \"p4=\",p4,\"ohm\"\n", + "print \"p5=\",p5,\"ohm\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistances of various starter sections:\n", + "p1= 0.542694948073 ohm\n", + "p2= 0.248177141409 ohm\n", + "p3= 0.113492660539 ohm\n", + "p4= 0.0519007670213 ohm\n", + "p5= 0.0237344829577 ohm\n" + ] + } + ], + "prompt_number": 107 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.23, Page Number:1345" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "primary=complex(1,3)\n", + "outer=complex(3,1)\n", + "inner=complex(0.6,5)\n", + "s=4\n", + "outer2=complex(3/(s*0.01),1)\n", + "inner2=complex(0.6/(s*0.01),5)\n", + "v=440#V\n", + "\n", + "\n", + "#calculations\n", + "#s=1\n", + "z01=primary+1/((1/outer)+(1/inner))\n", + "current_per_phase=v/abs(z01)\n", + "torque=3*current_per_phase**2*(z01.real-1)\n", + "\n", + "print \"s=1: torque=\",torque,\"synch watt\"\n", + "\n", + "#s=4\n", + "z01=primary+1/((1/outer2)+(1/inner2))\n", + "current_per_phase=v/abs(z01)\n", + "torque=3*current_per_phase**2*(z01.real-1)\n", + "\n", + "print \"s=4: torque=\",torque,\"synch watt\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "s=1: torque= 35065.3642462 synch watt\n", + "s=4: torque= 32129.9449695 synch watt\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.24, Page Number:1346" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "inner=complex(0.4,2)\n", + "outer=complex(2,0.4)\n", + "s=5\n", + "inner2=complex(0.4/(s*0.01),2)\n", + "outer2=complex(2/(s*0.01),0.4)\n", + "print \n", + "#calculations\n", + "#s=1\n", + "zi=abs(inner)\n", + "zo=abs(outer)\n", + "r_ratio=inner.imag/outer.imag\n", + "to_ti=r_ratio*(zo/zi)**2\n", + "print \"Ratio of torques when s=1:\",to_ti\n", + "\n", + "#s=5\n", + "zi=abs(inner2)\n", + "zo=abs(outer2)\n", + "print zi\n", + "r_ratio=inner2.imag/outer2.imag\n", + "to_ti=r_ratio*(zi/zo)**2\n", + "\n", + "print \"Ratio of torques when s=5:\",to_ti" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "Ratio of torques when s=1: 5.0\n", + "8.24621125124\n", + "Ratio of torques when s=5: 0.212478752125\n" + ] + } + ], + "prompt_number": 37 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.25, Page Number:1346" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "s=5\n", + "zi=complex(0.05,0.4)\n", + "zo=complex(0.5,0.1)\n", + "v=100#V\n", + "\n", + "#calculations\n", + "#s=1\n", + "z=zo*zi/(zo+zi)\n", + "r2=z.real\n", + "z=abs(z)\n", + "i2=v/z\n", + "t=i2**2*r2\n", + "print \"s=1:torque=\",t,\"synch watts\"\n", + "\n", + "#s=0.01\n", + "zi=complex(0.05/(s*0.01),0.4)\n", + "zo=complex(0.5/(s*0.01),0.1)\n", + "z=zo*zi/(zo+zi)\n", + "r2=z.real\n", + "z=abs(z)\n", + "i2=v/z\n", + "t=i2**2*r2\n", + "print \"s=5:torque=\",t,\"synch watts\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "s=1:torque= 22307.6923077 synch watts\n", + "s=5:torque= 9620.58966517 synch watts\n" + ] + } + ], + "prompt_number": 43 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.26, Page Number:1348" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "s=Symbol('s')\n", + "z2=complex(2,1.2)\n", + "z1=complex(0.5,3.5)\n", + "#Z1=((2/s)^2+1.2^2)^0.5\n", + "#Z2=((0.5/s)^2+3.5^2)^0.5\n", + "#T1=T2\n", + "ans=solve([(((2**2)/(s**2))+1.2**2)-((((0.5**2)/(s**2))+3.5**2)*4)],[s])\n", + "print \"slip=\",round(ans[1][0]*100,1),\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "slip= 25.1 %\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.27, Page Number:1347" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "zo=complex(1,0)\n", + "zi=complex(0.15,3)\n", + "v=250#V\n", + "n=1000#rpm\n", + "\n", + "#calculations\n", + "z2=zo*zi/(zo+zi)\n", + "stator=complex(0.25,3.5)\n", + "z01=z2+stator\n", + "i=complex(v,0)/z01\n", + "i=abs(i)\n", + "cu_loss=i**2*z01.real\n", + "T=cu_loss*3/(2*math.pi*(n/60))\n", + "#result\n", + "print \"torque=\",T,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "torque= 135.560320318 N-m\n" + ] + } + ], + "prompt_number": 49 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.28, Page Number:1348" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "z1=complex(1,2.8)\n", + "zo=complex(3,1)\n", + "zi=complex(0.5,5)\n", + "v=440#V\n", + "s=0.04\n", + "\n", + "#calculations\n", + "#s=1\n", + "z2=zo*zi/(zo+zi)\n", + "z01=z1+z2\n", + "i2=v/z01\n", + "r2=z2.real\n", + "t=abs(i2)**2*r2\n", + "\n", + "print \"s=1:torque=\",t,\"synch. watt\"\n", + "\n", + "#s=0.04\n", + "zo=complex(3.0/s,1.0)\n", + "zi=complex(0.5/s,5.0)\n", + "z2=zo*zi/(zo+zi)\n", + "z01=z1+z2\n", + "i2=v/z01\n", + "r2=z2.real\n", + "t=abs(i2)**2*r2\n", + "print \"s=4:torque=\",t,\"synch. watt\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "s=1:torque= 12388.3258184 synch. watt\n", + "s=4:torque= 11489.1141244 synch. watt\n" + ] + } + ], + "prompt_number": 58 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.29, Page Number:1351" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "f=50.0#Hz\n", + "r=0.30#ohm\n", + "n1=1440.0#rpm\n", + "n2=1320.0#rpm\n", + "ns=120.0*f/4.0\n", + "#calculations\n", + "s1=(ns-n1)/ns\n", + "s2=(ns-n2)/ns\n", + "r=s2*r/s1-r\n", + "\n", + "#result\n", + "print \"external resistance=\",r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "external resistance= 0.6 ohm\n" + ] + } + ], + "prompt_number": 60 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.30, Page Number:1348" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "f=50.0#Hz\n", + "s=0.03\n", + "ratio=10.0\n", + "r=0.2\n", + "\n", + "#calculations\n", + "ns=120*f/6\n", + "s1=s\n", + "n1=ns*(1-s1)\n", + "n2=n1-10*n1/100\n", + "s2=(ns-n2)/ns\n", + "r=s2*r/s1-r\n", + "\n", + "#result\n", + "print \"external resistance=\",r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "external resistance= 0.646666666667 ohm\n" + ] + } + ], + "prompt_number": 61 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.31, Page Number:1354" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "f=50#Hz\n", + "s=0.02\n", + "\n", + "#calculations\n", + "nsc=120*f/10\n", + "n=(1-s)*nsc\n", + "nsa=120*f/6\n", + "sa=(nsa-n)/nsa\n", + "f_=sa*f\n", + "n_=(120*f_)/4\n", + "sb=(n_-n)/n_\n", + "f__=sb*f_\n", + "\n", + "#resu;t\n", + "print \"f_=\",f_,\"Hz\"\n", + "print \"f_ _=\",f__,\"Hz\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "f_= 20.6 Hz\n", + "f_ _= 1.0 Hz\n" + ] + } + ], + "prompt_number": 69 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.32, Page Number:1354" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "f=50.0#Hz\n", + "f2=1.0#Hz\n", + "\n", + "#calculations\n", + "nsc=120*f/10\n", + "s=f2/f\n", + "n=nsc-s*nsc\n", + "nsa=120*f/4\n", + "sa=(nsa-n)/nsa\n", + "f1=sa*f\n", + "n2=120*f1/6\n", + "sb=(n2-n)/n2\n", + "\n", + "#result\n", + "print \"sa=\",sa*100,\"%\"\n", + "print \"sb=\",sb*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "sa= 60.8 %\n", + "sb= 3.28947368421 %\n" + ] + } + ], + "prompt_number": 75 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.33, Page Number:1354" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "f=50#Hz\n", + "load=74.6#kW\n", + "\n", + "#calculations\n", + "nsc=120*f/10\n", + "output=load*4/10\n", + "\n", + "#result\n", + "print \"speed of set=\",nsc,\"rpm\"\n", + "print \"electric power transferred=\",output,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed of set= 600 rpm\n", + "electric power transferred= 29.84 kW\n" + ] + } + ], + "prompt_number": 79 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.34, Page Number:1355" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "f=50#Hz\n", + "load=25#kW\n", + "\n", + "#calculations\n", + "nsc=120*f/10\n", + "output=load*4/10\n", + "\n", + "#result\n", + "print \"speed of set=\",nsc,\"rpm\"\n", + "print \"electric power transferred=\",output,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed of set= 600 rpm\n", + "electric power transferred= 10 kW\n" + ] + } + ], + "prompt_number": 78 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A Textbook of Electrical Technology AC and DC Machines/chapter36.ipynb b/A Textbook of Electrical Technology AC and DC Machines/chapter36.ipynb new file mode 100644 index 00000000..95eb9b1e --- /dev/null +++ b/A Textbook of Electrical Technology AC and DC Machines/chapter36.ipynb @@ -0,0 +1,391 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:cd727f10a4caede23f6dcd22be7261834b049d15aeb309766271ec0c03a024c2" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 36: Single-Phase Motors" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 36.1, Page Number:1374" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#variable declaration\n", + "R1=1.86\n", + "X1=2.56\n", + "R2=3.56\n", + "X2=2.56\n", + "Xm=53.5\n", + "r1=R1/2\n", + "x1=X1/2\n", + "r2=R2/2\n", + "x2=X2/2\n", + "xm=Xm/2\n", + "v=110\n", + "f=60\n", + "s=0.05\n", + "\n", + "#calculations\n", + "xo=xm+x2\n", + "\n", + "zf=(((r2/s)*xm)/(((r2/s)*(r2/s))+(xo*xo)))*xm\n", + "jf=(((r2/s)*(r2/s)+(x2*xo))/(((r2/s)*(r2/s))+(xo*xo)))*xm\n", + "Jf=math.degrees(math.atan(jf/zf))\n", + "\n", + "zb=(((r2/(2-s))*xm)/(((r2/s)*(r2/(2-s)))+(xo*xo)))*xm\n", + "jb=(((r2/(2-s))*(r2/(2-s))+(x2*xo))/(((r2/(2-s))*(r2/(2-s)))+(xo*xo)))*xm\n", + "Jb=math.degrees(math.atan(jb/zb))\n", + "\n", + "Z1=R1\n", + "J1=X1\n", + "z01=Z1+zf+zb\n", + "j01=jf+jb+J1\n", + "J01=math.degrees(math.atan(j01/z01))\n", + "\n", + "i1=v/z01\n", + "vf=i1*zf\n", + "vb=i1*zb\n", + "z3=math.sqrt(((r2/s)*(r2/s))+(x2*x2))\n", + "z5=math.sqrt(((r2/(2-s))*(r2/(2-s)))+(x2*x2))\n", + "\n", + "i3=vf/z3\n", + "i5=vb/z5\n", + "tf=(i3*i3*r2)/s\n", + "tb=t5=(i5*i5*r2)/(2-s)\n", + "t=tf-tb\n", + "output=t*(1-s)\n", + "\n", + "#result\n", + "print \"output = \",output" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "output = 206.798750547\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Example Number 36.2, Page Number:1375" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#variable declaration\n", + "p=185\n", + "v=110\n", + "f=50\n", + "s=0.05\n", + "R1=1.86\n", + "X1=2.56\n", + "Xo=53.5\n", + "R2=3.56\n", + "X2=2.56\n", + "Xm=53.5\n", + "cl=3.5#core loss\n", + "fl=13.5#friction loss\n", + "vf=(82.5/100)*v\n", + "ic=(cl*100)/vf\n", + "r1=R1/2\n", + "x1=X1/2\n", + "r2=R2/2\n", + "x2=X2/2\n", + "xm=Xm/2\n", + "rc=vf/ic\n", + "\n", + "#calculations\n", + "\n", + "#motor 1\n", + "c=1/rc #conductance of corebranch\n", + "s=-(1/xm)#susceptance\n", + "a1=(r2/s)/(((r2/s)*r2/s)+(x2*x2))#admittance\n", + "a1j=-x2/(((r2/s)*r2/s)+(x2*x2))#admittance j\n", + "yf=c+a1\n", + "yfj=s+a1j\n", + "zf=(yf*yf)+(yfj*yfj)\n", + "zfr=yf/zf\n", + "zfj=yfj/zf\n", + "\n", + "#motor 2\n", + "a2=(r2/2-s)/(((r2/(2-s))*(r2/(2-s)))+(x2*x2))\n", + "a2j=-x2/(((r2/(2-s))*(r2/(2-s)))+(x2*x2))\n", + "Z1=R1\n", + "J1=X1\n", + "yb=yf+a2\n", + "ybj=yfj+a2j\n", + "zb1=(yb*yb)+(ybj*ybj)\n", + "zbr=yb/zb1\n", + "zbj=ybj/zb1\n", + "z01=Z1+zf+zbr\n", + "z01j=J1+zfj+zbj\n", + "\n", + "i1=v/z01\n", + "vf=i1*zf\n", + "vb=i1*zbr\n", + "z3=math.sqrt(((r2/s)*(r2/s))+(x2*x2))\n", + "z5=math.sqrt(((r2/(2-s))*(r2/(2-s)))+(x2*x2))\n", + "\n", + "i3=vf/z3\n", + "i5=vb/z5\n", + "tf=(i3*i3*r2)/s\n", + "tb=t5=(i5*i5*r2)/(2-s)\n", + "t=tf-tb\n", + "watt=t*(1-s)\n", + "net_output=watt-fl\n", + "\n", + "#result\n", + "print \"Net output = \",net_output" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Net output = -446.423232085\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 36.3, Page Number:1376" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#variable declaration\n", + "w=250\n", + "v=230\n", + "f=50\n", + "zm=4.5\n", + "zmj=3.7\n", + "za=9.5\n", + "zaj=3.5\n", + "\n", + "#calculations\n", + "zma=math.degrees(math.atan(zmj/zm))\n", + "ialeadv=90-zma\n", + "x=za*(math.tan(math.radians(ialeadv)))\n", + "xc=x+zaj\n", + "c=1000000/(xc*2*50*3.14)\n", + "\n", + "#result\n", + "print \"C= \",c,\" uf\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "C= 211.551875951 uf\n" + ] + } + ], + "prompt_number": 25 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 36.4, Page Number:1393" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "#variable declaration\n", + "\n", + "p=250\n", + "f=50\n", + "v=220\n", + "ndc=2000\n", + "ia=1\n", + "ra=20\n", + "la=0.4\n", + "\n", + "#calculations\n", + "ebdc=v-(ia*ra)\n", + "#ac\n", + "xa=2*3.14*f*la\n", + "ebac=-(ia*ra)+math.sqrt((v*v)-((ia*xa)*(ia*xa)))\n", + "nac=(ebac*ndc)/ebdc\n", + "cos_phi=(ebac+(ia*ra))/v\n", + "pmech=ebac*ia\n", + "T=(pmech*9.55)/nac\n", + "\n", + "#result\n", + "print \"Speed= \",nac,\" rpm\"\n", + "print \"Torque= \",T,\" N-m\"\n", + "print \"Power Factor= \",cos_phi,\" lag\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Speed= 1606.22922133 rpm\n", + "Torque= 0.955 N-m\n", + "Power Factor= 0.821013282424 lag\n" + ] + } + ], + "prompt_number": 30 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 36.5, Page Number:1394" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#variable declaration\n", + "r=30\n", + "l=0.5\n", + "v=250\n", + "idc=0.8\n", + "ndc=2000\n", + "f=50\n", + "ia=0.8\n", + "\n", + "#calculations\n", + "\n", + "xa=2*3.14*f*l\n", + "ra=r\n", + "ebac=-(ia*ra)+math.sqrt((v*v)-((ia*xa)*(ia*xa)))\n", + "ebdc=v-(r*idc)\n", + "nac=(ndc*ebac)/ebdc\n", + "cos_phi=(ebac+(ia*ra))/v\n", + "\n", + "#result\n", + "print \"Speed= \",nac,\" rpm\"\n", + "print \"Power Factor= \",cos_phi,\" lag\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Speed= 1700.52062383 rpm\n", + "Power Factor= 0.864635321971 lag\n" + ] + } + ], + "prompt_number": 36 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 36.6, Page Number:1396" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#variable declaration\n", + "f=50\n", + "a=30\n", + "w=8\n", + "v=220\n", + "v2=205\n", + "pole=4\n", + "\n", + "#calculations\n", + "\n", + "ns=(120*f)/pole\n", + "tsh=(9.55*w*1000)/ns\n", + "alpha=0.5*(math.degrees(math.asin((v*v*math.sin(math.radians(2*a)))/(v2*v2))))\n", + "\n", + "#result\n", + "print \"Torque angle if voltage drops to 205 V = \",alpha,\" degrees\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Torque angle if voltage drops to 205 V = 42.9327261097 degrees\n" + ] + } + ], + "prompt_number": 38 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A Textbook of Electrical Technology AC and DC Machines/chapter37.ipynb b/A Textbook of Electrical Technology AC and DC Machines/chapter37.ipynb new file mode 100644 index 00000000..7862658a --- /dev/null +++ b/A Textbook of Electrical Technology AC and DC Machines/chapter37.ipynb @@ -0,0 +1,3137 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:3a9b903871f8bdf2f971bf001fa7cff3dbf47aad5e657d5bfcea016f9756d9ac" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 37: Alternators" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.1, Page Number:1412" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "s1=36.0\n", + "p1=4.0\n", + "span1=8.0\n", + "s2=72.0\n", + "p2=6.0\n", + "span2=10.0\n", + "s3=96.0\n", + "p3=6.0\n", + "span3=12.0\n", + "\n", + "#calculations\n", + "alpha1=2*p1*180/s1\n", + "alpha2=3*p2*180/s2\n", + "alpha3=5*p3*180/s3\n", + "kc1=math.cos(math.radians(alpha1/2))\n", + "kc2=math.cos(math.radians(alpha2/2))\n", + "kc3=math.cos(math.radians(alpha3/2))\n", + "\n", + "#result\n", + "print \"a)kc=\",kc1\n", + "print \"b)kc=\",kc2\n", + "print \"c)kc=\",kc3" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a)kc= 0.939692620786\n", + "b)kc= 0.923879532511\n", + "c)kc= 0.881921264348\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.2, Page Number:1414" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "s=36.0\n", + "p=4.0\n", + "\n", + "#calculations\n", + "n=s/p\n", + "beta=180/n\n", + "m=s/(p*3)\n", + "kd=math.sin(m*math.radians(beta/2))/(m*math.sin(math.radians(beta/2)))\n", + "\n", + "#result\n", + "print \"distribution factor=\",kd" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "distribution factor= 0.959795080524\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.3, Page Number:1414" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=10.0#V\n", + "beta=30.0#degrees\n", + "m=6.0\n", + "\n", + "#calculations\n", + "kd=math.sin(m*math.radians(beta/2))/(m*math.sin(math.radians(beta/2)))\n", + "arith_sum=6*v\n", + "vector_sum=kd*arith_sum\n", + "\n", + "#calculation\n", + "print \"emf of six coils in series=\",vector_sum,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "emf of six coils in series= 38.6370330516 V\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.4, Page Number:1414" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "beta=180/9\n", + "ratio=2.0/3.0\n", + "m1=9\n", + "m2=6\n", + "m3=3\n", + "\n", + "#calculation\n", + "kd1=math.sin(m1*math.radians(beta/2))/(m1*math.sin(math.radians(beta/2)))\n", + "kd2=math.sin(m2*math.radians(beta/2))/(m2*math.sin(math.radians(beta/2)))\n", + "kd3=math.sin(m3*math.radians(beta/2))/(m3*math.sin(math.radians(beta/2)))\n", + "\n", + "#result\n", + "print \"i) kd=\",kd1\n", + "print \"ii)kd=\",kd2\n", + "print \"iii)kd=\",kd3" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i) kd= 0.639863387016\n", + "ii)kd= 0.831206922161\n", + "iii)kd= 0.959795080524\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.5, Page Number:1416" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "slot=18.0\n", + "s=16.0\n", + "m1=3.0\n", + "m2=5.0\n", + "m3=7.0\n", + "\n", + "#calculations\n", + "span=(s-1)\n", + "alpha=180*3/slot\n", + "kc1=math.cos(math.radians(alpha/2))\n", + "kc3=math.cos(math.radians(m1*alpha/2))\n", + "kc5=math.cos(math.radians(m2*alpha/2))\n", + "kc7=math.cos(math.radians(m3*alpha/2))\n", + "\n", + "#result\n", + "print \"kc1=\",kc1\n", + "print \"kc3=\",kc3\n", + "print \"kc5=\",kc5\n", + "print \"kc7=\",kc7" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "kc1= 0.965925826289\n", + "kc3= 0.707106781187\n", + "kc5= 0.258819045103\n", + "kc7= -0.258819045103\n" + ] + } + ], + "prompt_number": 25 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.6, Page Number:1416" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=16.0\n", + "s=144.0\n", + "z=10.0\n", + "phi=0.03#Wb\n", + "n=375.0#rpm\n", + "\n", + "#calculation\n", + "f=p*n/120\n", + "n=s/p\n", + "beta=180/9\n", + "m=s/(p*3)\n", + "kd=math.sin(m*math.radians(beta/2))/(m*math.sin(math.radians(beta/2)))\n", + "t=s*z/(3*2)\n", + "eph=4.44*1*0.96*f*phi*t\n", + "el=3**0.5*eph\n", + "#result\n", + "print \"frequency=\",f,\"Hz\"\n", + "print \"phase emf=\",eph,\"V\"\n", + "print \"line emf=\",el,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "frequency= 50.0 Hz\n", + "phase emf= 1534.464 V\n", + "line emf= 2657.76961039 V\n" + ] + } + ], + "prompt_number": 19 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.7, Page Number:1416" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=6\n", + "s=54\n", + "phi=0.1#Wb\n", + "n=1200#rpm\n", + "t=8\n", + "#calculations\n", + "beta=180/9\n", + "kc=math.cos(beta/2)\n", + "f=p*n/120\n", + "n=s/p\n", + "m=s/(p*3)\n", + "kd=math.sin(m*math.radians(beta/2))/(m*math.sin(math.radians(beta/2)))\n", + "z=s*8/3\n", + "t=z/2\n", + "eph=4.44*0.98*0.96*f*phi*t\n", + "el=3**0.*eph\n", + "\n", + "#result\n", + "print \"eph=\",eph,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "eph= 1804.529664 V\n" + ] + } + ], + "prompt_number": 20 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.8, Page Number:1416" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=16.0\n", + "slots=144.0\n", + "z=4.0\n", + "n=375.0\n", + "airgap=5*0.01\n", + "theta=150.0\n", + "\n", + "#calculation\n", + "kf=1.11\n", + "alpha=(180-theta)\n", + "kc=math.cos(math.radians(alpha/2))\n", + "beta=180/9\n", + "m=slots/(p*3)\n", + "kd=math.sin(m*math.radians(beta/2))/(m*math.sin(math.radians(beta/2)))\n", + "f=p*n/120\n", + "s=slots/3\n", + "eph=4*kf*kc*kd*f*airgap*s*4/2\n", + "\n", + "#result\n", + "print \"emf per phase=\",eph,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "emf per phase= 987.908016392 V\n" + ] + } + ], + "prompt_number": 31 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.9, Page Number:1417" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=10\n", + "f=50#Hz\n", + "n=600#rpm\n", + "slots=180\n", + "s=15\n", + "d=1.2#m\n", + "l=0.4#m\n", + "m=6\n", + "beta=180/18\n", + "#calculations\n", + "area=(1.2*3.14/p)*l\n", + "phi1=area*0.637\n", + "vr=1.1*2*f*phi1\n", + "vp=2**0.5*vr\n", + "v3=0.4*vp\n", + "v5=0.2*vp\n", + "vf=6*vp*0.966\n", + "vf3=6*v3*0.707\n", + "vf5=6*v5*0.259\n", + "kd1=math.sin(m*math.radians(beta/2))/(m*math.sin(math.radians(beta/2)))\n", + "kd2=math.sin(math.radians(3*m*beta/2))/(6*math.sin(3*math.radians(beta/2)))\n", + "kd3=math.sin(math.radians(5*m*beta/2))/(6*math.sin(5*math.radians(beta/2)))\n", + "vph=vf*2**0.5*60*kd1\n", + "vph3=vf3*2**0.5*60*kd2\n", + "vph5=vf5*2**0.5*60*kd3\n", + "rmsv=(vph**2+vph3**2+vph5**2)**0.5\n", + "rmsvl=3**0.5*(vph**2+vph5**2)**0.5\n", + "\n", + "#result\n", + "print \"i)e=\",vp,\"sin theta+\",v3,\"sin 3theta+\",v5,\"sin 5theta\"\n", + "print \"ii)e=\",vf,\"sin theta+\",vf3,\"sin 3theta+\",vf5,\"sin 5theta\"\n", + "print \"iii)rms value of phase voltage=\",rmsv,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)e= 14.9354392872 sin theta+ 5.97417571489 sin 3theta+ 2.98708785745 sin 5theta\n", + "ii)e= 86.5658061088 sin theta+ 25.3424533826 sin 3theta+ 4.64193453047 sin 5theta\n", + "iii)rms value of phase voltage= 7158.83679423 V\n" + ] + } + ], + "prompt_number": 33 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.10, Page Number:1418" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "p=4\n", + "f=50.0#Hz\n", + "slot=60.0\n", + "z=4.0\n", + "s=3.0\n", + "theta=60.0\n", + "phi=0.943#Wb\n", + "\n", + "#calculation\n", + "m=slot/(p*s)\n", + "beta=slot/5\n", + "kd=math.sin(m*math.radians(beta/2))/(m*math.sin(math.radians(beta/2)))\n", + "alpha=(s/15)*180\n", + "kc=math.cos(math.radians(alpha/2))\n", + "z=slot*z/s\n", + "t=z/2\n", + "kf=1.11\n", + "eph=z*kf*kc*kd*f*phi*t/2\n", + "el=3**0.5*eph*0.1\n", + "\n", + "#result\n", + "print \"line voltage=\",el,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "line voltage= 13196.4478482 V\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.11, Page Number:1418" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4.0\n", + "f=50.0#Hz\n", + "slot=15.0\n", + "z=10.0\n", + "kd=0.95\n", + "e=1825#v\n", + "kc=1\n", + "kf=1.11\n", + "#calculations\n", + "slots=p*slot\n", + "slotsp=slots/3\n", + "turnp=20*z/2\n", + "phi=e/(3**0.5*p*kc*kf*kd*f*turnp)\n", + "z=slots*z\n", + "n=120*f/p\n", + "eg=(phi*0.001*z*n)/slots\n", + "\n", + "#result\n", + "print \"emf=\",eg*1000,\"V\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "emf= 749.405577006 V\n" + ] + } + ], + "prompt_number": 47 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.12, Page Number:1419" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=360#V\n", + "f=60.0#Hz\n", + "i=3.6#A\n", + "f2=40#Hz\n", + "i2=2.4#A\n", + "\n", + "#calculations\n", + "e2=v*i2*f2/(f*i)\n", + "\n", + "#result\n", + "print \"e2=\",e2,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "e2= 160.0 V\n" + ] + } + ], + "prompt_number": 49 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.13, Page Number:1418" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=0\n", + "f=50.0#Hz\n", + "slot=2\n", + "z=4\n", + "theta=150#degrees\n", + "phi=0.12#Wb\n", + "per=20#%\n", + "\n", + "#calculations\n", + "alpha=180-theta\n", + "slotp=6\n", + "m=2\n", + "beta=180/slotp\n", + "kd1=math.sin(m*math.radians(beta/2))/(m*math.sin(math.radians(beta/2)))\n", + "z=10*slot*z\n", + "t=z/2\n", + "e1=4.44*kd1*kd1*f*0.12*t\n", + "kc3=math.cos(3*math.radians(alpha/2))\n", + "f2=f*3\n", + "phi3=(1.0/3)*per*0.12\n", + "e3=4.44*kd3*kd3*theta*0.008*40\n", + "e=(e1**2+e3**2)**0.5\n", + "\n", + "#result\n", + "print \"e=\",e,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "e= 994.25286629 V\n" + ] + } + ], + "prompt_number": 50 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.14, Page Number:1419" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=230.0#V\n", + "per=10.0#%\n", + "per2=6.0#%\n", + "f=50.0#Hz\n", + "r=10.0#ohm\n", + "\n", + "#calculation\n", + "#star connection\n", + "e5=per*v/100\n", + "e=(v**2+e5**2)**0.5\n", + "eph=3**0.5*e\n", + "\n", + "#delta\n", + "e3=10*v/100\n", + "f3=10*3\n", + "i=e3/f3\n", + "\n", + "#result\n", + "print \"line voltage for star=\",eph,\"V\"\n", + "print \"line voltage for delta=\",e3,\"V\"\n", + "print \"current=\",i,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "line voltage for star= 400.358589267 V\n", + "line voltage for delta= 23.0 V\n", + "current= 0.766666666667 A\n" + ] + } + ], + "prompt_number": 55 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.15(a), Page Number:1420" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=10.0\n", + "p1=24.0\n", + "f=25#Hz\n", + "p3=6.0\n", + "s=0.05\n", + "\n", + "#calculation\n", + "n=120*f/p\n", + "f1=p1*n/120\n", + "n2=120*f1/6\n", + "n3=(1-s)*n2\n", + "f2=s*f1p\n", + "\n", + "\n", + "#result\n", + "print \"frequency=\",f1,\"Hz\"\n", + "print \"speed=\",n3,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "frequency= 60.0 Hz\n", + "speed= 1140.0 rpm\n" + ] + } + ], + "prompt_number": 56 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.15(b), Page Number:1420" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "phi=0.12#Wb\n", + "slotsp=4\n", + "cp=4\n", + "theta=150#degrees\n", + "\n", + "#calculation\n", + "slots=slotsp*3*p\n", + "c=cp*slots\n", + "turns=32\n", + "kb=math.sin(math.radians(60/2))/(p*math.sin(math.radians(7.5)))\n", + "kp=math.cos(math.radians(15))\n", + "eph=4.44*50*0.12*kb*0.966*turns\n", + "el=eph*3**0.5\n", + "\n", + "#result\n", + "print \"line voltage\",el,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "line voltage 1365.94840977 V\n" + ] + } + ], + "prompt_number": 62 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.16, Page Number:1426" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=10#MW\n", + "pf=0.85\n", + "v=11#kV\n", + "r=0.1#ohm\n", + "x=0.66#ohm\n", + "\n", + "#calculation\n", + "i=load*10**6/(3**0.5*v*1000*pf)\n", + "iradrop=i*r\n", + "ixsdrop=i*x\n", + "vp=v*1000/3**0.5\n", + "phi=math.acos(pf)\n", + "sinphi=math.sin(phi)\n", + "e0=((vp*pf+i*r)**2+(vp*sinphi+i*x)**2)**0.5\n", + "el=3**0.5*e0\n", + "\n", + "#result\n", + "print \"linevalue of emf=\",el,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "linevalue of emf= 11475.6408913 V\n" + ] + } + ], + "prompt_number": 69 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.17(a), Page Number:1428" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=2200.0#V\n", + "f=50.0#Hz\n", + "load=440.0#KVA\n", + "r=0.5#ohm\n", + "i=40.0#A\n", + "il=200.0#A\n", + "vf=1160.0#V\n", + "\n", + "#calculations\n", + "zs=vf/200\n", + "xs=(zs**2-r**2)**0.5\n", + "\n", + "#result\n", + "print \"synchronous impedence=\",zs,\"ohm\"\n", + "print \"synchronous reactance=\",xs,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "synchronous impedence= 5.8 ohm\n", + "synchronous reactance= 5.77840808528 ohm\n" + ] + } + ], + "prompt_number": 71 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.17(b), Page Number:1428" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=60.0#kVA\n", + "v=220.0#V\n", + "f=50.0#Hz\n", + "r=0.016#ohm\n", + "x=0.07#ohm\n", + "pf=0.7\n", + "\n", + "#calculations\n", + "i=load*1000/v\n", + "ira=i*r\n", + "ixl=i*x\n", + "#unity pf\n", + "e=((v+ira)**2+(ixl)**2)**0.5\n", + "#pf of 0.7 lag\n", + "e2=((v*pf+ira)**2+(v*pf+ixl)**2)**0.5\n", + "#pf of 0.7 lead\n", + "e3=((v*pf+ira)**2+(v*pf-ixl)**2)**0.5\n", + "\n", + "#result\n", + "print \"voltage with pf=1\",e,\"V\"\n", + "print \"voltage with pf=0.7 lag\",e2,\"V\"\n", + "print \"voltage with pf=0.7 lead\",e3,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "voltage with pf=1 225.174386048 V\n", + "voltage with pf=0.7 lag 234.604995966 V\n", + "voltage with pf=0.7 lead 208.03726621 V\n" + ] + } + ], + "prompt_number": 75 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.18(a), Page Number:1429" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=50.0#KVA\n", + "v1=440.0#V\n", + "f=50.0#Hz\n", + "r=0.25#ohm\n", + "x=3.2#ohm\n", + "xl=0.5#ohm\n", + "\n", + "#calculation\n", + "v=v1/3**0.5\n", + "i=load*1000/(3**0.5*v1)\n", + "rd=i*r\n", + "ixl=i*xl\n", + "ea=((v+rd)**2+(ixl)**2)**0.5\n", + "el=3**0.5*ea\n", + "e0=((v+rd)**2+(i*x)**2)**0.5\n", + "e0l=e0*3**0.5\n", + "per=(e0-v)/v\n", + "xa=x-xl\n", + "#result\n", + "print \"internal emf Ea=\",el,\"V\"\n", + "print \"no load emf=\",e0l,\"V\"\n", + "print \"percentage regulation=\",per*100,\"%\"\n", + "print \"valueof synchronous reactance=\",xa,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "internal emf Ea= 471.842539659 V\n", + "no load emf= 592.991130967 V\n", + "percentage regulation= 34.7707115833 %\n", + "valueof synchronous reactance= 2.7 ohm\n" + ] + } + ], + "prompt_number": 87 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.19, Page Number:1432" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "i=200.0#A\n", + "v=50.0#V\n", + "r=0.1#ohm\n", + "il=100.0#A\n", + "pf=0.8\n", + "vt=200.0#V\n", + "\n", + "#calculation\n", + "zs=v/vt\n", + "xs=(zs**2-r**2)**0.5\n", + "ira=il*r\n", + "ixs=il*xs\n", + "sinphi=math.sin(math.acos(pf))\n", + "e0=((vt*pf+ira)**2+(vt*sinphi+ixs)**2)**0.5\n", + "\n", + "#result\n", + "print \"induced voltage=\",e0,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "induced voltage= 222.090276316 V\n" + ] + } + ], + "prompt_number": 90 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.20, Page Number:1433" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=2000.0#V\n", + "i=100.0#A\n", + "pf=0.8\n", + "pf2=0.71\n", + "i2=2.5#A\n", + "v2=500.0#V\n", + "r=0.8#ohm\n", + "\n", + "#calculations\n", + "sinphi1=math.sin(math.acos(pf))\n", + "sinphi2=math.sin(math.acos(pf2))\n", + "zs=v2/i\n", + "xs=(zs**2-r**2)**.5\n", + "#unity pf\n", + "e01=((v+r*i)**2+(i*xs)**2)**0.5\n", + "reg1=(e01-v)*100/v\n", + "#at pf=0.8\n", + "e02=((v*pf+r*i)**2+(v*sinphi1-i*xs)**2)**0.5\n", + "reg2=(e02-v)*100/v\n", + "#at pf=0.71\n", + "e03=((v*pf2+r*i)**2+(v*sinphi2+i*xs)**2)**0.5\n", + "reg3=(e03-v)*100/v\n", + "\n", + "#result\n", + "print \"voltage regulation unity pf=\",reg1,\"%\"\n", + "print \"voltage regulation 0.8 lag pf=\",reg2,\"%\"\n", + "print \"voltage regulation 0.71 lead pf=\",reg3,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "0.6\n", + "voltage regulation unity pf= 6.88779163216 %\n", + "voltage regulation 0.8 lag pf= -8.875640156 %\n", + "voltage regulation 0.71 lead pf= 21.1141910671 %\n" + ] + } + ], + "prompt_number": 100 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.21, Page Number:1433" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=3000.0#V\n", + "load=100.0#kVA\n", + "f=50.0#Hz\n", + "r=0.2\n", + "i1=40.0#A\n", + "i2=200.0#A\n", + "v2=1040.0#V\n", + "pf=0.8\n", + "v1=v/3**0.5\n", + "#calculations\n", + "sinphi1=math.sin(math.acos(pf))\n", + "zs=v2/(3**0.5*i2)\n", + "xs=(zs**2-r**2)**.5\n", + "i=load*1000/(3**0.5*v)\n", + "\n", + "\n", + "#at pf=0.8 lag\n", + "e01=((v1*pf+r*i)**2+(v1*sinphi1+i*xs)**2)**0.5\n", + "reg1=(e01-v1)*100/v1\n", + "#at pf=0.8 lead\n", + "e02=((v1*pf+r*i)**2+(v1*sinphi1-i*xs)**2)**0.5\n", + "reg2=(e02-v1)*100/v1\n", + "\n", + "#result\n", + "print \"voltage regulation 0.8 lag pf=\",reg1,\"%\"\n", + "print \"voltage regulation 0.8 lag pf=\",reg2,\"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "voltage regulation 0.8 lag pf= 2.20611574348 %\n", + "voltage regulation 0.8 lag pf= -1.77945143824 %\n" + ] + } + ], + "prompt_number": 112 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.22, Page Number:1434" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=1600.0#kVA\n", + "v=13500.0#V\n", + "r=1.5#ohm\n", + "x=30.0#ohm\n", + "load1=1280.0#kW\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "sinphi1=math.sin(math.acos(pf))\n", + "i=load1*1000/(3**0.5*v*pf)\n", + "ira=i*r\n", + "ixs=i*x\n", + "vp=v/3**0.5\n", + "e0=((vp*pf+ira)**2+(vp*sinphi1-ixs)**2)**0.5\n", + "regn=(e0-vp)*100/vp\n", + "\n", + "#result\n", + "print \"percentage regulation=\",regn,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "percentage regulation= -11.9909032489 %\n" + ] + } + ], + "prompt_number": 122 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.23, Page Number:1435" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=10.0#kVA\n", + "v=400.0#V\n", + "f=50.0#Hz\n", + "pf=0.8\n", + "r=0.5#ohm\n", + "x=10.0#ohm\n", + "\n", + "#calculations\n", + "i=load*1000/(3**0.5*v)\n", + "ira=i*r\n", + "ixs=i*x\n", + "vp=v/3**0.5\n", + "sinphi=math.sin(math.acos(pf))\n", + "e0=((vp*pf+ira)**2+(vp*sinphi+ixs)**2)**0.5\n", + "regn=(e0-vp)/vp\n", + "thetadel=math.atan((vp*sinphi+ixs)/(vp*pf+ira))\n", + "delta=math.degrees(thetadel)-math.degrees(math.acos(pf))\n", + "\n", + "#result\n", + "print \"voltage regulation=\",regn*100,\"%\"\n", + "print \"power angle=\",delta,\"degrees\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "voltage regulation= 48.0405877623 %\n", + "power angle= 18.9704078085 degrees\n" + ] + } + ], + "prompt_number": 127 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.24, Page Number:1435" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=6000.0#KVA\n", + "v=6600.0#V\n", + "p=2.0\n", + "f=50.0#Hz\n", + "i2=125.0#A\n", + "v1=8000.0#V\n", + "i3=800.0#A\n", + "d=0.03\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "sinphi=math.sin(math.acos(pf))\n", + "zs=v1/(3**0.5*i3)\n", + "vp=v/3**0.5\n", + "rd=d*vp\n", + "il=load*1000/(3**0.5*v)\n", + "ira=rd\n", + "ra=ira/il\n", + "xs=(zs**2-ra**2)**0.5\n", + "e0=((vp*pf+ira)**2+(vp*sinphi+il*xs)**2)**0.5\n", + "reg=(e0-vp)/vp\n", + "\n", + "#result\n", + "print \"percentage regulation=\",reg*100,\"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "percentage regulation= 62.2972136768 %\n" + ] + } + ], + "prompt_number": 133 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.25, Page Number:1435" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "f=50.0#Hz\n", + "load=2000#KVA\n", + "v=2300#V\n", + "i=600#A\n", + "v2=900#V\n", + "r=0.12#ohm\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "sinphi=math.sin(math.acos(pf))\n", + "zs=v2/(3**0.5*i)\n", + "rp=r/2\n", + "re=rp*1.5\n", + "xs=(zs**2-re**2)**0.5\n", + "il=load*1000/(3**0.5*v)\n", + "ira=il*rp\n", + "ixs=il*xs\n", + "vp=v/3**0.5\n", + "e0=((vp+ira)**2+(ixs)**2)**0.5\n", + "reg1=(e0-vp)/vp\n", + "e0=((vp*pf+ira)**2+(vp*sinphi+ixs)**2)**0.5\n", + "reg2=(e0-vp)/vp\n", + "#result\n", + "print \"regulation at pf=1\",reg1*100,\"%\"\n", + "print \"regulation at pf=0.8\",reg2*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "regulation at pf=1 7.32796146323 %\n", + "regulation at pf=0.8 23.8398862235 %\n" + ] + } + ], + "prompt_number": 134 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.26, Page Number:1436" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "v=Symbol('v')\n", + "load=2000#KVA\n", + "load1=11#KV\n", + "r=0.3#ohm\n", + "x=5#ohm\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "sinphi=math.sin(math.acos(pf))\n", + "i=load*1000/(3**0.5*load1*1000)\n", + "vt=load1*1000/3**0.5\n", + "ira=i*r\n", + "ixs=i*x\n", + "e0=((vt*pf+ira)**2+(vt*sinphi+ixs)**2)**0.5\n", + "v=solve(((pf*v+ira)**2+(sinphi*v-ixs)**2)**0.5-e0,v)\n", + "\n", + "#result\n", + "print \"terminal voltage=\",v[1],\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "terminal voltage= 6978.31767618569 V\n" + ] + } + ], + "prompt_number": 150 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.27, Page Number:1436" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=1200#KVA\n", + "load1=3.3#KV\n", + "f=50#Hz\n", + "r=0.25#ohm\n", + "i=35#A\n", + "i2=200#A\n", + "v=1.1#kV\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "zs=v*1000/(3**0.5*i2)\n", + "xs=(zs**2-r**2)**0.5\n", + "v=load1*1000/3**0.5\n", + "theta=math.atan(xs/r)\n", + "ia=load*1000/(3**0.5*load1*1000)\n", + "e=v+ia*zs\n", + "change=(e-v)/v\n", + "\n", + "#result\n", + "print \"per unit change=\",change" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "per unit change= 0.349909254054\n" + ] + } + ], + "prompt_number": 151 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.28, Page Number:1437" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "f=50#Hz\n", + "v1=11#kV\n", + "load=3#MVA\n", + "i=100#A\n", + "v2=12370#V\n", + "vt=11000#V\n", + "pf=0.8\n", + "r=0.4#ohm\n", + "\n", + "#calculation\n", + "E0=v1*1000/3**0.5\n", + "v=v2/3**0.5\n", + "pf=0\n", + "sinphi=1\n", + "xs=(v-(E0**2-(i*r)**2)**0.5)/i\n", + "il=load*10**6/(3**0.5*v1*1000)\n", + "ira=il*r\n", + "ixs=il*xs\n", + "e0=((E0*pf+ira)**2+(E0*sinphi+ixs)**2)**0.5\n", + "regn=(e0-E0)*100/E0\n", + "#result\n", + "print \"regulation=\",regn,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "regulation= 19.6180576177 %\n" + ] + } + ], + "prompt_number": 175 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.29, Page Number:1437" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "pf=0.8\n", + "vt=3500#v\n", + "load=2280#KW\n", + "v1=3300#V\n", + "r=8#ohm\n", + "x=6#ohm\n", + "\n", + "#calculation\n", + "vl=vt/3**0.5\n", + "vp=v1/3**0.5\n", + "il=load*1000/(3**0.5*v1*pf)\n", + "drop=vl-vp\n", + "z=(r**2+x**2)**0.5\n", + "x=vl/(z+drop/il)\n", + "vtp=vl-x*drop/il\n", + "vtpl=vtp*3**0.5\n", + "\n", + "#result\n", + "print \"terminal voltage=\",vtpl,\"V\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "terminal voltage= 3420.781893 V\n" + ] + } + ], + "prompt_number": 176 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.30, Page Number:1441" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "load=3.5#MVA\n", + "v=4160#V\n", + "f=50#Hz\n", + "i=200#A\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "il=load*10**6/(3**0.5*v)\n", + "zs=4750/(3**0.5*il)\n", + "ra=0\n", + "ixs=il*zs\n", + "vp=v/3**0.5\n", + "sinphi=math.sin(math.acos(pf))\n", + "e0=((vp*pf)**2+(vp*sinphi+ixs)**2)**0.5\n", + "regn=(e0-vp)*100/vp\n", + "#result\n", + "print \"regulation=\",round(regn,1),\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "regulation= 91.7 %\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.31, Page Number:1441" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "i_f1=20#A\n", + "i_f=37.5#A\n", + "pf=0.8\n", + "v=6600#V\n", + "eo=7600#V\n", + "\n", + "#calculations\n", + "ob=math.sqrt(i_f**2+i*math.cos(math.radians(53.8)))\n", + "reg=(eo-v)*100/v\n", + "i=100*i_f/i_f1\n", + "zs=100*100/i\n", + "Eo=math.sqrt((100+zs*0.6)**2+(zs*pf)**2)\n", + "reg2=(Eo-100)*100/100\n", + "\n", + "#result\n", + "print \"regulation:\"\n", + "print \"by ampere turn method=\",reg,\"%\"\n", + "print \"by synchronous impedence method=\",reg2,\"%\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "regulation:\n", + "by ampere turn method= 15 %\n", + "by synchronous impedence method= 38.7243469779 %\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.32, Page Number:1442" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "r=0.2#ohm\n", + "p=1000000#VA\n", + "v=2000#V\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "vp=v*math.sqrt(3)\n", + "i=p/(math.sqrt(3)*v)\n", + "V=v/math.sqrt(3)+(i*r**pf)\n", + "reg=(1555-(v/math.sqrt(3)))*100/(v/math.sqrt(3))\n", + "reg2=(1080-(v/math.sqrt(3)))*100/(v/math.sqrt(3))\n", + "\n", + "#result\n", + "print \"regulation when pf=0.8 lagging:\",round(reg,1),\"%\"\n", + "print \"regulation when pf=0.8 leading:\",round(reg2,1),\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "regulation when pf=0.8 lagging: 34.7 %\n", + "regulation when pf=0.8 leading: -6.5 %\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.33, Page Number:1443" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "x_drop=0.1\n", + "r_drop=0.02\n", + "pf=0.8\n", + "v=3300#V\n", + "p=800000#VA\n", + "\n", + "#calculations\n", + "vp=v/math.sqrt(3)\n", + "ir_drop=r_drop*vp\n", + "leakage=x_drop*vp\n", + "E=math.sqrt((vp*pf+ir_drop)**2+(vp*0.6+leakage)**2)\n", + "i=p/(math.sqrt(3)*v)\n", + "\n", + "#result\n", + "print \"I=\",round(i),\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "I= 140.0 A\n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.34, Page Number:1444" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "i_f1=17#A\n", + "p=2000000.0#VA\n", + "i_f2=42.5#A\n", + "v=6000.0/math.sqrt(3)#V\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "e=math.sqrt((v*pf)**2+(v*0.6+450)**2)\n", + "#corresponding i=26.5 A\n", + "#field amperes required for balancing armature reaction=14.5A\n", + "i_f=math.sqrt(26.5**2+14.5**2+2*26.5*14.4*math.cos(math.radians(53.8)))\n", + "\n", + "#result\n", + "print \"resulting field current=\",round(i_f,1),\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resulting field current= 36.9 A\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.35, Page Number:1446" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=11000#V\n", + "p=1000000#VA\n", + "r=2#ohm\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "i=p/(math.sqrt(3)*v)\n", + "vp=v/math.sqrt(3)\n", + "e=math.sqrt((vp*pf+i*2)**2+(vp*0.6+p/1000)**2)\n", + "i1=math.sqrt(108**2+30**2+2*108*30*math.cos(math.radians(53.8)))\n", + "#corresponding emf=7700V\n", + "reg=(7700-vp)*100/vp\n", + "\n", + "#result\n", + "print \"Voltage regulation=\",round(reg,1),\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Voltage regulation= 21.2 %\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.36, Page Number:1448" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declarations\n", + "p=275000.0#W\n", + "v=6600.0#V\n", + "stator_i=35.0#A\n", + "exciting_i=50.0#A\n", + "x=0.08\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "x_drop=v*x/math.sqrt(3)\n", + "vp=v/math.sqrt(3)\n", + "i=p/(math.sqrt(3)*v*pf)\n", + "ia=i*exciting_i/stator_i\n", + "ob=math.sqrt(vp**2+x_drop**2)\n", + "oc=59.8#field current corresponding tothe voltage\n", + "i_fl=p/(math.sqrt(3)*v)\n", + "ia2=exciting_i*i_fl/stator_i\n", + "ei=math.sqrt(ia2**2+oc**2)\n", + "\n", + "#result\n", + "print \"Exciting current=\",round(ei),\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Exciting current= 69.0 A\n" + ] + } + ], + "prompt_number": 13 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.37, Page Number:1449" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "p=600000.0#VA\n", + "v=3300.0#V\n", + "pf=0.8\n", + "l_drop=7\n", + "\n", + "#calculations\n", + "i=p/(math.sqrt(3)*v)\n", + "amp_turns=1.06*i*200.0/8\n", + "vp=v/math.sqrt(3)\n", + "x_drop=vp*l_drop/100\n", + "oa=1910.0#V\n", + "reg=(2242.0-oa)*100/oa\n", + "\n", + "#result\n", + "print \"regulation=\",round(reg,1),\"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "regulation= 17.4 %\n" + ] + } + ], + "prompt_number": 19 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.38, Page Number:1450" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "p=15000000#VA\n", + "v=11000#V\n", + "pf=0.8\n", + "v1=8400\n", + "\n", + "#calculations\n", + "i=p/(math.sqrt(3)*v)\n", + "xl=640/i\n", + "zs=(v1/math.sqrt(3))/i\n", + "vp=v/math.sqrt(3)\n", + "eo=7540\n", + "reg=(eo-vp)*100/vp\n", + "\n", + "#result\n", + "print \"regulation=\",round(reg,1),\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "regulation= 18.7 %\n" + ] + } + ], + "prompt_number": 22 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.39, Page Number:1455" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "xd=0.7\n", + "xq=0.4\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "v=1\n", + "sinphi=math.sin(math.acos(pf))\n", + "ia=1\n", + "tandelta=ia*xq*pf/(v+xq*sinphi)\n", + "delta=math.atan(tandelta)\n", + "i_d=ia*math.sin(math.radians(36.9)+delta)\n", + "e0=v*math.cos(delta)+i_d*xd\n", + "\n", + "#result\n", + "print \"load angle=\",math.degrees(delta),\"degrees\"\n", + "print \"no load voltage=\",e0,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "load angle= 14.4702941001 degrees\n", + "no load voltage= 1.51511515874 V\n" + ] + } + ], + "prompt_number": 185 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.40, Page Number:1455" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "f=50.0#Hz\n", + "xd=0.6\n", + "xq=0.45\n", + "ra=0.015\n", + "pf=0.8\n", + "ia=1\n", + "v=1\n", + "sinphi=math.sin(math.acos(pf))\n", + "#calculation\n", + "tanpsi=(v*sinphi+ia*xq)/(v*pf+ia*ra)\n", + "psi=math.atan(tanpsi)\n", + "delta=psi-math.acos(pf)\n", + "i_d=ia*math.sin(psi)\n", + "iq=ia*math.cos(psi)\n", + "e0=v*math.cos(delta)+iq*ra+i_d*xd\n", + "regn=(e0-v)*100/v\n", + "\n", + "#result\n", + "print \"open circuit voltage=\",e0,\"V\"\n", + "print \"regulation=\",regn,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "open circuit voltage= 1.44767600311 V\n", + "regulation= 44.7676003107 %\n" + ] + } + ], + "prompt_number": 187 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.41, Page Number:1455" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "ia=10#A\n", + "phi=math.radians(20)\n", + "v=400#V\n", + "xd=10#ohm\n", + "xq=6.5#ohm\n", + "\n", + "#calculations\n", + "pf=math.cos(phi)\n", + "sinphi=math.sin(phi)\n", + "tandelta=ia*xq*pf/(v+ia*xq*sinphi)\n", + "delta=math.atan(tandelta)\n", + "i_d=ia*math.sin(phi+delta)\n", + "iq=ia*math.cos(phi+delta)\n", + "e0=v*math.cos(delta)+i_d*xd\n", + "regn=(e0-v)/v\n", + "\n", + "#result\n", + "print \"load angle=\",math.degrees(delta),\"degrees\"\n", + "print \"id=\",i_d,\"A\"\n", + "print \"iq=\",iq,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "load angle= 8.23131209115 degrees\n", + "id= 4.7303232581 A\n", + "iq= 8.81045071911 A\n" + ] + } + ], + "prompt_number": 189 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.42, Page Number:1459" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "e1=220#V\n", + "f1=60#Hz\n", + "e2=222#V\n", + "f2=59#Hz\n", + "\n", + "#calculation\n", + "emax=(e1+e2)/2\n", + "emin=(e2-e1)/2\n", + "f=(f1-f2)\n", + "epeak=emax/0.707\n", + "pulse=(f1-f2)*60\n", + "\n", + "#result\n", + "print \"max voltage=\",emax,\"V\"\n", + "print \"min voltage=\",emin,\"V\"\n", + "print \"frequency=\",f,\"Hz\"\n", + "print \"peak value of voltage=\",epeak,\"V\"\n", + "print \"number of maximum light pulsations/minute=\",pulse" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "max voltage= 221 V\n", + "min voltage= 1 V\n", + "frequency= 1 Hz\n", + "peak value of voltage= 312.588401697 V\n", + "number of maximum light pulsations/minute= 60\n" + ] + } + ], + "prompt_number": 190 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.43, Page Number:1462" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "power=1500#kVA\n", + "v=6.6#kV\n", + "r=0.4#ohm\n", + "x=6#ohm\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "i=power*1000/(3**0.5*v*1000)\n", + "ira=i*r\n", + "ixs=i*x\n", + "vp=v*1000/3**0.5\n", + "phi=math.acos(pf)\n", + "tanphialpha=(vp*math.sin(phi)+ixs)/(vp*pf+ira)\n", + "phialpha=math.atan(tanphialpha)\n", + "alpha=phialpha-phi\n", + "\n", + "#result\n", + "print \"power angle=\",math.degrees(alpha)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "power angle= 7.87684146241\n" + ] + } + ], + "prompt_number": 198 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.44, Page Number:1464" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=3000#KVA\n", + "p=6\n", + "n=1000#rpm\n", + "v=3300#v\n", + "x=0.25\n", + "\n", + "#calculation\n", + "vp=v/3**0.5\n", + "i=load*1000/(3**0.5*v)\n", + "ixs=x*vp\n", + "xs=x*vp/i\n", + "alpha=1*p/2\n", + "psy=3*3.14*vp**2/(60*xs*n)\n", + "tsy=9.55*psy/n\n", + "\n", + "#result\n", + "print \"synchronizing power=\",psy,\"kW\"\n", + "print \"torque=\",tsy*1000,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "synchronizing power= 628.0 kW\n", + "torque= 5997.4 N-m\n" + ] + } + ], + "prompt_number": 202 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.45, Page Number:1465" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=3#MVA\n", + "n=1000#rpm\n", + "v1=3.3#kV\n", + "r=0.25\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "vp=v1*1000/3**0.5\n", + "i=load*1000000/(3**0.5*v1*1000)\n", + "ixs=complex(0,r*vp)\n", + "xs=ixs/i\n", + "v=vp*complex(pf,math.sin(math.acos(pf)))\n", + "e0=v+ixs\n", + "alpha=math.atan(e0.imag/e0.real)-math.acos(pf)\n", + "p=6/2\n", + "psy=abs(e0)*vp*math.cos(alpha)*math.sin(math.radians(3))/xs\n", + "tsy=9.55*3*psy*100/n\n", + "\n", + "#result\n", + "print \"synchronous power=\",-psy*3/1000,\"kW\"\n", + "print \"toque=\",-tsy/100,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "synchronous power= 722.236196153j kW\n", + "toque= 6897.35567326j N-m\n" + ] + } + ], + "prompt_number": 221 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.46, Page Number:1465" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=750#KVA\n", + "v=11#kV\n", + "p=4\n", + "r=1#%\n", + "x=15#%\n", + "pf=0.8\n", + "#calculation\n", + "i=load*1000/(3**0.5*v*1000)\n", + "vph=v*1000/3**0.5\n", + "ira=r*vph/1000\n", + "ra=ira/i\n", + "xs=x*vph/(100*i)\n", + "zs=(ra**2+xs**2)**0.5\n", + "#no load\n", + "alpha=p/2\n", + "psy=math.radians(alpha)*vph**2/xs\n", + "#fl 0.8 pf\n", + "e=((vph*pf+i*ra)**2+(vph*math.sin(math.acos(pf)+i*xs))**2)**0.5\n", + "psy2=math.radians(alpha)*e*vph/xs\n", + "\n", + "#result\n", + "print \"Synchronous power at:\"\n", + "print \"no load=\",psy,\"W\"\n", + "print \"at pf of 0.8=\",psy2,\"w\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Synchronous power at:\n", + "no load= 58177.6417331 W\n", + "at pf of 0.8= 73621.2350169 w\n" + ] + } + ], + "prompt_number": 225 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.47, Page Number:1466" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=2000#KVA\n", + "p=8\n", + "n=750#rpm\n", + "v1=6000#V\n", + "pf=0.8\n", + "r=6#ohm\n", + "\n", + "#calculations\n", + "alpha=math.radians(4)\n", + "v=v1/3**0.5\n", + "i=load*1000/(3**0.5*v1)\n", + "e0=((v*pf)**2+(v*math.sin(math.acos(pf))+i*r)**2)**0.5\n", + "psy=alpha*e0*v*3/r\n", + "tsy=9.55*psy/n\n", + "\n", + "#result\n", + "print \"synchronous power=\",psy,\"W\"\n", + "print \"synchronous torque=\",tsy,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "synchronous power= 514916.500204 W\n", + "synchronous torque= 6556.60343593 N-m\n" + ] + } + ], + "prompt_number": 226 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.48, Page Number:1467" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=5000#KVA\n", + "v=10000#V\n", + "n=1500#rpm\n", + "f=50#Hz\n", + "r=20#%\n", + "pf=0.8\n", + "phi=0.5\n", + "\n", + "#calculations\n", + "vp=v/3**0.5\n", + "i=load*1000/(3**0.5*v)\n", + "xs=r*vp/(1000*i)\n", + "p=120*f/n\n", + "alpha=math.radians(2)\n", + "#no load\n", + "psy=3*alpha*vp**2/(p*1000)\n", + "tsy=9.55*psy*1000/(n*2)\n", + "#pf=0.8\n", + "v2=vp*complex(pf,math.sin(math.acos(pf)))\n", + "ixs=complex(0,i*4)\n", + "e0=v+ixs\n", + "psy2=abs(e0)*vp*math.cos(math.radians(8.1))*math.sin(math.radians(2))*3/4\n", + "tsy2=9.55*psy2/(n*20)\n", + "\n", + "#result\n", + "print \"synchronous power:\"\n", + "print \"atno load=\",psy,\"w\"\n", + "print \"at 0.8 pf=\",psy2,\"w\"\n", + "print \"torque:\"\n", + "print \"at no load=\",tsy,\"N-m\"\n", + "print \"at pf=0.8=\",tsy2,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "synchronous power:\n", + "atno load= 872.664625997 w\n", + "at 0.8 pf= 1506057.44405 w\n", + "torque:\n", + "at no load= 2777.98239276 N-m\n", + "at pf=0.8= 479.428286357 N-m\n" + ] + } + ], + "prompt_number": 229 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.49, Page Number:1468" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=6.6#kW\n", + "load1=3000#kW\n", + "pf=0.8\n", + "xa=complex(0.5,10)\n", + "xb=complex(0.4,12)\n", + "i0=150#A\n", + "\n", + "#calculation\n", + "v=complex(load*1000/3**0.5,0)\n", + "cosphi1=1500*1000/(load*1000*i0*3**0.5)\n", + "phi1=math.acos(cosphi1)\n", + "sinphi1=math.sin(phi1)\n", + "i=328*complex(pf,-math.sin(math.acos(pf)))\n", + "i1=i0*complex(cosphi1,-sinphi1)\n", + "i2=i-i1\n", + "coshi2=i2.real/181\n", + "ea=v+i1*xa\n", + "eal=3**0.5*abs(ea)\n", + "eb=v+i2*xb\n", + "ebl=3**0.5*abs(eb)\n", + "alpha1=(ea.imag/ea.real)\n", + "alpha2=(eb.imag/eb.real)\n", + "#result\n", + "print \"Ea=\",ea,\"V\"\n", + "print \"Eb=\",eb,\"V\"\n", + "print \"alpha1=\",math.degrees(alpha1),\"degrees\"\n", + "print \"alpha2=\",math.degrees(alpha2),\"degrees\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Ea= (4602.91884998+1275.81974829j) V\n", + "Eb= (5352.42648271+1524.56032028j) V\n", + "alpha1= 15.8810288383 degrees\n", + "alpha2= 16.3198639435 degrees\n" + ] + } + ], + "prompt_number": 245 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.50, Page Number:1468" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declration\n", + "e1=complex(230,0)\n", + "e2=230*complex(0.985,0.174)\n", + "z1=complex(0,2)\n", + "z2=complex(0,3)\n", + "z=6\n", + "i1=((e1-e2)*z+e1*z2)/(z*(z1+z2)+z1*z2)\n", + "i2=((e2-e1)*z+e2*z1)/(z*(z1+z2)+z1*z2)\n", + "i=i1+i2\n", + "v=i*z\n", + "p1=abs(v)*abs(i1)*math.cos(math.atan(i1.imag/i1.real))\n", + "p2=abs(v)*abs(i2)*math.cos(math.atan(i2.imag/i2.real))\n", + "\n", + "#result\n", + "print \"terminal voltage=\",v,\"V\"\n", + "print \"current\",i,\"A\"\n", + "print \"power 1=\",p1,\"W\"\n", + "print \"power 2=\",p2,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "terminal voltage= (222.905384615-28.5730769231j) V\n", + "current (37.1508974359-4.76217948718j) A\n", + "power 1= 3210.60292765 W\n", + "power 2= 5138.29001053 W\n" + ] + } + ], + "prompt_number": 249 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.51, Page Number:1471" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=1500#kW\n", + "v=11#KV\n", + "pf=0.867\n", + "x=50#ohm\n", + "r=4#ohm\n", + "i=50#A\n", + "\n", + "#calculations\n", + "il=load*1000/(3**0.5*v*1000*pf)\n", + "phi=math.acos(pf)\n", + "sinphi=math.sin(phi)\n", + "iwatt=il*pf\n", + "iwattless=il*sinphi\n", + "i1=il/2\n", + "i2=iwatt/2\n", + "iw1=(i**2-i1**2)**0.5\n", + "iw2=i2-iw1\n", + "ia=(i2**2+iw2**2)**0.5\n", + "vt=v*1000/3**0.5\n", + "ir=i*r\n", + "ix=x*i\n", + "cosphi=i2/i\n", + "sinphi=math.sin(math.acos(cosphi))\n", + "e=((vt*cosphi+ir)**2+(vt*sinphi+ix)**2)**0.5\n", + "el=3**0.5*e\n", + "\n", + "#result\n", + "print \"armature current=\",ia,\"A\"\n", + "print \"line voltage=\",el,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "armature current= 43.4628778514 A\n", + "line voltage= 14304.0798593 V\n" + ] + } + ], + "prompt_number": 251 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.52, Page Number:1472" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=10#MW\n", + "pf=0.8\n", + "output=6000#kW\n", + "pfa=0.92\n", + "\n", + "#calculations\n", + "phi=math.acos(pf)\n", + "phia=math.acos(pfa)\n", + "tanphi=math.tan(phi)\n", + "tanphia=math.tan(phia)\n", + "loadkvar=load*1000*tanphi\n", + "akvar=output*tanphia\n", + "kwb=(load*1000-output)\n", + "kvarb=loadkvar-akvar\n", + "kvab=complex(kwb,kvarb)\n", + "pfb=math.cos(math.atan(kvab.imag/kvab.real))\n", + "kvarb=kwb*pfb\n", + "kvara=-loadkvar-kvarb\n", + "kvaa=complex(output,kvara)\n", + "pfa=math.cos(math.atan(kvaa.imag/kvaa.real))\n", + "\n", + "#result\n", + "print \"new pfb=\",pfb\n", + "print \"new pfa=\",pfa" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "new pfb= 0.628980253433\n", + "new pfa= 0.513894032194\n" + ] + } + ], + "prompt_number": 253 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.54, Page Number:1473" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=6600#V\n", + "load=1000#KVA\n", + "x=20#%\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "i=87.5\n", + "x=8.7\n", + "vp=3810\n", + "e0=4311\n", + "ir=70\n", + "ix=52.5\n", + "IX=762\n", + "vb1=(e0**2-vp**2)**0.5\n", + "i1x=vb1\n", + "i1=i1x/x\n", + "output=3**0.5*v*i1/1000\n", + "b2v=(vp**2+e0**2)**0.5\n", + "i2z=b2v\n", + "i2=b2v/x\n", + "i2rx=e0\n", + "i2r=i2rx/x\n", + "i2x=vp/x\n", + "tanphi2=i2x/i2r\n", + "phi2=math.atan(tanphi2)\n", + "cosphi2=math.cos(phi2)\n", + "output1=3**0.5*v*i2*cosphi2/1000\n", + "\n", + "#result\n", + "print \"power output at unity pf=\",output,\"kW\"\n", + "print \"max power output=\",output1,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " power output at unity pf= 2650.38477722 kW\n", + "max power output= 5664.52285143 kW\n" + ] + } + ], + "prompt_number": 255 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.55, Page Number:1474" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "x=10.0#ohm\n", + "i=220.0#A\n", + "load=11.0#kV\n", + "per=25.0#%\n", + "\n", + "#calculations\n", + "oa1=load*1000/3**0.5\n", + "a1c1=i*x\n", + "e0=(oa1**2+a1c1**2)**0.5\n", + "emf=(1+per/100)*e0\n", + "a1a2=(emf**2-a1c1**2)**0.5-oa1\n", + "ix=a1a2/x\n", + "i1=(i**2+ix**2)**0.5\n", + "pf=i/i1\n", + "bv=(oa1**2+emf**2)**0.5\n", + "imax=bv/x\n", + "ir=emf/x\n", + "ix=oa1/x\n", + "pfmax=ir/imax\n", + "output=3**0.5*load*1000*imax*pfmax*0.001\n", + "#result\n", + "print \"new current=\",i1,\"A\"\n", + "print \"new power factor=\",pf\n", + "print \"max power output=\",output,\"kW\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "new current= 281.573453399 A\n", + "new power factor= 0.781323655849\n", + "max power output= 16006.7954319 kW\n" + ] + } + ], + "prompt_number": 258 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.56, Page Number:1475" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=20.0#MVA\n", + "load1=35.0#MVA\n", + "pf=0.8\n", + "output=25.0#MVA\n", + "cosphi1=0.9\n", + "\n", + "#calculations\n", + "loadmw=load1*pf\n", + "loadmvar=load1*0.6\n", + "sinphi=math.sin(math.acos(cosphi))\n", + "mva1=25\n", + "mw1=mva1*cosphi1\n", + "mvar1=25*sinphi1\n", + "mw2=loadmw-mw1\n", + "mvar2=loadmvar-mvar1\n", + "mva2=(mw2**2+mvar2**2)**0.5\n", + "cosphi2=mw2/mva2\n", + "\n", + "#result\n", + "print \"output=\",mva2\n", + "print \"pf=\",cosphi2" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "output= 10.4509862952\n", + "pf= 0.52626611926\n" + ] + } + ], + "prompt_number": 260 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.57, Page Number:1475" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declarations\n", + "load=600#KW\n", + "loadm=707#kW\n", + "pf=0.707\n", + "output=900#kW\n", + "pf1=0.9\n", + "\n", + "#calculation\n", + "kva=1000\n", + "kvar=kva*(1-pf1**2)**0.5\n", + "active_p=1307-output\n", + "reactive_p=loadm-kvar\n", + "\n", + "#result\n", + "print \"active power shared by second machine=\",active_p,\"kW\"\n", + "print \"reactive power shared by second machine=\",reactive_p,\"kVAR\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "active power shared by second machine= 407 kW\n", + "reactive power shared by second machine= 271.110105646 kVAR\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.58, Page Number:1476" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "l1=500#kW\n", + "l2=1000#kW\n", + "pf1=0.9\n", + "l3=800#kW\n", + "pf2=0.8\n", + "l4=500#kW\n", + "pf3=0.9\n", + "output=1500#kW\n", + "pf=0.95\n", + "\n", + "#calculation\n", + "kw1=l1\n", + "kw2=l2\n", + "kw3=l3\n", + "kw4=500\n", + "kvar2=kw2*0.436/pf1\n", + "kvar3=kw3*0.6/pf2\n", + "kvar4=kw4*0.436/pf3\n", + "kvar=output/pf\n", + "kw=kw1+kw2+kw3+kw4-output\n", + "kvar=kvar2+kvar3+kvar4-kvar\n", + "cosphi=math.cos(math.atan(kvar/kw))\n", + "\n", + "#result\n", + "print \"kW output=\",kw\n", + "print \"pf=\",cosphi" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "kW output= 1300\n", + "pf= 0.981685651341\n" + ] + } + ], + "prompt_number": 264 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.59, Page Number:1476" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "z=complex(0.2,2)\n", + "ze=complex(3,4)\n", + "emf1=complex(2000,0)\n", + "emf2=complex(22000,100)\n", + "\n", + "#calculations\n", + "i1=complex(68.2,-102.5)\n", + "i2=complex(127,-196.4)\n", + "i=i1+i2\n", + "v=i*ze\n", + "pva1=v*i1\n", + "kw1=pva1.real*3\n", + "a11=math.atan(-i1.imag/i1.real)\n", + "a12=math.atan(-v.imag/v.real)\n", + "pf1=math.cos(a11-a12)\n", + "pva2=v*i2\n", + "kw2=pva2.real*3\n", + "a21=math.atan(-i2.imag/i2.real)\n", + "a22=math.atan(-v.imag/v.real)\n", + "pf2=math.cos(a21-a22)\n", + "\n", + "#result\n", + "print \"kw output 1=\",kw1/1000\n", + "print \"pf 1=\",pf1\n", + "print \"kw output 2=\",kw2/1000\n", + "print \"pf 2=\",pf2" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "kw output 1= 328.79427\n", + "pf 1= 0.606839673468\n", + "kw output 2= 610.34892\n", + "pf 2= 0.596381892841\n" + ] + } + ], + "prompt_number": 273 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.63, Page Number:1481" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=5000#KVA\n", + "v=10000#V\n", + "f=50#Hz\n", + "ns=1500#rpm\n", + "j=1.5*10**4#khm2\n", + "ratio=5\n", + "\n", + "#calculation\n", + "t=0.0083*ns*(j/(load*ratio*f))**0.5\n", + "\n", + "#result\n", + "print \"natural time period of oscillation=\",round(t,3),\"s\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "natural time period of oscillation= 1.364 s\n" + ] + } + ], + "prompt_number": 275 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.64, Page Number:1481" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=10000#KVA\n", + "p=4\n", + "v=6600#V\n", + "f=50#Hz\n", + "xs=25#%\n", + "pf=1.5\n", + "\n", + "#calculations\n", + "ratio=100/xs\n", + "ns=120*f/p\n", + "j=(pf/(0.0083*ns))**2*load*ratio*f\n", + "\n", + "#result\n", + "print \"moment of inertia=\",j/1000,\"x10^4 kg-m2\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "moment of inertia= 29.0317898098 x10^4 kg-m2\n" + ] + } + ], + "prompt_number": 277 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.65, Page Number:1481" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=10.0#MVA\n", + "v=10.0#kV\n", + "f=50.0#Hz\n", + "ns=1500.0#rpm\n", + "j=2.0*10**5#kgm2\n", + "x=40.0\n", + "\n", + "#calculation\n", + "ratio=100.0/x\n", + "t=0.0083*ns*(j/(load*1000*ratio*f))**0.5\n", + "\n", + "#result\n", + "print \"frequency of oscillation of the rotor=\",round(1/t,1),\"Hz\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "frequency of oscillation of the rotor= 0.2 Hz\n" + ] + } + ], + "prompt_number": 283 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.66, Page Number:1483" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=11#kV\n", + "z=complex(1,10)\n", + "emf=14#kV\n", + "\n", + "#calculations\n", + "e=emf*1000/3**0.5\n", + "v=v*1000/3**0.5\n", + "costheta=z.real/abs(z)\n", + "pmax=e*v*3/(z.imag*1000)\n", + "pmax_per_phase=(v/abs(z))*(e-(v/abs(z)))*3\n", + "\n", + "#result\n", + "print \"max output =\",pmax_per_phase/1000,\"kW\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "max output = 14125.5529273 kW\n" + ] + } + ], + "prompt_number": 285 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.67, Page Number:1484" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=11#kVA\n", + "load1=10#MW\n", + "z=complex(0.8,8.0)\n", + "v=14#kV\n", + "\n", + "#calculations\n", + "pmax=(load*1000/3**0.5)*(v*1000/3**0.5)*3/z.imag\n", + "imax=((v*1000/3**0.5)**2+(load*1000/3**0.5)**2)**0.5/z.imag\n", + "pf=(v/3**0.5)*1000/((v*1000/3**0.5)**2+(load*1000/3**0.5)**2)**0.5\n", + "\n", + "#result\n", + "print \"maximum output=\",pmax/1000000,\"MW\"\n", + "print \"current=\",imax,\"A\"\n", + "print \"pf=\",pf" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "maximum output= 19.25 MW\n", + "current= 1284.92866209 A\n", + "pf= 0.786318338822\n" + ] + } + ], + "prompt_number": 289 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A Textbook of Electrical Technology AC and DC Machines/chapter38.ipynb b/A Textbook of Electrical Technology AC and DC Machines/chapter38.ipynb new file mode 100644 index 00000000..90e078d2 --- /dev/null +++ b/A Textbook of Electrical Technology AC and DC Machines/chapter38.ipynb @@ -0,0 +1,1739 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:4fa0d818a53ec5608949c7725a11f84c78952680d73d506e4179ac596da192fb" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 38: Synchronous Motor" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.1, Page Number:1495" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "p=75#kW\n", + "f=50#Hz\n", + "v=440#V\n", + "pf=0.8\n", + "loss=0.95\n", + "xs=2.5#ohm\n", + "\n", + "#calculations\n", + "ns=120*f/4\n", + "pm=p*1000/loss\n", + "ia=pm/(math.sqrt(3)*v*pf)\n", + "vol_phase=v/math.sqrt(3)\n", + "\n", + "#calculations\n", + "print \"mechanical power=\",pm,\"W\"\n", + "print \"armature current=\",ia,\"A\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "mechanical power= 78947.3684211 W\n", + "armature current= 129.489444346 A\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.2, Page Number:1498" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import cmath\n", + "#variable declaration\n", + "p=20\n", + "vl=693#V\n", + "r=10#ohm\n", + "lag=0.5#degrees\n", + "\n", + "#calculations\n", + "#lag=0.5\n", + "alpha=p*lag/2\n", + "eb=vp=vl/math.sqrt(3)\n", + "er=complex(vp-eb*math.cos(math.radians(alpha)),eb*math.sin(math.radians(alpha)))\n", + "zs=complex(0,10)\n", + "ia=er/zs\n", + "power_input=3*vp*abs(ia)*math.cos(math.radians(cmath.phase(ia)))\n", + "print \"displacement:0.5%\"\n", + "print \"alpha=\",alpha,\"degrees\"\n", + "print \"armature emf/phase=\",eb,\"V\"\n", + "print \"armature current/phase=\",ia,\"A\"\n", + "print \"power drawn=\",power_input,\"W\"\n", + "print \"\"\n", + "\n", + "#lag=5\n", + "lag=5\n", + "alpha=p*lag/2\n", + "eb=vp=vl/math.sqrt(3)\n", + "er=complex(vp-eb*math.cos(math.radians(alpha)),eb*math.sin(math.radians(alpha)))\n", + "zs=complex(0,10)\n", + "ia=er/zs\n", + "power_input=3*vp*abs(ia)*math.cos(math.radians(cmath.phase(ia)))\n", + "\n", + "print \"displacement:5%\"\n", + "print \"alpha=\",alpha,\"degrees\"\n", + "print \"armature emf/phase=\",eb,\"V\"\n", + "print \"armature current/phase=\",ia,\"A\"\n", + "print \"power drawn=\",power_input,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "displacement:0.5%\n", + "alpha= 5.0 degrees\n", + "armature emf/phase= 400.103736548 V\n", + "armature current/phase= (3.4871338335-0.152251551219j) A\n", + "power drawn= 4189.63221768 W\n", + "\n", + "displacement:5%\n", + "alpha= 50 degrees\n", + "armature emf/phase= 400.103736548 V\n", + "armature current/phase= (30.6497244054-14.2922012106j) A\n", + "power drawn= 40591.222447 W\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.3, Page Number:1499" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=400.0#V/ph\n", + "i=32.0#A/ph\n", + "xs=10.0#ohm\n", + "\n", + "#calculations\n", + "e=math.sqrt(v**2+(i*xs)**2)\n", + "delta=math.atan((i*xs)/v)\n", + "power=3*v*i\n", + "power_other=3*(v*e/10)*math.sin(delta)*0.001\n", + "\n", + "#result\n", + "print \"E=\",e,\"V\"\n", + "print \"delta=\",math.degrees(delta),\"degrees\"\n", + "\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "E= 512.249938995 V\n", + "delta= 38.6598082541 degrees\n" + ] + } + ], + "prompt_number": 15 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.4, Page Number:1506" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "w=150#kW\n", + "f=50#Hz\n", + "v=2300#V\n", + "n=1000#rpm\n", + "xd=32#ohm\n", + "xq=20#ohm\n", + "alpha=16#degrees\n", + "\n", + "#calculations\n", + "vp=v/math.sqrt(3)\n", + "eb=2*vp\n", + "ex_power=eb*vp*math.sin(math.radians(alpha))/xd\n", + "rel_power=(vp**2*(xd-xq)*math.sin(math.radians(2*alpha)))/(2*xd*xq)\n", + "pm=3*(ex_power+rel_power)\n", + "tg=9.55*pm/1000\n", + "\n", + "#result\n", + "print \"torque=\",tg,\"N-m\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "torque= 1121.29686485 N-m\n" + ] + } + ], + "prompt_number": 27 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.5, Page Number:1506" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "x=Symbol('x')\n", + "v=3300.0#V\n", + "P=1.5#MW\n", + "phi=3.0\n", + "xd=4.0#ohm per phase\n", + "xq=3.0#ohm per phase\n", + "sin_phi=0\n", + "cos_phi=1\n", + "phi=0\n", + "#calculations\n", + "v1=v/math.sqrt(3)\n", + "ia=P*math.pow(10,6)/(math.sqrt(3)*v*cos_phi)\n", + "tan_sigma=(v1*sin_phi-ia*xq)/(v1*cos_phi)\n", + "sigma=math.atan(tan_sigma)\n", + "alpha=phi-sigma\n", + "i_d=ia*math.sin(sigma)\n", + "iq=ia*math.cos(sigma)\n", + "eb=v1*math.cos(alpha)-i_d*xd\n", + "#eb=1029sin(alpha)+151sin(2*alpha)\n", + "#dPm/d(alpha)=1029sin(alpha)+151sin(2*alpha)=0\n", + "ans=solve([(604.0*x**2+1029.0*x-302.0)],[x])\n", + "alpha2=math.acos(math.radians(ans[1][0]))\n", + "Pm=1029*math.sin(alpha2)+151*math.sin(alpha2)\n", + "max_P=Pm*3\n", + "\n", + "#result\n", + "print \"Maximum mechanical power which the motor would develop=\",round(max_P),\"kW\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Maximum mechanical power which the motor would develop= 3540.0 kW\n" + ] + } + ], + "prompt_number": 27 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.6, Page Number:1506" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=11000#V\n", + "ia=60#A\n", + "r=1#ohm\n", + "x=30#ohm\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "p2=math.sqrt(3)*v*ia*pf\n", + "cu_loss=ia**2*3\n", + "pm=p2-cu_loss\n", + "vp=v/math.sqrt(3)\n", + "phi=math.acos(pf)\n", + "theta=math.atan(x/r)\n", + "zs=x\n", + "z_drop=ia*zs\n", + "eb=math.sqrt((vp**2+z_drop**2-(2*vp*z_drop*math.cos(theta+phi))))*math.sqrt(3)\n", + "\n", + "#result\n", + "print \"power supplied=\",p2/1000,\"kW\"\n", + "print \"mechanical power=\",pm/1000,\"KW\"\n", + "print \"induced emf=\",eb,\"V\"\n", + "\n", + " " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "power supplied= 914.522826396 kW\n", + "mechanical power= 903.722826396 KW\n", + "induced emf= 13039.2734763 V\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.7, Page Number:1507" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=400#V\n", + "i=32#A\n", + "pf=1\n", + "xd=10#ohm\n", + "xq=6.5#ohm\n", + "\n", + "#calculations\n", + "e=math.sqrt(v**2+(i*xq)**2)+((xd-xq)*14.8)\n", + "delta=math.atan((i*xq)/v)\n", + "power=3*v*i\n", + "power_other=3*(v*e/10)*math.sin(delta)*0.001\n", + "\n", + "#result\n", + "print \"E=\",e,\"V\"\n", + "print \"delta=\",math.degrees(delta),\"degrees\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "E= 502.648089715 V\n", + "delta= 27.4744316263 degrees\n" + ] + } + ], + "prompt_number": 60 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.8, Page Number:1508" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=500#V\n", + "output=7.46#kW\n", + "pf=0.9\n", + "r=0.8#ohm\n", + "loss=500#W\n", + "ex_loss=800#W\n", + "\n", + "#calculations\n", + "pm=output*1000+loss+ex_loss\n", + "ia=(v*pf-math.sqrt(v**2*pf**2-4*r*pm))/(2*r)\n", + "m_input=loss*ia*pf\n", + "efficiency=output*1000/m_input\n", + "\n", + "#result\n", + "print \"commercial efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "commercial efficiency= 82.1029269497 %\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.9, Page Number:1509" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=2300#V\n", + "r=0.2#ohm\n", + "x=2.2#ohm\n", + "pf=0.5\n", + "il=200#A\n", + "\n", + "#calculations\n", + "phi=math.acos(pf)\n", + "theta=math.atan(x//r)\n", + "v=v/math.sqrt(3)\n", + "zs=math.sqrt(r**2+x**2)\n", + "eb=math.sqrt(v**2+(il*zs)**2-(2*v*il*zs*math.cos(phi+theta)))\n", + "\n", + "#result\n", + "print \"Eb=\",eb,\"volt/phase\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Eb= 1708.04482042 volt/phase\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.10, Page Number:1509" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "vl=6600#V\n", + "f=50#Hz\n", + "il=50#A\n", + "r=1#ohm\n", + "x=20#ohm\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "#0.8 lagging\n", + "power_i=math.sqrt(3)*v*f*pf\n", + "v=vl/math.sqrt(3)\n", + "phi=math.acos(pf)\n", + "theta=math.atan(x/r)\n", + "zs=math.sqrt(x**2+r**2)\n", + "eb=math.sqrt(v**2+(il*zs)**2-(2*v*il*zs*math.cos(phi-theta)))*math.sqrt(3)\n", + "\n", + "print \"0.8 lag: Eb=\",eb\n", + "\n", + "#0.8 leading\n", + "power_i=math.sqrt(3)*v*f*pf\n", + "v=vl/math.sqrt(3)\n", + "phi=math.acos(pf)\n", + "theta=math.atan(x/r)\n", + "zs=math.sqrt(x**2+r**2)\n", + "eb=math.sqrt(v**2+(il*zs)**2-(2*v*il*zs*math.cos(phi+theta)))*math.sqrt(3)\n", + "\n", + "print \"0.8 leading:Eb=\",eb" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "0.8 lag: Eb= 5651.1180113\n", + "0.8 leading:Eb= 7705.24623679\n" + ] + } + ], + "prompt_number": 18 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.11, Page Number:1510" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "x=0.4\n", + "pf=0.8\n", + "v=100#V\n", + "phi=math.acos(pf)\n", + "#calculations\n", + "#pf=1\n", + "eb=math.sqrt(v**2+(x*v)**2)\n", + "#pf=0.8 lag\n", + "eb2=math.sqrt(v**2+(x*v)**2-(2*v*x*v*math.cos(math.radians(90)-phi)))\n", + "#pf=0.8 lead\n", + "eb3=math.sqrt(v**2+(x*v)**2-(2*v*x*v*math.cos(math.radians(90)+phi)))\n", + "#result\n", + "print \"pf=1: Eb=\",eb,\"V\"\n", + "print \"pf=0.8 lag:Eb=\",eb2,\"V\"\n", + "print \"pf=0.8 lead:Eb=\",eb3,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "pf=1: Eb= 107.703296143 V\n", + "pf=0.8 lag:Eb= 82.4621125124 V\n", + "pf=0.8 lead:Eb= 128.062484749 V\n" + ] + } + ], + "prompt_number": 25 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.12, Page Number:1510" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaraion\n", + "load=1000#kVA\n", + "v=11000#V\n", + "r=3.5#ohm\n", + "x=40#ohm\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "ia=load*1000/(math.sqrt(3)*v)\n", + "vp=v/math.sqrt(3)\n", + "phi=math.acos(pf)\n", + "ra=ia*r\n", + "xa=ia*x\n", + "za=math.sqrt(ra**2+xa**2)\n", + "theta=math.atan(x/r)\n", + "\n", + "#pf=1\n", + "eb1=math.sqrt(vp**2+za**2-(2*vp*za*math.cos(theta)))\n", + "alpha1=math.asin(xa*math.sin(theta)/eb1)\n", + "\n", + "#pf=0.8 lag\n", + "eb2=math.sqrt(vp**2+xa**2-(2*vp*xa*math.cos(theta-phi)))*math.sqrt(3)\n", + "alpha2=math.asin(xa*math.sin(theta-phi)/eb2)\n", + "#pf=1\n", + "eb3=math.sqrt(vp**2+xa**2-(2*vp*xa*math.cos(theta+phi)))*math.sqrt(3)\n", + "alpha3=math.asin(xa*math.sin(theta+phi)/eb3)\n", + "\n", + "#result\n", + "print \"at pf=1\"\n", + "print \"Eb=\",eb1*math.sqrt(3),\"V\"\n", + "print \"alpha=\",math.degrees(alpha1),\"degrees\"\n", + "print \"at pf=0.8 lagging\"\n", + "print \"Eb=\",eb2,\"V\"\n", + "print \"alpha=\",math.degrees(alpha2),\"degrees\"\n", + "print \"at pf=0.8 leading\"\n", + "print \"Eb=\",eb3,\"V\"\n", + "print \"alpha=\",math.degrees(alpha3),\"degrees\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "at pf=1\n", + "Eb= 11283.8105339 V\n", + "alpha= 18.7256601694 degrees\n", + "at pf=0.8 lagging\n", + "Eb= 8990.39249633 V\n", + "alpha= 10.0142654731 degrees\n", + "at pf=0.8 leading\n", + "Eb= 13283.8907748 V\n", + "alpha= 7.71356041367 degrees\n" + ] + } + ], + "prompt_number": 56 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.14, Page Number:1513" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "z=complex(0.5,0.866)\n", + "v=200#V\n", + "output=6000#W\n", + "loss=500#W\n", + "i=50#A\n", + "\n", + "#calculations\n", + "cu_loss=i**2*z.real\n", + "motor_intake=output+loss+cu_loss\n", + "phi=math.acos(motor_intake/(v*i))\n", + "theta=math.atan(z.imag/z.real)\n", + "zs=abs(z)*i\n", + "eb1=math.sqrt(v**2+zs**2-(2*v*zs*math.cos(math.radians(60)-phi)))\n", + "eb2=math.sqrt(v**2+zs**2-(2*v*zs*math.cos(math.radians(60)+phi)))\n", + "#result\n", + "print \"lag:eb=\",eb1,\"V\"\n", + "print \"lag:eb=\",eb2,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "lag:eb= 154.286783862 V\n", + "lag:eb= 213.765547573 V\n" + ] + } + ], + "prompt_number": 65 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.15, Page Number:1513" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=2200#V\n", + "f=50#Hz\n", + "z=complex(0.4,6)\n", + "lag=3#degrees\n", + "\n", + "#calculations\n", + "eb=v/math.sqrt(3)\n", + "alpha=lag*8/2\n", + "er=math.sqrt(eb**2+eb**2-(2*eb*eb*(math.cos(math.radians(alpha)))))\n", + "zs=abs(z)\n", + "ia=er/zs\n", + "theta=math.atan(z.imag/z.real)\n", + "phi=theta-(math.asin(eb*math.sin(math.radians(alpha))/er))\n", + "pf=math.cos(phi)\n", + "total_input=3*eb*ia*pf\n", + "cu_loss=3*ia**2*z.real\n", + "pm=total_input-cu_loss\n", + "pm_max=(eb*eb/zs)-(eb**2*z.real/(zs**2))\n", + "#result\n", + "print \"armature current=\",ia,\"A\"\n", + "print \"power factor=\",pf\n", + "print \"power of the motor=\",pm/1000,\"kW\"\n", + "print \"max power of motor=\",pm_max/1000,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "armature current= 44.1583059199 A\n", + "power factor= 0.99927231631\n", + "power of the motor= 165.803353329 kW\n", + "max power of motor= 250.446734776 kW\n" + ] + } + ], + "prompt_number": 72 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.16, Page Number:1514" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "eb=250#V\n", + "lead=150#degrees\n", + "v=200#V\n", + "x=2.5#times resistance\n", + "alpha=lead/3\n", + "#calculations\n", + "er=math.sqrt(v**2+eb**2-(2*v*eb*math.cos(math.radians(alpha))))\n", + "theta=math.atan(x)\n", + "phi=math.radians(90)-theta\n", + "pf=math.cos(phi)\n", + "\n", + "#results\n", + "print \"pf at which the motor is operating=\",pf" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "pf at which the motor is operating= 0.928476690885\n" + ] + } + ], + "prompt_number": 73 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.17, Page Number:1514" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=6600#V\n", + "r=10#ohm\n", + "inpt=900#kW\n", + "e=8900#V\n", + "\n", + "#calculations\n", + "vp=v/math.sqrt(3)\n", + "eb=e/math.sqrt(3)\n", + "icos=inpt*1000/(math.sqrt(3)*v)\n", + "bc=r*icos\n", + "ac=math.sqrt(eb**2-bc**2)\n", + "oc=ac-vp\n", + "phi=math.atan(oc/bc)\n", + "i=icos/math.cos(phi)\n", + "\n", + "#result\n", + "print \"Line current=\",i,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Line current= 149.188331836 A\n" + ] + } + ], + "prompt_number": 82 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.18, Page Number:1515" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=6600#V\n", + "x=20#ohm\n", + "inpt=1000#kW\n", + "pf=0.8\n", + "inpt2=1500#kW\n", + "\n", + "#variable declaration\n", + "va=v/math.sqrt(3)\n", + "ia1=inpt*1000/(math.sqrt(3)*v*pf)\n", + "zs=x\n", + "phi=math.acos(pf)\n", + "ia1zs=ia1*zs\n", + "eb=math.sqrt(va**2+ia1zs**2-(2*va*ia1zs*math.cos(math.radians(90)+phi)))\n", + "ia2cosphi2=inpt2*1000/(math.sqrt(3)*v)\n", + "cosphi2=x*ia2cosphi2\n", + "ac=math.sqrt(eb**2-cosphi2*2)\n", + "phi2=math.atan(ac/cosphi2)\n", + "pf=math.cos(phi2)\n", + "alpha2=math.atan(cosphi2/ac)\n", + "\n", + "#results\n", + "print \"new power angle=\",math.degrees(alpha2),\"degrees\"\n", + "print \"new power factor=\",pf" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "new power angle= 25.8661450552 degrees\n", + "new power factor= 0.436270181217\n" + ] + } + ], + "prompt_number": 97 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.19, Page Number:1515" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=400#V\n", + "inpt=5472#W\n", + "x=10#ohm\n", + "\n", + "#calculations\n", + "va=v/math.sqrt(3)\n", + "iacosphi=inpt/(math.sqrt(3)*v)\n", + "zs=x\n", + "iazs=iacosphi*zs\n", + "ac=math.sqrt(va**2-iazs**2)\n", + "oc=va-ac\n", + "bc=iazs\n", + "phi=math.atan(oc/iazs)\n", + "pf=math.cos(phi)\n", + "ia=iacosphi/pf\n", + "alpha=math.atan(bc/ac)\n", + "#result\n", + "print \"load angle=\",math.degrees(alpha),\"degrees\"\n", + "print \"power factor=\",pf\n", + "print \"armature current=\",ia,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "load angle= 19.9987718079 degrees\n", + "power factor= 0.984809614116\n", + "armature current= 8.01997824686 A\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.20, Page Number:1515" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "import scipy\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "i2=Symbol('i2')\n", + "v=2000.0#V\n", + "r=0.2#ohm\n", + "xs=2.2#ohm\n", + "inpt=800.0#kW\n", + "e=2500.0#V\n", + "\n", + "#calculations\n", + "i1=inpt*1000/(math.sqrt(3)*v)\n", + "vp=v/math.sqrt(3)\n", + "ep=e/math.sqrt(3)\n", + "theta=math.atan(xs/r)\n", + "i2=solve(((i1*xs+r*i2)**2+(vp+i1*r-xs*i2)**2)-ep**2,i2)\n", + "i=math.sqrt(i1**2+i2[0]**2)\n", + "pf=i1/i\n", + "\n", + "#result\n", + "print \"line currrent=\",i,\"A\"\n", + "print \"power factor=\",pf" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "line currrent= 241.492937915 A\n", + "power factor= 0.956301702525\n" + ] + } + ], + "prompt_number": 152 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.21, Page Number:1516" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=440#V\n", + "f=50#Hz\n", + "inpt=7.46#kW\n", + "r=0.5#ohm\n", + "pf=0.75\n", + "loss=500#W\n", + "ex_loss=650#W\n", + "\n", + "#calculations\n", + "ia=inpt*1000/(math.sqrt(3)*v*pf)\n", + "cu_loss=3*ia**2*r\n", + "power=inpt*1000+ex_loss\n", + "output=inpt*1000-cu_loss-loss\n", + "efficiency=output/power\n", + "\n", + "#result\n", + "print \"armature current=\",ia,\"A\"\n", + "print \"power=\",power,\"W\"\n", + "print \"efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "armature current= 13.0516151762 A\n", + "power= 8110.0 W\n", + "efficiency= 82.6693343026 %\n" + ] + } + ], + "prompt_number": 156 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.22, Page Number:1517" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "v=3300#V\n", + "x=18#ohm\n", + "pf=0.707\n", + "inpt=800#kW\n", + "\n", + "#calculations\n", + "ia=inpt*1000/(math.sqrt(3)*v*pf)\n", + "ip=ia/math.sqrt(3)\n", + "zs=x\n", + "iazs=ip*zs\n", + "phi=math.acos(pf)\n", + "theta=math.radians(90)\n", + "eb=math.sqrt(v**2+iazs**2-(2*v*iazs*(-1)*pf))\n", + "alpha=math.asin(iazs*math.sin(theta+phi)/eb)\n", + "\n", + "#result\n", + "print \"excitation emf=\",eb,\"V\"\n", + "print \"rotor angle=\",math.degrees(alpha),\"degrees\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "excitation emf= 4972.19098879 V\n", + "rotor angle= 17.0098509277 degrees\n" + ] + } + ], + "prompt_number": 157 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.23, Page Number:1517" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "inpt=75#kW\n", + "v=400#V\n", + "r=0.04#ohm\n", + "x=0.4#ohm\n", + "pf=0.8\n", + "efficiency=0.925\n", + "\n", + "#calculations\n", + "input_m=inpt*1000/efficiency\n", + "ia=input_m/(math.sqrt(3)*v)\n", + "zs=math.sqrt(r**2+x**2)\n", + "iazs=ia*zs\n", + "phi=math.atan(x/r)\n", + "theta=math.radians(90)-phi\n", + "vp=v/math.sqrt(3)\n", + "eb=math.sqrt(vp**2+iazs**2-(2*vp*iazs*math.cos(theta+phi)))\n", + "cu_loss=3*ia**2*r\n", + "ns=120*50/40\n", + "pm=input_m-cu_loss\n", + "tg=9.55*pm/ns\n", + "\n", + "#result\n", + "print \"emf=\",eb,\"eb\"\n", + "print \"mechanical power=\",pm,\"W\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "emf= 235.683320812 eb\n", + "mechanical power= 79437.5456538 W\n" + ] + } + ], + "prompt_number": 158 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.24, Page Number:1517" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=400#V\n", + "f=50#Hz\n", + "r=0.5#ohm\n", + "zs=x=4#ohm\n", + "i=15#A\n", + "i2=60#A\n", + "\n", + "#calculations\n", + "vp=v/math.sqrt(3)\n", + "iazs=i*zs\n", + "xs=math.sqrt(x**2-r**2)\n", + "theta=math.atan(xs/r)\n", + "eb=math.sqrt(vp**2+iazs**2-(2*vp*iazs*math.cos(theta)))\n", + "iazs2=i2*zs\n", + "phi=theta-math.acos(vp**2-vp**2+iazs2**2/(2*vp*iazs2))\n", + "pf=math.cos(phi)\n", + "input_m=math.sqrt(3)*v*i2*pf\n", + "cu_loss=3*i2**2*r\n", + "pm=input_m-cu_loss\n", + "ns=120*50/6\n", + "tg=9.55*pm/ns\n", + "\n", + "#result\n", + "print \"gross torque developed=\",tg,\"N-m\"\n", + "print \"new power factor=\",pf" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "gross torque developed= 310.739709828 N-m\n", + "new power factor= 0.912650996943\n" + ] + } + ], + "prompt_number": 161 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.25, Page Number:1518" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=400#V\n", + "inpt=7.46#kW\n", + "xs=10#W/phase\n", + "efficiency=0.85\n", + "\n", + "#calculations\n", + "input_m=inpt*1000/efficiency\n", + "il=input_m/(math.sqrt(3)*v)\n", + "zs=il*xs\n", + "vp=v/math.sqrt(3)\n", + "eb=math.sqrt(vp**2+zs**2)\n", + "\n", + "#result\n", + "print \"minimum current=\",il,\"A\"\n", + "print \"inducedemf=\",eb,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "minimum current= 12.6677441416 A\n", + "inducedemf= 263.401798584 V\n" + ] + } + ], + "prompt_number": 164 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.26, Page Number:1518" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=400#V\n", + "f=50#Hz\n", + "inpt=37.5#kW\n", + "efficiency=0.88\n", + "zs=complex(0.2,1.6)\n", + "pf=0.9\n", + "\n", + "#calculations\n", + "input_m=inpt/efficiency\n", + "ia=input_m*1000/(math.sqrt(3)*v*pf)\n", + "vp=v/math.sqrt(3)\n", + "er=ia*abs(zs)\n", + "phi=math.acos(pf)\n", + "theta=math.atan(zs.imag/zs.real)\n", + "eb=math.sqrt(vp**2+er**2-(2*vp*er*math.cos(theta+phi)))\n", + "alpha=math.asin(math.sin(theta+phi)*er/eb)\n", + "pm=3*eb*vp*math.sin(alpha)/abs(zs)\n", + "#result\n", + "print \"excitation emf=\",eb*math.sqrt(3),\"V\"\n", + "print \"total mechanical power developed=\",pm,\"W\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "excitation emf= 495.407915636 V\n", + "total mechanical power developed= 44844.4875189 W\n" + ] + } + ], + "prompt_number": 206 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.27, Page Number:1519" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "import scipy\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "v=6600.0#V\n", + "xs=20.0#ohm\n", + "inpt=1000.0#kW\n", + "pf=0.8\n", + "inpt2=1500.0#kW\n", + "phi2=Symbol('phi2')\n", + "#calculations\n", + "vp=v/math.sqrt(3)\n", + "ia=inpt*1000/(math.sqrt(3)*v*pf)\n", + "theta=math.radians(90)\n", + "er=ia*xs\n", + "zs=xs\n", + "phi=math.acos(pf)\n", + "eb=math.sqrt(vp**2+er**2-(2*vp*er*math.cos(theta+phi)))\n", + "alpha=math.asin(inpt2*1000*zs/(3*eb*vp))\n", + "#vp/eb=cos(alpha+phi2)/cos(phi2)\n", + "#solving we get\n", + "phi2=math.radians(19.39)\n", + "pf=math.cos(phi2)\n", + "#result\n", + "print \"new power factor=\",pf\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "new power factor= 0.943280616635\n" + ] + } + ], + "prompt_number": 228 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.28, Page Number:1519" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=400#V\n", + "x=4#ohms/phase\n", + "r=0.5#ohms/phase\n", + "ia=60#A\n", + "pf=0.866\n", + "loss=2#kW\n", + "\n", + "#calculations\n", + "vp=v/math.sqrt(3)\n", + "zs=abs(complex(r,x))\n", + "phi=math.acos(pf)\n", + "iazs=ia*zs\n", + "theta=math.atan(x/r)\n", + "eb=math.sqrt(vp**2+iazs**2-(2*vp*iazs*math.cos(theta+phi)))\n", + "pm_max=(eb*vp/zs)-(eb**2*r/zs**2)\n", + "pm=3*pm_max\n", + "output=pm-loss*1000\n", + "\n", + "#result\n", + "print \"maximum power output=\",output/1000,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "maximum power output= 51.3898913442 kW\n" + ] + } + ], + "prompt_number": 229 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.29, Page Number:1519" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "z=10#ohm\n", + "x=0.5#ohm\n", + "v=2000#V\n", + "f=25#Hz\n", + "eb=1600#V\n", + "\n", + "#calculations\n", + "pf=x/z\n", + "pm_max=(eb*v/z)-(eb**2*pf/zs)\n", + "ns=120*f/6\n", + "tg_max=9.55*pm_max/ns\n", + "\n", + "#result\n", + "print \"maximum total torque=\",tg_max,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "maximum total torque= 5505.51976175 N-m\n" + ] + } + ], + "prompt_number": 231 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.30, Page Number:1520" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variabke declaration\n", + "v=2000#V\n", + "n=1500#rpm\n", + "x=3#ohm/phase\n", + "ia=200#A\n", + "\n", + "#calculations\n", + "eb=vp=v/math.sqrt(3)\n", + "zs=ia*x\n", + "sinphi=(eb**2-vp**2-zs**2)/(2*zs*vp)\n", + "phi=math.asin(sinphi)\n", + "pf=math.cos(phi)\n", + "pi=math.sqrt(3)*v*ia*pf/1000\n", + "tg=9.55*pi*1000/n\n", + "\n", + "#result\n", + "print \"power input=\",pi,\"kW\"\n", + "print \"power factor=\",pf\n", + "print \"torque=\",tg,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "power input= 669.029147347 kW\n", + "power factor= 0.965660395791\n", + "torque= 4259.48557144 N-m\n" + ] + } + ], + "prompt_number": 234 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.31, Page Number:1520" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=3300#V\n", + "r=2#ohm\n", + "x=18#ohm\n", + "e=3800#V\n", + "\n", + "#calculations\n", + "theta=math.atan(x/r)\n", + "vp=v/math.sqrt(3)\n", + "eb=e/math.sqrt(3)\n", + "alpha=theta\n", + "er=math.sqrt(vp**2+eb**2-(2*vp*eb*math.cos(theta)))\n", + "zs=math.sqrt(r**2+x**2)\n", + "ia=er/zs\n", + "pm_max=((eb*vp/zs)-(eb**2*r/zs**2))*3\n", + "cu_loss=3*ia**2*r\n", + "input_m=pm_max+cu_loss\n", + "pf=input_m/(math.sqrt(3)*v*ia)\n", + "\n", + "#result\n", + "print \"maximum total mechanical power=\",pm_max,\"W\"\n", + "print \"current=\",ia,\"A\"\n", + "print \"pf=\",pf\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "maximum total mechanical power= 604356.888001 W\n", + "current= 151.417346198 A\n", + "pf= 0.857248980398\n" + ] + } + ], + "prompt_number": 235 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.32, Page Number:1521" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=415#V\n", + "e=520#V\n", + "z=complex(0.5,4)\n", + "loss=1000#W\n", + "\n", + "#calculations\n", + "theta=math.atan(z.imag/z.real)\n", + "er=math.sqrt(v**2+e**2-(2*v*e*math.cos(theta)))\n", + "zs=abs(z)\n", + "i=er/zs\n", + "il=math.sqrt(3)*i\n", + "pm_max=((e*v/zs)-(e**2*z.real/zs**2))*3\n", + "output=pm_max-loss\n", + "cu_loss=3*i**2*z.real\n", + "input_m=pm_max+cu_loss\n", + "pf=input_m/(math.sqrt(3)*il*v)\n", + "efficiency=output/input_m\n", + "\n", + "#result\n", + "print \"power output=\",output/1000,\"kW\"\n", + "print \"line current=\",il,\"A\"\n", + "print \"power factor=\",pf\n", + "print \"efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "power output= 134.640174346 kW\n", + "line current= 268.015478962 A\n", + "power factor= 0.890508620247\n", + "efficiency= 78.4816159071 %\n" + ] + } + ], + "prompt_number": 240 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.33, Page Number:1524" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=400#V\n", + "inpt=37.3#kW\n", + "efficiency=0.88\n", + "z=complex(0.2,1.6)\n", + "pf=0.9\n", + "\n", + "#calculations\n", + "vp=v/math.sqrt(3)\n", + "zs=abs(z)\n", + "il=inpt*1000/(math.sqrt(3)*v*efficiency*pf)\n", + "izs=zs*il\n", + "theta=math.atan(z.imag/z.real)\n", + "phi=math.acos(pf)\n", + "eb=math.sqrt(vp**2+izs**2-(2*vp*izs*math.cos(theta+phi)))\n", + "input_m=inpt*1000/efficiency\n", + "cu_loss=3*il**2*z.real\n", + "pm=input_m-cu_loss\n", + "\n", + "#result\n", + "print \"induced emf=\",eb*math.sqrt(3),\"V\"\n", + "print \"total mechanical power=\",pm/1000,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "induced emf= 494.75258624 V\n", + "total mechanical power= 39.6138268735 kW\n" + ] + } + ], + "prompt_number": 243 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.34, Page Number:1525" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "inpt=48#kW\n", + "v=693#V\n", + "pf=0.8\n", + "ratio=0.3\n", + "x=2#W/phase\n", + "\n", + "#calculations\n", + "il=inpt*1000/(math.sqrt(3)*v*pf)\n", + "vp=v/math.sqrt(3)\n", + "zs=x\n", + "izs=zs*il\n", + "theta=math.atan(float(\"inf\"))\n", + "phi=math.acos(pf)\n", + "eb=math.sqrt(vp**2+izs**2-(2*vp*izs*math.cos(theta-phi)))\n", + "i_cosphi=pf*il\n", + "bc=i_cosphi*x\n", + "eb=eb+(ratio*eb)\n", + "ac=math.sqrt(eb**2-bc**2)\n", + "oc=ac-vp\n", + "phi2=math.atan(oc/bc)\n", + "pf=math.cos(phi2)\n", + "i2=i_cosphi/pf\n", + "\n", + "#result\n", + "print \"current=\",i2,\"A\"\n", + "print \"pf=\",pf" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "current= 46.3871111945 A\n", + "pf= 0.862084919821\n" + ] + } + ], + "prompt_number": 251 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.35, Page Number:1526" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "load=60.0#kW\n", + "inpt=240.0#kW\n", + "pf=0.8\n", + "pf2=0.9\n", + "\n", + "#calculations\n", + "total_load=inpt+load\n", + "phi=math.acos(pf2)\n", + "kVAR=total_load*math.tan(phi)\n", + "#factory load\n", + "phil=math.acos(pf)\n", + "kVAR=inpt*math.tan(phil)\n", + "kVA=inpt/pf\n", + "kVAR1=total_load*math.sin(phil)\n", + "lead_kVAR=kVAR1-kVAR\n", + "#synchronous motor\n", + "phim=math.atan(lead_kVAR/load)\n", + "motorpf=math.cos(phim)\n", + "motorkVA=math.sqrt(load**2+lead_kVAR**2)\n", + "\n", + "#result\n", + "print \"leading kVAR supplied by the motor=\",motorkVA\n", + "print \"pf=\",pf" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "leading kVAR supplied by the motor= 60.0\n", + "pf= 0.8\n" + ] + } + ], + "prompt_number": 253 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A Textbook of Electrical Technology AC and DC Machines/chapter39.ipynb b/A Textbook of Electrical Technology AC and DC Machines/chapter39.ipynb new file mode 100644 index 00000000..e889465f --- /dev/null +++ b/A Textbook of Electrical Technology AC and DC Machines/chapter39.ipynb @@ -0,0 +1,256 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:c262c33cbbcf1d1756b9358f8cf1d8ed92f53825858905e2598fd8e15870c7ca" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 39: Special Machines" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 39.1, Page Number:1537" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable description\n", + "p=8.0 #number of poles\n", + "tp=5.0 #number of teeth for each pole\n", + "nr=50.0 #number of rotor teeth\n", + "\n", + "#calculation\n", + "ns=p*tp #number of stator teeth\n", + "B=((nr-ns)*360)/(nr*ns) #stepping angle\n", + "\n", + "#result\n", + "print \"stepping angle is \",B,\"degrees\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "stepping angle is 1.8 degrees\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 39.2, Page Number:1537" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "B=2.5\n", + "rn=25\n", + "f=3600\n", + "\n", + "#calculation\n", + "r=360/B\n", + "s=r*rn\n", + "n=(B*f)/360\n", + "\n", + "#result\n", + "print \"Resolution =\",int(r),\"steps/revolution\"\n", + "print \" Number of steps required for the shaft to make 25 revolutions =\",int(s)\n", + "print \" Shaft speed\", int(n),\"rps\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " Resolution = 144 steps/revolution\n", + "Number of steps required for the shaft to make 25 revolutions = 3600\n", + "Shaft speed 25 rps\n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 39.3, Page Number:1544" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "B=15 #stepping angle\n", + "pn=3 #number of phases\n", + "nr=360/(pn*B) #number of rotor teeth\n", + "\n", + "#number of stator teeth\n", + "ns1=((360*nr)/(360-(nr*B))) #ns>nr\n", + "ns2=((360*nr)/(360+(nr*B))) #nr>ns\n", + "\n", + "#result\n", + "print \"When ns>nr: ns= \",ns1\n", + "print \"When nr>ns: ns= \",ns2" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "When ns>nr: ns= 12\n", + "When nr>ns: ns= 6\n" + ] + } + ], + "prompt_number": 40 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 39.4, Page Number:1545" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "B=1.8\n", + "pn=4\n", + "\n", + "#calculation\n", + "nr=360/(pn*B) #number of rotor teeth\n", + "ns=nr\n", + "\n", + "#result\n", + "print \"Number of rotor teeth = \",int(nr)\n", + "print \"Number of statot teeth = \",int(ns)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Number of rotor teeth = 50.0\n", + "Number of statot teeth = 50.0\n" + ] + } + ], + "prompt_number": 18 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 39.5, Page Number:1555" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#variable declaration\n", + "er=20\n", + "\n", + "#calculation\n", + "a=40\n", + "e2=er*math.cos(math.radians(a))\n", + "e1=er*math.cos(math.radians(a-120))\n", + "e3=er*math.cos(math.radians(a+120))\n", + "\n", + "#result\n", + "print \"a) For a=40 degrees\"\n", + "print \" e2s=\" ,e2,\"V\"\n", + "print \" e1s=\" ,e1,\"V\"\n", + "print \" e3s=\" ,e3,\"V\"\n", + "\n", + "#calculation\n", + "a=(-40)\n", + "e2=er*math.cos(math.radians(a))\n", + "e1=er*math.cos(math.radians(a-120))\n", + "e3=er*math.cos(math.radians(a+120))\n", + "\n", + "#result\n", + "print \"b) For a=-40 degrees\"\n", + "print \" e2s=\" ,e2,\"V\"\n", + "print \" e1s=\" ,e1,\"V\"\n", + "print \" e3s=\" ,e3,\"V\"\n", + "\n", + "#calculation\n", + "a=30\n", + "e12=math.sqrt(3)*er*math.cos(math.radians(a-150))\n", + "e23=math.sqrt(3)*er*math.cos(math.radians(a-30))\n", + "e31=math.sqrt(3)*er*math.cos(math.radians(a+90))\n", + "\n", + "#result\n", + "print \"c) For a=30 degrees\"\n", + "print \" e12=\" ,e12,\"V\"\n", + "print \" e23=\" ,e23,\"V\"\n", + "print \" e31=\" ,e31,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a) For a=40 degrees\n", + " e2s= 15.3208888624 V\n", + " e1s= 3.47296355334 V\n", + " e3s= -18.7938524157 V\n", + "b) For a=-40 degrees\n", + " e2s= 15.3208888624 V\n", + " e1s= -18.7938524157 V\n", + " e3s= 3.47296355334 V\n", + "c) For a=30 degrees\n", + " e12= -17.3205080757 V\n", + " e23= 34.6410161514 V\n", + " e31= -17.3205080757 V\n" + ] + } + ], + "prompt_number": 41 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file |