diff options
author | Trupti Kini | 2016-01-13 23:30:08 +0600 |
---|---|---|
committer | Trupti Kini | 2016-01-13 23:30:08 +0600 |
commit | a79224bd30b2b08c1927741f4a0144e66b8ce9e6 (patch) | |
tree | d4aaabbf505910cb9e72ac8820a49309e1bb1cc7 | |
parent | 9cc2875b898d73ec023669db3f765175ad9ee828 (diff) | |
download | Python-Textbook-Companions-a79224bd30b2b08c1927741f4a0144e66b8ce9e6.tar.gz Python-Textbook-Companions-a79224bd30b2b08c1927741f4a0144e66b8ce9e6.tar.bz2 Python-Textbook-Companions-a79224bd30b2b08c1927741f4a0144e66b8ce9e6.zip |
Added(A)/Deleted(D) following books
A Fundamentals_of_Nuclear_Science_and_Engineering_by_J._K._Shultis_and_R._E._Faw/README.txt
A Semiconductor_Devices_Basic_Principle_by_J._Singh/README.txt
A Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/Chapter_10_SILICON_CONTROLLED_RECTIFIER_3.ipynb
A Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/Chapter_1_CRYSTAL_STRUCTURES_3.ipynb
A Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/Chapter_6_ELECTRICAL_BREAKDOWN_IN_PN_JUNCTIONS_3.ipynb
A Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/chapter_2_ENERGY_BAND_THEORY_OF_SOLIDS_3.ipynb
A Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/chapter_3_CARRIER_TRANSPORT_IN_SEMICONDUCTOR_3.ipynb
A Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/chapter_4__EXCESS_CARRIER_IN_SEMICONDUCTOR_3.ipynb
A Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/chapter_5_PN_JUNCTION_DIODE_3.ipynb
A Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/chapter_7_BIPOLAR_JUNCTION_TRANSISTORB_3.ipynb
A Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/chapter_8_THE_FIELD_EFFECT_TRANSISTOR_3.ipynb
A Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/screenshots/Screen_Shot_2016-01-12_at_11.24.07_pm.png
A Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/screenshots/Screen_Shot_2016-01-12_at_11.26.01_pm.png
A Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/screenshots/Screen_Shot_2016-01-12_at_11.26.51_pm.png
A sample_notebooks/NagadeviPriya/Sample_Notebook.ipynb
15 files changed, 6525 insertions, 0 deletions
diff --git a/Fundamentals_of_Nuclear_Science_and_Engineering_by_J._K._Shultis_and_R._E._Faw/README.txt b/Fundamentals_of_Nuclear_Science_and_Engineering_by_J._K._Shultis_and_R._E._Faw/README.txt new file mode 100644 index 00000000..2b3bd992 --- /dev/null +++ b/Fundamentals_of_Nuclear_Science_and_Engineering_by_J._K._Shultis_and_R._E._Faw/README.txt @@ -0,0 +1,10 @@ +Contributed By: amit kumar saini +Course: btech +College/Institute/Organization: iitbombay +Department/Designation: aerospace engnieering +Book Title: Fundamentals of Nuclear Science and Engineering +Author: J. K. Shultis and R. E. Faw +Publisher: Marcel Dckker +Year of publication: 2002 +Isbn: 0824708342 +Edition: 1
\ No newline at end of file diff --git a/Semiconductor_Devices_Basic_Principle_by_J._Singh/README.txt b/Semiconductor_Devices_Basic_Principle_by_J._Singh/README.txt new file mode 100644 index 00000000..a9f3713a --- /dev/null +++ b/Semiconductor_Devices_Basic_Principle_by_J._Singh/README.txt @@ -0,0 +1,10 @@ +Contributed By: abhishek chauhan +Course: btech +College/Institute/Organization: ABES Engineering College Ghaziabad +Department/Designation: electronics & communication engg +Book Title: Semiconductor Devices Basic Principle +Author: J. Singh +Publisher: John Wiley & Sons, Singapore +Year of publication: 2000 +Isbn: 9971-513-77-3 +Edition: 1
\ No newline at end of file diff --git a/Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/Chapter_10_SILICON_CONTROLLED_RECTIFIER_3.ipynb b/Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/Chapter_10_SILICON_CONTROLLED_RECTIFIER_3.ipynb new file mode 100644 index 00000000..6410798f --- /dev/null +++ b/Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/Chapter_10_SILICON_CONTROLLED_RECTIFIER_3.ipynb @@ -0,0 +1,119 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 10 SILICON CONTROLLED RECTIFIER" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exmaple 10_2 pgno: 296" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Nd = 100000000000000 /cmˆ−3\n", + "Er = 11.9\n", + "e = 1.6e-19 columns\n", + "Eo = 8.854e-14 F/cm\n", + "W = 0.01 cm\n", + " total permittivity ,E=Eo∗Er= 1.053626e-12 F/cm\n", + "Punch trough voltage ,Vpt=(e∗Nd∗Wˆ2)/(2∗E))= 759.282705628 V\n" + ] + } + ], + "source": [ + "#exa 10.2\n", + "Nd =10**14\n", + "print\"Nd = \",Nd,\" /cmˆ−3\" # initializing value of donor ion concentration .\n", + "Er =11.9\n", + "print\"Er = \",Er # initializing value of relative dielectric permittivity constant .\n", + "e=1.6*10**-19\n", + "print\"e = \",e,\" columns\" # initializing value of charge of electrons .\n", + "Eo=8.854*10**-14\n", + "print\"Eo = \",Eo,\" F/cm\" # initializing value of permittivity of free space .\n", + "W=100*10**-4\n", + "print\"W = \",W,\" cm\" # initializing value of width of SCR.\n", + "E=Eo*Er\n", + "print\" total permittivity ,E=Eo∗Er=\",E,\" F/cm\" # calculation\n", + "Vpt=(e*Nd*W**2)/(2*E)\n", + "print\"Punch trough voltage ,Vpt=(e∗Nd∗Wˆ2)/(2∗E))=\",Vpt,\" V\"# calculation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exmaple 10_3 pgno: 296" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ia = 0.002 A\n", + "(ap+an) = 0.9\n", + "a = 0.45\n", + "Ico=Ia∗(1−(2∗an))= 0.0002 A\n", + "(da/dt)=1/2∗Ico∗((Ia)ˆ−2))= 25.0 /A\n" + ] + } + ], + "source": [ + "#exa 10.3\n", + "Ia =2e-3\n", + "print\"Ia = \",Ia,\" A\" # initializing value of forward current of thyrsistor .\n", + "x=0.9\n", + "print\"(ap+an) = \",x # initializing value of sum of current gain of n,ptype semiconductor [ value is get in by variable x,but represented on console window through ap +an ] .\n", + "a=0.45\n", + "print\"a = \",a # initializing value of current gain of both n,p type semiconductor (as it is assume that ap[current gain of n type semiconductor]=an[ current gain of ptype semiconductor ] in the question ) .\n", + "Ico=Ia*(1-(2*a))\n", + "print\"Ico=Ia∗(1−(2∗an))=\",Ico,\" A\" # calculation\n", + "y=1./2.*Ico*((Ia)**-2)\n", + "print\"(da/dt)=1/2∗Ico∗((Ia)ˆ−2))=\",y,\" /A\" # calculation\n", + "#The answer for (da/dt) after doing calculation is provided wrong in the book ." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/Chapter_1_CRYSTAL_STRUCTURES_3.ipynb b/Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/Chapter_1_CRYSTAL_STRUCTURES_3.ipynb new file mode 100644 index 00000000..cd376de8 --- /dev/null +++ b/Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/Chapter_1_CRYSTAL_STRUCTURES_3.ipynb @@ -0,0 +1,677 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 1 CRYSTAL STRUCTURES" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1_4 pgno:10" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a= 1.0\n", + "r=a/2 = 0.5\n", + "Volume of one atom ,v=((4∗%pi∗(rˆ3))/3)= 0.523598775598\n", + "Total Volume of the cube ,V=aˆ3 = 1.0\n", + "Fp(S.C)=(v∗100/V)= 52.3598775598\n" + ] + } + ], + "source": [ + "#exa 1.4\n", + "from math import pi\n", + "a=1.\n", + "print \"a= \",a # initializing value of lattice constant(a)=1.\n", + "r=a/2.\n", + "print \"r=a/2 = \",r # initializing value of radius of atom for simple cubic .\n", + "v=((4*pi*(r**3))/3)\n", + "print \"Volume of one atom ,v=((4∗%pi∗(rˆ3))/3)= \",v # calcuation . \n", + "V=a**3\n", + "print \"Total Volume of the cube ,V=aˆ3 = \",V # calcuation .\n", + "Fp=(v*100/V)\n", + "print \"Fp(S.C)=(v∗100/V)= \",Fp,# calculation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1_5 pgno:11" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a= 1.0\n", + "Radius of the atoms,r=(sqrt(3)∗(aˆ2/4)) = 0.433012701892\n", + "Volume of two atom,v=((4∗pi∗(rˆ3))/3)∗2 = 0.680174761588\n", + "Total Volume of the cube ,V=aˆ3 = 1.0\n", + "Fp(B.C.C)=(v∗100/V)= 68.0174761588 %\n" + ] + } + ], + "source": [ + "#exa 1.5\n", + "from math import sqrt\n", + "a=1.\n", + "print \"a= \",a # initializing value of lattice constant(a)=1.\n", + "r=(sqrt(3)*(a**2/4))\n", + "print \"Radius of the atoms,r=(sqrt(3)∗(aˆ2/4)) = \",r # initializing value of radius of atom for BCC.\n", + "v=((4*pi*(r**3))/3)*2\n", + "print \"Volume of two atom,v=((4∗pi∗(rˆ3))/3)∗2 = \",v # calcuation \n", + "V=a**3\n", + "print \"Total Volume of the cube ,V=aˆ3 = \",V # calcuation .\n", + "Fp=(v*100/V)\n", + "print \"Fp(B.C.C)=(v∗100/V)= \",Fp,\"%\" # calculation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## example 1_6 pgno:12" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a= 1\n", + "Radius of the atom,r=(a/(2∗sqrt(2)))= 0.353553390593\n", + "Volume of the four atom,v=(((4∗pi∗(rˆ3))/3)∗4)= 0.740480489693\n", + "Total volume of the cube ,V=aˆ3= 2\n", + "Fp(F.C.C)=(v∗100/V)= 37.0240244847 %\n" + ] + } + ], + "source": [ + "#exa 1.6\n", + "a=1\n", + "print \"a= \",a # initializing value of lattice constant(a)=1.\n", + "r=(a/(2*sqrt(2)))\n", + "print \"Radius of the atom,r=(a/(2∗sqrt(2)))= \",r # initializing value of radius of atom for FCC .\n", + "v=(((4*pi*(r**3))/3)*4)\n", + "print \"Volume of the four atom,v=(((4∗pi∗(rˆ3))/3)∗4)= \",v # calcuation \n", + "V=a^3\n", + "print \"Total volume of the cube ,V=aˆ3= \",V # calcuation .\n", + "Fp=(v*100/V)\n", + "print \"Fp(F.C.C)=(v∗100/V)= \",Fp,\"%\" # calculation\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## example 1_8 pgno:14" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a= 1\n", + "Radius of the atom , r=(sqrt (3)∗a/8))= 0.216506350946\n", + "v=(((4∗pi∗(rˆ3))/3)∗8) = 0.340087380794\n", + "V=aˆ3= 2\n", + "Fp(Diamond)=(v∗100/V) = 17.0043690397 %\n" + ] + } + ], + "source": [ + "#Exa 1.8 \n", + "a=1\n", + "print \"a= \",a # initializing value of lattice constant(a)=1.\n", + "r=((sqrt(3)*a/8))\n", + "print \"Radius of the atom , r=(sqrt (3)∗a/8))= \",r # initializing value of radius of atom for diamond .\n", + "v=(((4*pi*(r**3))/3)*8)\n", + "print \"v=(((4∗pi∗(rˆ3))/3)∗8) = \",v # calcuation .\n", + "V=a^3\n", + "print \"V=aˆ3= \",V # calcuation .\n", + "Fp=(v*100/V)\n", + "print \"Fp(Diamond)=(v∗100/V) = \",Fp,\"%\" # calculation\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## example 1_9 pgno:14" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a = 5e-08 cm\n", + "Radius of the atom,r=(sqrt(3)∗(a/4))= 2.16506350946e-08\n", + "Volume of the two atoms ,v=((4∗pi∗(rˆ3))/3)∗2= 8.50218451985e-23\n", + "Total Volume of the cube ,V=aˆ3 = 1.25e-22\n", + "Fp(B.C.C)=(v∗100/V) = 68.0174761588 %\n" + ] + } + ], + "source": [ + "#exa 1.9\n", + "a=5*10**-8\n", + "print \"a = \",a,\" cm\" # initializing value of lattice constant .\n", + "r=(sqrt(3)*(a/4))\n", + "print \"Radius of the atom,r=(sqrt(3)∗(a/4))= \",r # initializing value of radius of atom for BCC.\n", + "v=((4*pi*(r**3))/3)*2\n", + "print \"Volume of the two atoms ,v=((4∗pi∗(rˆ3))/3)∗2= \",v # calcuation .\n", + "V=a**3\n", + "print \"Total Volume of the cube ,V=aˆ3 = \",V # calcuation .\n", + "Fp=(v*100/V)\n", + "print \"Fp(B.C.C)=(v∗100/V) = \",Fp,\"%\" # calculation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## example 1_10 pgno:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x intercept = 1\n", + "y intercept = inf\n", + "z intercept = inf\n", + "miller indices ,h=(1/x )= [1]\n", + "k=(1/y)= [0.0]\n", + "l=(1/z) = [0.0]\n" + ] + } + ], + "source": [ + "#exa 1.10\n", + "x=1\n", + "print \"x intercept = \",x # initializing value of x intercept .\n", + "y=float('inf')\n", + "print \"y intercept = \",y # initializing value of y intercept .\n", + "z=float('inf')\n", + "print \"z intercept = \",z # initializing value of z intercept .\n", + "h=[1/x]\n", + "print \"miller indices ,h=(1/x )= \",h # calculation\n", + "k=[1/y]\n", + "print \"k=(1/y)= \",k # calculation\n", + "l=[1/z]\n", + "print \"l=(1/z) = \",l # calculation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## example 1_11 pgno:15" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x intercept = inf\n", + "y intercept = inf\n", + "z intercept = 1\n", + "miller indices ,h=[1/x] = [0.0]\n", + "k=[1/y] = [0.0]\n", + "l=[1/z] = [1]\n" + ] + } + ], + "source": [ + "#exa 1.11\n", + "x=float('inf')\n", + "print \"x intercept = \",x # initializing of x intercept .\n", + "y=float('inf') \n", + "print\"y intercept = \",y # initializing of Y intercept .\n", + "z=1\n", + "print \"z intercept = \",z # initializing of Z intercept .\n", + "h=[1/x]\n", + "print \"miller indices ,h=[1/x] = \",h # calculation\n", + "k=[1/y]\n", + "print \"k=[1/y] = \",k # calculation \n", + "l=[1/z]\n", + "print \"l=[1/z] = \",l # calculation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## example 1_12 pgno: 16" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x intercept = inf\n", + "y intercept = 1\n", + "z intercept = inf\n", + "miller indices ,h=[1/x] = [0.0]\n", + "k=[1/y] = [1]\n", + "l=[1/z] = [0.0]\n" + ] + } + ], + "source": [ + "#exa 1.12\n", + "x=float('inf') \n", + "print \"x intercept = \",x # initializing of X intercept .\n", + "y=1\n", + "print \"y intercept = \",y # initializing of X intercept .\n", + "z=float('inf') \n", + "print \"z intercept = \",z # initializing of X intercept .\n", + "h=[1/x]\n", + "print \"miller indices ,h=[1/x] = \",h # calculation\n", + "k=[1/y]\n", + "print \"k=[1/y] = \",k # calculation \n", + "l=[1/z]\n", + "print \"l=[1/z] = \",l #calculation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## example 1_13 pgno:16" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x intercept = 1\n", + "y intercept = 1\n", + "z intercept = inf\n", + "miller indices ,h=[1/x] = [1]\n", + "k=[1/y] = [1]\n", + "l=[1/z] = [0.0]\n" + ] + } + ], + "source": [ + "#exa 1.13\n", + "x=1\n", + "print \"x intercept = \",x # initializing of X intercept .\n", + "y=1\n", + "print \"y intercept = \",y # initializing of X intercept .\n", + "z=float('inf') \n", + "print \"z intercept = \",z # initializing of X intercept .\n", + "h=[1/x]\n", + "print \"miller indices ,h=[1/x] = \",h # calculation\n", + "k=[1/y]\n", + "print \"k=[1/y] = \",k # calculation \n", + "l=[1/z]\n", + "print \"l=[1/z] = \",l #calculation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## example 1_14 pgno:17" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x intercept = inf\n", + "y intercept = 1\n", + "z intercept = 1\n", + "miller indices ,h=[1/x] = [0.0]\n", + "k=[1/y] = [1]\n", + "l=[1/z] = [1]\n" + ] + } + ], + "source": [ + "#exa 1.14\n", + "x=float('inf') \n", + "print \"x intercept = \",x # initializing of X intercept .\n", + "y=1\n", + "print \"y intercept = \",y # initializing of X intercept .\n", + "z=1\n", + "print \"z intercept = \",z # initializing of X intercept .\n", + "h=[1/x]\n", + "print \"miller indices ,h=[1/x] = \",h # calculation\n", + "k=[1/y]\n", + "print \"k=[1/y] = \",k # calculation \n", + "l=[1/z]\n", + "print \"l=[1/z] = \",l #calculation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## example 1_15 pgno:18" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x intercept = 2\n", + "y intercept = 2\n", + "z intercept = 2\n", + "common factor of all the intercept= 2\n", + "miller indices ,h=[c/x] = [1]\n", + "k=[c/y] = [1]\n", + "l=[c/z] = [1]\n" + ] + } + ], + "source": [ + "x=2\n", + "print \"x intercept = \",x # initializing of X intercept .\n", + "y=2\n", + "print \"y intercept = \",y # initializing of X intercept .\n", + "z=2\n", + "print \"z intercept = \",z # initializing of X intercept .\n", + "c=2\n", + "print \"common factor of all the intercept= \",c # initializing value of common factor of all the intercepts .\n", + "h=[c/x]\n", + "print \"miller indices ,h=[c/x] = \",h # calculation\n", + "k=[c/y]\n", + "print \"k=[c/y] = \",k # calculation \n", + "l=[c/z]\n", + "print \"l=[c/z] = \",l #calculation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## example 1_16 pgno: 18" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Wa = 28.1\n", + "D = 2.33 ram/cmˆ3\n", + "Na = 6.02e+23 atoms/mole\n", + "na =(Na∗D)/(Wa)= 4.99167259786e+22 atoms/cmˆ3\n" + ] + } + ], + "source": [ + "#exa 1.16\n", + "Wa =28.1\n", + "print \"Wa = \",Wa # initializing value of atomic weight .\n", + "D=2.33\n", + "print \"D = \",D,\"ram/cmˆ3\" # initializing value of density .\n", + "Na=6.02*10**23\n", + "print \"Na = \",Na,\"atoms/mole\" # initializing value of avagadro number .\n", + "na =(Na*D)/(Wa)\n", + "print \"na =(Na∗D)/(Wa)= \",na,\" atoms/cmˆ3\" # calculation\n", + "# the value of na (number of atoms in 1 cmˆ3 of silicon ) , provided after calculation in the book is wrong." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## example 1_17 pgno: 18" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a= 5e-08 cm\n", + "N= 2\n", + "V=aˆ3 = 1.25e-22 cmˆ3\n", + "na=(no.of atoms in unit cell/Volume of theunit cell) =(N/(V))= 1.6e+22\n" + ] + } + ], + "source": [ + "#exa 1.17\n", + "a=5*10**-8\n", + "print \"a= \",a,\"cm\" # initializing value of lattice constant .\n", + "N=2\n", + "print \"N= \",N # initializing value of no. of atoms in unit cell .\n", + "V=a**3\n", + "print \"V=aˆ3 = \",V,\"cmˆ3\" # initializing value of total Volume of the unit cell.\n", + "na =(N/(V))\n", + "print \"na=(no.of atoms in unit cell/Volume of theunit cell) =(N/(V))= \",na # calculation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## example 1_18 pgno: 18" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a = 5.43e-08 cm\n", + "N = 8\n", + "Number of atom in the cmˆ3,ns =(N/(aˆ3))= 4.99678310227e+22\n" + ] + } + ], + "source": [ + "#exa 1.18\n", + "a=5.43*10**-8\n", + "print \"a = \",a,\"cm\" # initializing value of lattice constant .\n", + "N=8\n", + "print \"N = \",N # initializing value of no. of atoms in a unit cell .\n", + "ns =(N/(a**3))\n", + "print \"Number of atom in the cmˆ3,ns =(N/(aˆ3))= \",ns # calculation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## example 1_19 pgno: 18" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a = 5.43e-08 cm\n", + "Wa = 28.1\n", + "Na = 6.02e+23\n", + "ns = 50000000000000000000000 atoms/cmˆ3\n", + "Density of silicon ,D =(ns∗Wa)/(Na)= 2.33388704319 gm/cmˆ2\n" + ] + } + ], + "source": [ + "#exa 1.19\n", + "a=5.43*10**-8\n", + "print \"a = \",a,\"cm\" # initializing value of lattice constant .\n", + "Wa =28.1\n", + "print \"Wa = \",Wa # initializing value of atomic weight .\n", + "Na=6.02*10**23\n", + "print \"Na = \",Na # initializing value of avagdro number .\n", + "ns =5*10**22\n", + "print \"ns = \",ns,\"atoms/cmˆ3\" # initializing value of atoms/cmˆ3.\n", + "D =(ns*Wa)/(Na)\n", + "print \"Density of silicon ,D =(ns∗Wa)/(Na)= \",D,\" gm/cmˆ2\" # calculation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## example 1_20 pgno: 19" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a = 4.75e-08 cm\n", + "N = 4\n", + "na =(N/(aˆ3))= 3.73232249599e+22\n" + ] + } + ], + "source": [ + "#exa 1.20\n", + "a=4.75*10**-8\n", + "print \"a = \",a,\"cm\" # initializing value of lattice constant .\n", + "N=4\n", + "print \"N = \",N # initializing value of number of atoms in the unit cell .\n", + "na =(N/(a**3))\n", + "print \"na =(N/(aˆ3))=\",na # calculation" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/Chapter_6_ELECTRICAL_BREAKDOWN_IN_PN_JUNCTIONS_3.ipynb b/Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/Chapter_6_ELECTRICAL_BREAKDOWN_IN_PN_JUNCTIONS_3.ipynb new file mode 100644 index 00000000..dcbe101d --- /dev/null +++ b/Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/Chapter_6_ELECTRICAL_BREAKDOWN_IN_PN_JUNCTIONS_3.ipynb @@ -0,0 +1,1005 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 6 ELECTRICAL BREAKDOWN IN PN JUNCTIONS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6_2 pgno: 183" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "X1 = 4.13 eV\n", + "X2 = 4.07 eV\n", + "Eg1 = 0.7 eV\n", + "Eg2 = 1.43 F/cm\n", + "Nv1 = 6e+18 cmˆ−3\n", + "Nv2 = 7e+18 cmˆ−3\n", + "Vt = 0.0259 eV\n", + "e = 1.6e-19 columbs\n", + "no = 2.5e+13 cmˆ−3\n", + "Pp = 1e+17 cmˆ−3\n", + "Nd = 1e+17 cmˆ−3\n", + "np= 6250000000.0 cmˆ−3\n", + "delta Eg=(Eg2−Eg1)= 0.73 eV\n", + "delta Ec=(X1−X2)= 0.06 eV\n", + "delta  Ev=(delta  Eg−delta  Ec )= 0.67 eV\n", + "Vbi=((delta Ev∗1.6∗10ˆ−19)/(e))+((Vt∗log((Nv1∗Nd) /(np∗Nv2) ) ) )= 1.09563926875 V\n" + ] + } + ], + "source": [ + "#exa 6.2\n", + "from math import log\n", + "X1 =4.13\n", + "print\"X1 = \",X1,\" eV\" # initializing value of eldelta Ectron effinity of germanium.\n", + "X2 =4.07\n", + "print\"X2 = \",X2,\" eV\" # initializing value of electron effinity of gallium arsenide .\n", + "Eg1 =0.7\n", + "print\"Eg1 = \",Eg1,\" eV\" # initializing value of energy gap of germanium .\n", + "Eg2 =1.43\n", + "print\"Eg2 = \",Eg2,\" F/cm\" # initializing value of energy gap of gallium arsenide..\n", + "Nv1 =6e18\n", + "print\"Nv1 = \",Nv1,\" cmˆ−3\" # initializing value of density of states in Valence band,Nv for germanium .\n", + "Nv2 =7e18\n", + "print\"Nv2 = \",Nv2,\" cmˆ−3\" # initializing value of density of states in Valence band,Nv for galliminum arsenide .\n", + "Vt=0.0259\n", + "print\"Vt = \",Vt,\" eV\" # initializing valueof thermal voltage . . . Vt = K∗T/e\n", + "e=1.6e-19\n", + "print\"e = \",e,\" columbs\" # initializing value of electronic charge .\n", + "no=2.5e13\n", + "print\"no = \",no,\" cmˆ−3\" # initializingvalue of intrinsic carrier concentration .\n", + "Pp=1e17\n", + "print\"Pp = \",Pp,\" cmˆ−3\" # initializing value of hole concentration on the depletion edge of the N region .\n", + "Nd=1e17\n", + "print\"Nd = \",Nd,\" cmˆ−3\" # initializing value of number of donor ions (which is equal to hole concentration on the depletion edge of the N region).\n", + "np=(no**2)/Pp\n", + "print\"np=\",np,\" cmˆ−3\"# calculation\n", + "delta_Eg=(Eg2-Eg1)\n", + "print\"delta Eg=(Eg2−Eg1)=\",delta_Eg,\" eV\"#calculation\n", + "delta_Ec=(X1-X2)\n", + "print\"delta Ec=(X1−X2)=\",delta_Ec,\" eV\"#calculation\n", + "delta_Ev=(delta_Eg-delta_Ec)\n", + "print\"delta  Ev=(delta  Eg−delta  Ec )=\",delta_Ev,\" eV\"# calculation\n", + "Vbi=((delta_Ev*1.6*10**-19)/(e))+((Vt*log((Nv1*Nd)/(np*Nv2))))\n", + "print\"Vbi=((delta Ev∗1.6∗10ˆ−19)/(e))+((Vt∗log((Nv1∗Nd) /(np∗Nv2) ) ) )=\",Vbi,\" V\"# calculation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6_4 pgno: 184" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Nc = 2.8e+19 cmˆ−3\n", + "k = -4e+15 cmˆ4Fˆ−2Vˆ−1\n", + "Er = 11.9\n", + "Eo = 8.854e-14 F/cm\n", + "e = 1.6e-19 columns\n", + "Vt = 0.0259 eV\n", + "VBI = 0.3 V\n", + " total permittivity ,E=Eo∗Er = 1.053626e-12 F/cm \n", + "Nd=((−2)/(e∗E)∗(1/k)))= 2.96594806886e+15 cmˆ−3\n", + "Vn=(Vt∗( log (Nc/Nd) ) )= 0.237056563109 V\n", + "VBn=(VBI+Vn)= 0.537056563109 V\n" + ] + } + ], + "source": [ + "#exa 6.4\n", + "from math import log\n", + "Nc=2.8e19\n", + "print\"Nc = \",Nc,\" cmˆ−3\" # initializing value of effective density of state in the conduction band .\n", + "k=-4e15\n", + "print\"k = \",k,\" cmˆ4Fˆ−2Vˆ−1\" # initializing value of slope of the (1/Cˆ2) versus V curve.\n", + "Er =11.9\n", + "print\"Er = \",Er # initializing value of relative dielectric permittivity constant .\n", + "Eo=8.854e-14\n", + "print\"Eo = \",Eo,\" F/cm\" # initializing value of dielectric constant of free space.\n", + "e=1.6e-19\n", + "print\"e = \",e,\" columns\" # initializing value of charge of electrons .\n", + "Vt=0.0259\n", + "print\"Vt = \",Vt,\" eV\" # initializing value of thermal voltage .\n", + "VBI=0.3\n", + "print\"VBI = \",VBI,\" V\" # initializing value of built in voltage .\n", + "E=Eo*Er\n", + "print\" total permittivity ,E=Eo∗Er =\",E,\" F/cm \"# calculation\n", + "Nd=((-2)/(e*E)*(1/k))\n", + "print\"Nd=((−2)/(e∗E)∗(1/k)))=\",Nd,\" cmˆ−3\" # c a l c u l a t i o n\n", + "Vn=(Vt*(log(Nc/Nd)))\n", + "print\"Vn=(Vt∗( log (Nc/Nd) ) )=\",Vn,\" V\"#calculation\n", + "VBn=(VBI+Vn)\n", + "print\"VBn=(VBI+Vn)=\",VBn,\" V\"# calculation\n", + "# taking ,... d(1/Cˆ2)/dV as k,... for simlification," + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6_5 pgno: 184" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Nd = 2e+17 /cmˆ−3\n", + "Nc = 2.8e+19 /cmˆ−3\n", + "Js = 4e-05 A/cmˆ2\n", + "T = 300 K\n", + "R = 110 A/(K−cmˆ2)\n", + "Vt = 0.0259 eV\n", + "VBn = 0.679478119251 V\n", + "Vn = 0.127988538746 V\n", + "VBI=(VBn−Vn))= 0.551489580505 V\n" + ] + } + ], + "source": [ + "#exa 6.5\n", + "from math import log\n", + "Nd =2e17\n", + "print\"Nd = \",Nd,\"/cmˆ−3\" # initializing value of donor concentration .\n", + "Nc=2.8e19\n", + "print\"Nc = \",Nc,\"/cmˆ−3\" # initializing value of effective density of state in the conduction band .\n", + "Js =40e-6\n", + "print\"Js = \",Js,\"A/cmˆ2\" # initializing value of saturation current density .\n", + "T=300\n", + "print\"T = \",T,\"K\" # initializing value of absolute temperature .\n", + "R=110\n", + "print\"R = \",R,\" A/(K−cmˆ2)\" #initializing value of richardson ’ s constant .\n", + "Vt=0.0259\n", + "print\"Vt = \",Vt,\" eV\" # initializing value of thermal voltage .\n", + "VBn=(Vt*(log(R*T**2/Js)))\n", + "print\"VBn = \",VBn,\" V\" # calculation .\n", + "Vn=(Vt*(log(Nc/Nd)))\n", + "print\"Vn = \",Vn,\" V\" # calculation .\n", + "VBI=(VBn-Vn)\n", + "print\"VBI=(VBn−Vn))=\",VBI,\" V\"#calculation\n", + "#The value of Vn (after calculation ) is provided wrong in the book,due to which VBI also differ." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6_6 pgno: 186" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Nd = 200000000000000000 /cmˆ−3\n", + "Dp = 30 cmˆ2/s\n", + "Nc = 2.8e+19 /cmˆ−3\n", + "Js = 4e-05 A/cmˆ2\n", + "no = 15000000000.0 cmˆ−3\n", + "tp = 1e-06 s\n", + "T = 300 K\n", + "R = 110 A/(K−cmˆ2)\n", + "Vt = 0.0259 eV\n", + "e = 1.6e-19 columbs\n", + "Er = 11.9\n", + "Eo = 8.854e-14 F/cm\n", + " total permittivity ,E=Eo∗Er)= 1.053626e-12 F/cm\n", + "VBn = 0.679478119251 V\n", + "Vn = 0.127988538746 V\n", + "VBI=(VBn−Vn))= 0.551489580505 V\n", + "current density in a metal semiconductor junction ,W = 4.26124893939e-06 A\n", + "Diffusion length ,Lp=(sqrt(Dp∗tp)) = 0.00547722557505 cm\n", + " saturation hole current density , Jpo=(e∗Dp∗noˆ2) /(Lp∗Nd) ) = 9.85900603509e-13 A/cmˆ2\n" + ] + } + ], + "source": [ + "#exa 6.6\n", + "from math import sqrt\n", + "from math import log\n", + "Nd =2*10**17\n", + "print\"Nd = \",Nd,\" /cmˆ−3\" # initializing value of donor concentration .\n", + "Dp=30\n", + "print\"Dp = \",Dp,\" cmˆ2/s\" # initializing value of diffusion cofficient .\n", + "Nc=2.8*10**19\n", + "print\"Nc = \",Nc,\" /cmˆ−3\" # initializing value of effective density of state in the conduction band .\n", + "Js =40*10**-6\n", + "print\"Js = \",Js, \"A/cmˆ2\" # initializing value of saturation current density .\n", + "no=1.5*10**10\n", + "print\"no = \",no,\" cmˆ−3\" # initializing value of intrinsic concentration of electrons .\n", + "tp=10**-6\n", + "print\"tp = \",tp,\" s\" # initializing value of hole life−time.\n", + "T=300\n", + "print\"T = \",T,\" K\" # initializing value of absolute temperature .\n", + "R=110\n", + "print\"R = \",R,\" A/(K−cmˆ2)\" #initializing value of richardson ’ s constant .\n", + "Vt=0.0259\n", + "print\"Vt = \",Vt,\" eV\" # initializing value of thermal voltage .\n", + "e=1.6*10**-19\n", + "print\"e = \",e,\" columbs\" # initializing value of charge of electrons .\n", + "Er=11.9\n", + "print\"Er = \",Er # initializing value of relative dielectric permittivity constant .\n", + "Eo=8.854*10**-14\n", + "print\"Eo = \",Eo,\" F/cm\" # initializing value of dielectric constant of free space.\n", + "E=Eo*Er\n", + "print\" total permittivity ,E=Eo∗Er)=\",E,\" F/cm\"# calculation\n", + "VBn=(Vt*(log(R*T**2/Js)))\n", + "print\"VBn = \",VBn,\" V\" # calculation .\n", + "Vn=(Vt*(log(Nc/Nd)))\n", + "print\"Vn = \",Vn,\" V\" # calculation .\n", + "VBI=(VBn-Vn)\n", + "print\"VBI=(VBn−Vn))=\",VBI,\" V\"#calculation\n", + "W=(sqrt((E*VBI)/(e*Nd)))\n", + "print\"current density in a metal semiconductor junction ,W = \",W,\" A\" # calculation .\n", + "Lp=(sqrt(Dp*tp))\n", + "print\"Diffusion length ,Lp=(sqrt(Dp∗tp)) = \", Lp,\" cm\" # calculation .\n", + "Jpo=(e*Dp*no**2)/(Lp*Nd)\n", + "print\" saturation hole current density , Jpo=(e∗Dp∗noˆ2) /(Lp∗Nd) ) = \",Jpo,\" A/cmˆ2\" # calculation .\n", + "#The value of Vn (after calculation ) is provided wrong in the book,due to which VBI differ and due to VBI ,current density in a metal semiconductor junction (W) gets changed .\n", + "#The value of Jpo ( saturation hole current density ),after calculation is also provided wrong in the book .," + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6_8 pgno:186" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Er = 11.9\n", + "Eo = 8.854e-14 F/cm\n", + "VBD = 20 V\n", + "e = 1.6e-19 columns\n", + " total permittivity ,E=Eo∗Er)= 1.053626e-12 F/cm\n", + "Emax = 500000 V/cm\n", + "ND=(Eo∗Er∗(Emaxˆ2))/(2∗e∗VBD)= 4.1157265625e+16 cmˆ−3\n" + ] + } + ], + "source": [ + "#exa 6.8\n", + "Er =11.9\n", + "print\"Er = \",Er # initializing value of relative dielectric permittivity constant.\n", + "Eo=8.854*10**-14\n", + "print\"Eo = \",Eo,\" F/cm\" # initializing value of permittivity of free space .\n", + "VBD =20\n", + "print\"VBD = \",VBD,\" V\" #initializing value of break down voltage .\n", + "e=1.6*10**-19\n", + "print\"e = \",e,\" columns\" # initializing value of charge of electrons .\n", + "E=Eo*Er\n", + "print\" total permittivity ,E=Eo∗Er)=\",E,\" F/cm\"# calculation\n", + "Emax =5*10**5\n", + "print\"Emax = \",Emax,\" V/cm\" # initializing value of maximum critical electric field .\n", + "ND=(Eo*Er*(Emax**2))/(2*e*VBD)\n", + "print\"ND=(Eo∗Er∗(Emaxˆ2))/(2∗e∗VBD)=\",ND,\"cmˆ−3\"# calculation\n", + "#the formula given in the solution for VBD is somewhat written wrong.The correct formula is ( VBD=(E∗Emaxˆ2/2∗e∗ND)) ." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6_9 pgno: 187" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Er = 11.9\n", + "Eo = 8.854e-14 F/cm\n", + "e = 1.6e-19 columns\n", + "no = 15000000000.0 cmˆ−3\n", + "Nd= 1e+16 cmˆ−3\n", + "Emax = 200000.0 V/cm\n", + "Na= 1e+16 cmˆ−3\n", + "Vt = 0.0259 eV\n", + " total permittivity ,E=Eo∗Er)= 1.053626e-12 F/cm\n", + "VBI=(Vt∗(log(Na∗Nd/noˆ2))) = 0.694640354303 V\n", + "breakdown voltage for symetrical abrupt junction ,VBD+VBI=(E∗Emaxˆ2) /( e∗Nd) )= 26.34065 V\n", + "VBD=V−VBI = 25.6460096457 V\n" + ] + } + ], + "source": [ + "#exa 6.9\n", + "Er =11.9\n", + "print\"Er = \",Er # initializing value of relative dielectric permittivity constant.\n", + "Eo=8.854e-14\n", + "print\"Eo = \",Eo,\" F/cm\" # initializing value of permittivity of free space .\n", + "e=1.6e-19\n", + "print\"e = \",e,\" columns\" # initializing value of charge of electrons .\n", + "no=1.5e10\n", + "print\"no = \",no,\"cmˆ−3\" # initializing value of intrinsic concentration of electrons .\n", + "Nd =1e16\n", + "print\"Nd=\",Nd,\" cmˆ−3\"#initializing the value of donor concentration .\n", + "Emax =2e5\n", + "print\"Emax = \",Emax,\" V/cm\" # initializing value of maximum critical electric field .\n", + "Na =1e16\n", + "print\"Na=\",Na,\" cmˆ−3\"# initializing the value of acceptor concentration .\n", + "Vt=0.0259\n", + "print\"Vt = \",Vt,\" eV\" # initializing value of thermal voltage .\n", + "E=Eo*Er\n", + "print\" total permittivity ,E=Eo∗Er)=\",E,\" F/cm\"# calculation\n", + "VBI=(Vt*(log(Na*Nd/no**2)))\n", + "print\"VBI=(Vt∗(log(Na∗Nd/noˆ2))) = \",VBI,\" V\" # calculation .\n", + "V=(E*Emax**2)/(e*Nd)\n", + "print\"breakdown voltage for symetrical abrupt junction ,VBD+VBI=(E∗Emaxˆ2) /( e∗Nd) )=\",V,\"V\" # calculation \n", + "VBD=V-VBI\n", + "print\"VBD=V−VBI =\",VBD,\" V\"# calculation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6_10 pgno: 187" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Er = 11.9\n", + "Eo = 8.854e-14 F/cm\n", + "e = 1.6e-19 columns\n", + "no = 15000000000.0 cmˆ−3\n", + "Emax = 1000000 V/cm\n", + "Nd= 1000000000000000000 cmˆ−3\n", + "Na= 1000000000000000000 cmˆ−3\n", + "Vt = 0.0259 eV\n", + "VBI=(Vt∗(log(Na∗Nd/noˆ2))) = 0.933188169937 V\n", + " total permittivity ,E=Eo∗Er)= 1.053626e-12 F/cm 99\n", + "breakdown voltage for symetrical abrupt junction ,VBD+VBI=(E∗Emaxˆ2) /( e∗Nd) )= 6.5851625 V\n", + "VBD=V−VBI)= 5.65197433006 V\n" + ] + } + ], + "source": [ + "#exa 6.10\n", + "from math import log\n", + "Er =11.9\n", + "print\"Er = \",Er # initializing value of relative dielectric permittivity constant.\n", + "Eo=8.854*10**-14\n", + "print\"Eo = \",Eo,\" F/cm\" # initializing value of permittivity of free space .\n", + "e=1.6*10**-19\n", + "print\"e = \",e,\" columns\" # initializing value of charge of electrons .\n", + "no=1.5*10**10\n", + "print\"no = \",no,\"cmˆ−3\" # initializing value of intrinsic concentration of electrons .\n", + "Emax=10**6\n", + "print\"Emax = \",Emax,\" V/cm\" # initializing value of maximum critical electric field ..\n", + "Nd =1*10**18\n", + "print\"Nd=\",Nd,\" cmˆ−3\"#initializing the value of donor concentration .\n", + "Na =1*10**18\n", + "print\"Na=\",Na,\" cmˆ−3\"# initializing the value of acceptor concentration .\n", + "Vt=0.0259\n", + "print\"Vt = \",Vt,\" eV\" # initializing value of thermal voltage .\n", + "VBI=(Vt*(log(Na*Nd/no**2)))\n", + "print\"VBI=(Vt∗(log(Na∗Nd/noˆ2))) = \",VBI,\" V\" # calculation .\n", + "E=Eo*Er\n", + "print\" total permittivity ,E=Eo∗Er)=\",E,\" F/cm 99\"# calculation\n", + "V=(E*Emax**2)/(e*Nd)\n", + "print\"breakdown voltage for symetrical abrupt junction ,VBD+VBI=(E∗Emaxˆ2) /( e∗Nd) )=\",V,\"V\"# calculation\n", + "VBD=V-VBI\n", + "print\"VBD=V−VBI)=\",VBD,\" V\"# calculation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6_11 pgno: 188" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Nd = 1e+18 cmˆ−3\n", + "Na = -1e+18 cmˆ3\n", + "Er = 11.9\n", + "Eo = 8.854e-14 F/cm\n", + "e = 1.6e-19 columns\n", + "Vt = 0.0259 eV\n", + "Vbd = 15 eV\n", + "W = 0.0002 cm\n", + " total permittivity ,E=Eo∗Er= 1.053626e-12 F/cm\n", + "slope of doping profile curve ,a=((Nd−Na)/(W))= 1e+22 cmˆ−4\n", + "Emax=(((Vbd)ˆ2)∗9∗e∗a/(32∗E))ˆ(1/3)= 1.0 V/cm\n" + ] + } + ], + "source": [ + "#exa 6.11\n", + "Nd =1e18\n", + "print\"Nd = \",Nd,\" cmˆ−3\" # initializing value of donor concentration .\n", + "Na = -1e18\n", + "print\"Na = \",Na,\" cmˆ3\" # initializing value of acceptor concentration .\n", + "Er =11.9\n", + "print\"Er = \",Er # initializing value of relative dielectric permittivity constant .\n", + "Eo=8.854e-14\n", + "print\"Eo = \",Eo,\" F/cm\" # initializing value of dielectric constant of free space.\n", + "e=1.6e-19\n", + "print\"e = \",e,\" columns\" # initializing value of charge of electrons .\n", + "Vt=0.0259\n", + "print\"Vt = \",Vt,\" eV\" # initializing value of thermal voltage .\n", + "Vbd=15\n", + "print\"Vbd = \",Vbd,\" eV\" # initializing value of break down voltage .\n", + "W=2e-4\n", + "print\"W = \",W,\" cm\" # initializing value of the distance over which doping profile varies.\n", + "E=Eo*Er\n", + "print\" total permittivity ,E=Eo∗Er=\",E,\" F/cm\"# calculation\n", + "a=((Nd-Na)/(W))\n", + "print\"slope of doping profile curve ,a=((Nd−Na)/(W))= \",a,\" cmˆ−4\"# calculation\n", + "Emax=(((Vbd)**2)*9*e*a/(32*E))**(1/3)\n", + "print\"Emax=(((Vbd)ˆ2)∗9∗e∗a/(32∗E))ˆ(1/3)=\",Emax,\" V/cm\"# calculation\n", + "## calculation was given wrong in the book" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6_12 pgno: 188" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ew = 4.55 V\n", + "X = 4.01 V\n", + "Er = 11.9\n", + "Eo = 8.854e-14 F/cm\n", + "e = 1.6e-19 columns\n", + "Nc = 2.8e+19 /cmˆ−3\n", + "Nd = 100000000000000000 /cmˆ−3\n", + "Vt = 0.0259 eV\n", + " Barrier height ,VB=(Ew−X) = 0.54 V\n", + "Ec Ef=(Vt∗log(Nc/Nd))= 0.145941050722 V\n", + "VBI=(VB−(Ec  Ef ) )= 0.394058949278 V\n", + "Depletion width ,xn=sqrt(2∗Eo∗Er∗VBI/(e∗Nd))= 7.20408525154e-06 cm\n", + "maximum electric field ,Emax=(e∗Nd∗xn/(Eo∗Er))= 109398.746827 V/cm\n" + ] + } + ], + "source": [ + "#exa 6.12\n", + "from math import sqrt\n", + "from math import log\n", + "Ew =4.55\n", + "print\"Ew = \",Ew,\" V\" # initializing value of work function of tungusten .\n", + "X=4.01\n", + "print\"X = \",X,\"V\" # initializing value of electron effinity of silicon .\n", + "Er =11.9\n", + "print\"Er = \",Er # initializing value of relative dielectric permittivity constant.\n", + "Eo=8.854*10**-14\n", + "print\"Eo = \",Eo,\" F/cm\" # initializing value of permittivity of free space .\n", + "e=1.6*10**-19\n", + "print\"e = \",e,\" columns\" # initializing value of charge of electrons .\n", + "Nc=2.8*10**19\n", + "print\"Nc = \",Nc,\"/cmˆ−3\" # initializing value of effective density of state in the conduction band .\n", + "Nd=10**17\n", + "print\"Nd = \",Nd,\"/cmˆ−3\" # initializing value of donor concentration .\n", + "Vt=0.0259\n", + "print\"Vt = \",Vt,\" eV\" # initializing value of thermal voltage .\n", + "VB=(Ew-X)\n", + "print\" Barrier height ,VB=(Ew−X) = \",VB,\" V\" # calculation .\n", + "Ec_Ef=(Vt*log(Nc/Nd))\n", + "print\"Ec Ef=(Vt∗log(Nc/Nd))=\",Ec_Ef,\" V\"#calculation\n", + "VBI=(VB-(Ec_Ef))\n", + "print\"VBI=(VB−(Ec  Ef ) )=\",VBI,\" V\"# calculation\n", + "xn=sqrt(2*Eo*Er*VBI/(e*Nd))\n", + "print\"Depletion width ,xn=sqrt(2∗Eo∗Er∗VBI/(e∗Nd))=\",xn,\" cm\"# calculation\n", + "Emax=(e*Nd*xn/(Eo*Er))\n", + "print\"maximum electric field ,Emax=(e∗Nd∗xn/(Eo∗Er))=\",Emax,\" V/cm\"# calculation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6_13 pgno: 189" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ew = 4.5 V\n", + "X = 4.01 V\n", + "Er = 12\n", + "Eo = 8.854e-14 F/cm\n", + "Vr = 3 V\n", + "e = 1.6e-19 columns\n", + "Nc = 2.8e+19 /cmˆ−3\n", + "Nd = 100000000000000000 /cmˆ−3\n", + "Vt = 0.0259 eV\n", + " barrier height ,VB=(Ew−X) = 0.49 V\n", + "Ec Ef=(Vt∗log(Nc/Nd))= 0.145941050722 V\n", + "VBI=(VB−(Ec  Ef ) )= 0.344058949278 V\n", + "Depletion width ,xn=sqrt(2∗Eo∗Er∗(VBI+Vr)/(e∗Nd))= 2.10742608187e-05 cm\n", + "maximum electric field ,Emax=(e∗Nd∗xn/(Eo∗Er))= 317359.548508 V/cm\n", + "Capitance per unit area ,C=sqrt (( e∗Eo∗Er∗Nd)/(2∗(VBI+Vr) ) )= 5.04160031586e-08 F/cmˆ2\n" + ] + } + ], + "source": [ + "#exa 6.13\n", + "from math import sqrt\n", + "from math import log\n", + "Ew =4.5\n", + "print\"Ew = \",Ew,\" V\" # initializing value of work function of tungusten .\n", + "X=4.01\n", + "print\"X = \",X,\"V\" # initializing value of electron effinity of silicon .\n", + "Er=12\n", + "print\"Er = \",Er # initializing value of relative dielectric permittivity constant.\n", + "Eo=8.854*10**-14\n", + "print\"Eo = \",Eo,\" F/cm\" # initializing value of permittivity of free space .\n", + "Vr=3\n", + "print\"Vr = \",Vr,\" V\" # initializing value of reverse voltage .\n", + "e=1.6*10**-19\n", + "print\"e = \",e,\" columns\" # initializing value of charge of electrons .\n", + "Nc=2.8*10**19\n", + "print\"Nc = \",Nc,\"/cmˆ−3\" # initializing value of effective density of state in the conduction band .\n", + "Nd=10**17\n", + "print\"Nd = \",Nd,\"/cmˆ−3\" # initializing value of donor concentration .\n", + "Vt=0.0259\n", + "print\"Vt = \",Vt,\" eV\" # initializing value of thermal voltage .\n", + "VB=(Ew-X)\n", + "print\" barrier height ,VB=(Ew−X) = \",VB,\" V\"# calculation .\n", + "Ec_Ef=(Vt*log(Nc/Nd))\n", + "print\"Ec Ef=(Vt∗log(Nc/Nd))=\",Ec_Ef,\" V\"#calculation\n", + "VBI=(VB-(Ec_Ef))\n", + "print\"VBI=(VB−(Ec  Ef ) )=\",VBI,\" V\"#calculation\n", + "xn=sqrt((2*Eo*Er*(VBI+Vr))/(e*Nd))\n", + "print\"Depletion width ,xn=sqrt(2∗Eo∗Er∗(VBI+Vr)/(e∗Nd))=\",xn,\" cm\"#calculation\n", + "Emax=(e*Nd*xn/(Eo*Er))\n", + "print\"maximum electric field ,Emax=(e∗Nd∗xn/(Eo∗Er))=\",Emax,\" V/cm\"# calculation\n", + "C=sqrt((e*Eo*Er*Nd)/(2*(VBI+Vr)))\n", + "print\"Capitance per unit area ,C=sqrt (( e∗Eo∗Er∗Nd)/(2∗(VBI+Vr) ) )=\",C,\" F/cmˆ2\"# calculation\n", + "#the Value of reverse voltage(Vr) provided in the question is different than used in the solution . I have used the value provided in the solution ( i . e Vr=3).\n", + "#the value of C (Capitance per unit area) after calculation is provided wrong in the book." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6_13 pgno: 190" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ew = 4.28 V\n", + "X = 4.01 V\n", + "Er = 11.9\n", + "Eo = 8.854e-14 F/cm\n", + "e = 1.6e-19 columns\n", + "Nc = 2.8e+19 /cmˆ−3\n", + "Nd = 1000000000000000 /cmˆ−3\n", + "Vt = 0.0259 eV\n", + " barrier height ,VB=(Ew−X) = 0.27 V\n", + "Ec Ef=(Vt∗log(Nc/Nd))= 0.265214958539 V\n", + "VBI=(VB−(Ec  Ef ) )= 0.00478504146083 V\n", + "Depletion width ,xn=sqrt(2∗Eo∗Er∗VBI/(e∗Nd))= 7.93854843013e-06 cm\n", + "maximum electric field ,Emax=(e∗Nd∗xn/(Eo∗Er))= 1205.52050616 V/cm\n" + ] + } + ], + "source": [ + "#exa 6.14\n", + "from math import log\n", + "Ew =4.28\n", + "print\"Ew = \",Ew,\" V\" # initializing value of work function of tungusten .\n", + "X=4.01\n", + "print\"X = \",X,\"V\" # initializing value of electron effinity of silicon .\n", + "Er =11.9\n", + "print\"Er = \",Er # initializing value of relative dielectric permittivity constant.\n", + "Eo=8.854*10**-14\n", + "print\"Eo = \",Eo,\" F/cm\" # initializing value of permittivity of free space .\n", + "e=1.6*10**-19\n", + "print\"e = \",e,\" columns\" # initializing value of charge of electrons .\n", + "Nc=2.8*10**19\n", + "print\"Nc = \",Nc,\"/cmˆ−3\" # initializing value of effective density of state in the conduction band .\n", + "Nd=10**15\n", + "print\"Nd = \",Nd,\"/cmˆ−3\" # initializing value of donor concentration .\n", + "Vt=0.0259\n", + "print\"Vt = \",Vt,\" eV\" # initializing value of thermal voltage .\n", + "VB=(Ew-X)\n", + "print\" barrier height ,VB=(Ew−X) = \",VB,\" V\"# calculation .\n", + "Ec_Ef=(Vt*log(Nc/Nd))\n", + "print\"Ec Ef=(Vt∗log(Nc/Nd))=\",Ec_Ef,\" V\"#calculation\n", + "VBI=(VB-(Ec_Ef))\n", + "print\"VBI=(VB−(Ec  Ef ) )=\",VBI,\" V\"#calculation\n", + "xn=sqrt(2*Eo*Er*VBI/(e*Nd))\n", + "print\"Depletion width ,xn=sqrt(2∗Eo∗Er∗VBI/(e∗Nd))=\",xn,\" cm\"# calculation\n", + "Emax=(e*Nd*xn/(Eo*Er))\n", + "print\"maximum electric field ,Emax=(e∗Nd∗xn/(Eo∗Er))=\",Emax,\" V/cm\"# calculation\n", + "#the Value of donor concentration (Nd) provided in the question is different than used in the solution . I have used the value provided in the question(i.e Nd=10ˆ15). ,i.e answer differs than provided in the book ." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6_15 pgno: 191" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ew = 5.1 V\n", + "X = 4.01 V\n", + "Er = 11.9\n", + "Eo = 8.854e-14 F/cm\n", + "e = 1.6e-19 columns\n", + "Nc = 2.8e+19 /cmˆ−3\n", + "Nd = 5000000000000000 /cmˆ−3\n", + "Vt = 0.0259 eV\n", + "Vr = 5 V\n", + "A = 0.0001 cmˆ2\n", + " barrier height ,VB=(Ew−X) = 1.09 V\n", + "Ec Ef=(Vt∗log(Nc/Nd))= 0.223530516607 V\n", + "VBI=(VB−(Ec  Ef ) )= 0.866469483393 V\n", + "Capitance per unit area ,C1=sqrt (( e∗Eo∗Er∗Nd)/(2∗(VBI+Vr) ) )= 8.4758805431e-09 F/cmˆ2\n", + "total junction capatiance ,C=C1∗A= 8.4758805431e-13 F\n" + ] + } + ], + "source": [ + "#exa 6.15\n", + "from math import sqrt\n", + "from math import log\n", + "Ew =5.1\n", + "print\"Ew = \",Ew,\" V\" # initializing value of work function of tungusten .\n", + "X=4.01\n", + "print\"X = \",X,\"V\" # initializing value of electron effinity of silicon .\n", + "Er =11.9\n", + "print\"Er = \",Er # initializing value of relative dielectric permittivity constant.\n", + "Eo=8.854*10**-14\n", + "print\"Eo = \",Eo,\" F/cm\" # initializing value of permittivity of free space .\n", + "e=1.6*10**-19\n", + "print\"e = \",e,\" columns\" # initializing value of charge of electrons .\n", + "Nc=2.8*10**19\n", + "print\"Nc = \",Nc,\"/cmˆ−3\" # initializing value of effective density of state in the conduction band .\n", + "Nd =5*10**15\n", + "print\"Nd = \",Nd,\"/cmˆ−3\" # initializing value of donor concentration .\n", + "Vt=0.0259\n", + "print\"Vt = \",Vt,\" eV\" # initializing value of thermal voltage .\n", + "Vr=5\n", + "print\"Vr = \",Vr,\" V\" # initializing value of reverse voltage .\n", + "A=1*10**-4\n", + "print\"A = \",A,\" cmˆ2\" # initializing valueof area of the gold silicon junction diode..\n", + "VB=(Ew-X)\n", + "print\" barrier height ,VB=(Ew−X) = \",VB,\" V\"# calculation .\n", + "Ec_Ef=(Vt*log(Nc/Nd))\n", + "print\"Ec Ef=(Vt∗log(Nc/Nd))=\",Ec_Ef,\" V\"#calculation\n", + "VBI=(VB-(Ec_Ef))\n", + "print\"VBI=(VB−(Ec  Ef ) )=\",VBI,\" V\"#calculation\n", + "C1=sqrt((e*Eo*Er*Nd)/(2*(VBI+Vr)))\n", + "print\"Capitance per unit area ,C1=sqrt (( e∗Eo∗Er∗Nd)/(2∗(VBI+Vr) ) )=\",C1,\" F/cmˆ2\"#calculation\n", + "C=C1*A\n", + "print\"total junction capatiance ,C=C1∗A=\",C,\"F\"# calculation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6_17 pgno: 191" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Er = 13.1\n", + "Eo = 8.854e-14 F/cm\n", + "e = 1.6e-19 columns\n", + "Emax = 30000 V/cm\n", + " total permittivity ,E=Eo∗Er)= 1.159874e-12 F/cm\n", + "lowering of the barrier height ,V=sqrt(e∗Emax/(4∗pi∗E) )= 0.0181472273453 V\n", + " position of the maximum barrier height ,Xmax=sqrt(e/(16∗%pi∗E∗Emax))= 3.02453789089e-07 cm\n" + ] + } + ], + "source": [ + "#exa 6.17\n", + "from math import pi\n", + "from math import sqrt\n", + "Er =13.1\n", + "print\"Er = \",Er # initializing value of relative dielectric permittivity constant.\n", + "Eo=8.854*10**-14\n", + "print\"Eo = \",Eo,\" F/cm\" # initializing value of permittivity of free space .\n", + "e=1.6*10**-19\n", + "print\"e = \",e,\" columns\" # initializing value of charge of electrons .\n", + "Emax =30*10**3\n", + "print\"Emax = \",Emax,\" V/cm\" # initializing value of maximum critical electric field ..\n", + "E=Eo*Er\n", + "print\" total permittivity ,E=Eo∗Er)=\",E,\" F/cm\"# calculation\n", + "V=sqrt(e*Emax/(4*pi*E))\n", + "print\"lowering of the barrier height ,V=sqrt(e∗Emax/(4∗pi∗E) )=\",V,\" V\"# calculation\n", + "Xmax=sqrt(e/(16*pi*E*Emax))\n", + "print\" position of the maximum barrier height ,Xmax=sqrt(e/(16∗%pi∗E∗Emax))=\",Xmax,\" cm\"# calculation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6_18 pgno: 192" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "A = 0.0001 cmˆ−2\n", + "VBn = 0.55 V\n", + "T = 300 K\n", + "R = 110 A/(K−cmˆ2)\n", + "Vt = 0.0259 eV\n", + "V = 0.25 V\n", + "reverse saturation current , Io=A∗R∗Tˆ2∗exp(−VBn/Vt) = 5.93151320618e-07 A\n", + "diode current , I=Io(exp(V/Vt)−1)= 0.00922931077027 A\n" + ] + } + ], + "source": [ + "#exa 6.18\n", + "from math import exp\n", + "A=10**-4\n", + "print\"A = \",A,\" cmˆ−2\" # initializing value of cross sectional area .\n", + "VBn =0.55\n", + "print\"VBn = \",VBn,\"V\" # initializing value of barrier height .\n", + "T=300\n", + "print\"T = \",T,\"K\" # initializing value of absolute temperature .\n", + "R=110\n", + "print\"R = \",R,\" A/(K−cmˆ2)\" #initializing value of richardson ’ s constant .\n", + "Vt=0.0259\n", + "print\"Vt = \",Vt,\" eV\" # initializing value of thermal voltage .\n", + "V=0.25\n", + "print\"V = \",V,\" V\" # initializing value of forward bias voltage .\n", + "Io=A*R*T**2*exp(-VBn/Vt)\n", + "print\"reverse saturation current , Io=A∗R∗Tˆ2∗exp(−VBn/Vt) = \",Io,\" A\" # calculation .\n", + "I=Io*((exp(V/Vt))-1)\n", + "print\"diode current , I=Io(exp(V/Vt)−1)=\",I,\"A\"# calculation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6_19 pgno:192" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Io1 = 1e-09 A\n", + "Io2 = 1e-14 A\n", + "Vt = 0.0259 eV\n", + "I = 0.0001 A\n", + "forward Voltage for silicon SBD,VfSBD=Vt∗(( log(I/Io1+1)))= 0.298185028541 V\n", + "forward Voltage for silicon SBD,VfPN=Vt∗((log(I/Io2+1)))= 0.596369539088 V\n" + ] + } + ], + "source": [ + "#exa 6.19\n", + "from math import log\n", + "Io1 =10**-9\n", + "print\"Io1 = \",Io1,\" A\" # initializing value of reverse saturation current of silicon SBD.\n", + "Io2 =10**-14\n", + "print\"Io2 = \",Io2,\"A\" # initializing value of reverse saturation current of a PN junction .\n", + "Vt =0.0259\n", + "print\"Vt = \",Vt,\" eV\" # initializing value of thermal voltage .\n", + "I=100*10**-6\n", + "print\"I = \",I,\" A\" # initializing value of required current .\n", + "VfSBD=Vt*((log(I/Io1+1)))\n", + "print\"forward Voltage for silicon SBD,VfSBD=Vt∗(( log(I/Io1+1)))= \",VfSBD,\" V\" # calculation\n", + "VfPN=Vt*((log(I/Io2+1)))\n", + "print\"forward Voltage for silicon SBD,VfPN=Vt∗((log(I/Io2+1)))=\",VfPN,\" V\"#calculation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6_20 pgno: 193" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Io1 = 1e-06 A\n", + "Io2 = 1e-06 A\n", + "Vt = 0.0259 eV\n", + "I = 0.001 A\n", + "V = 0.25 V\n", + "forward Voltage for silicon SBD,VfSBD=Vt∗(( log(I/Io1+1)))= 0.178936748784 V\n", + "forward volage applied across the PN Diode ,VfPN=(V+VfSBD)= 0.428936748784 V\n", + "reverse saturation current of the PN junction Diode,Io=(I/((exp(VfPN/Vt))−1))= 6.41998882039e-11 A\n" + ] + } + ], + "source": [ + "#exa 6.20\n", + "from math import log\n", + "Io1 =10*10**-7\n", + "print\"Io1 = \",Io1,\" A\" # initializing value of reverse saturation current of silicon SBD.\n", + "Io2 =10*10**-7\n", + "print\"Io2 = \",Io2,\"A\" # initializing value of reverse saturation current of a PN junction .\n", + "Vt =0.0259\n", + "print\"Vt = \",Vt,\" eV\" # initializing value of thermal voltage .\n", + "I=1*10**-3\n", + "print\"I = \",I,\" A\" # initializing value of forward current .\n", + "V=0.25\n", + "print\"V = \",V,\" V\" # initializing value of difference in the forward voltage of the two diode .\n", + "VfSBD=Vt*((log(I/Io1+1)))\n", + "print\"forward Voltage for silicon SBD,VfSBD=Vt∗(( log(I/Io1+1)))= \",VfSBD,\" V\" # calculation 109\n", + "VfPN=(V+VfSBD)\n", + "print\"forward volage applied across the PN Diode ,VfPN=(V+VfSBD)=\",VfPN,\" V\"#calculation \n", + "Io=(I/((exp(VfPN/Vt))-1))\n", + "print\"reverse saturation current of the PN junction Diode,Io=(I/((exp(VfPN/Vt))−1))=\",Io,\" A\" # calculation" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/chapter_2_ENERGY_BAND_THEORY_OF_SOLIDS_3.ipynb b/Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/chapter_2_ENERGY_BAND_THEORY_OF_SOLIDS_3.ipynb new file mode 100644 index 00000000..7b0ddd98 --- /dev/null +++ b/Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/chapter_2_ENERGY_BAND_THEORY_OF_SOLIDS_3.ipynb @@ -0,0 +1,998 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2 ENERGY BAND THEORY OF SOLIDS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2_1 pgno:49" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no = 15000000000.0 /cmˆ3\n", + "n = 1000000000000000000 /cmˆ3\n", + "number of holes ,p=(noˆ2/n))= 225.0 /cmˆ3\n" + ] + } + ], + "source": [ + "#exa 2.1\n", + "no=1.5*10**10\n", + "print \"no = \",no,\"/cmˆ3\" # initializing value of electrons and hole per cmˆ3.\n", + "n=1*10**18\n", + "print \"n = \",n,\"/cmˆ3\" # initializing value of number of electrons per cmˆ3.\n", + "p=(no**2/n)\n", + "print \"number of holes ,p=(noˆ2/n))= \",p,\" /cmˆ3\" # calculation\n", + "#this is solved problem 2.1 of chapter 2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2_2 pgno:49" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "n = 100000 /cmˆ3\n", + "p = 10000000000000000000 /cmˆ3\n", + "Value of intrinsic concentration ,no=sqrt(n∗p))= 1e+12 /cmˆ3\n" + ] + } + ], + "source": [ + "#exa 2.2\n", + "from math import sqrt\n", + "n=1*10**5\n", + "print\"n = \",n,\" /cmˆ3\" # initializing value of electrons and hole per cmˆ3.\n", + "p=1*10**19\n", + "print\"p = \",p,\" /cmˆ3\" # initializing value of number of hole per cmˆ3\n", + "no=sqrt(n*p)\n", + "print\"Value of intrinsic concentration ,no=sqrt(n∗p))= \",no,\" /cmˆ3\"# calculation\n", + "#this is solved problem 2.2 of chapter 2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2_3 pgno:49" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "e = 1.6e-19 columb\n", + "Ef−Efi = 0.309 eV\n", + "no = 2.5e+13 /cmˆ3\n", + "T = 300 K\n", + "exp = 2.718\n", + "k = ”,k,” J/K\n", + "number of electrons per cmˆ3, n=no∗(exˆ((Ef−Efi)/kT)))= 3.83494867662e+18 /cmˆ3\n" + ] + } + ], + "source": [ + "#exa 2.3\n", + "e=1.6*10**-19\n", + "print\"e = \",e,\"columb\" # initializing the value of electronic charge .\n", + "Ef_Efi =0.309\n", + "print\"Ef−Efi = \",Ef_Efi,\" eV\" # initializing the value of difference in the energy levels .\n", + "no=2.5*10**13\n", + "print\"no = \",no,\" /cmˆ3\" # initializing value of number of electrons per cmˆ3\n", + "T=300\n", + "print\"T = \",T,\" K\" # initializing value of temperature .\n", + "ex=2.718\n", + "print\"exp = \",ex # initializing the value of exponential .\n", + "k=1.38*10**-23\n", + "print\"k = ”,k,” J/K\" # initializing value of boltzmann constant .\n", + "n=no*(ex**((Ef_Efi*e)/(k*T)))\n", + "print\"number of electrons per cmˆ3, n=no∗(exˆ((Ef−Efi)/kT)))= \",n,\" /cmˆ3\" #calculation\n", + "#This is solved problem 2.3 of chapter 2.\n", + "#The value used for ”Ef−Efi” in the solution is different than provided in the question .\n", + "#I have used the value provided in the solution ( i .e Ef Efi =0.309)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2_4 pgno:50" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "e = 1.6e-19 columb\n", + "Ef = 0.4065 eV\n", + "n = 100000000000000000 /cmˆ3\n", + "T = 300 K\n", + "exp = 2.718\n", + "k = 1.38e-23 J/K\n", + "Number of electrons per cmˆ3, no=n/(exˆ((Ef)/kT) ) )= 15061844796.9 electrons /cmˆ3\n" + ] + } + ], + "source": [ + "#exa 2.4\n", + "e=1.6*10**-19\n", + "print\"e = \",e,\" columb\" # initializing the value of electronic charge .\n", + "Ef =0.4065\n", + "print \"Ef = \",Ef,\" eV\" # initializing the value of fermi level .\n", + "n=10**17\n", + "print\"n = \",n,\" /cmˆ3\" # initializing value of number of electrons per cmˆ3.\n", + "T=300\n", + "print\"T = \",T,\" K\" # initializing value of temperature .\n", + "ex=2.718\n", + "print\"exp = \",ex # initializing the value of exponential .\n", + "k=1.38*10**-23\n", + "print\"k = \",k,\" J/K\" # initializing value of boltzmann constant .\n", + "no=n/(ex**((Ef*e)/(k*T)))\n", + "print\"Number of electrons per cmˆ3, no=n/(exˆ((Ef)/kT) ) )= \",no,\" electrons /cmˆ3\" # calculation\n", + "#this is solved problem 2.4 of chapter 2.\n", + "#the value used for \"n\" in the solution is different than provided in the question .\n", + "#I have used the value provided in the solution ( i .e n=10ˆ17)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2_5 pgno:50" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "e = 1.6e-19 columb\n", + "n = 10000000000000000000000 /mˆ3\n", + "u = 0.12 mˆ2/Vs\n", + "L = 0.001 m\n", + "A = 1e-10 mˆ2\n", + " conductivity , sigma=n∗e∗u)= 192.0 siemen/m\n", + "Resistivity ,p=(1/sigma))= 0.00520833333333 ohm metre\n", + " resistance ,R=(p∗L/A) )= 52083.3333333 ohm\n" + ] + } + ], + "source": [ + "#exa 2.5\n", + "e=1.6*10**-19\n", + "print\"e = \",e,\"columb\" # initializing the value of electronic charge .\n", + "n=1*10**22\n", + "print\"n = \",n,\" /mˆ3\" # initializing value of number of electrons per cmˆ3\n", + "u=1200*10**-4\n", + "print\"u = \",u,\" mˆ2/Vs\" # initializing the value of mobility .\n", + "L=0.1*10**-2\n", + "print\"L = \",L,\" m\" # initializing the value of length .\n", + "A=100*10**-12\n", + "print\"A = \",A,\" mˆ2\" # initializing the value of area of cross section .\n", + "sigma=n*e*u\n", + "print\" conductivity , sigma=n∗e∗u)= \",sigma,\"siemen/m\" # calculation .\n", + "p=(1/sigma)\n", + "print\"Resistivity ,p=(1/sigma))= \",p,\" ohm metre\"#calculation .\n", + "R=(p*L/A)\n", + "print\" resistance ,R=(p∗L/A) )= \",R,\" ohm\" #calculation .\n", + "#this is solved problem 2.5 of chapter 2.\n", + "#the value used for \"A\" in the solution is different than provided in the question .\n", + "#I have used the value provided in the solution ( i .e A=100∗10ˆ−12)\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2_6 pgno:50" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "R = 52080.0 ohm\n", + "V = 5 volt\n", + " Drift current , I=(V/R) )= 9.60061443932e-05 amphere\n" + ] + } + ], + "source": [ + "#exa 2.6\n", + "R=52.08*10**3\n", + "print\"R = \",R,\"ohm\" # initializing value of Resistance .\n", + "V=5\n", + "print\"V = \",V,\"volt\" # initializing value of voltage .\n", + "I=(V/R)\n", + "print\" Drift current , I=(V/R) )= \",I,\" amphere\" # calculation\n", + "#this is solved problem 2.6 of chapter 2." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2_7 pgno:50" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Energy gap of GaAs = 1.43 eV\n", + " Energy gap of GaP = 2.43 eV\n", + " Plank constant = 6.624e-34 joule \n", + " Light speed = 300000000 m/s\n", + "Difference between the energy gap of GaAs and GaP ,x=(Eg2−Eg1) )= 1.0 eV\n", + "Excess energy gap added to GaAs to form GaAsP,(0.4∗x))= 0.4 eV \n", + "Band gap energy GaAsP,Eg=(Eg1+g))= 1.83 eV \n", + "wavelength of radiation emitted , lamda=(c∗h/Eg))= 6.7868852459e-07 metre \n" + ] + } + ], + "source": [ + "#exa 2.7\n", + "Eg1 =1.43\n", + "print\" Energy gap of GaAs = \",Eg1,\"eV\" # initializing the value of energy gap of GaAs.\n", + "Eg2 =2.43\n", + "print\" Energy gap of GaP = \",Eg2,\"eV\"# initializing the value of energy gap of Gap.\n", + "h=6.624*10**-34\n", + "print\" Plank constant = \",h,\" joule \"# initializing the value of plank constant .\n", + "c=3*10**8\n", + "print\" Light speed = \",c,\"m/s\" # initializing the value of speed of light.\n", + "x=(Eg2-Eg1)\n", + "print\"Difference between the energy gap of GaAs and GaP ,x=(Eg2−Eg1) )= \",x,\" eV\"# calculation\n", + "g=(0.4*x)\n", + "print\"Excess energy gap added to GaAs to form GaAsP,(0.4∗x))= \",g,\" eV \"#calculation\n", + "Eg=(Eg1+g)\n", + "print\"Band gap energy GaAsP,Eg=(Eg1+g))= \",Eg ,\" eV \"#calculation\n", + "lamda=(c*h/(Eg*1.6*10**-19))\n", + "print\"wavelength of radiation emitted , lamda=(c∗h/Eg))= \",lamda,\" metre \"\n", + "# calculation 19 #this is solved problem 2.7 of chapter 2." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2_8 pgno:51" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Energy gap of GaAs = 1.43 eV\n", + " Energy gap of GaP = 2.43 eV\n", + " Plank constant = 6.624e-34 joule\n", + " Light speed = 300000000 m/s\n", + " lamda = 540000000 m\n", + "Difference between the energy gap of GaAs and GaP ,x=(Eg2−Eg1) )= 1.0 eV\n", + "Band gap energy ,Eg=(c∗h/lamda∗(1.6∗10ˆ−19)))= 2.3e-15 eV\n", + "X=Eg−(Eg1)= -1.43\n" + ] + } + ], + "source": [ + "#exa 2.8\n", + "Eg1 =1.43\n", + "print\" Energy gap of GaAs = \",Eg1,\" eV\" # initializing the value of energy gap of GaAs.\n", + "Eg2 =2.43\n", + "print\" Energy gap of GaP = \",Eg2,\" eV\"# initializing the value of energy gap of Gap.\n", + "h=6.624*10**-34\n", + "print\" Plank constant = \",h,\" joule\"# initializing the value of plank constant .\n", + "c=3*10**8\n", + "print\" Light speed = \",c,\" m/s\" # initializing the value of speed of light.\n", + "lamda =540*10**6\n", + "print\" lamda = \",lamda,\" m\" # initializing the value of wavelength .\n", + "x=(Eg2-Eg1)\n", + "print\"Difference between the energy gap of GaAs and GaP ,x=(Eg2−Eg1) )= \",x,\" eV\"# calculation\n", + "Eg=((c*h/(lamda*(1.6*10**-19))))\n", + "print\"Band gap energy ,Eg=(c∗h/lamda∗(1.6∗10ˆ−19)))=\",Eg,\" eV\"# calculation\n", + "X=Eg-(Eg1)\n", + "print\"X=Eg−(Eg1)= \",X # calculation \n", + "#this is solved problem 2.8 of chapter 2.\n", + "#the value of Eg(band gap energy )is provided wrong in the book after calculation.Due to this value ofX,alsodiffer." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2_9 pgno:51" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Temperature 1 = 500 K\n", + " Nv = 2e+19 cmˆ−3\n", + " Temperature 2 = 300 K\n", + "NV at 500K=(Nv((500/300) ˆ(3/2) ) ) )= 2e+19 cmˆ−3 \n" + ] + } + ], + "source": [ + "#exa 2.9\n", + "T1 =500\n", + "print\" Temperature 1 = \",T1,\"K\" # initializing the value of temperature 1.\n", + "Nv =2*10**19\n", + "print\" Nv = \",round(Nv,3),\"cmˆ−3\"# initializing the value of effective density of state for valence band .\n", + "T2 =300\n", + "print\" Temperature 2 = \",T2,\"K\"# initializing the value of temperature 2.\n", + "NV=(Nv*((500/300)**(3/2)))\n", + "print\"NV at 500K=(Nv((500/300) ˆ(3/2) ) ) )= \",round(NV,3),\" cmˆ−3 \"#calculation\n", + "#this is solved problem 2.9 of chapter 2." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2_10 pgno:52" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Nd = 100000000000000000 cmˆ−3\n", + " Ec Ed = 0.045\n", + "Vt = 0.0259 eV \n", + " Nc = 2.8e+19 cmˆ−3\n", + "exp = 2.718\n", + "Fraction of electron still in the donor state,(nd/(nd+n)=(((Nc/Nd)∗eˆ((−Ec Ed)/Vt),1)ˆ−1)= 0.0198886296934\n" + ] + } + ], + "source": [ + "#exa 2.10\n", + "Nd =1*10**17\n", + "print\"Nd = \",Nd,\"cmˆ−3\" # initializing the value of effective energy density of state.\n", + "Ec_Ed =0.045\n", + "print\" Ec Ed = \",Ec_Ed # initializing the value of donor ionisation level .\n", + "Vt =0.0259\n", + "print\"Vt = \",Vt,\" eV \"# initializing the value of thermal voltage .\n", + "Nc=2.8*10**19\n", + "print\" Nc = \",Nc,\"cmˆ−3\"# initializing the value of effective density of state of conduction band .\n", + "e=2.718\n", + "print\"exp = \",e # initializing the value of exponential .\n", + "N=(((Nc/Nd)*e**((-(Ec_Ed))/Vt))+1)**-1\n", + "print \"Fraction of electron still in the donor state,(nd/(nd+n)=(((Nc/Nd)∗eˆ((−Ec Ed)/Vt),1)ˆ−1)= \",N # calculation\n", + "#this is solved problem 2.10 of chapter 2." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2_11 pgno:52" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Na = 10000000000000000 cmˆ−3\n", + "Ea Ev = 0.045\n", + "Nv = 1.04e+19 cmˆ−3\n", + "Vt = 0.0259 eV\n", + "Fraction of holes that are still in the acceptor state ,(pa/(pa+p))=(1+((Nv/4∗Na)∗exp(−(Ea −Ev)/Vt)))ˆ(−1)= 0.0213895767669\n" + ] + } + ], + "source": [ + "#exa 2.11\n", + "from math import exp\n", + "Na =1*10**16\n", + "print\"Na = \",Na,\" cmˆ−3\"# initializing the value of acceptor concentration \n", + "Ea_Ev =0.045\n", + "print\"Ea Ev = \",Ea_Ev # initializing the boron acceptor ionization energy .\n", + "Nv=(1.04*10**19)\n", + "print\"Nv = \",Nv,\" cmˆ−3\"# initializing the value of effective density of state for valence band .\n", + "Vt=(0.0259)\n", + "print\"Vt = \",Vt,\" eV\"# initializing the value of thermal voltage .\n", + "p=(1+((Nv/(4*Na))*exp(-(Ea_Ev)/Vt)))**(-1)\n", + "print\"Fraction of holes that are still in the acceptor state ,(pa/(pa+p))=(1+((Nv/4∗Na)∗exp(−(Ea −Ev)/Vt)))ˆ(−1)= \",p #calculation\n", + "#this is solved problem 2.11 of chapter 2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2_12 pgno:52" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Nd = 100000000000000000 cmˆ−3\n", + "Na = 0 cmˆ−3\n", + "ni = 15000000000.0 cmˆ−3\n", + "Electron concentration ,n=(−(Na−Nd)+sqrt ((Na−Nd)ˆ2+4∗no))/2)= 1e+17 cmˆ−3\n", + "Hole concentration ,p)= 2250.0 cmˆ−3\n" + ] + } + ], + "source": [ + "#exa 2.12\n", + "Nd =1*10**17\n", + "print\"Nd = \",Nd,\" cmˆ−3\" # initializing the value of donor concentration .\n", + "Na=0\n", + "print\"Na = \",Na,\" cmˆ−3\"# initializing the value of acceptor concentration .\n", + "no=1.5*10**10\n", + "print\"ni = \",no,\" cmˆ−3\"# initializing the value of electron hole per cmˆ3.\n", + "n=(-(Na-Nd)+sqrt((Na-Nd)**2+4*no))/2\n", + "print\"Electron concentration ,n=(−(Na−Nd)+sqrt ((Na−Nd)ˆ2+4∗no))/2)= \",n,\" cmˆ−3\"#calculation\n", + "p=(no**2/n)\n", + "print\"Hole concentration ,p)= \",p,\" cmˆ−3\" # calculation\n", + "#this is solved problem 2.13 of chapter 2." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2_14 pgno:53" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Nd = 60000000000000000 cmˆ−3\n", + "Na = 100000000000000000 cmˆ−3\n", + "no = 15000000000.0 cmˆ−3\n", + "Hole concentration ,n=(−(Na−Nd)+sqrt ((Na−Nd)ˆ2+4∗no))/2)= 4e+16 cmˆ−3\n", + "Electron concentration ,n=(noˆ2/p))= 5625.0\n" + ] + } + ], + "source": [ + "#exa 2.14\n", + "Nd =6*10**16\n", + "print\"Nd = \",Nd,\" cmˆ−3\" # initializing the value of donor concentration .\n", + "Na =10**17\n", + "print\"Na = \",Na,\" cmˆ−3\"# initializing the value of acceptor concentration .\n", + "no=1.5*10**10\n", + "print\"no = \",no,\" cmˆ−3\"# initializing the value of electron and hole per cmˆ3.\n", + "p=((Na-Nd)+sqrt((Na-Nd)**2+4*no))/2\n", + "print\"Hole concentration ,n=(−(Na−Nd)+sqrt ((Na−Nd)ˆ2+4∗no))/2)= \",p,\" cmˆ−3\"#calculation\n", + "n=(no**2/p)\n", + "print \"Electron concentration ,n=(noˆ2/p))= \",n # calculation\n", + "#this is solved problem 2.14 of chapter 2.\n", + "#the value of Na,Nd in the solution is different than provided in the question\n", + "#I have used the value used in the solution(i.e Na=10ˆ17 ,Nd=6∗10ˆ16)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2_15 pgno:53" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Nd = 60000000000000000 cmˆ−3\n", + "Na = 100000000000000000 cmˆ−3\n", + "no = 15000000000.0 cmˆ−3\n", + "Hole concentration ,n=(−(Na−Nd)+sqrt ((Na−Nd)ˆ2+4∗no))/2)= 4e+16 cmˆ−3\n", + "Electron concentration ,n=(noˆ2/p))= 5625.0\n" + ] + } + ], + "source": [ + "#exa 2.15\n", + "Nd =6*10**16\n", + "print\"Nd = \",Nd,\" cmˆ−3\" # initializing the value of donor concentration .\n", + "Na =10**17\n", + "print\"Na = \",Na,\" cmˆ−3\"# initializing the value of acceptor concentration .\n", + "no=1.5*10**10\n", + "print\"no = \",no,\" cmˆ−3\"# initializing the value of electron and hole per cmˆ3.\n", + "p=((Na-Nd)+sqrt((Na-Nd)**2+4*no))/2\n", + "print\"Hole concentration ,n=(−(Na−Nd)+sqrt ((Na−Nd)ˆ2+4∗no))/2)= \",p,\"cmˆ−3\"#calculation\n", + "n=(no**2/p)\n", + "print\"Electron concentration ,n=(noˆ2/p))= \",n # calculation\n", + "#this is solved problem 2.15 of chapter 2.\n", + "#the value of Na,Nd in the solution is different than provided in the question\n", + "#I have used the value used in the solution(i.e Na=10ˆ17 ,Nd=6∗10ˆ16)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2_16 pgno:53" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Nv = 1.04e+19 cmˆ−3\n", + "Ef Ev = 0.3 eV\n", + "T = 300 K\n", + "T = 500 K\n", + "Vt1 = 0.0259 eV\n", + "k = 1.38e-23 J/K\n", + "e = 1.6e-19 columb\n", + "Value of constant ,K1=(Nv/((T) ˆ(3/2) ) )= 3.46666666667e+16 cmˆ−3 K(−2/3)\n", + "Value of valence band concentration at 500K,Nv =K1∗T(3/2)= 1.73333333333e+19 cmˆ−3\n", + "Value of parameter VT at 500K,VT=(K∗T/e)= 0.043125 cmˆ−3\n", + "Hole concentration ,p=(Nv∗(exp(Ef Ev)/(VT)))= 1.65083278171e+16 cmˆ−3\n" + ] + } + ], + "source": [ + "#exa 2.16\n", + "from math import exp\n", + "Nv1 =1.04*10**19\n", + "print\"Nv = \",Nv1,\" cmˆ−3\"# initializing the value of valence band concentration at 300K.\n", + "Ef_Ev =0.3\n", + "print\"Ef Ev = \",Ef_Ev,\" eV\"# initializing the value of boron acceptor ionization energy.\n", + "T1 =300\n", + "print\"T = \",T1,\"K\"# initializing the value of temperature 1.\n", + "T2 =500\n", + "print\"T = \",T2,\"K\"# initializing the value of temperature 2.\n", + "Vt1 =0.0259\n", + "print\"Vt1 = \",Vt1,\"eV\"# initializing the value of thermal voltage at 300K.\n", + "k=1.38*10**-23\n", + "print\"k = \",k,\"J/K\" # initializing value of boltzmann constant .\n", + "e=1.6*10**-19\n", + "print\"e = \",e,\"columb\" # initializing the value of electronic charge .\n", + "K1=(Nv1/((T1)**(3/2)))\n", + "print\"Value of constant ,K1=(Nv/((T) ˆ(3/2) ) )= \",K1,\" cmˆ−3 K(−2/3)\"# calculation\n", + "Nv2=K1*T2**(3/2)\n", + "print\"Value of valence band concentration at 500K,Nv =K1∗T(3/2)= \",Nv2,\" cmˆ−3\"# calculation\n", + "VT=(k*T2/e)\n", + "print\"Value of parameter VT at 500K,VT=(K∗T/e)= \",VT,\" cmˆ−3\"# calculation\n", + "p=(Nv2*(exp(-(Ef_Ev)/(VT))))\n", + "print\"Hole concentration ,p=(Nv∗(exp(Ef Ev)/(VT)))= \",p,\" cmˆ−3\"# calculation\n", + "#this is solved problem 2.16 of chapter 2.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2_17 pgno:54" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Nv = 7000000000000000000 cmˆ−3\n", + "Nc = 4.7e+17 cmˆ−3\n", + "T = 300 K\n", + "T = 450 K\n", + "Vt1 = 0.0259 eV\n", + "Vt2 = 0.03881 eV\n", + "Eg = 1.42 eV\n", + "intrinsic concentration at 300K,no=(sqrt(Nc∗Nv∗(exp(−Eg/Vt1))))= 2255422.87974\n", + "Value of constant ,K1=(Nc/((T) ˆ(3/2) ) )= 1.56666666667e+15\n", + "Value of constant k1 at 450K ,k1=(K1∗T2ˆ(3/2))= 7.05e+17\n", + "Value of constant ,K2=(Nv/((T1) ˆ(3/2) ) )= 23333333333333333\n", + "Value of constant k2 at 450K ,k2=(K2∗T2ˆ(3/2))= 10499999999999999850\n", + "Value of constant K,= 7.4025e+36\n", + "intrinsic concentration at 450K,no=(sqrt(K∗(exp(−Eg/Vt2) ) ) )= 30874193378.4 cmˆ3\n" + ] + } + ], + "source": [ + "#exa 2.17\n", + "from math import sqrt\n", + "Nv =7*10**18\n", + "print\"Nv = \",Nv,\"cmˆ−3\"# initializing the value of valence band concentration at 300K.\n", + "Nc=4.7*10**17\n", + "print\"Nc = \",Nc,\"cmˆ−3\"# initializing the value of conduction band concentration at 300K.\n", + "T1 =300\n", + "print\"T = \",T1,\"K\"# initializing the value of temperature 1.\n", + "T2 =450\n", + "print\"T = \",T2,\"K\"# initializing the value of temperature 2.\n", + "Vt1 =0.0259\n", + "print\"Vt1 = \",Vt1,\"eV\"# initializing the value of thermal voltage at 300K.\n", + "Vt2 =0.03881\n", + "print\"Vt2 = \",Vt2,\"eV\"# initializing the value of thermal voltage at 450K.\n", + "Eg=1.42\n", + "print\"Eg = \",Eg,\"eV\"# initializing the value of thermal voltage .\n", + "no=(sqrt(Nc*Nv*(exp(-Eg/Vt1))))\n", + "print\"intrinsic concentration at 300K,no=(sqrt(Nc∗Nv∗(exp(−Eg/Vt1))))= \",no #calculation\n", + "K1=(Nc/((T1)**(3/2)))\n", + "print\"Value of constant ,K1=(Nc/((T) ˆ(3/2) ) )= \",K1 # calculation\n", + "k1=(K1*T2**(3/2))\n", + "print\"Value of constant k1 at 450K ,k1=(K1∗T2ˆ(3/2))= \",k1# calculation\n", + "K2=(Nv/((T1)**(3/2)))\n", + "print\"Value of constant ,K2=(Nv/((T1) ˆ(3/2) ) )= \",K2# calculation\n", + "k2=(K2*T2**(3/2))\n", + "print\"Value of constant k2 at 450K ,k2=(K2∗T2ˆ(3/2))= \",k2 # calculation\n", + "K=k1*k2\n", + "print\"Value of constant K,= \",K # calculation\n", + "no1=(sqrt(K*(exp(-Eg/Vt2))))\n", + "print\"intrinsic concentration at 450K,no=(sqrt(K∗(exp(−Eg/Vt2) ) ) )= \",no1,\" cmˆ3\"# calculation\n", + "#this is solved problem 2.17 of chapter 2." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2_18 pgno:55" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Nv = 1.04e+19 cmˆ−3\n", + "Nc = 2.8e+19 cmˆ−3\n", + "T = 300 K\n", + "T = 550 K\n", + "Vt1 = 0.0259 eV\n", + "Vt2 = 0.0474 eV\n", + "Eg1 = 1.12 eV\n", + "intrinsic concentration at 300K,no=(sqrt(Nc∗Nv∗(exp(−Eg1/Vt1))))= 6949358641.26\n", + "Value of constant ,K1=(Nc/((T) ˆ(3/2) ) )= 9.3023255814e+16\n", + "Value of constant k1 at 550K ,k1=(K1∗T2ˆ(3/2))= 5.11627906977e+19\n", + "Value of constant ,K2=(Nv/((T1) ˆ(3/2) ) )= 3.46666666667e+16\n", + "Value of constant k2 at 550K ,k2=(K2∗T2ˆ(3/2))= 1.90666666667e+19\n", + "Value of constant K,= 9.75503875969e+38\n", + "Intrinsic concentration at 550K,no=(sqrt(K∗(exp(−Eg1/Vt2))))= 2.31051731905e+14 cmˆ3\n", + "Donor concentration at which intrinsic concentration is 10% of the total electron concentration ,Nd=(4∗(no1ˆ2) /(1.2) )= 1.77949676054e+29 cmˆ3\n" + ] + } + ], + "source": [ + "#exa 2.18\n", + "from math import sqrt\n", + "from math import exp\n", + "Nv=1.04*10**19\n", + "print\"Nv = \",Nv,\"cmˆ−3\"# initializing the value of valence band concentration at 300K.\n", + "Nc=2.8*10**19\n", + "print\"Nc = \",Nc,\"cmˆ−3\"# initializing the value of conduction band concentration at 300K.\n", + "T1 =300\n", + "print\"T = \",T1,\"K\"# initializing the value of temperature 1.\n", + "T2 =550\n", + "print\"T = \",T2,\"K\"# initializing the value of temperature 2.\n", + "Vt1 =0.0259\n", + "print\"Vt1 = \",Vt1,\"eV\"# initializing the value of thermal voltage at 300K.\n", + "Vt2 =0.0474\n", + "print\"Vt2 = \",Vt2,\"eV\"# initializing the value of thermal voltage at 550K.\n", + "Eg1=1.12\n", + "print\"Eg1 = \",Eg1,\"eV\"# initializing the value of thermal voltage .\n", + "no=(sqrt(Nc*Nv*(exp(-Eg1/Vt1))))\n", + "print\"intrinsic concentration at 300K,no=(sqrt(Nc∗Nv∗(exp(−Eg1/Vt1))))= \",no #calculation\n", + "K1=(Nc/((T1)^(3/2)))\n", + "print\"Value of constant ,K1=(Nc/((T) ˆ(3/2) ) )= \",K1 # calculation\n", + "k1=(K1*T2**(3/2))\n", + "print\"Value of constant k1 at 550K ,k1=(K1∗T2ˆ(3/2))= \",k1 # calculation \n", + "K2=(Nv/((T1)**(3/2)))\n", + "print\"Value of constant ,K2=(Nv/((T1) ˆ(3/2) ) )= \",K2 # calculation\n", + "k2=(K2*T2**(3/2))\n", + "print\"Value of constant k2 at 550K ,k2=(K2∗T2ˆ(3/2))= \",k2 # calculation\n", + "K=k1*k2\n", + "print\"Value of constant K,= \",K # calculation\n", + "no1=(sqrt(K*(exp(-Eg1/Vt2))))\n", + "print\"Intrinsic concentration at 550K,no=(sqrt(K∗(exp(−Eg1/Vt2))))= \",no1,\" cmˆ3\"# calculation\n", + "Nd=(4*(no1**2)/(1.2))\n", + "print\"Donor concentration at which intrinsic concentration is 10% of the total electron concentration ,Nd=(4∗(no1ˆ2) /(1.2) )= \",Nd,\" cmˆ3\"# calculation\n", + "#this is solved problem 2.18 of chapter 2.\n", + "#the value of temperature and % of the intrinsic carrier concentration given in the question is different than used in the solution .\n", + "#I have used the value provided in the solution (i.e T2=550 and % of the intrinsic carrier concentration =10%)\n", + "#the value of Donor concentration at which intrinsic concentration is 10% of the total electron concentration (Nd) , is provided wrong in the book after calculation .\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2_19 pgno:55" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ec Ef = 0.2 eV\n", + "Nc = 2.8e+19 cmˆ−3\n", + "Na = 30000000000000000 cmˆ−3\n", + "Vt = 0.0259 eV\n", + "Donor concentration ,Nd=(Nc∗(exp(−(Ec Ef)/(Vt))) )+(Na)= 4.24031697774e+16 cmˆ−3\n" + ] + } + ], + "source": [ + "#exa 2.19\n", + "Ec_Ef =0.2\n", + "print\"Ec Ef = \",Ec_Ef,\" eV\" # initializing the value of difference in the energy levels.\n", + "Nc=2.8*10**19\n", + "print\"Nc =\",Nc,\" cmˆ−3\"# initializing the conduction band concentration .\n", + "Na =3*10**16\n", + "print\"Na =\",Na,\" cmˆ−3\"# initializing the acceptor concentration .\n", + "Vt =0.0259\n", + "print\"Vt =\",Vt,\" eV\"# initializing the thermal voltage at 300K.\n", + "Nd=(Nc*(exp(-(Ec_Ef)/(Vt))))+(Na)\n", + "print\"Donor concentration ,Nd=(Nc∗(exp(−(Ec Ef)/(Vt))) )+(Na)= \",Nd,\" cmˆ−3\"# calculation\n", + "#this is solved problem 2.19 of chapter 2." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2_20 pgno:56" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Nv = 6000000000000000000 cmˆ−3\n", + "Nc = 1.04e+19 cmˆ−3\n", + "T1 = 300 K\n", + "T2 = 200 K\n", + "Vt1 = 0.0259 eV\n", + "Vt2 = 0.0173 eV\n", + "Eg1 = 0.6 eV\n", + "intrinsic concentration at 300K,no=(sqrt(Nc∗Nv∗(exp(−Eg1/Vt1))))= 7.36468677124e+13\n", + "Eg2 = 0.66 eV\n", + "Value of constant ,K1=(Nc/((T) ˆ(3/2) ) )= 3.46666666667e+16\n", + "Value of constant k1 at 200K ,k1=(K1∗T2ˆ(3/2))= 6.93333333333e+18\n", + "Value of constant ,K2=(Nv/((T1) ˆ(3/2) ) )= 20000000000000000\n", + "Value of constant k2 at 200K ,k2=(K2∗T2ˆ(3/2))= 4000000000000000000\n", + "Value of constant K,= 2.77333333333e+37\n", + "intrinsic concentration at 200K,no=(sqrt(K∗(exp(−Eg2/Vt2))))= 27369762834.6 cmˆ3\n" + ] + } + ], + "source": [ + "#exa 2.20\n", + "from math import sqrt\n", + "from math import exp\n", + "Nv =6*10**18\n", + "print\"Nv = \",Nv,\"cmˆ−3\"# initializing the value of valence band concentration at 300K.\n", + "Nc=1.04*10**19\n", + "print\"Nc = \",Nc,\"cmˆ−3\"# initializing the value of conduction band concentration at 300K.\n", + "T1 =300\n", + "print\"T1 = \",T1,\"K\"# initializing the value of temperature 1.\n", + "T2 =200\n", + "print\"T2 = \",T2,\"K\"# initializing the value of temperature 2.\n", + "Vt1 =0.0259\n", + "print\"Vt1 = \",Vt1,\"eV\"# initializing the value of thermal voltage at 300K.\n", + "Vt2 =0.0173\n", + "print\"Vt2 = \",Vt2,\"eV\"# initializing the value of thermal voltage at 200K.\n", + "Eg1=0.60\n", + "print\"Eg1 = \",Eg1,\"eV\"# initializing the value of thermal voltage used for 300K .\n", + "no=(sqrt(Nc*Nv*(exp(-Eg1/Vt1))))\n", + "print\"intrinsic concentration at 300K,no=(sqrt(Nc∗Nv∗(exp(−Eg1/Vt1))))= \",no #calculation\n", + "Eg2=0.66\n", + "print\"Eg2 = \",Eg2,\"eV\"# initializing the value of thermal voltage used for 200K.\n", + "K1=(Nc/((T1)**(3/2)))\n", + "print\"Value of constant ,K1=(Nc/((T) ˆ(3/2) ) )= \",K1 # calculation\n", + "k1=(K1*T2**(3/2))\n", + "print\"Value of constant k1 at 200K ,k1=(K1∗T2ˆ(3/2))= \",k1 # calculation\n", + "K2=(Nv/((T1)**(3/2)))\n", + "print\"Value of constant ,K2=(Nv/((T1) ˆ(3/2) ) )= \",K2 # calculation\n", + "k2=(K2*T2**(3/2))\n", + "print\"Value of constant k2 at 200K ,k2=(K2∗T2ˆ(3/2))= \",k2 # calculation\n", + "K=k1*k2\n", + "print\"Value of constant K,= \",K # calculation\n", + "no1=(sqrt(K*(exp(-Eg2/Vt2))))\n", + "print\"intrinsic concentration at 200K,no=(sqrt(K∗(exp(−Eg2/Vt2))))= \",round(no1,2),\" cmˆ3\"# calculation\n", + "#this is solved problem 2.20 of chapter 2.\n", + "#The answer of intrinsic concentration at 300K,(no) is provided wrong in the book." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2_21 pgno:56" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Eg1 = 2 eV\n", + "Eg2 = 2.2 eV\n", + "Vt = 0.0259 eV\n", + "Ratio of their intrinsic concentration at 300K,(no1/no2)=sqrt(exp((−Eg1/Vt)−(−Eg2/Vt)))= 47.5130239084\n" + ] + } + ], + "source": [ + "#exa 2.21\n", + "Eg1=2\n", + "print\"Eg1 = \",Eg1,\" eV\" # initializing the value of band energy gap for semiconductor1.\n", + "Eg2 =2.2\n", + "print\"Eg2 = \",Eg2,\" eV\"# initializing the value of band energy gap for semiconductor2.\n", + "Vt =0.0259\n", + "print\"Vt = \",Vt,\" eV\"# initializing the value of thermal voltage at 300K.\n", + "No=sqrt(exp((-Eg1/Vt)-(-Eg2/Vt)))\n", + "print\"Ratio of their intrinsic concentration at 300K,(no1/no2)=sqrt(exp((−Eg1/Vt)−(−Eg2/Vt)))= \",No # calculation" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/chapter_3_CARRIER_TRANSPORT_IN_SEMICONDUCTOR_3.ipynb b/Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/chapter_3_CARRIER_TRANSPORT_IN_SEMICONDUCTOR_3.ipynb new file mode 100644 index 00000000..2cc9b53b --- /dev/null +++ b/Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/chapter_3_CARRIER_TRANSPORT_IN_SEMICONDUCTOR_3.ipynb @@ -0,0 +1,700 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 3 CARRIER TRANSPORT IN SEMICONDUCTOR" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3_1 pgno: 71" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "I = 0.005 amphere\n", + "B= 1e-06 Tesla\n", + "w = 0.0001 m\n", + "l = 0.001 m\n", + "t = 1e-05 m\n", + "p = 100000000000000000 atoms/mˆ3\n", + "e = 1.6e-19 columb\n", + "Hall electric field ,EH=(I∗B)/(w∗t∗p∗e)= 312.5 V/m\n", + "Hall electric field in centimeter ,EH=(I∗B)/(w∗ t∗p∗e)= 3.125 V/cm\n" + ] + } + ], + "source": [ + "#exa 3.1\n", + "I=5*10**-3\n", + "print \"I = \",I,\" amphere\" # initializing value of current flowing through the sample.\n", + "B=1*10**-6\n", + "print \"B= \",B,\" Tesla\" # initializing value of magnetic field .\n", + "w=0.01*10**-2\n", + "print \"w = \",w,\" m\" # initializing value of width of germanium sample .\n", + "l=0.1*10**-2\n", + "print \"l = \",l,\" m\" # initializing value of length of germanium sample .\n", + "t=0.001*10**-2\n", + "print \"t = \",t,\" m\" # initializing value of thickness of germanium sample .\n", + "p=10**17\n", + "print \"p = \",p,\" atoms/mˆ3\" # initializing value of doped acceptor atoms .\n", + "e=1.6*10**-19\n", + "print \"e = \",e,\" columb\" # initializing value of charge of electron .\n", + "EH=(I*B)/(w*t*p*e)\n", + "print \"Hall electric field ,EH=(I∗B)/(w∗t∗p∗e)= \",EH,\" V/m\" # calculation 18 \n", + "E=EH*10**-2\n", + "print \"Hall electric field in centimeter ,EH=(I∗B)/(w∗ t∗p∗e)= \",E,\" V/cm\" # calculation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3_2 pgno: 72" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "I = 0.005 amphere\n", + "B= 1e-06 Tesla\n", + "w = 0.0001 m\n", + "l = 0.001 m\n", + "t = 1e-05 m\n", + "p = 100000000000000000 atoms/cmˆ3\n", + "e = 1.6e-19 columb\n", + "hall cofficient ,Rh=(1/(p∗e))= 62.5 cmˆ3/C\n" + ] + } + ], + "source": [ + "#exa 3.2\n", + "I=5*10**-3\n", + "print \"I = \",I,\" amphere\" # initializing value of current flowing through the sample.\n", + "B=1*10**-6\n", + "print \"B= \",B,\" Tesla\" # initializing value of magnetic field .\n", + "w=0.01*10**-2\n", + "print \"w = \",w,\" m\" # initializing value of width of germanium sample .\n", + "l=0.1*10**-2\n", + "print \"l = \",l,\" m\" # initializing value of length of germanium sample .\n", + "t=0.001*10**-2\n", + "print \"t = \",t,\" m\" # initializing value of thickness of germanium sample .\n", + "p=10**17\n", + "print \"p = \",p,\" atoms/cmˆ3\" # initializing value of doped acceptor atoms .\n", + "e=1.6*10**-19\n", + "print \"e = \",e,\" columb\" # initializing value of charge of electron .\n", + "Rh=(1/(p*e))\n", + "print \"hall cofficient ,Rh=(1/(p∗e))= \",Rh,\" cmˆ3/C\"# calculation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3_3 pgno: 72" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "I = 0.01 amphere\n", + "B= 1e-05 Tesla\n", + "w = 0.0001 m\n", + "l = 0.001 m\n", + "t = 1e-05 m\n", + "n = 10000000000000000 atoms/cmˆ3\n", + "e = 1.6e-19 columb\n", + "Hall voltage ,Vh=((I∗B)/(n∗e∗t)))= 6.25 V\n" + ] + } + ], + "source": [ + "#exa 3.3\n", + "I=10*10**-3\n", + "print \"I = \",I,\" amphere\" # initializing value of current flowing through the sample.\n", + "B=10*10**-6\n", + "print \"B= \",B,\" Tesla\" # initializing value of magnetic field .\n", + "w=0.01*10**-2\n", + "print \"w = \",w,\" m\" # initializing value ofwidth of germanium sample .\n", + "l=0.1*10**-2\n", + "print \"l = \",l,\" m\" # initializing value of length of germanium sample .\n", + "t=0.001*10**-2\n", + "print \"t = \",t,\" m\" # initializing value of thickness of germanium sample .\n", + "n=10**16\n", + "print \"n = \",n,\" atoms/cmˆ3\" # initializing value of doped donor atoms .\n", + "e=1.6*10**-19\n", + "print \"e = \",e,\" columb\" # initializing value of charge of electron .\n", + "Vh=((I*B)/(n*e*t))\n", + "print \"Hall voltage ,Vh=((I∗B)/(n∗e∗t)))= \",Vh,\" V\" # calculation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3_4 pgno: 72" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "I = 0.01 amphere\n", + "B= 1e-05 Tesla\n", + "w = 0.0001 m\n", + "l = 0.001 m\n", + "t = 1e-05 m\n", + "p = 1000000000000000000 atoms/cmˆ3\n", + "e = 1.6e-19 columb\n", + "Hall voltage ,Yh=((B)/(p∗e∗t)))= 6.25 ohm\n" + ] + } + ], + "source": [ + "#exa 3.4\n", + "I=10*10**-3\n", + "print \"I = \",I,\" amphere\" # initializing value of current flowing through the sample.\n", + "B=10*10**-6\n", + "print \"B= \",B,\" Tesla\" # initializing value of magnetic field .\n", + "w=0.01*10**-2\n", + "print \"w = \",w,\" m\" # initializing value of width of germanium sample .\n", + "l=0.1*10**-2\n", + "print \"l = \",l,\" m\" # initializing value of length of germanium sample .\n", + "t=0.001*10**-2\n", + "print \"t = \",t,\" m\" # initializing value of thickness of germanium sample .\n", + "p=10**18\n", + "print \"p = \",p,\" atoms/cmˆ3\" # initializing value of doped donor atoms .\n", + "e=1.6*10**-19\n", + "print \"e = \",e,\" columb\" # initializing value of charge of electron .\n", + "Yh=((B)/(p*e*t))\n", + "print \"Hall voltage ,Yh=((B)/(p∗e∗t)))= \",Yh,\"ohm\" # calculation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3_8 pgno: 75" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no = 15000000000.0\n", + "n= 20000000000000000\n", + "un = 1200\n", + "up = 500\n", + "e = 1.6e-19 columb\n", + "resistivity ,p=(1/(2∗e∗no∗(sqrt(un/up))))= 268957.17682 ohm\n", + "conductivity ,s=(1/p))= 3.71806401236e-06 S /cm\n", + "intrinsic conductivity ,sigma=e∗no∗(un+up))= 4.08e-06 S/cm\n" + ] + } + ], + "source": [ + "#exa 3.8\n", + "from math import sqrt\n", + "no=1.5*10**10\n", + "print \"no = \",no # initializing value of electron hole per cmˆ3.\n", + "n=2*10**16\n", + "print \"n= \",n # initializing value of number of electrons per cmˆ3.\n", + "un =1200\n", + "print \"un = \",un # initializing value of mobility of n−type carrier .\n", + "up =500\n", + "print \"up = \",up # initializing value of mobility of p−type carrier .\n", + "e=1.6*10**-19\n", + "print \"e = \",e,\" columb\" # initializing value of charge of electron .\n", + "p=(1/(2*e*no*(sqrt(un*up))))\n", + "print \"resistivity ,p=(1/(2∗e∗no∗(sqrt(un/up))))= \",p,\" ohm\" # calculation\n", + "sigmamin=(1/p)\n", + "print \"conductivity ,s=(1/p))= \",sigmamin,\" S /cm\" # calculation\n", + "sigma=e*no*(un+up)\n", + "print \"intrinsic conductivity ,sigma=e∗no∗(un+up))= \",sigma,\" S/cm\" # calculation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3_10 pgno: 76" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "po = 1000000000000000000 cmˆ−3\n", + "no = 15000000000.0 /cmˆ−3\n", + "P(o)= 100000000000000000 cmˆ−3\n", + "A = 0.1 cmˆ−2\n", + "up = 300 cmˆ2/Vs\n", + "t = 7e-09 sec\n", + "T = 300 K\n", + "Vt = 0.0259 eV\n", + "x = 5e-06 cm\n", + "Diffusion cofficient ,Dp=(Vt∗up))= 7.77 cmˆ2/s\n", + "Diffusion length ,Lp=(sqrt(Dp∗t)))= 0.000233216637485 cm\n", + "Excess charge generated ,p(x)=(po+(P(o)∗exp(−x/Lp) ) )= 1.09787888943e+18 cmˆ−3\n", + "Fermi level ,Efi Efp=(Vt∗log(p(x)/no)))= 0.469012627899 eV\n" + ] + } + ], + "source": [ + "#exa 3.10\n", + "from math import sqrt\n", + "from math import exp\n", + "from math import log\n", + "po =10**18\n", + "print \"po = \",po,\" cmˆ−3\" # initializing value of N type doping level .\n", + "no=1.5*10**10\n", + "print \"no = \",no,\" /cmˆ−3\" # initializing value of electron and hole concentration per cmˆ3.\n", + "Po =10**17\n", + "print \"P(o)= \",Po,\" cmˆ−3\" # initializing value of excess hole concentration .\n", + "A=0.1\n", + "print \"A = \",A,\" cmˆ−2\" # initializing the value of area .\n", + "up=300\n", + "print \"up = \",up,\" cmˆ2/Vs\" # initializing value of mobility of p−type carrier .\n", + "t=7*10**-9\n", + "print \"t = \",t,\" sec\" # initializing value of transit time.\n", + "T=300\n", + "print \"T = \",T,\"K\" # initializing value of temperature .\n", + "Vt=0.0259\n", + "print \"Vt = \",Vt,\" eV\" # initializing value of thermal voltage at 300K.\n", + "x=500*10**-8\n", + "print \"x = \",x,\" cm\" # initializing value of distance at which difference in fermi level is to calculated .\n", + "Dp=(Vt*up)\n", + "print \"Diffusion cofficient ,Dp=(Vt∗up))= \",Dp,\" cmˆ2/s\" #calculation \n", + "Lp=(sqrt(Dp*t))\n", + "print \"Diffusion length ,Lp=(sqrt(Dp∗t)))= \",Lp,\" cm\" # calculation\n", + "px=(po+(Po*exp(-x/Lp)))\n", + "print \"Excess charge generated ,p(x)=(po+(P(o)∗exp(−x/Lp) ) )= \",px,\" cmˆ−3\" # calculation\n", + "Efi_Efp=(Vt*log(px/no))\n", + "print \"Fermi level ,Efi Efp=(Vt∗log(p(x)/no)))= \",Efi_Efp,\" eV\" # calculation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3_11 pgno: 77" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "A = 1e-05 cmˆ2\n", + "Dp= 0.000777 cmˆ2/s\n", + "Lp = 2.33e-06 cm\n", + "x = 5e-06 cm\n", + "P(O)−po = 100000000000000000000000\n", + "e = 1.6e-19 column\n", + "Hole current ,I=(((e∗A∗Dp∗[P(O)−po])/Lp)∗exp(−x/Lp))= 6.24054720884 amphere\n", + " stored excess hole ,Q=(e∗A∗Dp∗Lp∗P))= 2.896656e-10 C\n" + ] + } + ], + "source": [ + "#exa 3.11\n", + "from math import exp\n", + "A=0.1*10**-4\n", + "print \"A = \",A,\" cmˆ2\" # initializing value of area .\n", + "Dp =7.77*10** -4\n", + "print \"Dp= \",Dp,\" cmˆ2/s\" # initializing value of diffusion cofficient .\n", + "Lp =0.233*10** -5\n", + "print \"Lp = \",Lp,\" cm\" # initializing value of diffusion length .\n", + "x=500*10**-8\n", + "print \"x = \",x,\" cm\" # initializing value of distance\n", + "P=10**17*10**6\n", + "print \"P(O)−po = \",P # initializing value of P(O)−po\n", + "e=1.6*10**-19\n", + "print \"e = \",e,\"column\" # initializing value of charge of electron .\n", + "I=(((e*A*Dp*P)/Lp)*exp(-x/Lp))\n", + "print \"Hole current ,I=(((e∗A∗Dp∗[P(O)−po])/Lp)∗exp(−x/Lp))= \",I,\"amphere\" # calculation\n", + "Q=(e*A*Dp*Lp*P)\n", + "print \" stored excess hole ,Q=(e∗A∗Dp∗Lp∗P))= \",Q,\"C\" # calculation\n", + "# the value of current(I) given after calculation inthe book is wrong, (as the value of Lp used in the formula while finding value of hole current ( I)at two places is used different).\n", + "# I have used the value Lp=0.233∗10ˆ−5 cm" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3_12 pgno: 77" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "I = 0.002 amphere\n", + "B= 0.1 Tesla\n", + "w = 0.0002 mm\n", + "l = 0.002 m\n", + "t = 2e-05 m\n", + "Vaa = 10 V\n", + "Vh = -0.01 V\n", + "e = 1.6e-19 columb\n", + "electron concentration ,n=((I∗B)/(e∗t∗Vh))= -6.25e+21 mˆ−3\n", + "mobility ,un=(I∗L/(e∗n∗Vaa∗w∗t))= 0.1 mˆ2/Vs\n" + ] + } + ], + "source": [ + "#exa 3.12\n", + "I=2*10**-3\n", + "print \"I = \",I,\" amphere\" # initializing value of current flowing through the sample.\n", + "B=1000*10**-4\n", + "print \"B= \",B,\" Tesla\" # initializing value of magnetic field .\n", + "w=0.2*10**-3\n", + "print \"w = \",w,\" mm\" # initializing value of width of sample .\n", + "l=2*10**-3\n", + "print \"l = \",l,\" m\" # initializing value of length of sample .\n", + "t=0.02*10**-3\n", + "print \"t = \",t,\" m\" # initializing value of thickness of sample .\n", + "Vaa=10\n", + "print \"Vaa = \",Vaa,\" V\" # initializing value of applied voltage .\n", + "Vh = -10*10** -3\n", + "print \"Vh = \",Vh,\" V\" # initializing value of hall voltage .\n", + "e=1.6*10**-19\n", + "print \"e = \",e,\" columb\" # initializing value of charge of electron .\n", + "n=((I*B)/(e*t*Vh))\n", + "print \"electron concentration ,n=((I∗B)/(e∗t∗Vh))= \",n,\" mˆ−3\" # calculation\n", + "un=(I*l/(e*abs(n)*Vaa*w*t))\n", + "print \"mobility ,un=(I∗L/(e∗n∗Vaa∗w∗t))= \",un,\" mˆ2/Vs\" # calculation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3_14 pgno: 78" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ND x = ((10ˆ17) −(10ˆ18∗x))\n", + "differentiating above equation with resprct to x\n", + "d[ND x]/dx = (−10ˆ18) cmˆ−4\n", + "now, electric field is given by \n", + "E x = −(VT/ND x)∗(d[ND x]/dx) = (0.0259∗10ˆ18)/((10ˆ15) −(10ˆ18∗x))\n", + "for x = 0\n", + "E x = 25.9 V/cm\n", + "for x = 1∗10ˆ−4 cm\n", + "E x = 28.7777777778 V/cm\n" + ] + } + ], + "source": [ + "#exa 3.14\n", + "print \"ND x = ((10ˆ17) −(10ˆ18∗x))\" # donor concentration in an N type semiconductor\n", + "print \"differentiating above equation with resprct to x\"\n", + "print \"d[ND x]/dx = (−10ˆ18) cmˆ−4\"\n", + "print \"now, electric field is given by \"\n", + "print \"E x = −(VT/ND x)∗(d[ND x]/dx) = (0.0259∗10ˆ18)/((10ˆ15) −(10ˆ18∗x))\" # equation for electric field\n", + "print \"for x = 0\" \n", + "x=0\n", + "E_x = (0.0259*10**18)/((10**15) -(10**18*x))\n", + "print \"E x = \",E_x,\"V/cm\"\n", + "print \"for x = 1∗10ˆ−4 cm\"\n", + "x = 1*10**-4\n", + "E_x = (0.0259*10**18)/((10**15) -(10**18*x))\n", + "print \"E x = \",E_x,\"V/cm\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3_17 pgno: 81" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Nd = 100000000000000000 /cmˆ3\n", + "Na= 0 /cmˆ3\n", + "no = 1800000.0 /cmˆ3\n", + "E = 5 V/cm\n", + "un = 7500 cmˆ2/s\n", + "n1= 100000000000000000 cmˆ−3\n", + "e = 1.6e-19 columb\n", + "Electron concentration ,n=(−(Na−Nd)+sqrt ((Na−Nd)ˆ2+4∗no))/2)= 1e+17 cmˆ−3\n", + "Hole concentration ,p=(noˆ2/n))= 3.24e-05 cmˆ−3\n", + "Drift current density , Jdrift=n1∗un∗e∗E)= 600.0 A/cmˆ2\n" + ] + } + ], + "source": [ + "#exa 3.17\n", + "from math import sqrt\n", + "Nd =10**17\n", + "print \"Nd = \",Nd,\" /cmˆ3\" # initializing value of donor concentration .\n", + "Na=0\n", + "print \"Na= \",Na,\"/cmˆ3\" # initializing value of acceptor concentration .\n", + "no=1.8*10**6\n", + "print \"no = \",no,\" /cmˆ3\" # initializing value of electron and hole concentration per cmˆ3.\n", + "E=5\n", + "print \"E = \",E,\" V/cm\" # initializing value of electric field .\n", + "un=7500\n", + "print \"un = \",un,\" cmˆ2/s\" # initializing value of mobility .\n", + "n1=10**17\n", + "print \"n1= \",n1,\" cmˆ−3\" # initializing value of impurity concentration .\n", + "e=1.6*10**-19\n", + "print \"e = \",e,\" columb\" # initializing value of charge of electron .\n", + "n=(-(Na-Nd)+sqrt((Na-Nd)**2+4*no))/2\n", + "print \"Electron concentration ,n=(−(Na−Nd)+sqrt ((Na−Nd)ˆ2+4∗no))/2)= \",n,\" cmˆ−3\" #calculation\n", + "p=(no**2/n)\n", + "print \"Hole concentration ,p=(noˆ2/n))= \",p,\" cmˆ−3\" # calculation\n", + "Jdrift=n1*un*e*E\n", + "print \"Drift current density , Jdrift=n1∗un∗e∗E)= \",Jdrift,\" A/cmˆ2\" # calculation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3_18 pgno: 82" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Nd = 0 /cmˆ3\n", + "Na= 100000000000000000 /cmˆ3\n", + "no = 1800000.0 /cmˆ3\n", + "E = 10 V/cm\n", + "un = 200 cmˆ2/s\n", + "p1= 100000000000000000 cmˆ−3\n", + "e = 1.6e-19 columb\n", + "Electron concentration ,p=−(−(Na−Nd)−sqrt ((Na−Nd)**2+4∗(no**2)))/2= 1e+17 cmˆ−3\n", + "Hole concentration ,n=(noˆ2/p))= 3.24e-05 cmˆ−3\n", + "Drift current density , Jdrift=n1∗un∗e∗E)= 32.0 A/cmˆ2\n" + ] + } + ], + "source": [ + "#exa 3.18\n", + "from math import sqrt\n", + "Nd=0\n", + "print \"Nd = \",Nd,\" /cmˆ3\" # initializing value of donor concentration .\n", + "Na =10**17\n", + "print \"Na= \",Na,\" /cmˆ3\" # initializing value of acceptor concentration .\n", + "no=1.8*10**6\n", + "print \"no = \",no,\" /cmˆ3\" # initializing value of electron and hole concentration per cmˆ3.\n", + "E=10\n", + "print \"E = \",E,\" V/cm\" # initializing value of electric field .\n", + "un=200\n", + "print \"un = \",un,\" cmˆ2/s\" # initializing value of mobility \n", + "p1=10**17\n", + "print \"p1= \",p1,\" cmˆ−3\" # initializing value of impurity concentration .\n", + "e=1.6*10**-19\n", + "print \"e = \",e,\" columb\" # initializing value of charge of electron .\n", + "p=-(-(Na-Nd)-sqrt((Na-Nd)**2+4*(no**2)))/2\n", + "print \"Electron concentration ,p=−(−(Na−Nd)−sqrt ((Na−Nd)**2+4∗(no**2)))/2= \",p,\" cmˆ−3\" # calculation\n", + "n=(no**2/p)\n", + "print \"Hole concentration ,n=(noˆ2/p))= \",n,\"cmˆ−3\" # calculation\n", + "Jdrift=p1*un*e*E\n", + "print \"Drift current density , Jdrift=n1∗un∗e∗E)= \",Jdrift,\" A/cmˆ2\" # calculation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3_19 pgno: 82" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "D = 120 A/cmˆ2\n", + "E = 5 V/cm\n", + "e = 1.6e-19 columb\n", + "thermal equilibrium value of hole concentration ,p=(D/(450∗ e∗E)))= 3.33333333333e+17 /cmˆ3\n" + ] + } + ], + "source": [ + "#exa 3.19\n", + "D=120\n", + "print \"D = \",D,\" A/cmˆ2\" # initializing value of drift current density .\n", + "E=5\n", + "print \"E = \",E,\" V/cm\" # initializing value of electric field .\n", + "e=1.6*10**-19\n", + "print \"e = \",e,\"columb\" # initializing value of charge of electron .\n", + "p=(D/(450*e*E))\n", + "print \"thermal equilibrium value of hole concentration ,p=(D/(450∗ e∗E)))= \",p,\" /cmˆ3\" # calculation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3_20 pgno: 83" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Nd = 50000000000000000 /cmˆ3\n", + "A= 5e-07 cmˆ2\n", + "l = 0.2 /cm\n", + "E = 10 V\n", + "un = 1100 cmˆ2/s\n", + "p= 50000000000000000 /cmˆ−3\n", + "e = 1.6e-19 columb\n", + "Current through the bar,I=(p∗up∗e∗E∗A)/l)= 0.00022 A\n" + ] + } + ], + "source": [ + "#exa 3.20\n", + "Nd =5*10**16\n", + "print \"Nd = \",Nd,\" /cmˆ3\" # initializing value of donor concentration .\n", + "A=50*10**-8\n", + "print \"A= \",A,\" cmˆ2\" # initializing value of area .\n", + "l=0.2\n", + "print \"l = \",l,\" /cm\" # initializing value of length .\n", + "E=10\n", + "print \"E = \",E,\" V\" # initializing value of electric field .\n", + "up=1100\n", + "print \"un = \",up,\" cmˆ2/s\" # initializing value of mobility .\n", + "p=5*10**16\n", + "print \"p= \",p,\" /cmˆ−3\" # initializing value of impurity concentration .\n", + "e=1.6*10**-19\n", + "print \"e = \",e,\"columb\" # initializing value of charge of electron .\n", + "I=(p*up*e*E*A)/l\n", + "print \"Current through the bar,I=(p∗up∗e∗E∗A)/l)= \",I,\"A\" # calculation" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/chapter_4__EXCESS_CARRIER_IN_SEMICONDUCTOR_3.ipynb b/Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/chapter_4__EXCESS_CARRIER_IN_SEMICONDUCTOR_3.ipynb new file mode 100644 index 00000000..9f1d9742 --- /dev/null +++ b/Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/chapter_4__EXCESS_CARRIER_IN_SEMICONDUCTOR_3.ipynb @@ -0,0 +1,273 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 4 EXCESS CARRIER IN SEMICONDUCTOR" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4_2 pgno: 100" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Nd = 200000000000000000 cmˆ−3\n", + "Er = 11.9\n", + "e = 1.6e-19 columns\n", + "eo = 8.854e-14\n", + "un = 1350 cm2/Vs\n", + " conducitivity , sigma=e∗un∗Nd)= 43.2 S/cm\n", + "Dielectric releaxation time ,td=((Er∗Eo)/sigma))= 2.43894907407e-14 s\n" + ] + } + ], + "source": [ + "#exa 4.2\n", + "Nd =2*10**17\n", + "print\"Nd = \",Nd,\"cmˆ−3\" # initializing value of donor concentration .\n", + "Er =11.9\n", + "print\"Er = \",Er # initializing value of relative dielectric constant.\n", + "e=1.6*10**-19\n", + "print\"e = \",e,\"columns\" # initializing value of charge of electrons .\n", + "Eo=8.854*10**-14\n", + "print\"eo = \",Eo # initializing value of permittivity of free space .\n", + "un=1350\n", + "print\"un = \",un,\"cm2/Vs\" # initializing value of mobility .\n", + "sigma=e*un*Nd\n", + "print\" conducitivity , sigma=e∗un∗Nd)=\",sigma,\"S/cm\"# calculation\n", + "td=((Er*Eo)/sigma)\n", + "print\"Dielectric releaxation time ,td=((Er∗Eo)/sigma))=\",td,\"s\"# calculation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4_3 pgno: 101" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "n = 1000000000000000 cmˆ−3\n", + "no = 10000000000 cmˆ−3\n", + "t = 1e-06 s\n", + "Excess electron concentration = 100000000000000 cmˆ−3\n", + "electron hole recombination ,R=(c/t))= 1e+20 /cmˆ3s\n" + ] + } + ], + "source": [ + "#exa 4.3\n", + "n=10**15\n", + "print\"n = \",n,\"cmˆ−3\" # initializing value of concentration of electrons/cmˆ3.\n", + "no =10**10\n", + "print\"no = \",no,\"cmˆ−3\" # initializing value of intrinsic concentration of electron .\n", + "t=10**-6\n", + "print\"t = \",t,\"s\" # initializing value of carrier lifetime .\n", + "c=1*10**14\n", + "print\"Excess electron concentration = \",c,\"cmˆ−3\" # initializing value of excess electrons concentration .\n", + "R=(c/t)\n", + "print\"electron hole recombination ,R=(c/t))=\",R,\" /cmˆ3s\"# calculation," + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4_4 pgno: 101" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Nd = 1000000000000000 cmˆ−3\n", + "minority carrier lifetime = 1e-05 s\n", + "no = 15000000000.0 cmˆ−3\n", + "excess carrier concentration ,p=(noˆ2/Nd))= 225000.0 /cmˆ3\n", + "electron hole generation and recombination rate ,R=(p/t))= 22500000000.0 /cmˆ3s\n", + "majority carrier concentration ,t=Nd/R)= 44444.4444444 s\n" + ] + } + ], + "source": [ + "#exa 4.4\n", + "Nd =10**15\n", + "print\"Nd = \",Nd,\"cmˆ−3\" # initializing value of donor concentration ..\n", + "tn =10*10**-6\n", + "print\"minority carrier lifetime = \",tn,\"s\" #initializing value of minority carrier lifetime\n", + "no=1.5*10**10\n", + "print\"no = \",no,\"cmˆ−3\" # initializing value of electron and hole concentration per cmˆ3.\n", + "p=(no**2/Nd)\n", + "print\"excess carrier concentration ,p=(noˆ2/Nd))=\",p,\"/cmˆ3\"# calculation\n", + "R=(p/tn)\n", + "print\"electron hole generation and recombination rate ,R=(p/t))=\",R,\"/cmˆ3s\"#calculation\n", + "t=Nd/R\n", + "print\"majority carrier concentration ,t=Nd/R)=\",t,\"s\"# calculation .\n", + "#the value of majority carrier concentration,t=Nd/R( after calculation ) , is provided wrong in the solution .\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4_5 pgno: 101" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Nd = 10000000000000000 cmˆ−3\n", + "p = 1000000 cmˆ−3\n", + "no = 10000000000 cmˆ−3\n", + "n∗ = 1000000000000000 cmˆ−3\n", + "p∗ = 1000000000000000 cmˆ−3\n", + "KT = 0.0259 eV\n", + "T = 300 K\n", + "Thermal equilibirium fermi level ,( Ef Efi )=(KT∗log(n/no)))= 0.357821723451 eV\n", + "Quasi−fermi levels for n−type dopant ,( Efn Efi )=(KT∗log ((n+n∗)/no))= 0.360290257108 eV\n", + "Quasi−fermi levels for p−type dopant ,( Efi Efp )=(KT∗log ((p+p∗)/no))= 0.360290257108 eV\n" + ] + } + ], + "source": [ + "#exa 4.5\n", + "from math import log\n", + "Nd =10**16\n", + "print\"Nd = \",Nd,\" cmˆ−3\" # initializing value of donor concentration .\n", + "p=10**6\n", + "print\"p = \",p,\" cmˆ−3\" # initializing value of minority hole concentration .\n", + "no =10**10\n", + "print\"no = \",no,\" cmˆ−3\" # initializing value of electron and hole concentration per cm ˆ3..\n", + "n1 =10**15\n", + "print\"n∗ = \",n1,\" cmˆ−3\" # initializing value of excess electron carrier concentration(denoted by n∗).\n", + "p1=10**15\n", + "print\"p∗ = \",p1,\" cmˆ−3\" # initializing value of excess hole carrier concentration( denoted by p∗).\n", + "KT=0.0259\n", + "print\"KT = \",KT,\" eV\" # initializing value of multipication of temperature and bolzmann constant .\n", + "T=300\n", + "print\"T = \",T,\" K\" # initializing value of temperature .\n", + "Ef_Efi=(log(Nd/no)*KT)\n", + "print\"Thermal equilibirium fermi level ,( Ef Efi )=(KT∗log(n/no)))=\",Ef_Efi,\" eV\"#calculation .\n", + "Efn_Efi=log((Nd+n1)/no)*KT\n", + "print\"Quasi−fermi levels for n−type dopant ,( Efn Efi )=(KT∗log ((n+n∗)/no))=\",Efn_Efi,\" eV\"# calculation .\n", + "Efi_Efp=log((Nd+p1)/no)*KT\n", + "print\"Quasi−fermi levels for p−type dopant ,( Efi Efp )=(KT∗log ((p+p∗)/no))=\",Efi_Efp,\" eV\"# calculation .\n", + "#the answer for Efn Efi , Efi Efp is provided wrong in the book.\n", + "#In this question,Nd=(n(used in the formula))." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4_6 pgno: 102" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Nd = 50000000000000000 cmˆ−3\n", + "Na = 0 cmˆ−3\n", + "no = 15000000000.0 cmˆ−3\n", + "n∗ = 500000000000000 cmˆ−3\n", + "p∗ = 500000000000000 cmˆ−3\n", + "KT = 0.0259\n", + "thermal equilibrium fermi level ,( Ef Efi )=(KT∗log(n/no)))= 0.389004619083 eV\n", + "Excess carrier concentration ,(Efn Efi)=(KT∗log ((n+n∗)/no))= 0.389262332652 eV\n", + "(Ef Efi)=(KT∗log((p+p∗)/no))= 0.269730711266 eV\n" + ] + } + ], + "source": [ + "#exa 4.6\n", + "from math import log\n", + "Nd =5*10**16\n", + "print\"Nd = \",Nd,\"cmˆ−3\" # initializing value of donor ion concentration .\n", + "Na=0\n", + "print\"Na = \",Na,\"cmˆ−3\" # initializing value of value of acceptor ion concentration .\n", + "no=1.5*10**10\n", + "print\"no =\",no,\"cmˆ−3\" # initializing electron and hole concentration per cmˆ3.\n", + "n1 =5*10**14\n", + "print\"n∗ =\",n1,\"cmˆ−3\" # initializing excess electron carrier concentration .\n", + "p1 =5*10**14\n", + "print\"p∗ =\",p1,\"cmˆ−3\" # initializing excess hole carrier concentration .\n", + "KT=0.0259\n", + "print\"KT =\",KT #initializing value of voltage \n", + "Ef_Efi=(KT*log(Nd/no))\n", + "print\"thermal equilibrium fermi level ,( Ef Efi )=(KT∗log(n/no)))=\",Ef_Efi,\"eV\" #calculation .\n", + "Efn_Efi=log((Nd+n1)/no)*KT\n", + "print\"Excess carrier concentration ,(Efn Efi)=(KT∗log ((n+n∗)/no))=\",Efn_Efi,\"eV\" # calculation .\n", + "Efi_Efp=log((Na+p1)/no)*KT\n", + "print\"(Ef Efi)=(KT∗log((p+p∗)/no))=\",Efi_Efp,\"eV\"# calculation ." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/chapter_5_PN_JUNCTION_DIODE_3.ipynb b/Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/chapter_5_PN_JUNCTION_DIODE_3.ipynb new file mode 100644 index 00000000..f92767c3 --- /dev/null +++ b/Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/chapter_5_PN_JUNCTION_DIODE_3.ipynb @@ -0,0 +1,1364 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# chapter 5 PN JUNCTION DIODE" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5_5 pgno: 142" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Na 100000000000000000 /cmˆ3\n", + "Nd= 1000000000000000 /cmˆ3\n", + "no = 15000000000.0 cmˆ−3\n", + "e = 1.6e-19 columns\n", + "K = 1.38e-23 J/k\n", + "T = 300 K\n", + "(a)fermi level in the P region , Efi Efp=((KT/e) ∗ log (Na/no ) ) )= 0.406564315296 eV\n", + "fermi level in the n region,Efn Efi=((KT/e)∗log (Nd/no) ) )= 0.287405536734 eV\n", + "(b) junction potential at room temperature ,Efn Efp=(Efi Efp)+(Efn Efi))= 0.69396985203 eV\n" + ] + } + ], + "source": [ + "#exa 5.5\n", + "from math import log\n", + "Na =10**17\n", + "print \"Na\",Na,\"/cmˆ3\" # initializing value of medium p doping concentration .\n", + "Nd =10**15\n", + "print \"Nd= \",Nd,\"/cmˆ3\" # initializing value of light n doping .\n", + "no=1.5*10**10\n", + "print \"no = \",no,\"cmˆ−3\" # initializing value of intrinsic carrier concentration .\n", + "e=1.6*10**-19\n", + "print \"e = \",e,\"columns\" # initializing value of charge of electrons .\n", + "K=1.38*10**-23\n", + "print \"K = \",K,\"J/k\" #initializing value of boltzmann constant .\n", + "T=300\n", + "print \"T = \",T,\"K\" # initializing value of temperature .\n", + "Efi_Efp=((K*T/e)*log(Na/no))\n", + "print \"(a)fermi level in the P region , Efi Efp=((KT/e) ∗ log (Na/no ) ) )= \",Efi_Efp,\"eV\" # calculation .\n", + "Efn_Efi=((K*T/e)*log(Nd/no))\n", + "print \"fermi level in the n region,Efn Efi=((KT/e)∗log (Nd/no) ) )=\",Efn_Efi,\" eV\" # calculation\n", + "Efn_Efp=(Efi_Efp)+(Efn_Efi)\n", + "print\"(b) junction potential at room temperature ,Efn Efp=(Efi Efp)+(Efn Efi))=\",Efn_Efp,\" eV\" #calculation ." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5_7 pgno: 143" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Pp= 1000000000000000000 /cmˆ3\n", + "Nn= 1000000000000000 /cmˆ3\n", + "tp = 7e-06 s\n", + "tn = 2e-07 s\n", + "up= 800 cm2/Vs\n", + "un= 300 cm2/Vs\n", + "no = 15000000000.0 cmˆ−3\n", + "Vf = 0.6 V\n", + "A = 0.0001 mˆ2\n", + "e = 1.6e-19 columns\n", + "K = 1.38e-23 J/k\n", + "T = 300 K\n", + "Vt=(K∗T/e))= 0.025875 eV\n", + "Dp=Vt∗un= 7.7625 cmˆ−3\n", + "Dn=Vt∗up= 20.7 cmˆ−3\n", + "Lp=(sqrt(Dp∗tp))= 0.00737139742518 cm\n", + "Ln=(sqrt(Dn∗tn))= 0.00203469899494 cm\n", + "npo=(no^2/Pp)= 225.0 cmˆ−3\n", + "Ppo=(noˆ2/Nn)= 225000.0 cmˆ−3\n", + "Reverse saturation current ,Io=(((Dp∗Ppo)/(Lp)) + ( ( D n ∗ n p o ) / ( L n ) ) ) ∗ e ∗ A= 3.827628972e-15 A \n", + "Diode forward current , If=Io∗((exp(Vf/Vt))−1)= 4.5032547414e-05 A\n" + ] + } + ], + "source": [ + "#exa 5.7\n", + "from math import sqrt\n", + "from math import exp\n", + "Pp =10**18\n", + "print \"Pp= \",Pp,\"/cmˆ3\" # initializing value of doping concentration in p region.\n", + "Nn =10**15\n", + "print \"Nn= \",Nn,\"/cmˆ3\" # initializing value of doping concentration in n region.\n", + "tp =7*10** -6\n", + "print \"tp = \",tp,\"s\" # initializing value of hole lifetime .\n", + "tn =0.2*10** -6\n", + "print \"tn = \",tn,\"s\" # initializing value of electron lifetime .\n", + "up=800\n", + "print \"up= \",up,\"cm2/Vs\" # initializing value of P side mobility .\n", + "un=300\n", + "print \"un= \",un,\"cm2/Vs\" # initializing value of n side mobility .\n", + "no=1.5*(10**10)\n", + "print \"no = \",no,\"cmˆ−3\" # initializing value of intrinsic concentration .\n", + "Vf=0.6\n", + "print \"Vf = \",Vf,\"V\" # initializing value of forward bias voltage .\n", + "A=100*(10**-6)\n", + "print \"A = \",A,\"mˆ2\"# initializing value of diode cross−sectional area .\n", + "e=1.6*(10**-19)\n", + "print \"e = \",e,\"columns\" # initializing value of charge of electrons .\n", + "K=1.38*(10**-23)\n", + "print \"K = \",K,\"J/k\" # initializing value of boltzmann constant .\n", + "T=300\n", + "print \"T = \",T,\"K\" # initializing value of temperature .\n", + "Vt=(K*T/e)\n", + "print \"Vt=(K∗T/e))=\",Vt,\"eV\" #calculation .\n", + "Dp=Vt*un\n", + "print \"Dp=Vt∗un=\",Dp,\"cmˆ−3\" # calculation .\n", + "Dn=Vt*up\n", + "print \"Dn=Vt∗up=\",Dn,\"cmˆ−3\" # calculation .\n", + "Lp=sqrt(Dp*tp)\n", + "print \"Lp=(sqrt(Dp∗tp))=\",Lp,\"cm\" # calculation .\n", + "Ln=(sqrt(Dn*tn))\n", + "print \"Ln=(sqrt(Dn∗tn))=\",Ln,\"cm\" # calculation .\n", + "npo=(no**2/Pp)\n", + "print \"npo=(no^2/Pp)=\",npo,\"cmˆ−3\" # calculation .\n", + "Ppo=(no**2/Nn)\n", + "print \"Ppo=(noˆ2/Nn)=\",Ppo,\"cmˆ−3\" #calculation .\n", + "Io=(((Dp*Ppo)/(Lp))+((Dn*npo)/(Ln)))*e*A\n", + "print \"Reverse saturation current ,Io=(((Dp∗Ppo)/(Lp)) + ( ( D n ∗ n p o ) / ( L n ) ) ) ∗ e ∗ A= \",Io,\" A \" #calculation .\n", + "If=Io*((exp(Vf/Vt))-1)\n", + "print \"Diode forward current , If=Io∗((exp(Vf/Vt))−1)=\",If,\"A\" # calculation .\n", + "#//the value of Io(reverse saturation current ),after calculation is provided wrong in the book.Due to which If (diode forward current )also differ.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5_8 pgno: 144" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Na = 40000000000000000 cmˆ−3\n", + "Nd = 20000000000000000000 cmˆ−3\n", + "no = 15000000000.0 cmˆ−3\n", + "e = 1.6e-19 columns\n", + "K = 1.38e-23 J/k\n", + "T = 300 K\n", + "Built in potential potential ,Vbi=((K∗T/e)∗log((Na∗Nd) /(no) ˆ2) )= 0.926513569765 V\n" + ] + } + ], + "source": [ + "#exa 5.8\n", + "Na =4*10**16\n", + "print \"Na = \",Na,\"cmˆ−3\" # initializing value of acceptor concentration .\n", + "Nd =2*10**19\n", + "print \"Nd = \",Nd,\"cmˆ−3\" # initializing value of donor concentration .\n", + "no=1.5*10**10\n", + "print \"no = \",no,\"cmˆ−3\" # initializing value of intrinsic carrier concentration .\n", + "e=1.6*10**-19\n", + "print \"e = \",e,\"columns\" # initializing value of charge of electrons .\n", + "K=1.38*10**-23\n", + "print \"K = \",K,\"J/k\" # initializing value of boltzmann constant .\n", + "T=300\n", + "print \"T = \",T,\"K\" # initializing value of temperature .\n", + "Vbi=((K*T/e)*log((Na*Nd)/(no)**2))\n", + "print \"Built in potential potential ,Vbi=((K∗T/e)∗log((Na∗Nd) /(no) ˆ2) )=\",Vbi,\"V\" # calculation\n", + "#The value used for Nd in the book for solution is different than provided in the question .\n", + "#I have used the value provided in the solution(i.eNd=2∗10ˆ19)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5_9 pgno: 144" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Na = 40000000000000000 cmˆ−3\n", + "Nd = 20000000000000000000 cmˆ−3\n", + "no = 1800000.0 cmˆ−3\n", + "e = 1.6e-19 columns\n", + "K = 1.38e-23 J/k\n", + "T = 300 K\n", + "Built in potential potential ,Vbi=((K∗T/e)∗log((Na∗Nd) /(no) ˆ2) )= 1.39371354345 V\n" + ] + } + ], + "source": [ + "#exa 5.9\n", + "Na =4*10**16\n", + "print \"Na = \",Na,\"cmˆ−3\" # initializing value of acceptor concentration .\n", + "Nd =2*10**19\n", + "print \"Nd = \",Nd,\"cmˆ−3\" # initializing value of donor concentration .\n", + "no=1.8*10**6\n", + "print \"no = \",no,\"cmˆ−3\" # initializing value of intrinsic carrier concentration .\n", + "e=1.6*10**-19\n", + "print \"e = \",e,\"columns\" # initializing value of charge of electrons .\n", + "K=1.38*10**-23\n", + "print \"K = \",K,\"J/k\" # initializing value of boltzmann constant .\n", + "T=300\n", + "print \"T = \",T,\"K\" # initializing value of temperature .\n", + "Vbi=((K*T/e)*log((Na*Nd)/(no)**2))\n", + "print \"Built in potential potential ,Vbi=((K∗T/e)∗log((Na∗Nd) /(no) ˆ2) )= \",Vbi,\"V\" # calculation .\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5_10 pgno: 144" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Na= 1e+17 /cmˆ3\n", + "Nd= 1e+19 /cmˆ3\n", + "Vbi = 0.64 V\n", + "e = 1.6e-19 columns\n", + "Er = 11.9\n", + "Eo = 8.854e-14 F/cm\n", + " total permittivity ,E=Eo∗Er= 1.053626e-12 F/cm\n", + "W=sqrt((2∗E∗Vbi/e)∗((Nd+Na)/(Na∗Nd))))= 9.22675353524e-06 cm\n", + "xn=((W∗Na) /(Nd+Na) ) )= 9.13539953984e-08 cm\n", + "xp=((W∗Nd) /(Nd+Na) ) )= 9.13539953984e-06 cm\n", + "Emax=(−e∗Nd∗xn)/E)= -138727.017592 V/cm\n" + ] + } + ], + "source": [ + "# exa 5.10\n", + "from math import sqrt\n", + "Na =10e16\n", + "print \"Na= \",Na,\"/cmˆ3\" # initializing value of medium p doping concentration .\n", + "Nd =10e18\n", + "print \"Nd= \",Nd,\"/cmˆ3\" # initializing value of light n doping .\n", + "Vbi =0.64\n", + "print \"Vbi = \",Vbi,\"V\" # initializing value of built in voltage .\n", + "e=1.6*10**-19\n", + "print \"e = \",e,\"columns\" # initializing value of charge of electrons .\n", + "Er=11.9\n", + "print \"Er = \",Er # initializing value of relative dielectric permittivity constant .\n", + "Eo=8.854*10**-14\n", + "print \"Eo = \",Eo,\" F/cm\" # initializing value of permittivity of free space .\n", + "E=Eo*Er\n", + "print \" total permittivity ,E=Eo∗Er= \",E,\" F/cm\" #calculation .\n", + "W=sqrt((2*E*Vbi/e)*((Nd+Na)/(Na*Nd)))\n", + "print \"W=sqrt((2∗E∗Vbi/e)∗((Nd+Na)/(Na∗Nd))))=\",W,\" cm\" # calculation .\n", + "xn=((W*Na)/(Nd+Na))\n", + "print \"xn=((W∗Na) /(Nd+Na) ) )=\",xn,\"cm\" # calculation .\n", + "xp=((W*Nd)/(Nd+Na))\n", + "print \"xp=((W∗Nd) /(Nd+Na) ) )=\",xp,\"cm\" # calculation .\n", + "Emax=(-e*Nd*xn)/E\n", + "print \"Emax=(−e∗Nd∗xn)/E)=\",Emax,\"V/cm\" #calculation .\n", + "# The value and unit of W(depletion width) ,provided after calculation in the book is wrong.Due to this xn,xp ,Emax also differ.\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5_12 pgno: 145" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Na = 10000000000000000 /cmˆ3\n", + "Nd = 1000000000000000000 /cmˆ3\n", + "Vbi = 0.64 V\n", + "Vr = 20 V\n", + "e = 1.6e-19 columns\n", + "Er = 11.9\n", + "Eo = 8.854e-14 F/cm\n", + " total permittivity ,E=Eo∗Er= 1.053626e-12 F/cm\n", + "Emax=−(sqrt(((2∗e∗(Vbi+Vr))/(E))∗((Nd∗Na)/(Na+Nd)))))= -249129.931857 V/cm\n" + ] + } + ], + "source": [ + "#exa 5.12\n", + "Na =10**16\n", + "print \"Na = \",Na,\"/cmˆ3\" # initializing value of medium p doping concentration .\n", + "Nd =10**18\n", + "print \"Nd = \",Nd,\"/cmˆ3\" # initializing value of light n doping .\n", + "Vbi =0.64\n", + "print \"Vbi = \",Vbi,\"V\" # initializing value of built in voltage .\n", + "Vr=20\n", + "print \"Vr = \",Vr,\"V\" # initializing value of applied reverse voltage .\n", + "e=1.6*10**-19\n", + "print \"e = \",e,\"columns\" # initializing value of charge of electrons .\n", + "Er=11.9\n", + "print \"Er = \",Er # initializing value of relative dielectric permittivity constant .\n", + "Eo=8.854*10**-14\n", + "print \"Eo = \",Eo,\" F/cm\" # initializing value of permittivity of free space .\n", + "E=Eo*Er\n", + "print \" total permittivity ,E=Eo∗Er= \",E,\" F/cm\" #calculation .\n", + "Emax=-(sqrt(((2*e*(Vbi+Vr))/(E))*((Nd*Na)/(Na+Nd))))\n", + "print \"Emax=−(sqrt(((2∗e∗(Vbi+Vr))/(E))∗((Nd∗Na)/(Na+Nd)))))= \",Emax,\"V/cm\" #calculation .\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5_13 pgno: 146" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Emax = 200000 V/cm\n", + "Nd= 1000000000000000000 /cmˆ3\n", + "Vbi = 0.54 V\n", + "Vr = 20 V \n", + "e = 1.6e-19 columns\n", + "Er = 11.9\n", + "Eo = 8.854e-14 F/cm\n", + "total permittivity ,E=Eo∗Er= 1.053626e-12 F/cm\n", + "Na=(Emaxˆ2∗E∗Nd)/((2∗e∗(Vbi+Vr)∗Nd)−(Emaxˆ2∗E)) )= 6.45341703981e+15 cmˆ−3\n" + ] + } + ], + "source": [ + "#exa 5.13\n", + "Emax =2*10**5\n", + "print \"Emax = \",Emax,\"V/cm\" # initializing value of maximum electric field .\n", + "Nd=1*10**18\n", + "print \"Nd= \",Nd,\"/cmˆ3\" # initializing value of donor concentration .\n", + "Vbi=0.54\n", + "print \"Vbi = \",Vbi,\"V\" # initializing value of built in voltage .\n", + "Vr=20\n", + "print \"Vr = \",Vr,\"V \" #initializing value of applied reverse voltage .\n", + "e=1.6*10**-19\n", + "print \"e = \",e,\"columns\" # initializing value of charge of electrons .\n", + "Er=11.9\n", + "print \"Er = \",Er # initializing value of relative dielectric permittivity constant .\n", + "Eo=8.854*10**-14\n", + "print \"Eo = \",Eo,\" F/cm\" # initializing value of permittivity of free space .\n", + "E=Eo*Er\n", + "print \"total permittivity ,E=Eo∗Er=\",E,\" F/cm\" #calculation .\n", + "Na=((Emax**2)*E*Nd)/((2*e*(Vbi+Vr)*Nd)-((Emax**2)*E))\n", + "print \"Na=(Emaxˆ2∗E∗Nd)/((2∗e∗(Vbi+Vr)∗Nd)−(Emaxˆ2∗E)) )= \",Na,\"cmˆ−3\" # calculation .\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5_14 pgno: 146" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Na = 10000000000000000 /cmˆ3\n", + "Nd = 1000000000000000000 /cmˆ3\n", + "A = 1 cmˆ2\n", + "Vj = 0.54 V\n", + "Va = 10 V\n", + "e = 1.6e-19 columns\n", + "Er = 11.9\n", + "Eo = 8.854e-14 F/cm\n", + "total permittivity ,E=Eo∗Er= 1.053626e-12 F/cm\n", + "Cj=sqrt((e∗E∗Aˆ2/(2∗(Va+Vj))∗((Na∗Nd)/(Na+Nd))))= 8.89830403817e-09 f/cmˆ2\n" + ] + } + ], + "source": [ + "#exa 5.14\n", + "Na =10**16\n", + "print \"Na = \",Na,\"/cmˆ3\" # initializing value of acceptor concentration .\n", + "Nd =10**18\n", + "print \"Nd = \",Nd,\"/cmˆ3\" # initializing value of donor concentration .\n", + "A=1\n", + "print \"A = \",A,\"cmˆ2\" # initializing value of area for finding junction capacitance per unit area.\n", + "Vj =0.54\n", + "print \"Vj =\",Vj,\"V\" # initializing value of built in voltage .\n", + "Va=10\n", + "print \"Va = \",Va,\"V\" # initializing value of applied reverse voltage .\n", + "e=1.6*10**-19\n", + "print \"e = \",e,\"columns\" # initializing value of charge of electrons .\n", + "Er=11.9\n", + "print \"Er = \",Er # initializing value of relative dielectric permittivity constant .\n", + "Eo=8.854*10**-14\n", + "print \"Eo = \",Eo,\" F/cm\" # initializing value of permittivity of free space .\n", + "E=Eo*Er\n", + "print \"total permittivity ,E=Eo∗Er= \",E,\" F/cm\" # calculation .\n", + "Cj=sqrt((e*E*A**2/(2*(Va+Vj)))*((Na*Nd)/(Na+Nd)))\n", + "print \"Cj=sqrt((e∗E∗Aˆ2/(2∗(Va+Vj))∗((Na∗Nd)/(Na+Nd))))=\",Cj,\"f/cmˆ2\" # calculation .\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5_15 pgno: 146" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Na= 1000000000000000 cmˆ−3\n", + "Nd= 1000000000000000000 cmˆ−3\n", + "no = 1800000.0 cmˆ−3\n", + "e = 1.6e-19 columbs\n", + "K = 1.38e-23 J/k\n", + "T = 300 K\n", + "Built in potential potential ,Vbi=((K∗T/e)∗log((Na∗Nd)/(no)ˆ2))= 1.220749215 V\n" + ] + } + ], + "source": [ + "#exa 5.15\n", + "Na =10**15\n", + "print \"Na= \",Na,\"cmˆ−3\" # initializing value of acceptor concentration .\n", + "Nd =10**18\n", + "print \"Nd= \",Nd,\" cmˆ−3\" # initializing value of donor concentration .\n", + "no=1.8*10**6\n", + "print \"no = \",no,\" cmˆ−3\" # initializing value of intrinsic carrier concentration .\n", + "e=1.6*10**-19\n", + "print \"e = \",e,\"columbs\" # initializing value of charge of electrons .\n", + "K=1.38*10**-23\n", + "print \"K = \",K,\" J/k\" # initializing value of boltzmann constant .\n", + "T=300\n", + "print \"T = \",T,\" K\" # initializing value of temperature .\n", + "Vbi=((K*T/e)*log((Na*Nd)/(no)**2))\n", + "print \"Built in potential potential ,Vbi=((K∗T/e)∗log((Na∗Nd)/(no)ˆ2))= \",Vbi,\"V\" # calculation .\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5_16 pgno: 146" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Na= 1000000000000000000 cmˆ−3\n", + "Nd= 1000000000000000000 cmˆ−3\n", + "Vbi = 1.4\n", + "e = 1.6e-19 columbs\n", + "K = 1.38e-23 J/k\n", + "T = 300 K\n", + "Vt = 0.0259 eV\n", + "no=sqrt ((Na∗Nd)/(exp(Vbi/Vt)))= 1829411.05814 cmˆ−3\n" + ] + } + ], + "source": [ + "#5.16\n", + "Na =10**18\n", + "print \"Na= \",Na, \"cmˆ−3\" # initializing value of acceptor concentration .\n", + "Nd =10**18\n", + "print \"Nd= \",Nd,\" cmˆ−3\" # initializing value of donor concentration .\n", + "Vbi =1.4\n", + "print \"Vbi = \",Vbi # initializing value of built in voltage .\n", + "e=1.6*10**-19\n", + "print \"e = \",e,\" columbs\" # initializing value of charge of electrons .\n", + "K=1.38*10**-23\n", + "print \"K = \",K,\"J/k\" # initializing value of boltzmann constant .\n", + "T=300\n", + "print \"T = \",T,\" K\" # initializing value of temperature .\n", + "Vt=0.0259\n", + "print \"Vt = \",Vt,\" eV\" # initializing value of thermal voltage .\n", + "no=sqrt((Na*Nd)/(exp(Vbi/Vt)))\n", + "print \"no=sqrt ((Na∗Nd)/(exp(Vbi/Vt)))=\",no,\"cmˆ−3\" #calculation ." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5_18 pgno: 147" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Na = 100000000000000000 cmˆ−3\n", + "Nd = 50000000000000000 cmˆ−3\n", + "e = 1.6e-19 columbs\n", + "no = 15000000000.0 cmˆ3\n", + "T = 300 K\n", + "Vt = 0.0259 eV\n", + "(a)Vbi=(Vt∗(log(Na∗Nd/(noˆ2))))= 0.795961750143 V\n", + "(b)value of fermi level on each side of junction ,Efi Efp=(Vt∗log(Na/(no)))= 0.40695713106 V\n", + "Efn Efi=(Vt∗log(Nd/(no)))= 0.389004619083 V\n", + "(c)The energy band digram is similar to Fig P5 .3\n", + "(d)Vbi=((Efi Efp)+(Efn Efi))/(e)=Vj= 0.795961750143 V\n" + ] + } + ], + "source": [ + "#exa 5.18\n", + "Na =10**17\n", + "print \"Na = \",Na,\" cmˆ−3\" # initializing value of acceptor concentration .\n", + "Nd =5*10**16\n", + "print \"Nd = \",Nd,\" cmˆ−3\" # initializing value of donor concentration .\n", + "e=1.6*10**-19\n", + "print \"e = \",e,\" columbs\" # initializing value of charge of electrons .\n", + "no=1.5*10**10\n", + "print \"no = \",no,\" cmˆ3\" # initializing value of intrinsic carrier concentration .\n", + "T=300\n", + "print \"T = \",T,\" K\" # initializing value of temperature .\n", + "Vt=0.0259\n", + "print \"Vt = \",Vt,\" eV\" # initializing value of thermal voltage .\n", + "Vbi=(Vt*(log(Na*Nd/(no**2))))\n", + "print \"(a)Vbi=(Vt∗(log(Na∗Nd/(noˆ2))))= \",Vbi,\" V\" #calculation .\n", + "Efi_Efp=(Vt*log(Na/(no)))\n", + "print \"(b)value of fermi level on each side of junction ,Efi Efp=(Vt∗log(Na/(no)))=\",Efi_Efp,\" V\" # calculation .\n", + "Efn_Efi=(Vt*log(Nd/(no)))\n", + "print \"Efn Efi=(Vt∗log(Nd/(no)))=\",Efn_Efi,\" V\" #calculation .\n", + "print \"(c)The energy band digram is similar to Fig P5 .3\"\n", + "Vbi=((Efi_Efp)+(Efn_Efi))\n", + "print \"(d)Vbi=((Efi Efp)+(Efn Efi))/(e)=Vj=\",Vbi,\" V\" # calculation .\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5_19 pgno: 148" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Na = 500000000000000000 /cmˆ3\n", + "Nd = 500000000000000000 /cmˆ3\n", + "no = 15000000000.0 cmˆ−3\n", + "e = 1.6e-19 columbs\n", + "K = 1.38e-23 J/k\n", + "T = 300 K\n", + "(a)Built in potential potential ,Vbi=((K∗T/e)∗log ((Na∗Nd)/(no)ˆ2))= 0.896417042561 eV\n", + "(b)fermi level in the P region and N region , Efi Efp=((KT/e)∗log(Na/no)))= 0.44820852128 eV\n", + "(c)VBI from the fermi level ,VBI=2∗(Efi Efp))= 0.896417042561 V\n" + ] + } + ], + "source": [ + "#exa 5.19\n", + "from math import log\n", + "Na =5*10**17\n", + "print \"Na = \",Na,\"/cmˆ3\" # initializing value of medium p doping concentration .\n", + "Nd =5*10**17\n", + "print \"Nd = \",Nd,\"/cmˆ3\" # initializing value of light n doping .\n", + "no=1.5*10**10\n", + "print \"no = \",no,\"cmˆ−3\" # initializing value of intrinsic concentration .\n", + "e=1.6*10**-19\n", + "print \"e = \",e,\"columbs\" # initializing value of charge of electrons .\n", + "K=1.38*10**-23\n", + "print \"K = \",K,\"J/k\" # initializing value of boltzmann constant .\n", + "T=300\n", + "print \"T = \",T,\"K\" # initializing value of temperature .\n", + "Vbi=((K*T/e)*log((Na*Nd)/(no)**2))\n", + "print \"(a)Built in potential potential ,Vbi=((K∗T/e)∗log ((Na∗Nd)/(no)ˆ2))=\",Vbi,\"eV\" #calculation .\n", + "Efi_Efp=((K*T/e)*log(Na/no))\n", + "print \"(b)fermi level in the P region and N region , Efi Efp=((KT/e)∗log(Na/no)))= \",Efi_Efp,\"eV\" # calculation .\n", + "VBI=2*(Efi_Efp)\n", + "print \"(c)VBI from the fermi level ,VBI=2∗(Efi Efp))=\",VBI,\"V\" # calculation ." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5_20 pgno: 148" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Nc = 2.8e+19 /cmˆ3\n", + "Nv = 1.04e+19 /cmˆ3\n", + "no = 15000000000.0 cmˆ−3\n", + "e = 1.6e-19 columbs\n", + "K = 8.62e-05 J/k\n", + "T = 300 K\n", + "Vt = 0.0259 eV\n", + "Ec Ef = 0.21 eV\n", + "Ef Ev = 0.18 eV\n", + "Nd=(Nc/exp((Ec−Ef)/(K∗T))))= 8.32539212771e+15 cmˆ−3\n", + "Na=(Nv/exp (( Ef−Ev) /(K∗T) ) ) )= 9.86510951303e+15 cmˆ−3\n", + "Built in potential ,Vbi=(Vt∗(log(Na∗Nd/(noˆ2))))= 0.68954178887 V\n" + ] + } + ], + "source": [ + "#exa 5.20\n", + "Nc=2.8*10**19\n", + "print \"Nc = \",Nc,\" /cmˆ3\" # initializing value of number of electron in the conduction band .\n", + "Nv=1.04*10**19\n", + "print \"Nv = \",Nv,\" /cmˆ3\" # initializing value of number of electron in the valence band..\n", + "no=1.5*10**10\n", + "print \"no = \",no,\" cmˆ−3\" # initializing value of intrinsic carrier concentration .\n", + "e=1.6*10**-19\n", + "print \"e = \",e,\" columbs\" # initializing value of charge of electrons .\n", + "K=8.62*10**-5\n", + "print \"K = \",K,\" J/k\" # initializing value of boltzmann constant .\n", + "T=300\n", + "print \"T = \",T,\" K\" # initializing value of temperature .\n", + "Vt=0.0259\n", + "print \"Vt = \",Vt,\" eV\" # initializing value of thermal voltage .\n", + "Ec_Ef =0.21\n", + "print \"Ec Ef = \",Ec_Ef,\" eV\" # initializing value of energy difference between conduction band and fermi level.\n", + "Ef_Ev =0.18\n", + "print \"Ef Ev = \",Ef_Ev,\" eV\" # initializing value of energy difference between fermi level and valence band .\n", + "Nd=(Nc/exp((Ec_Ef)/(K*T)))\n", + "print \"Nd=(Nc/exp((Ec−Ef)/(K∗T))))= \",Nd,\" cmˆ−3\" #calculation .\n", + "Na=(Nv/exp((Ef_Ev)/(K*T)))\n", + "print \"Na=(Nv/exp (( Ef−Ev) /(K∗T) ) ) )=\",Na,\"cmˆ−3\" # calculation .\n", + "Vbi=(Vt*(log(Na*Nd/(no**2))))\n", + "print \"Built in potential ,Vbi=(Vt∗(log(Na∗Nd/(noˆ2))))= \",Vbi,\" V\" #calculation ." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5_21 pgno: 149" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Vbi = 1.2 /cmˆ3\n", + "no = 1800000.0 cmˆ−3”\n", + "Vt = 0.0259 eV\n", + "Er = 13.1\n", + "Eo = 8.854e-14 F/cm\n", + "e = 1.6e-19 columbs\n", + " total permittivity ,E=Eo∗Er= 1.159874e-12 F/cm\n", + "(a)NaNd=((noˆ2)∗(exp(Vbi/Vt)))= 4.28841757806e+32 /cmˆ6\n", + "Na=(sqrt(NaNd/(4)))= 1.03542474112e+16 /cmˆ3\n", + "(b)Nd=4∗Na= 4.14169896446e+16 /cmˆ3\n", + "(c)W=sqrt((2∗E∗Vbi/e)∗((Nd+Na)/(Na∗Nd))))= 4.58296745959e-05 cm\n", + "(d)xn=0.2∗W= 9.16593491919e-06 cm\n", + "xp=0.8∗W= 3.66637396767e-05 cm\n", + "(e)Emax=(−e∗Nd∗xn)/E)= -52367.8167292 V/cm\n" + ] + } + ], + "source": [ + "#exa 5.21\n", + "from math import sqrt\n", + "from math import exp\n", + "Vbi =1.2\n", + "print \"Vbi = \",Vbi,\"/cmˆ3\" # initializing value of built in voltage .\n", + "no=1.8*10**6\n", + "print \"no = \",no,\"cmˆ−3”\" # initializing value of intrinsic concentration .\n", + "Vt =0.0259\n", + "print \"Vt = \",Vt,\"eV\" # initializing value of thermal voltage .\n", + "Er =13.1\n", + "print \"Er = \",Er # initializing value of relative dielectric permittivity constant .\n", + "Eo=8.854*10**-14\n", + "print \"Eo = \",Eo,\" F/cm\" # initializing value of permittivity of free space .\n", + "e =1.6*(10**-19)\n", + "print \"e = \",e,\" columbs\" # initializing value of charge of electrons .\n", + "E=Eo*Er\n", + "print \" total permittivity ,E=Eo∗Er=\",E,\" F/cm\" # calculation .\n", + "NaNd=((no**2)*(exp(Vbi/Vt)))\n", + "print \"(a)NaNd=((noˆ2)∗(exp(Vbi/Vt)))= \",NaNd,\" /cmˆ6\" # calculation .\n", + "Na=(sqrt(NaNd/(4)))\n", + "print \"Na=(sqrt(NaNd/(4)))=\",Na,\" /cmˆ3\" # calculation .\n", + "Nd=4*Na\n", + "print \"(b)Nd=4∗Na= \",Nd,\" /cmˆ3\" # calculation.\n", + "W=sqrt((2*E*Vbi/e)*((Nd+Na)/(Na*Nd)))\n", + "print \"(c)W=sqrt((2∗E∗Vbi/e)∗((Nd+Na)/(Na∗Nd))))= \",W,\" cm\" # calculation .\n", + "xn=0.2*W\n", + "print \"(d)xn=0.2∗W= \",xn,\" cm\" # calculation .\n", + "xp=0.8*W\n", + "print \"xp=0.8∗W= \",xp,\" cm\" # calculation .\n", + "Emax=(-e*Nd*xn)/E\n", + "print \"(e)Emax=(−e∗Nd∗xn)/E)= \",Emax,\"V/cm\" # calculation .\n", + "#The value of Na after calculation is provided wrong in the book.Due to which value of W,xn,xp and Emax differ ,than the answer provided in the book ." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5_22 pgno: 150" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Na = 10000000000000000 cmˆ−3\n", + "Nd = 5000000000000000 cmˆ−3\n", + "no = 15000000000.0 cmˆ−3\n", + "Vbi = 0.676 V\n", + "e = 1.6e-19 columns\n", + "K = 1.38e-23 J/k\n", + "T=(Vbi∗(e/K)∗(1/(log((Na∗Nd)/(noˆ2))))))= 299.984615257 K\n" + ] + } + ], + "source": [ + "#exa 5.22\n", + "from math import log\n", + "Na =10**16\n", + "print \"Na = \",Na,\"cmˆ−3\" # initializing value of acceptor concentration .\n", + "Nd =5*10**15\n", + "print \"Nd = \",Nd,\"cmˆ−3\" # initializing value of donor concentration .\n", + "no=1.5*10**10\n", + "print \"no = \",no,\"cmˆ−3\" # initializing value of intrinsic concentration .\n", + "Vbi =0.676\n", + "print \"Vbi = \",Vbi,\"V\" # initializing value of built in voltage .\n", + "e=1.6*10**-19\n", + "print \"e = \",e,\"columns\" # initializing value of charge of electrons .\n", + "K=1.38*10**-23\n", + "print \"K = \",K,\"J/k\" # initializing value of boltzmann constant .\n", + "T=(Vbi*(e/K)*(1/(log((Na*Nd)/(no**2)))))\n", + "print \"T=(Vbi∗(e/K)∗(1/(log((Na∗Nd)/(noˆ2))))))= \",T,\"K\" # calculation ." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5_23 pgno: 150" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Na = 500000000000000000 cmˆ−3\n", + "Nd = 100000000000000000 cmˆ−3\n", + "no = 15000000000.0 cmˆ−3\n", + "e = 1.6e-19 columns\n", + "K = 1.38e-23 J/k\n", + "T = 300 K\n", + "VBI = 0.847 V\n", + "(a)Built in potential potential ,Vbi=((K∗T/e)∗log ((Na∗Nd)/(no)ˆ2))= 0.854772836577 V\n", + "(b)T=(VBI∗(e/K)∗(1/(log((Na∗Nd)/(noˆ2))))))= 297.271964113 K\n" + ] + } + ], + "source": [ + "#exa 5.23\n", + "Na =5*10**17\n", + "print \"Na = \",Na,\"cmˆ−3\" # initializing value of acceptor concentration .\n", + "Nd =10**17\n", + "print \"Nd = \",Nd,\"cmˆ−3\" # initializing value of donor concentration .\n", + "no=1.5*10**10\n", + "print \"no = \",no,\"cmˆ−3\" # initializing value of intrinsic concentration .\n", + "e=1.6*10**-19\n", + "print \"e = \",e,\"columns\" # initializing value of charge of electrons .\n", + "K=1.38*10**-23\n", + "print \"K = \",K,\"J/k\" # initializing value of boltzmann constant .\n", + "T=300\n", + "print \"T = \",T,\"K\" # initializing value of temperature .\n", + "VBI=0.847\n", + "print \"VBI = \",VBI,\"V\" # initializing value of VBI when VBI is reduced by 1%.\n", + "Vbi=((K*T/e)*log((Na*Nd)/(no)**2))\n", + "print \"(a)Built in potential potential ,Vbi=((K∗T/e)∗log ((Na∗Nd)/(no)ˆ2))= \",Vbi,\"V\" # calculation .\n", + "T=(e*VBI/K)*((log(Na*Nd/(no**2)))**-1)\n", + "print \"(b)T=(VBI∗(e/K)∗(1/(log((Na∗Nd)/(noˆ2))))))= \",T,\"K\" # calculation .\n", + "#the answer for part (b) is not provided in the book ." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5_24 pgno: 150" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false, + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Na = 4e+12 /cmˆ3\n", + "Nd = 4e+16 /cmˆ3\n", + "no = 1.5e+11 /cmˆ3\n", + "K = 1.38e-23 J/k\n", + "T = 300 K\n", + "e = 1.6e-19 columbs\n", + "Er = 11.9\n", + "Eo = 8.854e-14 F/cm\n", + "total permittivity ,E=Eo∗Er= 1.053626e-12 F/cm\n", + "Built in potential potential ,Vbi=((K∗T/e)∗log((Na∗Nd)/(no)ˆ2))= 0.408234249531 eV\n", + "W=sqrt((2∗E∗Vbi/e)∗((Nd+Na)/(Na∗Nd))))= 0.00115943039897 cm\n", + "xn=((W∗Na) /(Nd+Na) ) )= 1.15931446752e-07 cm\n", + "xp=((W∗Nd) /(Nd+Na) ) )= 0.00115931446752 cm\n", + "Emax=(e∗Nd∗xn)/E)= 704.19794046 V/cm\n" + ] + } + ], + "source": [ + "#exa 5.24\n", + "from math import log\n", + "from math import sqrt\n", + "Na =4e12\n", + "print \"Na = \",Na,\" /cmˆ3\" # initializing value of medium p doping concentration .\n", + "Nd =4e16\n", + "print \"Nd = \",Nd,\" /cmˆ3\" # initializing value of light n doping.\n", + "no=1.5*10e10\n", + "print \"no = \",no,\" /cmˆ3\" # initializing value of intrinsic carrier concentration .\n", + "K=1.38e-23\n", + "print \"K = \",K,\" J/k\" # initializing value of boltzmann constant .\n", + "T=300\n", + "print \"T = \",T,\" K\" # initializing value of temperature .\n", + "e=1.6e-19\n", + "print \"e = \",e,\" columbs\" # initializing value of charge of electrons .\n", + "Er=11.9\n", + "print \"Er = \",Er # initializing value of relative dielectric permittivity constant .\n", + "Eo=8.854e-14\n", + "print \"Eo = \",Eo,\" F/cm\" # initializing value of permittivity of free space .\n", + "E=Eo*Er\n", + "print \"total permittivity ,E=Eo∗Er=\",E,\" F/cm\" # calculation .\n", + "Vbi=((K*T/e)*log((Na*Nd)/(no)**2))\n", + "print \"Built in potential potential ,Vbi=((K∗T/e)∗log((Na∗Nd)/(no)ˆ2))=\",Vbi,\" eV\" #calculation .\n", + "W=sqrt((2.*E*Vbi/e)*((Nd+Na)/(Na*Nd)))\n", + "print\"W=sqrt((2∗E∗Vbi/e)∗((Nd+Na)/(Na∗Nd))))=\",W,\" cm\" # calculation .\n", + "xn=((W*Na)/(Nd+Na))\n", + "print \"xn=((W∗Na) /(Nd+Na) ) )=\",xn,\"cm\" # calculation .\n", + "xp=((W*Nd)/(Nd+Na))\n", + "print \"xp=((W∗Nd) /(Nd+Na) ) )=\",xp,\"cm\" #calculation .\n", + "Emax=(e*Nd*xn)/E\n", + "print \"Emax=(e∗Nd∗xn)/E)=\",Emax,\" V/cm\" #calculation .\n", + "#the value of W( depletion width) , after calculation is provided wrong in the book,due to this xn,xp ,Emax also differ.(also,the value of Nd+Na substitute in the formula for for xn,xp is wrong )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5_25 pgno: 151" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Na = 400000000000000000 /cmˆ3\n", + "Nd = 4000000000000000 /cmˆ3\n", + "no = 15000000000.0 cmˆ−3\n", + "Emax = 300000 /cmˆ3\n", + "K = 1.38e-23 J/k\n", + "T = 300 K\n", + "e = 1.6e-19 columns\n", + " Er = 11.9\n", + "Eo = 8.854e-14 F/cm\n", + " total permittivity ,E=Eo∗Er= 1.053626e-12 F/cm\n", + "Built in potential potential ,Vbi=((K∗T/e)∗log ((Na∗Nd)/(no)ˆ2))= 0.765710585218 V\n", + "xn=(E∗Emax) /( e∗Nd) )= 0.0004938871875 cm\n", + "W=(xn(Nd+Na)/Na))= 0.000498826059375 cm\n", + "Vr=(Wˆ2∗e/(2∗E))∗((Na∗Nd)/(Na+Nd))−(Vbi))= 74.058198321 V\n" + ] + } + ], + "source": [ + "#exa 5.25\n", + "Na =4*10**17\n", + "print \"Na = \",Na,\"/cmˆ3\" # initializing value of donor concentration .\n", + "Nd =4*10**15\n", + "print \"Nd = \",Nd,\"/cmˆ3\" # initializing value of light n doping.\n", + "no=1.5*10**10\n", + "print \"no = \",no,\"cmˆ−3\" # initializing value of intrinsic concentration .\n", + "Emax =300*10**3\n", + "print \"Emax = \",Emax,\"/cmˆ3\" # initializing value of maximum electric field .\n", + "K=1.38*10**-23\n", + "print \"K = \",K,\"J/k\" # initializing value of boltzmann constant .\n", + "T=300\n", + "print \"T = \",T,\"K\" # initializing value of temperature .\n", + "e=1.6*10**-19\n", + "print \"e = \",e,\"columns\" # initializing value of charge of electrons .\n", + "Er=11.9\n", + "print \" Er = \",Er # initializing value of relative dielectric permittivity constant .\n", + "Eo=8.854*10**-14\n", + "print \"Eo = \",Eo,\" F/cm\" # initializing value of permittivity of free space .\n", + "E=Eo*Er\n", + "print \" total permittivity ,E=Eo∗Er=\",E,\" F/cm\" # calculation .\n", + "Vbi=((K*T/e)*log((Na*Nd)/(no)**2))\n", + "print \"Built in potential potential ,Vbi=((K∗T/e)∗log ((Na∗Nd)/(no)ˆ2))=\",Vbi,\" V\" # calculation .\n", + "xn=(E*Emax/(Nd*e))\n", + "print \"xn=(E∗Emax) /( e∗Nd) )=\",xn,\" cm\" #calculation .\n", + "W=(xn*(Nd+Na)/Na)\n", + "print \"W=(xn(Nd+Na)/Na))=\",W,\" cm\" #calculation .\n", + "Vr=((W**2*e/(2*E))*((Na*Nd)/(Na+Nd)))-(Vbi)\n", + "print \"Vr=(Wˆ2∗e/(2∗E))∗((Na∗Nd)/(Na+Nd))−(Vbi))=\",Vr,\" V\" # calculation ." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5_26 pgno: 152" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Na = 5000000000000000 cmˆ−3\n", + "Nd = 1000000000000000000 cmˆ−3\n", + "e = 1.6e-19 columns\n", + "Vr = 10 V\n", + "Er = 11.9\n", + "Eo = 8.854e-14 F/cm\n", + " total permittivity ,E=Eo∗Er= 1.053626e-12 F/cm\n", + "Emax = 1000000 V/cm\n", + "W = 2e-05 cm\n", + "Nd=(Emax∗e)/(W∗e))= 3.29258125e+17 cmˆ−3\n" + ] + } + ], + "source": [ + "#exa 5.26\n", + "Na =5*10**15\n", + "print \"Na = \",Na,\"cmˆ−3\" # initializing value of acceptor concentration .\n", + "Nd =10**18\n", + "print \"Nd = \",Nd,\"cmˆ−3\" # initializing value of donor concentration .\n", + "e=1.6*10**-19\n", + "print \"e = \",e,\"columns\" # initializing value of charge of electrons .\n", + "Vr=10\n", + "print \"Vr = \",Vr,\"V\" # initializing value reverse voltage .\n", + "Er=11.9\n", + "print \"Er = \",Er # initializing value of relative dielectric permittivity constant .\n", + "Eo=8.854*10**-14\n", + "print \"Eo = \",Eo,\"F/cm\" # initializing value of permittivity of free space .\n", + "E=Eo*Er\n", + "print \" total permittivity ,E=Eo∗Er=\",E,\" F/cm\" # calculation .\n", + "Emax=10**6\n", + "print \"Emax = \",Emax,\"V/cm\" # initializing value of maximum electric field .\n", + "W=(2.*Vr/(Emax))\n", + "print \"W = \",W,\"cm\" # calculation .\n", + "Nd=(Emax*E)/(W*e)\n", + "print \"Nd=(Emax∗e)/(W∗e))=\",Nd,\"cmˆ−3\" # calculation " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5_27 pgno: 152" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Na = 5000000000000000 cmˆ3\n", + "Nd = 1000000000000000000 cmˆ3\n", + "no = 15000000000.0 cmˆ−3\n", + "Vr1 = 0 V\n", + "Vr2 = 5 V\n", + "A = 3e-05 cmˆ2\n", + "e = 1.6e-19 columns\n", + "Er = 11.9\n", + "Eo = 8.854e-14 F/cm\n", + "total permittivity ,E=Eo∗Er= 1.053626e-12 F/cm\n", + "Vt= 0.0259 V\n", + "Built in potential ,Vbi=(Vt∗log ((Na∗Nd)/(no)ˆ2) )= 0.795961750143 V\n", + "Cj1=sqrt((e∗E∗(Aˆ2)/(2∗(Vr1+Vbi))∗((Na∗Nd)/(Na+Nd))))= 6.88597370389e-13 F\n", + "Cj2=sqrt((e∗E∗(Aˆ2)/(2∗(Vr2+Vbi))∗((Na∗Nd)/(Na+Nd))))= 2.55181216611e-13 F\n" + ] + } + ], + "source": [ + "#exa 5.27\n", + "from math import sqrt\n", + "from math import log\n", + "Na =5*10**15\n", + "print \"Na = \",Na,\"cmˆ3\" # initializing value of acceptor concentration .\n", + "Nd =10**18\n", + "print \"Nd = \",Nd,\"cmˆ3\" # initializing value of donor concentration .\n", + "no=1.5*10**10\n", + "print \"no = \",no,\"cmˆ−3\" # initializing value of intrinsic carrier concentration .\n", + "Vr1=0\n", + "print \"Vr1 = \",Vr1,\"V\" # initializing value of built in voltage .\n", + "Vr2=5\n", + "print \"Vr2 = \",Vr2,\"V\" # initializing value of applied reverse voltage .\n", + "A=3*10**-5\n", + "print \"A = \",A,\"cmˆ2\" # initializing value of cross sectional area .\n", + "e=1.6*10**-19\n", + "print \"e = \",e,\"columns\" # initializing value of charge of electrons .\n", + "Er=11.9\n", + "print \"Er = \",Er # initializing value of relative dielectric permittivity constant .\n", + "Eo=8.854*10**-14\n", + "print \"Eo = \",Eo,\" F/cm\" # initializing value of permittivity of free space .\n", + "E=Eo*Er\n", + "print \"total permittivity ,E=Eo∗Er=\",E,\" F/cm\" # calculation .\n", + "Vt=0.0259\n", + "print \"Vt=\",Vt,\" V\" # initializing the value of thermal voltage .\n", + "Vbi=((Vt)*log((Na*Nd)/(no)**2))\n", + "print \"Built in potential ,Vbi=(Vt∗log ((Na∗Nd)/(no)ˆ2) )= \",Vbi,\" V\" # calculation .\n", + "Cj1=sqrt((e*E*(A**2)/(2*(Vr1+Vbi)))*((Na*Nd)/(Na+Nd)))\n", + "print \"Cj1=sqrt((e∗E∗(Aˆ2)/(2∗(Vr1+Vbi))∗((Na∗Nd)/(Na+Nd))))=\",Cj1,\" F\" #calculation .\n", + "Cj2=sqrt((e*E*(A**2)/(2*(Vr2+Vbi)))*((Na*Nd)/(Na+Nd)))\n", + "print \"Cj2=sqrt((e∗E∗(Aˆ2)/(2∗(Vr2+Vbi))∗((Na∗Nd)/(Na+Nd))))=\",Cj2,\" F\" #calculation .\n", + "# the value of Vr2 use for calculating answer of Cj2 is different than provided in question .\n", + "# I have used the value provided in the solution ( i .e. Vr2=5)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5_28 pgno: 153" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Na = 10000000000000000 cmˆ3\n", + "Nd = 50000000000000000 cmˆ3\n", + "no = 15000000000.0 cmˆ−3\n", + "Dn = 25 cmˆ2/sec\n", + "Dp = 10 cmˆ2/sec\n", + "tn = 5e-07 s\n", + "tp = 5e-07 s\n", + "e = 1.6e-19 columns\n", + "Pno=(noˆ2/Nd))= 4500.0 cmˆ−3\n", + "Npo=(noˆ2/Na))= 22500.0 cmˆ−3\n", + "Lp=(sqrt(Dp∗tp)))= 0.0022360679775 cm\n", + "Ln=(sqrt(Dn∗tn)))= 0.00353553390593 cm\n", + "Jo=((e ∗((Dp∗Pno/(Lp) )+(Dn∗Npo) /(Ln) ) ) )= 2.86757820103e-11 A/cmˆ2\n" + ] + } + ], + "source": [ + "#exa 5.28\n", + "from math import sqrt\n", + "Na =1*10**16\n", + "print \"Na = \",Na,\"cmˆ3\" # initializing value of acceptor concentration. \n", + "Nd = 5*10**16\n", + "print \"Nd = \",Nd,\"cmˆ3\" # initializing value of donor concentration .\n", + "no=1.5*10**10\n", + "print \"no = \",no,\"cmˆ−3\" # initializing value of intrinsic concentration .\n", + "Dn=25\n", + "print \"Dn = \",Dn,\"cmˆ2/sec\" # initializing value of diffusion cofficient on the P side.\n", + "Dp=10\n", + "print \"Dp = \",Dp,\"cmˆ2/sec\" # initializing value of diffusion cofficient on the N side .\n", + "tp =5*10** -7\n", + "print \"tn = \",tp,\"s\" # initializing value of hole lifetime .\n", + "tn =5*10** -7\n", + "print \"tp = \",tn,\"s\" # initializing value of electron lifetime .\n", + "e=1.6*10**-19\n", + "print \"e = \",e,\"columns\" # initializing value of charge of electrons .\n", + "Pno=(no**2/Nd)\n", + "print \"Pno=(noˆ2/Nd))= \",Pno,\"cmˆ−3\" # calculation .\n", + "Npo=(no**2/Na)\n", + "print \"Npo=(noˆ2/Na))= \",Npo,\"cmˆ−3\" # calculation .\n", + "Lp=(sqrt(Dp*tp))\n", + "print \"Lp=(sqrt(Dp∗tp)))= \",Lp,\"cm\" # calculation .\n", + "Ln=(sqrt(Dn*tn))\n", + "print \"Ln=(sqrt(Dn∗tn)))= \",Ln,\"cm\" # calculation .\n", + "Jo=((e*((Dp*Pno/(Lp))+(Dn*Npo)/(Ln))))\n", + "print \"Jo=((e ∗((Dp∗Pno/(Lp) )+(Dn∗Npo) /(Ln) ) ) )= \",Jo,\" A/cmˆ2\" # calculation ." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5_29 pgno: 154" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Na = 1000000000000000 cmˆ3\n", + "Nd = 1000000000000000 cmˆ3\n", + "no = 15000000000.0 cmˆ−3\n", + "Dn = 50 cmˆ2/sec\n", + "Dp = 20 cmˆ2/sec\n", + "tn = 5e-07 s\n", + "tp = 5e-07 s\n", + "e = 1.6e-19 columns\n", + "Pno=(noˆ2/Nd))= 225000.0 cmˆ−3\n", + "Npo=(noˆ2/Na))= 225000.0 cmˆ−3\n", + "Lp=(sqrt(Dp∗tp)))= 0.00316227766017 cm\n", + "Ln=(sqrt(Dn∗tn)))= 0.005 cm\n", + "Jo=((e ∗((Dp∗Pno/(Lp) )+(Dn∗Npo) /(Ln))))= 5.87683991532e-10 A/cmˆ2\n" + ] + } + ], + "source": [ + "#exa 5.29\n", + "from math import sqrt\n", + "Na =10**15\n", + "print \"Na = \",Na,\"cmˆ3\" # initializing value of acceptor concentration .\n", + "Nd =10**15\n", + "print \"Nd = \",Nd,\"cmˆ3\" # initializing value of donor concentration .\n", + "no=1.5*10**10\n", + "print \"no = \",no,\"cmˆ−3\" # initializing value of intrinsic carrier concentration .\n", + "Dn=50\n", + "print \"Dn = \",Dn,\"cmˆ2/sec\" # initializing value of built in voltage .\n", + "Dp=20\n", + "print \"Dp = \",Dp,\"cmˆ2/sec\" # initializing value of applied reverse voltage .\n", + "tp =5*10** -7\n", + "print \"tn = \",tp,\"s\" # initializing value of hole lifetime .\n", + "tn =5*10** -7\n", + "print \"tp = \",tn,\"s\" # initializing value of electrons lifetime .\n", + "e=1.6*10**-19\n", + "print \"e = \",e,\"columns\" # initializing value of charge of electrons .\n", + "Pno=(no**2/Nd)\n", + "print \"Pno=(noˆ2/Nd))= \",Pno,\"cmˆ−3\" # calculation .\n", + "Npo=(no**2/Na)\n", + "print \"Npo=(noˆ2/Na))= \",Npo,\"cmˆ−3\" # calculation .\n", + "Lp=(sqrt(Dp*tp))\n", + "print \"Lp=(sqrt(Dp∗tp)))= \",Lp,\"cm\" # calculation .\n", + "Ln=(sqrt(Dn*tn))\n", + "print \"Ln=(sqrt(Dn∗tn)))= \",Ln,\"cm\" # calculation .\n", + "Jo=((e*((Dp*Pno/(Lp))+(Dn*Npo)/(Ln))))\n", + "print \"Jo=((e ∗((Dp∗Pno/(Lp) )+(Dn∗Npo) /(Ln))))=\",Jo,\"A/cmˆ2\" # calculation .\n", + "# the value of tp , tn provided in the question , is different than that provided in the solution.\n", + "# I have used the value ,provided in the solution(i. e . tp=tn =5∗10ˆ7)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5_30 pgno: 154" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Eg = -1.1 V\n", + "Vf1 = 0.6 V\n", + "T1 = 300 K\n", + "T2 = 310 K\n", + "Forward voltage for case 2,Vf2=((Eg+Vf1)∗T2)/( T1)+Eg)= 0.583333333333 V\n" + ] + } + ], + "source": [ + "#exa 5.30\n", + "Eg = -1.1\n", + "print \"Eg = \",Eg,\"V\" # initializing value of energy gap .\n", + "Vf1 =0.6\n", + "print \"Vf1 = \",Vf1,\"V\" # initializing value of forward voltage for case 1.\n", + "T1 =300\n", + "print \"T1 = \",T1,\"K\" # initializing value of temperature for case 1.\n", + "T2 =310\n", + "print \"T2 = \",T2,\"K\" # initializing value of temperature for case 2 .\n", + "Vf2=(((Eg+Vf1)*T2)/(T1))-Eg\n", + "print \"Forward voltage for case 2,Vf2=((Eg+Vf1)∗T2)/( T1)+Eg)= \",Vf2,\" V\" # calculation .\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/chapter_7_BIPOLAR_JUNCTION_TRANSISTORB_3.ipynb b/Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/chapter_7_BIPOLAR_JUNCTION_TRANSISTORB_3.ipynb new file mode 100644 index 00000000..d3ccfc2c --- /dev/null +++ b/Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/chapter_7_BIPOLAR_JUNCTION_TRANSISTORB_3.ipynb @@ -0,0 +1,496 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# chapter 7 BIPOLAR JUNCTION TRANSISTORB" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7_1 pgno: 220" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Dnb = 20 cmˆ2/s\n", + "nB = 10000 /cmˆ3\n", + "xB = 1e-06 m\n", + "AB = 0.0001 cmˆ2\n", + "e = 1.6e-19 columns\n", + "Vbe = 0.5 V\n", + "VT = 0.0259 V\n", + "WB = 0.0001 cm\n", + "Magnitude of Io , Io=((e∗AB∗Dnb∗nB)/(WB)))= 3.2e-14 A\n", + "Collector current ,Ic=Io((exp(Vbe/VT))−1))= 7.7484232166e-06 A\n" + ] + } + ], + "source": [ + "#exa 7.1\n", + "from math import exp\n", + "Dnb =20\n", + "print\"Dnb = \",Dnb,\" cmˆ2/s\" #initializiation the value of one of base parametre of NPN transistor .\n", + "nB =10**4\n", + "print\"nB = \",nB,\" /cmˆ3\" # initializiation the value of one of base parametre of NPN transistor .\n", + "xB =1*10**-6\n", + "print\"xB = \",xB,\" m\" # initializiation the value of one of base parametre of NPN transistor .\n", + "AB =10**-4\n", + "print\"AB = \",AB,\" cmˆ2\" #initializiation the value of one of base parametre of NPN transistor .\n", + "e=1.6*10**-19\n", + "print\"e = \",e,\" columns\" # initializiation the value of electronic charge .\n", + "Vbe=0.5\n", + "print\"Vbe = \",Vbe,\" V\" # initializiation the value of base emitter voltage of NPN transistor ..\n", + "VT=0.0259\n", + "print\"VT = \",VT,\" V\" # initializiation the value of threshold voltage .\n", + "WB=10**-4\n", + "print\"WB = \",WB,\" cm\" # initializiation the value of base width of NPN transistor .\n", + "Io=((e*AB*Dnb*nB)/(WB))\n", + "print\"Magnitude of Io , Io=((e∗AB∗Dnb∗nB)/(WB)))=\",Io,\" A\"# calculation\n", + "Ic=Io*(exp(Vbe/VT)-1)\n", + "print\"Collector current ,Ic=Io((exp(Vbe/VT))−1))=\",Ic,\" A\"# calculation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7_2 pgno: 221" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "NE = 500000000000000000 /cmˆ3\n", + "NB = 10000000000000000 /cmˆ3\n", + "NC = 1000000000000000 /cmˆ3\n", + "WB = 8e-05 cm\n", + "no = 15000000000.0 cmˆ−3\n", + "Number of Majority holes in the emitter ,pEO=(noˆ2/NE) )= 450.0 /cmˆ3\n", + "Number of Majority holes in the base,nBO=(no ˆ2/NB))= 22500.0 /cmˆ3\n", + "Number of Majority holes in the collector ,pCO=(noˆ2/NC) )= 225000.0 /cmˆ3\n" + ] + } + ], + "source": [ + "#exa 7.2\n", + "NE =5*10**17\n", + "print\"NE = \",NE,\" /cmˆ3\" # initializiation the value of doping concentration in the emitter\n", + "NB =10**16\n", + "print\"NB = \",NB,\" /cmˆ3\" # initializiation the value of doping concentration in the base.\n", + "NC =10**15\n", + "print\"NC = \",NC,\" /cmˆ3\" # initializiation the value of doping concentration in the collector .\n", + "WB =0.8*10**-4\n", + "print\"WB = \",WB,\" cm\" # initializiation the value of base width of NPN transistor .\n", + "no=1.5*10**10\n", + "print\"no = \",no,\"cmˆ−3\" # initializing the intrinsic carrier concentration .\n", + "pEO=(no**2/NE)\n", + "print\"Number of Majority holes in the emitter ,pEO=(noˆ2/NE) )=\",pEO,\" /cmˆ3\"# calculationnBO=(no^2/NB)\n", + "nBO=(no**2/NB)\n", + "print\"Number of Majority holes in the base,nBO=(no ˆ2/NB))=\",nBO,\" /cmˆ3\"#calculation\n", + "pCO=(no**2/NC)\n", + "print\"Number of Majority holes in the collector ,pCO=(noˆ2/NC) )=\",pCO,\" /cmˆ3\"# calculation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7_3 pgno: 221" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "NE = 500000000000000000 /cmˆ3\n", + "NB = 10000000000000000 /cmˆ3\n", + "NC = 1000000000000000 /cmˆ3\n", + "WB = 8e-05 cm\n", + "no = 15000000000.0 cmˆ−3\n", + "VT = 0.0259 V\n", + "VJ=Vbe = 0.6258 V\n", + "Number of Majority holes in the emitter ,pEO=(noˆ2/NE) )= 450.0 /cmˆ3\n", + "Number of Majority holes in the base,nBO=(no ˆ2/NB))= 22500.0 /cmˆ3\n", + "Number of Majority holes in the collector ,pCO=(noˆ2/NC) )= 225000.0 /cmˆ3\n", + "pE(O)=pEO∗( exp (VJ/VT) ) )= 1.40186506034e+13 /cmˆ3 \n", + "nB=(nBO∗( exp (VJ/VT) ) ) )= 7.00932530169e+14 /cmˆ3\n" + ] + } + ], + "source": [ + "#exa 7.3\n", + "from math import exp\n", + "NE =5*10**17\n", + "print\"NE = \",NE,\" /cmˆ3\" # initializiation of doping concentration in the emitter .\n", + "NB =10**16\n", + "print\"NB = \",NB,\" /cmˆ3\" # initializiation of doping concentration in the base .\n", + "NC =10**15\n", + "print\"NC = \",NC,\" /cmˆ3\" # initializiation of doping concentration in the collector .\n", + "WB =0.8*10**-4\n", + "print\"WB = \",WB,\" cm\" # initializiation the value of base width of NPN transistor .\n", + "no=1.5*10**10\n", + "print\"no = \",no,\"cmˆ−3\" # initializing the value of intrinsic carrier concentration .\n", + "VT=0.0259\n", + "print\"VT = \",VT,\" V\" # initializiation the value of threshold voltage .\n", + "VJ=0.6258\n", + "print\"VJ=Vbe = \",VJ,\" V\" # initializiation the value of base emitter voltage .\n", + "pEO=(no**2/NE)\n", + "print\"Number of Majority holes in the emitter ,pEO=(noˆ2/NE) )=\",pEO,\" /cmˆ3\"# calculation\n", + "nBO=(no**2/NB)\n", + "print\"Number of Majority holes in the base,nBO=(no ˆ2/NB))=\",nBO,\" /cmˆ3\"#calculation\n", + "pCO=(no**2/NC)\n", + "print\"Number of Majority holes in the collector ,pCO=(noˆ2/NC) )=\",pCO,\" /cmˆ3\"# calculation\n", + "pE=pEO*(exp(VJ/VT))\n", + "print\"pE(O)=pEO∗( exp (VJ/VT) ) )=\",pE, \"/cmˆ3 \" # calculation\n", + "nB=nBO*(exp(VJ/VT))\n", + "print\"nB=(nBO∗( exp (VJ/VT) ) ) )=\",nB,\"/cmˆ3\" # calculation\n", + "#the answer provided in the book for pE,nB is some what different than actual calculated ." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7_5 pgno: 222" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Db = 10 cmˆ2/s\n", + "Bt = 0.95\n", + "tb = 1e-07 s\n", + "Lp=(sqrt(Db∗tb)))= 0.001 cm\n", + "WB=(Lp∗( acosh (1/Bt) ) )= 0.000323036439272 cm\n" + ] + } + ], + "source": [ + "#exa 7.5\n", + "from math import sqrt\n", + "from math import acosh\n", + "Db=10\n", + "print\"Db = \",Db,\" cmˆ2/s\" # initializiation the value of one of parametere of the transistor .\n", + "Bt =0.95\n", + "print\"Bt = \",Bt # initializiation the value of base transport factor of the transistor.\n", + "tb =10**-7\n", + "print\"tb = \",tb,\" s\" # initializiation the value of one of parametere of the transistor.\n", + "Lp=(sqrt(Db*tb))\n", + "print\"Lp=(sqrt(Db∗tb)))=\",Lp,\" cm\"# calculation\n", + "WB=(Lp*(acosh(1/Bt)))\n", + "print\"WB=(Lp∗( acosh (1/Bt) ) )=\",WB,\"cm\" #calculation," + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7_7 pgno: 224" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Jro = 1e-09 A/cmˆ2\n", + "Jo = 1e-12 A/cmˆ2\n", + "Vbe = 0.5 V\n", + "VT = 0.0259 V\n", + "delta (recombination factor)=(1+((Jro/Jo)∗(exp((−Vbe) /(2∗VT) ) ) ) )ˆ−1)= 0.939616412003\n" + ] + } + ], + "source": [ + "#exa 7.7\n", + "from math import exp\n", + "Jro =10**-9\n", + "print\"Jro = \",Jro,\" A/cmˆ2\" # initializiation the value of recombination current density .\n", + "Jo =10**-12\n", + "print\"Jo = \",Jo,\" A/cmˆ2\" # initializiation the value of reverse saturation current density.\n", + "Vbe =0.5\n", + "print\"Vbe = \",Vbe,\" V\" # initializiation the value of base emitter voltage .\n", + "VT =0.0259\n", + "print\"VT = \",VT,\" V\" # initializiation the value of threshold voltage .\n", + "delta=(1+((Jro/Jo)*(exp((-Vbe)/(2*VT)))))**-1\n", + "print\"delta (recombination factor)=(1+((Jro/Jo)∗(exp((−Vbe) /(2∗VT) ) ) ) )ˆ−1)=\",delta # calculation ." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7_8 pgno: 224" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "NE = 100000000000000000 /cmˆ3\n", + "NB = 1000000000000000 /cmˆ3\n", + "WE = 6e-05 cm\n", + "WB = 8e-05 cm\n", + "no = 15000000000.0 cmˆ−3\n", + "e = 1.6e-19 columns\n", + "DE = 15 cmˆ2/s\n", + "DB = 20 cmˆ2/s\n", + "tE = 2e-07 s\n", + "tB = 1e-07 s\n", + "Vbe = 0.6 V\n", + "VT = 0.0259 V\n", + "Jro = 2e-08 A/cmˆ2\n", + "LE=(sqrt(DE∗tE)))= 0.00173205080757 cm\n", + "LB=(sqrt(DB∗tB)))= 0.00141421356237 cm\n", + "Number of Majority holes in the emitter ,pEO=(noˆ2/NE) )= 2250.0 /cmˆ3\n", + "Number of Majority holes in the base,nBO=(no ˆ2/NB))= 225000.0 /cmˆ3\n", + "Emitter injection efficiency ,Y=(1+((NB∗DE∗LB) /(NE∗DB∗LE)∗(tanh(WB/LB)/tanh(WE/LE)))) )= 0.990105536375\n", + "Base transport factor ,Bt=(cosh(WB/LB))ˆ−1)= 0.998402130561\n", + "Reverse saturation current Density , Jro=((e∗DB∗n BO)/(LB∗tanh(WB/LB)))) = 9.00959795262e-09 A/cmˆ2\n", + "delta(recombination factor)=(1+((Jro/Jo)∗(exp((−Vbe)/(2∗VT)))))ˆ−1)= 0.999979304421 A\n", + "common base current amplification factor ,(alpha=Bt∗delta∗Y)= 0.988503018931\n", + "common emitter current amplification factor ,Beta=(a/(1−a) ) )= 85.9793551861\n" + ] + } + ], + "source": [ + "#exa 7.8\n", + "from math import sqrt\n", + "from math import cosh\n", + "from math import tanh\n", + "NE =1*10**17\n", + "print\"NE = \",NE,\" /cmˆ3\" # initializiation the value of doping concentration of emitter in the NPN transistor .\n", + "NB =10**15\n", + "print\"NB = \",NB,\" /cmˆ3\" # initializiation the value of doping concentration of base in the NPN transistor .\n", + "WE =0.6*10**-4\n", + "print\"WE = \",WE,\" cm\" # initializiation the value of one of parametre of the transistor.\n", + "WB =0.8*10**-4\n", + "print\"WB = \",WB,\" cm\" # initializiation the value of one of parametre of the transistor.\n", + "no=1.5*10**10\n", + "print\"no = \",no,\"cmˆ−3\" # initializing the value of intrinsic carrier concentration .\n", + "e=1.6*10**-19\n", + "print\"e = \",e,\" columns\" # initializiation the value of electronic charge\n", + "DE=15\n", + "print\"DE = \",DE,\" cmˆ2/s\" # initializiation the value of one of parametere of the transistor .\n", + "DB=20\n", + "print\"DB = \",DB,\" cmˆ2/s\" #initializiation the value of one of parametere of the transistor .\n", + "tE =0.2*10**-6\n", + "print\"tE = \",tE,\" s\" # initializiation the value of one of parametere of the transistor.\n", + "tB =0.1*10**-6\n", + "print\"tB = \",tB,\" s\" # initializiation the value of one of parametere of the transistor.\n", + "Vbe=0.60\n", + "print\"Vbe = \",Vbe,\" V\" # initializiation the value of base emitter voltage .\n", + "VT=0.0259\n", + "print\"VT = \",VT,\" V\" # initializiation the value of threshold voltage .\n", + "Jro =2*10**-8\n", + "print\"Jro = \",Jro,\" A/cmˆ2\" # initializiation the value of recombination current density .\n", + "LE=(sqrt(DE*tE))\n", + "print\"LE=(sqrt(DE∗tE)))=\",LE,\" cm\"#calculation\n", + "LB=(sqrt(DB*tB))\n", + "print\"LB=(sqrt(DB∗tB)))=\",LB,\" cm\"#calculation\n", + "pEO=(no**2/NE)\n", + "print\"Number of Majority holes in the emitter ,pEO=(noˆ2/NE) )=\",pEO,\" /cmˆ3\"# calculation\n", + "nBO=(no**2/NB)\n", + "print\"Number of Majority holes in the base,nBO=(no ˆ2/NB))=\",nBO,\" /cmˆ3\"#calculation\n", + "Y=(1+(((NB*DE*LB)/(NE*DB*LE))*((tanh(WB/LB)/tanh(WE/ LE)))))**(-1)\n", + "print\"Emitter injection efficiency ,Y=(1+((NB∗DE∗LB) /(NE∗DB∗LE)∗(tanh(WB/LB)/tanh(WE/LE)))) )=\",Y # calculation\n", + "Bt=(cosh(WB/LB))**-1\n", + "print\"Base transport factor ,Bt=(cosh(WB/LB))ˆ−1)=\",Bt# calculation\n", + "Jo=((e*DB*nBO)/(LB*tanh(WB/LB)))\n", + "print\"Reverse saturation current Density , Jro=((e∗DB∗n BO)/(LB∗tanh(WB/LB)))) = \",Jo, \"A/cmˆ2\" # calculation\n", + "delta=(1+((Jro/Jo)*(exp((-Vbe)/(2*VT)))))**-1\n", + "print\"delta(recombination factor)=(1+((Jro/Jo)∗(exp((−Vbe)/(2∗VT)))))ˆ−1)=\",delta,\" A\"# calculation\n", + "a=Bt*delta*Y\n", + "print\"common base current amplification factor ,(alpha=Bt∗delta∗Y)=\",a # calculation\n", + "B=(a/(1-a))\n", + "print\"common emitter current amplification factor ,Beta=(a/(1−a) ) )=\",B # calculation\n", + "#the value of NE provided in the question is different than used in the solution .\n", + "#I have used the value (while solving) provided in the question ( i . e NE=10ˆ17/cmˆ3) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7_9 pgno: 225" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "NB = 5e+16 /cmˆ3\n", + "NC = 2e+15 /cmˆ3\n", + "WBm = 6e-05 cm\n", + "e = 1.6e-19 columns\n", + "VCB1 = 1 V\n", + "VCB2 = 4 V\n", + "Er = 11.9\n", + "Eo = 8.854e-14 F/cm\n", + "no = 15000000000.0 cmˆ−3\n", + "VT = 0.0259 V\n", + " VBI=VT∗(log((NB∗NC)/noˆ2))= 0.694640354303 V\n", + "WBS=((2∗Eo∗Er∗(VBI+VCB1)/e)∗(NC/NB)∗(1/(NC+NB)))ˆ(1/2))= 4.14348090604e-06 cm\n", + "Neutral base width for VCB1,WB( neutral )=WBm− WBS1= 5.5856519094e-05 cm\n", + "WBS=((2∗Eo∗Er∗(VBI+VCB2)/e)∗(NC/NB)∗(1/(NC+NB) ))ˆ(1/2))= 1.0 cm\n", + "Neutral base width for VCB2,WB( neutral )=WBm−WBS2= -0.99994 cm\n", + "change in the neutal base width ,deltaWb(neutral )=Wb1−Wb2= 0.999995856519 cm\n" + ] + } + ], + "source": [ + "#exa 7.9\n", + "from math import log\n", + "NB =5e16\n", + "print\"NB = \",NB,\" /cmˆ3\" # initializiation the doping concentration in the base .\n", + "NC =2e15\n", + "print\"NC = \",NC,\" /cmˆ3\" # initializiation the doping concentration in the collector .\n", + "WBm =0.6e-4\n", + "print\"WBm = \",WBm,\" cm\" # initializiation the value of actual base width .\n", + "e=1.6e-19\n", + "print\"e = \",e,\" columns\" # initializiation the value of electronic charge .\n", + "VCB1=1\n", + "print\"VCB1 = \",VCB1,\" V\" # initializiation the initial value of collector base voltage .\n", + "VCB2=4\n", + "print\"VCB2 = \",VCB2,\" V\" # initializiation the final value of collector base voltage.\n", + "Er=11.9\n", + "print\"Er = \",Er # initializing value of relative dielectric permittivity constant .\n", + "Eo=8.854e-14\n", + "print\"Eo = \",Eo,\" F/cm\" # initializing value of permittivity of free space .\n", + "no=1.5e10\n", + "print\"no = \",no,\"cmˆ−3\" # initializing the value of intrinsic charge carriers\n", + "VT=0.0259\n", + "print\"VT = \",VT,\" V\" # initializiation the value of threshold voltage .\n", + "VBI=VT*(log((NB*NC)/no**2))\n", + "print\" VBI=VT∗(log((NB∗NC)/noˆ2))=\",VBI,\" V\" # calculation\n", + "WBS1=((2*Eo*Er*(VBI+VCB1)/e)*(NC/NB)*(1/(NC+NB)))**(1./2.)\n", + "print\"WBS=((2∗Eo∗Er∗(VBI+VCB1)/e)∗(NC/NB)∗(1/(NC+NB)))ˆ(1/2))=\",WBS1,\" cm\"#calculation\n", + "Wb1=WBm-WBS1\n", + "print\"Neutral base width for VCB1,WB( neutral )=WBm− WBS1=\",Wb1,\" cm\"# calculation\n", + "WBS2=((2*Eo*Er*(VBI+VCB2)/e)*(NC/NB)*(1/(NC+NB)))**(1/2)\n", + "print\"WBS=((2∗Eo∗Er∗(VBI+VCB2)/e)∗(NC/NB)∗(1/(NC+NB) ))ˆ(1/2))=\",WBS2,\" cm\"#calculation\n", + "Wb2=WBm-WBS2\n", + "print\"Neutral base width for VCB2,WB( neutral )=WBm−WBS2=\",Wb2,\" cm\"# calculation\n", + "deltaWbneutral=Wb1-Wb2\n", + "print\"change in the neutal base width ,deltaWb(neutral )=Wb1−Wb2=\",deltaWbneutral,\" cm\" # calculation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7_10 pgno: 226" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ro = 5000000.0 ohm\n", + "Vce1 = 7 V\n", + "Vce2 = 1 V\n", + "change in the collector −emitter voltage , Vce1−Vce2 = 6 V\n", + "change in the collector current , Ic=(Vce/ro))= 1.2e-06 A\n" + ] + } + ], + "source": [ + "#exa 7.10\n", + "ro=500*10e3\n", + "print\"ro = \",ro,\" ohm\" # initializiation the value of output resistance .\n", + "Vce1 =7\n", + "print\"Vce1 = \",Vce1,\" V\" # initializiation the initial value of collector emitter voltage .\n", + "Vce2 =1\n", + "print\"Vce2 = \",Vce2,\" V\" # initializiation the final value of collector emitter voltage .\n", + "Vce=6\n", + "print\"change in the collector −emitter voltage , Vce1−Vce2 = \",Vce,\" V\" # calculation .\n", + "Ic=(Vce/ro)\n", + "print\"change in the collector current , Ic=(Vce/ro))=\" ,Ic,\" A\"# calculation," + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/chapter_8_THE_FIELD_EFFECT_TRANSISTOR_3.ipynb b/Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/chapter_8_THE_FIELD_EFFECT_TRANSISTOR_3.ipynb new file mode 100644 index 00000000..0c2e0420 --- /dev/null +++ b/Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/chapter_8_THE_FIELD_EFFECT_TRANSISTOR_3.ipynb @@ -0,0 +1,806 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 8 THE FIELD EFFECT TRANSISTOR" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8_1 pgno: 267" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Nd= 10000000000000000 /cmˆ3\n", + "Er= 3.9\n", + "Eo = 8.854e-14 F/cm\n", + "W = 5e-05 cm\n", + "L = 0.0001 cm\n", + "tox = 4e-06 cm\n", + " total permittivity ,E=Eo∗Er= 3.45306e-13 F/cm\n", + "Oxide capacitance ,Cox=(E∗W∗L)/tox)= 4.316325e-16 F\n", + "Capacitance per unit area ,Co=(Cox/(W∗L)))= 8.63265e-08 F/cmˆ2\n" + ] + } + ], + "source": [ + "#exa 8.1\n", + "Nd =10**16\n", + "print\"Nd= \",Nd,\" /cmˆ3\" # initializing value of donor ion concentration .\n", + "Er =3.9\n", + "print\"Er= \",Er # initializing value of relative dielectric permittivity constant .\n", + "Eo=8.854*10**-14\n", + "print\"Eo = \",Eo,\" F/cm\" # initializing value of permittivity of free space .\n", + "W=0.5*10**-4\n", + "print\"W = \",W,\" cm\" # initializing value of width of p−substrate .\n", + "L=10**-4\n", + "print\"L = \",L,\" cm\" # initializing value of length of p−substrate .\n", + "tox =400*10**-8\n", + "print\"tox = \",tox,\" cm\" # initializing value of thickness of p−substrate .\n", + "E=Eo*Er\n", + "print\" total permittivity ,E=Eo∗Er=\",E,\" F/cm\"# calculation\n", + "Cox=(E*W*L)/tox\n", + "print\"Oxide capacitance ,Cox=(E∗W∗L)/tox)=\",Cox,\" F\"# calculation\n", + "Co=(Cox/(W*L))\n", + "print\"Capacitance per unit area ,Co=(Cox/(W∗L)))=\",Co,\" F/cmˆ2\"# calculation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8_2 pgno: 267" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Na = 100000000000000000 /cmˆ3\n", + "Vt = 0.0259 V\n", + "e = 1.6e-19 columns\n", + "ni = 15000000000.0 /cmˆ3\n", + "Er = 11.9\n", + "Eo = 8.854e-14 F/cm\n", + "Vs=Vt∗log(Na/ni))= 0.40695713106 V\n", + " total permittivity ,E=Eo∗Er= 1.053626e-12 F/cm\n", + "maximum depletion width ,Wd(max)=Sqrt(4∗E∗Vs/(e∗Na)))= 1.03535092381e-05 cm\n" + ] + } + ], + "source": [ + "#exa 8.2\n", + "from math import log\n", + "from math import sqrt\n", + "Na =10**17\n", + "print\"Na = \",Na,\" /cmˆ3\" # initializing value of acceptor ion concentration .\n", + "Vt =0.0259\n", + "print\"Vt = \",Vt,\"V\" # initializing value of thermal voltage .\n", + "e=1.6*10**-19\n", + "print\"e = \",e,\" columns\" # initializing value of charge of electrons .\n", + "ni=1.5*10**10\n", + "print\"ni = \",ni,\"/cmˆ3\" #initializing value of intrinsic carrier concentration .\n", + "Er=11.9\n", + "print\"Er = \",Er # initializing value of relative dielectric permittivity constant\n", + "Eo=8.854*10**-14\n", + "print\"Eo = \",Eo,\" F/cm\" # initializing value of permittivity of free space .\n", + "Vs=Vt*log(Na/ni)\n", + "print\"Vs=Vt∗log(Na/ni))=\",Vs,\" V\"#calculation\n", + "E=Eo*Er\n", + "print\" total permittivity ,E=Eo∗Er=\",E,\" F/cm\" # calculation\n", + "Wd=sqrt(4*E*Vs/(e*Na))\n", + "print\"maximum depletion width ,Wd(max)=Sqrt(4∗E∗Vs/(e∗Na)))=\",Wd,\" cm\"#calculation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8_3 pgno: 268" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Nd = 3000000000000000000 /cmˆ3\n", + "Vt = 0.0259 V\n", + "e = 1.6e-19 columns\n", + "ni = 15000000000.0 /cmˆ3\n", + "Er = 11.9\n", + "Eo = 8.854e-14 F/cm\n", + "Vs=Vt∗log(Nd/ni))= 0.495048143245 V\n", + " total permittivity ,E=Eo∗Er= 1.053626e-12 F/cm\n", + "maximum depletion width ,Wd(max)=Sqrt(4∗E∗Vs/(e∗Nd)))= 2.08485729922e-06 cm\n" + ] + } + ], + "source": [ + "#exa 8.3\n", + "from math import sqrt\n", + "from math import log\n", + "Nd =3*10**18\n", + "print\"Nd = \",Nd,\" /cmˆ3\" # initializing value of acceptor ion concentration .\n", + "Vt =0.0259\n", + "print\"Vt = \",Vt,\"V\" # initializing value of thermal voltage .\n", + "e=1.6*10**-19\n", + "print\"e = \",e,\" columns\" # initializing value of charge of electrons .\n", + "ni=1.5*10**10\n", + "print\"ni = \",ni,\"/cmˆ3\" #initializing value of intrinsic carrier concentration .\n", + "Er=11.9\n", + "print\"Er = \",Er # initializing value of relative dielectric permittivity constant\n", + "Eo=8.854*10**-14\n", + "print\"Eo = \",Eo,\" F/cm\" # initializing value of permittivity of free space .\n", + "Vs=Vt*log(Nd/ni)\n", + "print\"Vs=Vt∗log(Nd/ni))=\",Vs,\" V\"# calculation\n", + "E=Eo*Er\n", + "print\" total permittivity ,E=Eo∗Er=\",E,\" F/cm\" # calculation\n", + "Wd=sqrt(4*E*Vs/(e*Nd))\n", + "print\"maximum depletion width ,Wd(max)=Sqrt(4∗E∗Vs/(e∗Nd)))=\",Wd,\" cm\"#calculation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8_5 pgno: 269" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Vm = 3.2 V\n", + "X = 3.25 V\n", + "Nd = 20000000000000000 /cmˆ3\n", + "ni = 15000000000.0 V\n", + "Vt = 0.0259 V\n", + "Eg = 1.12 V\n", + "Vfp=(Vt∗log(Nd/ni))= 0.365272689128 V\n", + "Vms=−(Vm+(Eg/2)+Vfp−Vm)= -0.925272689128 V\n" + ] + } + ], + "source": [ + "#exa 8.5\n", + "from math import log\n", + "Vm =3.2\n", + "print\"Vm = \",Vm,\" V\" # initializing value of modified metal work function .\n", + "X=3.25\n", + "print\"X = \",X,\" V\" # initializing value of modified electron affinity .\n", + "Nd =2*10**16\n", + "print\"Nd = \",Nd,\" /cmˆ3\" # initializing value of donor concentration .\n", + "ni=1.5*10**10\n", + "print\"ni = \",ni,\" V\" # initializing value of intrinsic carrier concentration .\n", + "Vt=0.0259\n", + "print\"Vt = \",Vt,\"V\" # initializing value of thermal voltage .\n", + "Eg=1.12\n", + "print\"Eg = \",Eg,\"V\" # initializing value of energy gap .\n", + "Vfp=(Vt*log(Nd/ni))\n", + "print\"Vfp=(Vt∗log(Nd/ni))=\",Vfp,\" V\" # calculation .\n", + "Vms=-(Vm+(Eg/2)+Vfp-Vm)\n", + "print\"Vms=−(Vm+(Eg/2)+Vfp−Vm)=\",Vms,\" V\" # calculation ." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8_7 pgno: 270" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Nd = 10000000000000000 /cmˆ3\n", + "Vms = -1.12 V\n", + "Er = 3.9\n", + "Eo = 8.854e-14 F/cm\n", + "tox = 2e-06 cm\n", + "Qss = 2.5e-08 columbs/cmˆ2\n", + "Total permittivity ,Eox=Eo∗Er= 3.45306e-13 F/cm\n", + "Capacitance per unit area ,Co=(E/tox))= 1.72653e-07 F/cmˆ2\n", + " Flat band voltage , Vfb=(Vms−(Qss/Co) ) )= -1.26479910572 V\n" + ] + } + ], + "source": [ + "#exa 8.7\n", + "Nd =10**16\n", + "print\"Nd = \",Nd,\" /cmˆ3\" # initializing value of donor ion concentration .\n", + "Vms = -1.12\n", + "print\"Vms = \",Vms,\" V\" # initializing value of metal semiconductor work function difference .\n", + "Er =3.9\n", + "print\"Er = \",Er # initializing value of relative dielectric permittivity constant .\n", + "Eo=8.854*10**-14\n", + "print\"Eo = \",Eo,\" F/cm\" # initializing value of permittivity of free space .\n", + "tox =200*10**-8\n", + "print\"tox = \",tox,\" cm\" # initializing value of thickness of p−type substrate .\n", + "Qss =2.5*10**-8\n", + "print\"Qss = \",Qss,\" columbs/cmˆ2\" # initializing value of charge density on semiconductor surface .\n", + "Eox=Eo*Er\n", + "print\"Total permittivity ,Eox=Eo∗Er=\",Eox,\" F/cm\"# calculation\n", + "Co=(Eox/tox)\n", + "print\"Capacitance per unit area ,Co=(E/tox))=\",Co,\" F/cmˆ2\"# calculation\n", + "Vfb=(Vms-(Qss/Co))\n", + "print\" Flat band voltage , Vfb=(Vms−(Qss/Co) ) )=\",Vfb,\" V\"# calculation\n", + "#the answer for Co after calculation is provided wrong in the book " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8_9 pgno: 271" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Na = 30000000000000000 /cmˆ3\n", + "Vms = -1.12 V\n", + "Er = 11.9\n", + "Eo = 8.854e-14 F/cm\n", + "ni = 15000000000.0 cmˆ−3\n", + "e = 1.6e-19 columns\n", + "tox = 3e-06 cm\n", + "Vfb = -1.12 V\n", + "Qss = 100000000000 electronic charge columns/cmˆ2\n", + "Vt = 0.0259 eV\n", + "er = 3.9\n", + "total permittivity ,Eox=Eo∗Er= 1.053626e-12 F/cm\n", + "Potential ,Vfp=Vt∗(log(Na/(ni))))= 0.375774235428 V\n", + "Maximum depletion width ,Wd=sqrt ((4∗E∗Vs)/(e∗Nd)))= 1.81641933617e-05 cm\n", + "Over all maximum depletion width ,QDmax=(e∗Na∗ Wd) )= 8.71881281361e-08 columns/cmˆ2\n", + "Threshold Voltage ,VT=(((QDmax−1.6∗10ˆ−8)∗tox)/(er∗Eo),(2∗Vfp+Vfb)= 0.250027108378 V\n" + ] + } + ], + "source": [ + "#exa 8.9\n", + "from math import log\n", + "Na =3*10**16\n", + "print\"Na = \",Na,\" /cmˆ3\" # initializing value of acceptor ion concentration .\n", + "Vms = -1.12\n", + "print\"Vms = \",Vms,\"V\" # initializing value of metal semiconductor work function difference .\n", + "Er =11.9\n", + "print\"Er = \",Er # initializing value of relative dielectric permittivity constant .\n", + "Eo=8.854*10**-14\n", + "print\"Eo = \",Eo,\" F/cm\" # initializing value of permittivity of free space .\n", + "ni=1.5*10**10\n", + "print\"ni = \",ni,\"cmˆ−3\" # initializing value of intrinsic concentration of electrons .\n", + "e=1.6*10**-19\n", + "print\"e = \",e,\" columns\" # initializing value of charge of electrons .\n", + "tox =300*10**-8\n", + "print\"tox = \",tox,\" cm\" # initializing value of thickness of p−type substrate .\n", + "Vfb=-1.12\n", + "print\"Vfb = \",Vfb,\" V\" # initializing value of flat band voltage .\n", + "Qss=10**11\n", + "print\"Qss = \",Qss,\" electronic charge columns/cmˆ2\" # initializing value of charge density on semiconductor surface .\n", + "Vt=0.0259\n", + "print\"Vt = \",Vt,\" eV\" # initializing value of thermal voltage .\n", + "er=3.9\n", + "print\"er = \",er # initializing value of relative dielectric permittivity constant\n", + "Eox=Eo*Er\n", + "print\"total permittivity ,Eox=Eo∗Er=\",Eox,\" F/cm\"# calculation\n", + "Vfp=Vt*(log(Na/(ni)))\n", + "print\"Potential ,Vfp=Vt∗(log(Na/(ni))))=\",Vfp,\" V\"#calculation\n", + "Wd=sqrt((4*Eox*Vfp)/(e*Na))\n", + "print\"Maximum depletion width ,Wd=sqrt ((4∗E∗Vs)/(e∗Nd)))=\",Wd,\" cm\"#calculation\n", + "QDmax=(e*Na*Wd)\n", + "print\"Over all maximum depletion width ,QDmax=(e∗Na∗ Wd) )=\",QDmax,\" columns/cmˆ2\" # calculation\n", + "VT=(((QDmax -1.6*10**-8)*tox)/(er*Eo))+(2*Vfp+Vfb)\n", + "print \"Threshold Voltage ,VT=(((QDmax−1.6∗10ˆ−8)∗tox)/(er∗Eo),(2∗Vfp+Vfb)=\",VT,\" V\" # calculation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8_10 pgno: 271" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "L = 0.000125 cm\n", + "un = 600 cmˆ2/V−s\n", + "Co = 6.9e-09 F/cmˆ2\n", + "VT = 0.6 V\n", + "Vgs = 4 V\n", + "W = 0.0012 cm\n", + "Drain current ,Id=((Co∗un∗W)/(L)∗((Vgs−VT)ˆ2/(2)))= 0.00022972032 A\n" + ] + } + ], + "source": [ + "#exa 8.10\n", + "L=1.25*10**-4\n", + "print\"L = \",L,\" cm\" # initializing value of length of channel .\n", + "un =600\n", + "print\"un = \",un,\"cmˆ2/V−s\" # initializing value of mobility of n−channel MOS transistor .\n", + "Co =6.9*10**-9\n", + "print\"Co = \",Co,\"F/cmˆ2\" # initializing value of capacitance per unit area .\n", + "VT =0.60\n", + "print\"VT = \",VT,\" V\" # initializing value of threshold Voltage .\n", + "Vgs=4\n", + "print\"Vgs = \",Vgs,\" V\" # initializing value of gate to source voltage .\n", + "W=12*10**-4\n", + "print\"W = \",W,\"cm\" # initializing value of width of channel .\n", + "Id=((Co*un*W)/(L)*((Vgs-VT)**2/(2)))\n", + "print\"Drain current ,Id=((Co∗un∗W)/(L)∗((Vgs−VT)ˆ2/(2)))=\",Id,\" A\"#calculation .\n", + "#The answer provided in the book (for Id) is wrong as the value of mobility used for solution is different than provided in the question and also value of (Vgs−Vt) is put wrong in the solution than given in the book .\n", + "#I have used the value given in the question i.e. answer differ ." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8_13 pgno: 273" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Na = 200000000000000000 /cmˆ3\n", + "Er = 11.9\n", + "Eo = 8.854e-14 F/cm\n", + "ni = 15000000000.0 cmˆ−3\n", + "e = 1.6e-19 columns\n", + "tox = 4e-06 cm\n", + "Vt = 0.0259 eV\n", + "er = 3.9\n", + "Potential ,Vfp=Vt∗(log(Na/(ni))))= 0.424909643036 V\n", + "Depletion width ,Wd=sqrt ((4∗Er∗Eo∗Vs)/(e∗Nd)))= 7.48077408723e-06 cm\n", + "Minimum Capacitance,CTmin=(er∗Eo/((er/Er)∗(Wd)+(tox)))= 5.35218545918e-08 F/cmˆ2\n", + "Flat band capacitance ,CFB=((er∗Eo) /((( er/Er)∗sqrt(Vt∗Er∗Eo/(e∗Na))))+(tox))= 8.02543256028e-08 F/ cmˆ2\n" + ] + } + ], + "source": [ + "#exa 8.13\n", + "from math import sqrt\n", + "from math import log\n", + "Na =2*10**17\n", + "print\"Na = \",Na,\" /cmˆ3\" # initializing value of acceptor ion concentration .\n", + "Er =11.9\n", + "print\"Er = \",Er # initializing value of relative dielectric permittivity constant .\n", + "Eo=8.854*10**-14\n", + "print\"Eo = \",Eo,\" F/cm\" # initializing value of permittivity of free space .\n", + "ni=1.5*10**10\n", + "print\"ni = \",ni,\"cmˆ−3\" # initializing value of intrinsic concentration of electrons .\n", + "e=1.6*10**-19\n", + "print\"e = \",e,\" columns\" # initializing value of charge of electrons .\n", + "tox =400*10**-8\n", + "print\"tox = \",tox,\" cm\" # initializing value of thickness of p−type substrate .\n", + "Vt=0.0259\n", + "print\"Vt = \",Vt,\" eV\" # initializing value of thermal voltage .\n", + "er=3.9\n", + "print\"er = \",er # initializing value of relative dielectric permittivity constant\n", + "Vfp=Vt*(log(Na/(ni)))\n", + "print\"Potential ,Vfp=Vt∗(log(Na/(ni))))=\",Vfp,\" V\"#calculation\n", + "Wd=sqrt((4*Er*Eo*Vfp)/(e*Na))\n", + "print\"Depletion width ,Wd=sqrt ((4∗Er∗Eo∗Vs)/(e∗Nd)))=\",Wd,\" cm\"# calculation\n", + "CTmin=(er*Eo/(((er/Er)*(Wd))+(tox)))\n", + "print\"Minimum Capacitance,CTmin=(er∗Eo/((er/Er)∗(Wd)+(tox)))=\",CTmin,\" F/cmˆ2\"#calculation\n", + "CFB=((er*Eo)/((((er/Er)*sqrt(Vt*Er*Eo/(e*Na))))+(tox)))\n", + "print\"Flat band capacitance ,CFB=((er∗Eo) /((( er/Er)∗sqrt(Vt∗Er∗Eo/(e∗Na))))+(tox))=\",CFB,\" F/ cmˆ2\"# calculation\n", + "#the value of Na (acceptor ion concentration) and tox ( thickness of p−type substrate ) is provided different in the question than used in the solution .\n", + "#I have used the value provided in the solution .( i . e Na=2∗10ˆ17 and tox =400∗10ˆ8cm)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8_14 pgno: 274" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Vfb = -1.0 V\n", + "Vms = -0.9 V\n", + "tox = 2e-06 cm\n", + "et = 3.9\n", + "eo = 8.85e-14 F/cm\n", + "e = 1.6e-19 columns\n", + "eox=(eo∗et))= 3.4515e-13 F/cmˆ2\n", + "Oxide capacitance ,Cox=(eox/tox))= 1.72575e-07 F/cmˆ2\n", + "charge density on semiconductor surface ,Qss=(( Vms−Vfb)∗Cox))= 1.72575e-08 C/cmˆ2\n", + "charge density on semiconductor surface (in terms of number of charges) ,Qss∗=Qss/e)= 1.07859375e+11 electrons/cmˆ2\n" + ] + } + ], + "source": [ + "#exa 8.14\n", + "Vfb = -1.0\n", + "print\"Vfb = \",Vfb,\" V\" # initializing value of flat band voltage .\n", + "Vms = -0.9\n", + "print\"Vms = \",Vms,\"V\" # initializing value of metal semiconductor work function difference .\n", + "tox =200*10**-8\n", + "print\"tox = \",tox,\" cm\" # initializing value of gate oxide thickness .\n", + "et =3.9\n", + "print\"et = \",et # initializing value of relative permittivity .\n", + "eo =8.85*10**-14\n", + "print\"eo = \",eo,\"F/cm\" # initializing value of free space permittivity .\n", + "e=1.6*10**-19\n", + "print\"e = \",e,\" columns\" # initializing value of charge of electrons .\n", + "eox=(eo*et)\n", + "print\"eox=(eo∗et))=\",eox,\" F/cmˆ2\" # calculation\n", + "Cox=(eox/tox)\n", + "print\"Oxide capacitance ,Cox=(eox/tox))=\",Cox,\" F/cmˆ2\"# calculation\n", + "Qss=((Vms-Vfb)*Cox)\n", + "print\"charge density on semiconductor surface ,Qss=(( Vms−Vfb)∗Cox))=\",Qss,\" C/cmˆ2\" # calculation\n", + "Qss1=Qss/e\n", + "print\"charge density on semiconductor surface (in terms of number of charges) ,Qss∗=Qss/e)=\",Qss1,\" electrons/cmˆ2\" #calculation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8_15 pgno: 274" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "L = 3e-06 meter\n", + "un = 800.0 cmˆ2/V−s\n", + "VT = 1.0 V\n", + "Vgs = 0 V\n", + "tox = 5e-06 cm\n", + "et = 3.9\n", + "eo = 8.85e-14 F/cm\n", + "W = 3e-05 m\n", + "eox=(eo∗et))= 3.4515e-13 F/cmˆ2\n", + "Drain current ,Id=((eox∗un∗W)/(tox∗L)∗((Vgs−VT)ˆ2/(2))))= 276120.0 A\n" + ] + } + ], + "source": [ + "#exa 8.15\n", + "L=3e-6\n", + "print\"L = \",L,\" meter\" # initializing value of length of channel .\n", + "un =800.\n", + "print\"un = \",un,\"cmˆ2/V−s\" # initializing value of mobility of n−channel MOS transistor .\n", + "VT=1.\n", + "print\"VT = \",VT,\" V\" # initializing value of threshold Voltage .\n", + "Vgs=0\n", + "print\"Vgs = \",Vgs,\" V\" # initializing value of gate to source voltage .\n", + "tox =500e-8\n", + "print\"tox = \",tox,\" cm\" # initializing value of gate oxide thickness .\n", + "et=3.9\n", + "print\"et = \",et # initializing value of relative permittivity .\n", + "eo =8.85e-14\n", + "print\"eo = \",eo,\"F/cm\" # initializing value of free space permittivity .\n", + "W=30e-6\n", + "print\"W = \",W,\"m\" # initializing value of width of channel .\n", + "eox=(eo*et)\n", + "print\"eox=(eo∗et))=\",eox,\" F/cmˆ2\"# calculation\n", + "Id=((eox*un*W)/(tox*L)*((Vgs-VT)**2/(2)))*(1e9)\n", + "print\"Drain current ,Id=((eox∗un∗W)/(tox∗L)∗((Vgs−VT)ˆ2/(2))))=\",Id,\" A\"#calculation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8_16 pgno: 274" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "L = 2.5e-06 meter\n", + "un = 800 cmˆ2/V−s\n", + "VT = 0.8 V\n", + "Vgs = 1 V\n", + "tox = 4e-06 cm\n", + "et = 3.9\n", + "eo = 8.85e-14 F/cm\n", + "eox=(eo∗et))= 3.4515e-13 F/cmˆ2\n", + "W = 2.5e-05 m\n", + "Drain current ,Id=((eox∗un∗W)/(tox∗L)∗((Vgs−VT)ˆ2/(2))))= 1.3806e-05 A\n" + ] + } + ], + "source": [ + "#exa 8.16\n", + "L=2.5*10**-6\n", + "print\"L = \",L,\" meter\" # initializing value of length of channel .\n", + "un =800\n", + "print\"un = \",un,\"cmˆ2/V−s\" # initializing value of mobility of n−channel MOS transistor .\n", + "VT =0.8\n", + "print\"VT = \",VT,\" V\" # initializing value of threshold Voltage .\n", + "Vgs=1\n", + "print\"Vgs = \",Vgs,\" V\" # initializing value of gate to source voltage .\n", + "tox =400*10**-8\n", + "print\"tox = \",tox,\" cm\" # initializing value of gate oxide thickness .\n", + "et=3.9\n", + "print\"et = \",et # initializing value of relative permittivity .\n", + "eo =8.85*10**-14\n", + "print\"eo = \",eo,\"F/cm\" # initializing value of free space permittivity .\n", + "eox=(eo*et)\n", + "print\"eox=(eo∗et))=\",eox,\" F/cmˆ2\" # calculation\n", + "W=25*10**-6\n", + "print\"W = \",W,\"m\" # initializing value of width of channel . .\n", + "Id=((eox*un*W)/(tox*L)*((Vgs-VT)**2/(2)))\n", + "print\"Drain current ,Id=((eox∗un∗W)/(tox∗L)∗((Vgs−VT)ˆ2/(2))))=\",Id,\" A\"#calculation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8_17 pgno: 274" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "un = 525 cmˆ2/V−s\n", + "VT = 0.75 V\n", + "Vgs = 2 V\n", + "tox = 4e-06 cm\n", + "et = 3.9\n", + "eo = 8.85e-14 F/cm\n", + "eox=(eo∗et))= 3.4515e-13 F/cmˆ2\n", + "Id = 0.006 A\n", + "width to length ratio ,W/L=((Id∗tox∗2)/(eox∗un∗((Vgs−VT)ˆ2)))= 169.532915296\n" + ] + } + ], + "source": [ + "#8.17\n", + "un =525\n", + "print\"un = \",un,\"cmˆ2/V−s\" # initializing value of mobility of n−channel MOS transistor .\n", + "VT =0.75\n", + "print\"VT = \",VT,\" V\" # initializing value of threshold Voltage .\n", + "Vgs=2\n", + "print\"Vgs = \",Vgs,\" V\" # initializing value of gate to source voltage .\n", + "tox =400*10**-8\n", + "print\"tox = \",tox,\" cm\" # initializing value of gate oxide thickness .\n", + "et=3.9\n", + "print\"et = \",et # initializing value of relative permittivity .\n", + "eo =8.85*10**-14\n", + "print\"eo = \",eo,\"F/cm\" # initializing value of free space permittivity .\n", + "eox=(eo*et)\n", + "print\"eox=(eo∗et))=\",eox,\" F/cmˆ2\" # calculation\n", + "Id =6*10**-3\n", + "print\"Id = \",Id,\"A\" # initializing value of width of channel . .\n", + "X=((Id*tox*2)/(eox*un*((Vgs-VT)**2)))\n", + "print\"width to length ratio ,W/L=((Id∗tox∗2)/(eox∗un∗((Vgs−VT)ˆ2)))= \",X # calculation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8_18 pgno: 275" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Nd = 20000000000000000 /cmˆ3\n", + "a = 0.0002 cm\n", + "e = 1.6e-19 columns\n", + "Er = 11.9\n", + "Eo = 8.85e-14 F/cm\n", + "E=(Eo∗Er))= 1.05315e-12 F/cmˆ2\n", + "Pinch off Voltage ,Vp=((e∗Nd∗aˆ2)/(2∗E)))= 60.7700707402 V\n" + ] + } + ], + "source": [ + "#exa 8.18\n", + "Nd =2*10**16\n", + "print\"Nd = \",Nd,\" /cmˆ3\" # initializing value of donor ion concentration .\n", + "a=2*10**-4\n", + "print\"a = \",a,\" cm\" # initializing value of height of channel at pinch off .\n", + "e=1.6*10**-19\n", + "print\"e = \",e,\" columns\" # initializing value of charge of electrons .\n", + "Er =11.9\n", + "print\"Er = \",Er # initializing value of relative permittivity .\n", + "Eo =8.85*10**-14\n", + "print\"Eo = \",Eo,\"F/cm\" # initializing value of free space permittivity .\n", + "E=(Eo*Er)\n", + "print\"E=(Eo∗Er))=\",E,\" F/cmˆ2\"#calculation\n", + "Vp=((e*Nd*a**2)/(2*E))\n", + "print\"Pinch off Voltage ,Vp=((e∗Nd∗aˆ2)/(2∗E)))=\",Vp,\" V\"# calculation," + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8_20 pgno: 275" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a = 0.0002 cm\n", + "Er = 11.9\n", + "Eo = 8.854e-14 F/cm\n", + "un = 1350 cmˆ2/V−s\n", + "W = 0.0008 cm\n", + "L = 0.001 cm\n", + "e = 1.6e-19 columns\n", + "Vp = 4 V\n", + "Vgs = 0 V\n", + " total permittivity ,E=Eo∗Er= 1.053626e-12 F/cm\n", + "Donor ion concentration ,Nd=((Vp∗2∗E)/(e∗aˆ2)))= 1.3170325e+15 /cmˆ3\n", + "On Drain resistance ,rds=(L/(W∗a∗e∗un∗Nd)))= 21969.9856953 ohm\n" + ] + } + ], + "source": [ + "#exa 8.20\n", + "a=2*10**-4\n", + "print\"a = \",a,\" cm\" # initializing value of height of channel at pinch off .\n", + "Er =11.9\n", + "print\"Er = \",Er # initializing value of relative dielectric permittivity constant .\n", + "Eo=8.854*10**-14\n", + "print\"Eo = \",Eo,\" F/cm\" # initializing value of permittivity of free space .\n", + "un =1350\n", + "print\"un = \",un,\"cmˆ2/V−s\" # initializing value of mobility of n−type silicon Mosfet.\n", + "W=8*10**-4\n", + "print\"W = \",W,\" cm\" # initializing value of width of p−substrate .\n", + "L=10*10**-4\n", + "print\"L = \",L,\" cm\" # initializing value of length of p−substrate \n", + "e=1.6*10**-19\n", + "print\"e = \",e,\" columns\" # initializing value of charge of electrons .\n", + "Vp=4\n", + "print\"Vp = \",Vp,\" V\" # initializing value of thickness of p−substrate . \n", + "Vgs=0\n", + "print\"Vgs = \",Vgs,\" V\" # initializing value of gate to source voltage .\n", + "E=Eo*Er\n", + "print\" total permittivity ,E=Eo∗Er=\",E,\" F/cm\" # calculation\n", + "Nd=((Vp*2*E)/(e*a**2))\n", + "print\"Donor ion concentration ,Nd=((Vp∗2∗E)/(e∗aˆ2)))=\",Nd,\" /cmˆ3\"# calculation\n", + "rds=(L/(W*a*e*un*Nd))\n", + "print\"On Drain resistance ,rds=(L/(W∗a∗e∗un∗Nd)))=\",rds,\" ohm\"# calculation" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/screenshots/Screen_Shot_2016-01-12_at_11.24.07_pm.png b/Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/screenshots/Screen_Shot_2016-01-12_at_11.24.07_pm.png Binary files differnew file mode 100644 index 00000000..35e8db35 --- /dev/null +++ b/Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/screenshots/Screen_Shot_2016-01-12_at_11.24.07_pm.png diff --git a/Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/screenshots/Screen_Shot_2016-01-12_at_11.26.01_pm.png b/Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/screenshots/Screen_Shot_2016-01-12_at_11.26.01_pm.png Binary files differnew file mode 100644 index 00000000..482db633 --- /dev/null +++ b/Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/screenshots/Screen_Shot_2016-01-12_at_11.26.01_pm.png diff --git a/Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/screenshots/Screen_Shot_2016-01-12_at_11.26.51_pm.png b/Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/screenshots/Screen_Shot_2016-01-12_at_11.26.51_pm.png Binary files differnew file mode 100644 index 00000000..7fefceb8 --- /dev/null +++ b/Solid_State_Devices_by_B._S._Nair_and_S._R._Deepa/screenshots/Screen_Shot_2016-01-12_at_11.26.51_pm.png diff --git a/sample_notebooks/NagadeviPriya/Sample_Notebook.ipynb b/sample_notebooks/NagadeviPriya/Sample_Notebook.ipynb new file mode 100644 index 00000000..1dd45ca5 --- /dev/null +++ b/sample_notebooks/NagadeviPriya/Sample_Notebook.ipynb @@ -0,0 +1,67 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:f1e1a22845431a7c624f15fdfe1d12cb897973438c34ee8b3af7b1acede6209e"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 24: Laws of Motion"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 24.11, Page no.490"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variable declaration\n",
+ "m=50 #mass in kg\n",
+ "a=1.2 #acceleration in m/s**2\n",
+ "g=9.8 #gravity in m/s**2\n",
+ "\n",
+ "#Calculation\n",
+ "F=m*(g+a)\n",
+ "\n",
+ "#Result\n",
+ "print\"F=\",int(F),\"N\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "F= 550 N\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file |