summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorTrupti Kini2016-07-14 23:30:27 +0600
committerTrupti Kini2016-07-14 23:30:27 +0600
commit90764d9db0d42c0eca890ef10945c31d1bf8a108 (patch)
treeb43a5034c1bab2fa5cb53e2efee847207f6b3ca5
parent6c05a634e2c081f1dd4b733d340c98ae3426d243 (diff)
downloadPython-Textbook-Companions-90764d9db0d42c0eca890ef10945c31d1bf8a108.tar.gz
Python-Textbook-Companions-90764d9db0d42c0eca890ef10945c31d1bf8a108.tar.bz2
Python-Textbook-Companions-90764d9db0d42c0eca890ef10945c31d1bf8a108.zip
Added(A)/Deleted(D) following books
A Electronic_Communication_by_D._Roddy/README.txt A Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/README.txt A Energy_Management_by_W._R._Murphy_and_G._A._Mckay/README.txt A Higher_Engineering_Mathematics_by_B._S._Grewal/README.txt D Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/.chapter2.ipynb.swp A Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/README.txt A SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap10_Curves_1.ipynb A SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap1_Introduction_1.ipynb A SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap2_Chain-Surveying_1.ipynb A SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap3_Compass-Traversing_1.ipynb A SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap5_Levelling_1.ipynb A SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap7_Computation-of-Area_1.ipynb A SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap8_Computation-of-Volume_1.ipynb A SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap9_Theodolite-Traversing_1.ipynb A SURVYNG_AND_LEVELLING__by_N.N.BASAK/chapter11_Tacheometric-Traversing_1.ipynb A SURVYNG_AND_LEVELLING__by_N.N.BASAK/screenshots/1.png A SURVYNG_AND_LEVELLING__by_N.N.BASAK/screenshots/2.png A SURVYNG_AND_LEVELLING__by_N.N.BASAK/screenshots/3.png A sample_notebooks/MeenaChandrupatla/Chapter2_Gases.ipynb A sample_notebooks/ShantanuBhosale/chapter40_1.ipynb
-rw-r--r--Electronic_Communication_by_D._Roddy/README.txt10
-rw-r--r--Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/README.txt10
-rw-r--r--Energy_Management_by_W._R._Murphy_and_G._A._Mckay/README.txt10
-rw-r--r--Higher_Engineering_Mathematics_by_B._S._Grewal/README.txt10
-rw-r--r--Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/.chapter2.ipynb.swpbin16384 -> 0 bytes
-rw-r--r--Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/README.txt10
-rw-r--r--SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap10_Curves_1.ipynb1023
-rw-r--r--SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap1_Introduction_1.ipynb1467
-rw-r--r--SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap2_Chain-Surveying_1.ipynb127
-rw-r--r--SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap3_Compass-Traversing_1.ipynb1695
-rw-r--r--SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap5_Levelling_1.ipynb903
-rw-r--r--SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap7_Computation-of-Area_1.ipynb802
-rw-r--r--SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap8_Computation-of-Volume_1.ipynb713
-rw-r--r--SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap9_Theodolite-Traversing_1.ipynb502
-rw-r--r--SURVYNG_AND_LEVELLING__by_N.N.BASAK/chapter11_Tacheometric-Traversing_1.ipynb616
-rw-r--r--SURVYNG_AND_LEVELLING__by_N.N.BASAK/screenshots/1.pngbin0 -> 28704 bytes
-rw-r--r--SURVYNG_AND_LEVELLING__by_N.N.BASAK/screenshots/2.pngbin0 -> 53085 bytes
-rw-r--r--SURVYNG_AND_LEVELLING__by_N.N.BASAK/screenshots/3.pngbin0 -> 55016 bytes
-rw-r--r--sample_notebooks/MeenaChandrupatla/Chapter2_Gases.ipynb187
-rw-r--r--sample_notebooks/ShantanuBhosale/chapter40_1.ipynb1989
20 files changed, 10074 insertions, 0 deletions
diff --git a/Electronic_Communication_by_D._Roddy/README.txt b/Electronic_Communication_by_D._Roddy/README.txt
new file mode 100644
index 00000000..55868ee9
--- /dev/null
+++ b/Electronic_Communication_by_D._Roddy/README.txt
@@ -0,0 +1,10 @@
+Contributed By: Sumadhuri Damerla
+Course: btech
+College/Institute/Organization: K.L.Univeristy
+Department/Designation: Electronics and Communications
+Book Title: Electronic Communication
+Author: D. Roddy
+Publisher: PHI Pvt. Ltd., New Delhi
+Year of publication: 2008
+Isbn: 9788120309845
+Edition: 4 \ No newline at end of file
diff --git a/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/README.txt b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/README.txt
new file mode 100644
index 00000000..cd5a90bd
--- /dev/null
+++ b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/README.txt
@@ -0,0 +1,10 @@
+Contributed By: Lalit Kumar
+Course: btech
+College/Institute/Organization: Growth Associates
+Department/Designation: Advance Earthing
+Book Title: Electronics Devices And Circuits
+Author: S. Salivahanan, N. S. Kumar And A. Vallavaraj
+Publisher: Tata McGraw - Hill Education
+Year of publication: 2008
+Isbn: 978-0-07-066049-6
+Edition: 2 \ No newline at end of file
diff --git a/Energy_Management_by_W._R._Murphy_and_G._A._Mckay/README.txt b/Energy_Management_by_W._R._Murphy_and_G._A._Mckay/README.txt
new file mode 100644
index 00000000..899af544
--- /dev/null
+++ b/Energy_Management_by_W._R._Murphy_and_G._A._Mckay/README.txt
@@ -0,0 +1,10 @@
+Contributed By: hari krishna
+Course: btech
+College/Institute/Organization: iitbombay
+Department/Designation: aerospace engnieering
+Book Title: Energy Management
+Author: W. R. Murphy and G. A. Mckay
+Publisher: Butterworth, Gurgaon Haryana
+Year of publication: 2009
+Isbn: 978-81-312-0738-3
+Edition: 2 \ No newline at end of file
diff --git a/Higher_Engineering_Mathematics_by_B._S._Grewal/README.txt b/Higher_Engineering_Mathematics_by_B._S._Grewal/README.txt
new file mode 100644
index 00000000..4ae62bf0
--- /dev/null
+++ b/Higher_Engineering_Mathematics_by_B._S._Grewal/README.txt
@@ -0,0 +1,10 @@
+Contributed By: Khushbu Pattani
+Course: bca
+College/Institute/Organization: Saraswati College, Dhoraji
+Department/Designation: BCA
+Book Title: Higher Engineering Mathematics
+Author: B. S. Grewal
+Publisher: Khanna Publishers, New Delhi
+Year of publication: 2007
+Isbn: 8174091955
+Edition: 40th \ No newline at end of file
diff --git a/Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/.chapter2.ipynb.swp b/Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/.chapter2.ipynb.swp
deleted file mode 100644
index 933e2d0c..00000000
--- a/Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/.chapter2.ipynb.swp
+++ /dev/null
Binary files differ
diff --git a/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/README.txt b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/README.txt
new file mode 100644
index 00000000..fefe088b
--- /dev/null
+++ b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/README.txt
@@ -0,0 +1,10 @@
+Contributed By: Mohd arif
+Course: btech
+College/Institute/Organization: UKTU
+Department/Designation: EC
+Book Title: Numerical Methods For Engineers
+Author: S. C. Chapra And R. P. Canale
+Publisher: McGraw Hill, New York
+Year of publication: 2006
+Isbn: 0071244298
+Edition: 5 \ No newline at end of file
diff --git a/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap10_Curves_1.ipynb b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap10_Curves_1.ipynb
new file mode 100644
index 00000000..b87fe16a
--- /dev/null
+++ b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap10_Curves_1.ipynb
@@ -0,0 +1,1023 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "# Chapter 10: Curves"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### ch-10 page 379 pb-1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('Tangent length =', 58.45305445925609)\n",
+ "('Length long of cord=', 114.35142994976763)\n",
+ "('Length of curve =', 115.19173063162576)\n",
+ "('chainage of commencement =', 1262.046945540744)\n",
+ "('chainage of tangency =', 1377.2386761723697)\n",
+ "('apex distance =', 6.143663587883047)\n",
+ "('versed sine of curve is', 6.009409798203436)\n"
+ ]
+ }
+ ],
+ "source": [
+ "#ch-10 page 379 pb-1\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "r=275;\n",
+ "t=24;\n",
+ "l=1320.5;\n",
+ "\n",
+ "tl=r*math.tan((t/2)*(math.pi/180));\n",
+ "print('Tangent length =',tl);\n",
+ "llc=2*r*math.sin((t/2)*(math.pi/180));\n",
+ "print('Length long of cord=',llc);\n",
+ "loc=(math.pi*r*t/180);\n",
+ "print('Length of curve =',loc)\n",
+ "coc=l-tl;\n",
+ "ct=coc+loc;\n",
+ "print('chainage of commencement =',coc);\n",
+ "print('chainage of tangency =',ct);\n",
+ "k=math.cos((t/2)*math.pi/180);\n",
+ "ad=r*((1/k)-1);\n",
+ "print('apex distance =',ad)\n",
+ "k1=math.cos((t/2)*(math.pi/180))\n",
+ "vsc=r*(1-k1);\n",
+ "print('versed sine of curve is',vsc);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### ch-10 page 379,380 pb-2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('radius of curve ', 573.0)\n",
+ "('Tangent length =', 153.5348872630333)\n",
+ "('Length of curve =', 300.02209841782525)\n",
+ "('Length long of cord=', 296.60662568748876)\n",
+ "('chainage of commencement =', 2606.4651127369666)\n",
+ "('chainage of tangency =', 2906.487211154792)\n",
+ "('length of each half =', 148.30331284374438)\n",
+ "('O30=', 18.738622298863106, 'O60=', 16.374481794326243, 'O90=', 12.412299602376265, 'O120=', 6.81817453294525, 'O148.3=', 0.0)\n"
+ ]
+ }
+ ],
+ "source": [
+ "#ch-10 page 379,380 pb-2\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "ac=45.5;cb=75.5;\n",
+ "#a\n",
+ "\n",
+ "t=cb-ac;\n",
+ "l1=1719;\n",
+ "l=2760;\n",
+ "\n",
+ "#b\n",
+ "r=l1/3;\n",
+ "print('radius of curve ',r);\n",
+ "\n",
+ "#c\n",
+ "tl=r*math.tan((t/2)*(math.pi/180));\n",
+ "print('Tangent length =',tl);\n",
+ "#d\n",
+ "loc=(math.pi*r*t/180);\n",
+ "print('Length of curve =',loc)\n",
+ "#e\n",
+ "llc=2*r*math.sin((t/2)*(math.pi/180));\n",
+ "print('Length long of cord=',llc);\n",
+ "\n",
+ "#f,g\n",
+ "coc=l-tl;\n",
+ "ct=coc+loc;\n",
+ "print('chainage of commencement =',coc);\n",
+ "print('chainage of tangency =',ct);\n",
+ "\n",
+ "#h\n",
+ "\n",
+ "half=0.5*llc;\n",
+ "print('length of each half =',half);\n",
+ "\n",
+ "ini=30;\n",
+ "\n",
+ "k=math.sqrt(r*r-(half*half));\n",
+ "o=r-k\n",
+ "k1=r-o;\n",
+ "O30=(math.sqrt(r*r-(ini*ini)))-k1;\n",
+ "O60=(math.sqrt(r*r-(2*ini*2*ini)))-k1;\n",
+ " \n",
+ "O90=(math.sqrt(r*r-(3*ini*3*ini)))-k1;\n",
+ "O120=(math.sqrt(r*r-(4*ini*4*ini)))-k1;\n",
+ "Oh=(math.sqrt(r*r-(half*half)))-k1;\n",
+ "\n",
+ "print('O30=',O30,'O60=',O60,'O90=',O90,'O120=',O120,'O148.3=',Oh);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### ch-10 page 381 pb-3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('Tangent length =', 150.2288093231531)\n",
+ "('Length of curve =', 278.55454861829503)\n",
+ "('chainage of T1=', 360.00119067684693)\n",
+ "('chainage of T2=', 638.555739295142)\n",
+ "('chainage covered=', 630.0011906768469)\n",
+ "('Length of final sub cord=', 8.55454861829503)\n",
+ "('first ofset=', 1.5)\n",
+ "('second ofset=', 3.0)\n",
+ "('tenth ofset=', 0.5496946010193738)\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "a=126.8;\n",
+ "t=180-a;\n",
+ "r=300;\n",
+ "#b\n",
+ "tl=r*math.tan((t/2)*(math.pi/180));\n",
+ "print('Tangent length =',tl);\n",
+ "\n",
+ "#c\n",
+ "loc=(math.pi*r*t/180);\n",
+ "print('Length of curve =',loc)\n",
+ "\n",
+ "#d\n",
+ "l=510.23;\n",
+ "ct1=l-tl;\n",
+ "ct2=ct1+loc;\n",
+ "\n",
+ "print('chainage of T1=',ct1);\n",
+ "print('chainage of T2=',ct2);\n",
+ "\n",
+ "#f\n",
+ "n=9;\n",
+ "b=30;\n",
+ "cc=ct1+270;\n",
+ "lfsc=ct2-cc;\n",
+ "print('chainage covered=',cc);\n",
+ "print('Length of final sub cord=',lfsc);\n",
+ "\n",
+ "O1=(b*b)/(2*r);\n",
+ "O2=(b*b)/r;\n",
+ "\n",
+ "O10=(lfsc*(b+lfsc))/(2*r);\n",
+ "\n",
+ "print('first ofset=',O1);\n",
+ "print('second ofset=',O2);\n",
+ "print('tenth ofset=',O10);\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### ch-10 page 382 pb-4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(165.95962740164575, 158.58327092428829)\n",
+ "('Radius R=', 143.72525333242524)\n",
+ "('Tangent length BT1=', 82.97981370082289)\n",
+ "('Tangent length CT1=', 67.02018629917711)\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "ab=30;bc=90;cd=140;\n",
+ "l1=250;l2=150;l3=325;\n",
+ "\n",
+ "abc=210-bc;\n",
+ "t1=0.5*abc;\n",
+ "bcd=270-cd;\n",
+ "t2=0.5*bcd;\n",
+ "t3=180-(t1+t2);\n",
+ "\n",
+ "\n",
+ "k=(math.sin(t2*(math.pi/180)))/(math.sin(t3*(math.pi/180)));\n",
+ "OB=l2*k;\n",
+ "k1=(math.sin(t1*(math.pi/180)))/(math.sin(t3*(math.pi/180)));\n",
+ "OC=l2*k1;\n",
+ "print(OB,OC);\n",
+ "R=OB*(math.sin(t1*(math.pi/180)));\n",
+ "print('Radius R=',R);\n",
+ "\n",
+ "BT1=OB*(math.cos(t1*(math.pi/180)));\n",
+ "CT1=OC*(math.cos(t2*(math.pi/180)));\n",
+ "\n",
+ "print('Tangent length BT1=',BT1);\n",
+ "print('Tangent length CT1=',CT1);\n",
+ "\n",
+ "\n",
+ " \n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### ch-10 page 383 pb-5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('R1=', 368.61561236693893)\n",
+ "('length of arc T1T2=', 209.43951023931953)\n",
+ "('length of arc T2T3=', 386.0133666034928)\n",
+ "('chainage of T1=', 792.8203230275509)\n",
+ "('chainage of T3=', 1388.2731998703632)\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "r=400;\n",
+ "t1=15;t2=30;t3=60;\n",
+ "ct=900;\n",
+ "l=320;\n",
+ "BT2=r*(math.tan((t1)*math.pi/180));\n",
+ "CT2=l-BT2;\n",
+ "\n",
+ "r1=(CT2)/(math.tan((t2)*math.pi/180));\n",
+ "\n",
+ "print('R1=',r1);\n",
+ "t1t2=(math.pi*r*t2)/(180);\n",
+ "\n",
+ "t2t3=(math.pi*r1*t3)/(180);\n",
+ "\n",
+ "print('length of arc T1T2=',t1t2);\n",
+ "print('length of arc T2T3=',t2t3);\n",
+ "\n",
+ "\n",
+ "ct1=ct-BT2;\n",
+ "ct3=ct1+t1t2+t2t3;\n",
+ "\n",
+ "print('chainage of T1=',ct1);\n",
+ "print('chainage of T3=',ct3);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### ch-10 page 384 pb-6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('R2=', 1092.8203230275515)\n",
+ "('length of arc T1T2=', 209.43951023931953)\n",
+ "('length of arc T2T3=', 572.1993830861634)\n",
+ "('chainage of point of reverse curvature =', 1709.4395102393196)\n",
+ "('chainage of finishing point T3=', 2281.638893325483)\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "r1=400;\n",
+ "t1=30;d=200;\n",
+ "ct1=1500;\n",
+ "k=1-(math.cos(t1*(math.pi/180)))\n",
+ "T1G=r1*(k);\n",
+ "\n",
+ "r2=(d-T1G)/k;\n",
+ "print('R2=',r2);\n",
+ "\n",
+ "t1t2=(math.pi*r1*t1)/180;\n",
+ "t2t3=(math.pi*r2*t1)/180;\n",
+ "print('length of arc T1T2=',t1t2);\n",
+ "print('length of arc T2T3=',t2t3);\n",
+ "\n",
+ "ct2=ct1+t1t2;\n",
+ "ct3=ct2+t2t3;\n",
+ "\n",
+ "print('chainage of point of reverse curvature =',ct2);\n",
+ "print('chainage of finishing point T3=',ct3);\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### ch-10 page 385 pb-7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('EF=', 228.7451827250347)\n",
+ "('chainage of T1=', 701.0877129159065)\n",
+ "('chainage of D=', 1015.2469782748858)\n",
+ "('chainage of T2', 1137.4200259144889)\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "a1=135;a2=145;\n",
+ "t1=180-a1;\n",
+ "t2=180-a2;\n",
+ "t3=180-(t1+t2);\n",
+ "r1=400;r2=200;\n",
+ "ct=1000;\n",
+ "\n",
+ "ED=r1*(math.tan((t1/2)*(math.pi/180)));\n",
+ "\n",
+ "FD=r2*(math.tan((t2/2)*(math.pi/180)));\n",
+ "\n",
+ "EF=ED+FD;\n",
+ "\n",
+ "print('EF=',EF);\n",
+ "\n",
+ "BE=EF*(math.sin(t2*(math.pi/180)))/(math.sin(t3*(math.pi/180)));\n",
+ "\n",
+ "BF=EF*(math.sin(t1*(math.pi/180)))/(math.sin(t3*(math.pi/180)))\n",
+ "\n",
+ "\n",
+ "ct1=ct-(BE+ED);\n",
+ "\n",
+ "cd=ct1+((math.pi*r1*t1)/(180));\n",
+ "\n",
+ "ct2=cd+((math.pi*r2*t2)/(180));\n",
+ "\n",
+ "print('chainage of T1=',ct1);\n",
+ "print('chainage of D=',cd);\n",
+ "print('chainage of T2',ct2);\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### ch-10 page 386 pb-8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('Radius R=', 272.7765415715475)\n",
+ "('angle Theta=', 109.0)\n",
+ "('curve length T1D=', 145.2058875651141)\n",
+ "('curve length DT2=', 192.814375291381)\n",
+ "('chainage of T1=', 1305.430383812096)\n",
+ "('chainage of T2=', 1643.4506466685912)\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "t1=30.5;\n",
+ "t2=40.5;\n",
+ "EF=175;\n",
+ "cb=1500;\n",
+ "\n",
+ "k1=math.tan((t1/2)*(math.pi/180));\n",
+ "k2=math.tan((t2/2)*(math.pi/180));\n",
+ "\n",
+ "r=EF/(k1+k2);\n",
+ "print('Radius R=',r);\n",
+ "\n",
+ "et1=r*k1;\n",
+ "ft2=r*k2;\n",
+ "\n",
+ "t3=180-(t1+t2);\n",
+ "print('angle Theta=',t3);\n",
+ "k3=(math.sin(t2*(math.pi/180)))/(math.sin(t3*(math.pi/180)));\n",
+ "k4=(math.sin(t1*(math.pi/180)))/(math.sin(t3*(math.pi/180)));\n",
+ "\n",
+ "be=EF*k3;\n",
+ "bf=EF*k4;\n",
+ "\n",
+ "t1d=(math.pi*r*t1)/180;\n",
+ "dt2=(math.pi*r*t2)/180;\n",
+ "\n",
+ "print('curve length T1D=',t1d);\n",
+ "print('curve length DT2=',dt2);\n",
+ "\n",
+ "ct1=cb-(be+et1);\n",
+ "\n",
+ "ct2=ct1+t1d+dt2;\n",
+ "print('chainage of T1=',ct1);\n",
+ "print('chainage of T2=',ct2)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### ch-10 page 387 pb-9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('theta 3=', 10.649036741314365)\n",
+ "('Radius R=', 829.124128893828)\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "t1=80-70;\n",
+ "l=50;\n",
+ "k=1/(math.cos(20*(math.pi/180)));\n",
+ "\n",
+ "k1=k*(math.sin(t1*(math.pi/180)));\n",
+ "t3=math.asin(k1);\n",
+ "t3=t3*(180/(math.pi));\n",
+ "print('theta 3=',t3);\n",
+ "\n",
+ "t3=180-t3;\n",
+ "t2=180-(t3+t1);\n",
+ "\n",
+ "r=l*(math.sin(t1*(math.pi/180)))/(math.sin(0.6*(math.pi/180)));\n",
+ "print('Radius R=',r);\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### ch-10 page 388 pb-10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('radius of circular curvature=', 402.713280728911)\n",
+ "('length of transistion curve =', 90.83333333333334)\n",
+ "('spiral angle=', 6.461627773592511)\n",
+ "('central angle=', 47.07674445281498)\n",
+ "('length of circular curve =', 330.88702808033025)\n",
+ "('shift of curve =', 0.8536568115234379)\n",
+ "('tangent length =', 278.4161466916694)\n",
+ "('chainage of 1st tangent point =', 871.5838533083306)\n",
+ "('chainage of 2nd tangent point =', 1384.1375480553274)\n",
+ "('chainage of 1st junction point =', 962.417186641664)\n",
+ "('chainage of 2nd junction point =', 1293.3042147219942)\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "sp=80;\n",
+ "v=(sp*1000)/(60*60);\n",
+ "cr=(1/8);\n",
+ "g=9.81;\n",
+ "a=60;\n",
+ "\n",
+ "#a\n",
+ "\n",
+ "r=(v*v)/(g*cr);\n",
+ "print('radius of circular curvature=',r);\n",
+ "\n",
+ "#b\n",
+ "k=0.3;\n",
+ "l=(v*v*v)/(k*r);\n",
+ "print('length of transistion curve =',l);\n",
+ "\n",
+ "sa=l/(2*r);\n",
+ "sa=sa*(180/(math.pi));\n",
+ "print('spiral angle=',sa);\n",
+ "ca=a-(2*sa);\n",
+ "print('central angle=',ca);\n",
+ "\n",
+ "lcc=(math.pi*r*ca)/180;\n",
+ "print('length of circular curve =',lcc);\n",
+ "\n",
+ "s=(l*l)/(24*r);\n",
+ "print('shift of curve =',s);\n",
+ "ag=a/2;\n",
+ "t=(r+s)*(math.tan(ag*(math.pi/180)))+(l/2);\n",
+ "print('tangent length =',t);\n",
+ "#c\n",
+ "cip=1150;\n",
+ "c1t=cip-t;\n",
+ "c1j=c1t+l;\n",
+ "c2j=c1j+lcc;\n",
+ "c2t=c2j+l;\n",
+ "\n",
+ "print('chainage of 1st tangent point =',c1t);\n",
+ "print('chainage of 2nd tangent point =',c2t);\n",
+ "\n",
+ "print('chainage of 1st junction point =',c1j);\n",
+ "print('chainage of 2nd junction point =',c2j);\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### ch-10 page 389 pb-11"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('radius =', 343.8)\n",
+ "('tangent length =', 108.39972361659453)\n",
+ "('curve length =', 210.01546889247766)\n",
+ "('chainage of 1st point =', 1471.6002763834056)\n",
+ "('chainage of 2nd point =', 1681.6157452758832)\n",
+ "('length of final sub chord =', 8.399723616594429)\n",
+ "('chainage covered=', 1660)\n",
+ "('length of final sub chord', 21.615745275883228)\n",
+ "('deflection angle for initial sub chord =', 43.52844633883164, 'min')\n",
+ "('deflection angle for full chord', 2.5910642019719075, 'min')\n",
+ "('deflection angle for final sub chord', 1.8669261261094798, 'min')\n",
+ "('total deflection angle=', 17.5)\n",
+ "('apex distance =', 16.6843132234107)\n",
+ "('versed sine of curve =', 15.91211233275958)\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "a=145;\n",
+ "cpi=1580;\n",
+ "de=5;\n",
+ "pi=30;\n",
+ "lct=0.00555;\n",
+ "\n",
+ "da=180-a;\n",
+ "\n",
+ "r=(1719)/5;\n",
+ "\n",
+ "print('radius =',r);\n",
+ "\n",
+ "#a\n",
+ "\n",
+ "tl=r*(math.tan((da/2)*(math.pi/180)));\n",
+ "print('tangent length =',tl);\n",
+ "\n",
+ "#b\n",
+ "\n",
+ "cl=(math.pi*r*da)/180;\n",
+ "print('curve length =',cl);\n",
+ "\n",
+ "#c\n",
+ "\n",
+ "c1t=cpi-tl;\n",
+ "print('chainage of 1st point =',c1t);\n",
+ "\n",
+ "#d\n",
+ "c2t=c1t+cl;\n",
+ "print('chainage of 2nd point =',c2t);\n",
+ "\n",
+ "#e\n",
+ "lisc=1480-c1t;\n",
+ "print('length of final sub chord =',lisc);\n",
+ "#f\n",
+ "n=6;\n",
+ "ini=30;\n",
+ "cc=1480+(n*30);\n",
+ "print('chainage covered=',cc);\n",
+ "#g\n",
+ "lfsc=c2t-cc;\n",
+ "print('length of final sub chord',lfsc);\n",
+ "#h\n",
+ "dasc=((c2t+100)*lisc)/(r);\n",
+ "print('deflection angle for initial sub chord =',dasc,'min');\n",
+ "#i\n",
+ "dafc=((c2t+100)*pi)/r;\n",
+ "print('deflection angle for full chord',dafc/60,'min');\n",
+ "#j\n",
+ "dafsc=((c2t+100)*lfsc)/r;\n",
+ "print('deflection angle for final sub chord',dafsc/60,'min');\n",
+ "\n",
+ "#k\n",
+ "\n",
+ "tda=da/2;\n",
+ "print('total deflection angle=',tda);\n",
+ "\n",
+ "\n",
+ "#l\n",
+ "k=1/(math.cos(tda*(math.pi/180)));\n",
+ "ad=r*(k-1);\n",
+ "print('apex distance =',ad);\n",
+ "\n",
+ "vs=r*(1-(math.cos(tda*(math.pi/180))));\n",
+ "print('versed sine of curve =',vs);\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### ch-10 page 391 pb-1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('length of vertical curve =', 240.0)\n",
+ "('chainage of A', 430.0)\n",
+ "('chainage of C', 670.0)\n",
+ "('Rl of A', 374.9)\n",
+ "('Rl of C', 374.66)\n",
+ "('Rl of E', 374.78)\n",
+ "('Rl of F', 375.14)\n",
+ "('tangent correction at the apex =', 0.36000000000001364)\n",
+ "('tangent correction at 1st,2nd,3rd,4th,5th,6th, points', 0.01, 0.04, 0.09, 0.16, 0.25, 0.36)\n",
+ "RL of the points on grade\n",
+ "(375.0, 375.1, 375.20000000000005, 375.30000000000007, 375.4000000000001, 375.5000000000001)\n",
+ "RL of the points on curve\n",
+ "(374.99, 375.06, 375.11000000000007, 375.14000000000004, 375.1500000000001, 375.1400000000001)\n",
+ "Rls of points on the grade right side\n",
+ "(375.36, 375.22, 375.08000000000004, 374.94000000000005, 374.80000000000007)\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "pi=20;\n",
+ "cb=550;\n",
+ "rlb=375.5;\n",
+ "g1=0.5;\n",
+ "g2=-0.7;\n",
+ "#a\n",
+ "vc=((g1-g2)*20)/0.1;\n",
+ "\n",
+ "print('length of vertical curve =',vc);\n",
+ "\n",
+ "#b,c\n",
+ "\n",
+ "ca=cb-(vc/2);\n",
+ "cc=ca+vc;\n",
+ "print('chainage of A',ca);\n",
+ "print('chainage of C',cc);\n",
+ "\n",
+ "#d,e,f,g\n",
+ "\n",
+ "rla=rlb-((g1*0.5*vc)/100);\n",
+ "rlc=rlb-((-g2*0.5*vc)/100);\n",
+ "rle=0.5*(rla+rlc);\n",
+ "rlf=0.5*(rlb+rle);\n",
+ "\n",
+ "print('Rl of A',rla);\n",
+ "print('Rl of C',rlc);\n",
+ "print('Rl of E',rle);\n",
+ "print('Rl of F',rlf);\n",
+ "#h\n",
+ "tc=rlb-rlf;\n",
+ "print('tangent correction at the apex =',tc);\n",
+ "\n",
+ "#i\n",
+ "tc1=((g1-g2)*(pi*pi))/(400*0.5*vc);\n",
+ "tc2=((g1-g2)*(2*pi*2*pi))/(400*0.5*vc);\n",
+ "tc3=((g1-g2)*(3*pi*3*pi))/(400*0.5*vc);\n",
+ "tc4=((g1-g2)*(4*pi*4*pi))/(400*0.5*vc);\n",
+ "tc5=((g1-g2)*(5*pi*5*pi))/(400*0.5*vc);\n",
+ "tc6=((g1-g2)*(6*pi*6*pi))/(400*0.5*vc);\n",
+ "print('tangent correction at 1st,2nd,3rd,4th,5th,6th, points',tc1,tc2,tc3,tc4,tc5,tc6);\n",
+ "\n",
+ "#j\n",
+ "rp=(g1*pi)/100;\n",
+ "\n",
+ "rl1=rla+rp;\n",
+ "rl2=rl1+rp;\n",
+ "rl3=rl2+rp;\n",
+ "rl4=rl3+rp;\n",
+ "rl5=rl4+rp;\n",
+ "rl6=rl5+rp;\n",
+ "print('RL of the points on grade');\n",
+ "print(rl1,rl2,rl3,rl4,rl5,rl6)\n",
+ "\n",
+ "#k\n",
+ "rlc1=rl1-tc1;\n",
+ "rlc2=rl2-(tc2);\n",
+ "rlc3=rl3-(tc3);\n",
+ "rlc4=rl4-(tc4);\n",
+ "rlc5=rl5-(tc5);\n",
+ "rlc6=rl6-(tc6);\n",
+ "\n",
+ "print('RL of the points on curve');\n",
+ "print(rlc1,rlc2,rlc3,rlc4,rlc5,rlc6);\n",
+ "\n",
+ "#l\n",
+ "\n",
+ "fp=0.14;\n",
+ "\n",
+ "rlg5=rlb-fp;\n",
+ "rlg4=rlg5-fp;\n",
+ "rlg3=rlg4-fp;\n",
+ "rlg2=rlg3-fp;\n",
+ "rlg1=rlg2-fp;\n",
+ "\n",
+ "print('Rls of points on the grade right side');\n",
+ "print(rlg5,rlg4,rlg3,rlg2,rlg1);\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### ch-10 page 393 pb-2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('length of vertical curve', 300.0)\n",
+ "('RL of A=', 252.0)\n",
+ "('RL of C=', 251.25)\n",
+ "('RL of E=', 251.625)\n",
+ "('RL of F=', 251.0625)\n",
+ "RL on the grade on the side AB \n",
+ "(251.7, 251.39999999999998, 251.09999999999997, 250.79999999999995)\n",
+ "RL on grade on side BC\n",
+ "(250.65, 250.8, 250.95000000000002, 251.10000000000002)\n",
+ "tangent correction from expression \n",
+ "(-0.0225, -0.09, -0.2025, -0.36)\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "cb=400;\n",
+ "rlb=250.5;\n",
+ "pi=30;\n",
+ "g1=-1.0;\n",
+ "g2=0.5;\n",
+ "g=0.1;\n",
+ "ga=20;\n",
+ "#a\n",
+ "vc=(g1-g2)/g;\n",
+ "vc=-vc*ga;\n",
+ "print('length of vertical curve',vc);\n",
+ "\n",
+ "#b,c\n",
+ "ca=cb-(0.5*vc);\n",
+ "cc=ca+vc;\n",
+ "\n",
+ "#d,e,f,g\n",
+ "\n",
+ "rla=rlb+((0.5*vc)/100);\n",
+ "\n",
+ "rlc=rlb+((0.5*0.5*vc)/100);\n",
+ "\n",
+ "rle=0.5*(rla+rlc);\n",
+ "\n",
+ "rlf=0.5*(rle+rlb);\n",
+ "\n",
+ "print('RL of A=',rla);\n",
+ "print('RL of C=',rlc);\n",
+ "print('RL of E=',rle);\n",
+ "print('RL of F=',rlf);\n",
+ "\n",
+ "#h\n",
+ "fp=pi/100;\n",
+ "\n",
+ "rl1=rla-fp;\n",
+ "rl2=rl1-fp;\n",
+ "rl3=rl2-fp;\n",
+ "rl4=rl3-fp;\n",
+ "print('RL on the grade on the side AB ');\n",
+ "print(rl1,rl2,rl3,rl4);\n",
+ "\n",
+ "#i\n",
+ "\n",
+ "rp=(0.5*pi)/100;\n",
+ "\n",
+ "rls4=rlb+rp\n",
+ "rls3=rls4+rp\n",
+ "rls2=rls3+rp\n",
+ "rls1=rls2+rp\n",
+ "\n",
+ "print('RL on grade on side BC');\n",
+ "print(rls4,rls3,rls2,rls1);\n",
+ "\n",
+ "#j\n",
+ "\n",
+ "y1=((g1-g2)*(pi*pi))/(cb*0.5*vc);\n",
+ "y2=((g1-g2)*(2*pi*2*pi))/(cb*0.5*vc);\n",
+ "y3=((g1-g2)*(3*pi*3*pi))/(cb*0.5*vc);\n",
+ "y4=((g1-g2)*(4*pi*4*pi))/(cb*0.5*vc);\n",
+ "\n",
+ "print('tangent correction from expression ');\n",
+ "print(y1,y2,y3,y4);\n",
+ "\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap1_Introduction_1.ipynb b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap1_Introduction_1.ipynb
new file mode 100644
index 00000000..a5f2c912
--- /dev/null
+++ b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap1_Introduction_1.ipynb
@@ -0,0 +1,1467 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "# Chapter 1: Introduction\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### Problem1, pg 25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "true length= 327.4905\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "\n",
+ "l=20; #chain length\n",
+ "e=0.03; #error\n",
+ "l1=l+e; #L'\n",
+ "ml=327; #measured length\n",
+ "truel=(l1/l)*(ml) #true length\n",
+ "print (\"true length=\",truel)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### Problem2, pg 25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "amount of error= 0.20083682008368697\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "\n",
+ "l1=20; #chain 1 length\n",
+ "e=0.05; #error\n",
+ "l11=l1+e; \n",
+ "ml1=1200; #measured lenght\n",
+ "tl=(l11/l1)*ml1; #true lenght of line\n",
+ "\n",
+ "l2=30; #chain 2 length\n",
+ "ml2=1195; #measured length\n",
+ "\n",
+ "l21=(tl/ml2)*l2; \n",
+ "ae=l21-l2; #amount of error\n",
+ "print('amount of error=',ae)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### Problem3, pg 25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "true length1= 901.35\n",
+ "true length 2= 678.3750000000001\n",
+ "true distance= 1579.7250000000001\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "\n",
+ "l1=20\n",
+ "e=(0.06/2) #consider mean elongation\n",
+ "l11=l1+e;\n",
+ "ml=900;\n",
+ "tl=(l11/l1)*ml;\n",
+ "print('true length1=',tl)\n",
+ "l2=20;\n",
+ "e2=(0.06+0.14)/2;\n",
+ "l21=20+e2;\n",
+ "ml2=1575-ml;\n",
+ "\n",
+ "tl2=(l21/l2)*ml2;\n",
+ "print('true length 2=',tl2)\n",
+ "td=tl+tl2;\n",
+ "print('true distance=',td)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### Problem4, pg26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "distance between stations on map= 35.0 centimeters\n",
+ "true distance on ground = 1750.0 meters\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "\n",
+ "s=100;\n",
+ "dsm=3500;\n",
+ "adsm=dsm/s;\n",
+ "\n",
+ "print('distance between stations on map=',adsm,'centimeters')\n",
+ "\n",
+ "actuals=50;\n",
+ "td=adsm*actuals;\n",
+ "\n",
+ "print('true distance on ground =',td,'meters')\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### Problem 5, pg 26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "actual area present= 132.01840894148586 square cm\n",
+ "true area= 212286.9217619987 square meters\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "\n",
+ "present=19.5\n",
+ "actual=20;\n",
+ "cm1=actual/present;\n",
+ "cm12=(actual*actual)/(present*present);\n",
+ "pm=125.5;\n",
+ "apm=pm*cm12;\n",
+ "print('actual area present=',apm,'square cm');\n",
+ "\n",
+ "cm=40;\n",
+ "cm2=cm*cm;\n",
+ "\n",
+ "area=cm2*apm;\n",
+ "scale=(20.05*20.05)/(20*20);\n",
+ "ta=scale*area;\n",
+ "print('true area=',ta,'square meters');\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### Problem 6, pg 27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " for n=1\n",
+ "the temperature correction is 0.00396 meters\n",
+ "the pull corretion is 0.002380952380952381 meters\n",
+ "the sag correction is -0.0026680499999999995 meters\n",
+ "the total correction is 0.0036729023809523816 meters\n",
+ "the true length is 780.0954954619046\n",
+ " for n=2\n",
+ "the temperature correction is 0.00396 meters\n",
+ "the pull corretion is 0.002380952380952381 meters\n",
+ "the sag correction is -0.0006670124999999999 meters\n",
+ "the total correction is 0.005673939880952382 meters\n",
+ "the true length is 780.1475224369049\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "L=30;\n",
+ "t0=20;\n",
+ "p0=10;\n",
+ "pm=15;\n",
+ "tm=32;\n",
+ "a=0.03;\n",
+ "al=11/(1000000);\n",
+ "E=2.1*(1000000);\n",
+ "w=0.693;\n",
+ "ml=780;\n",
+ "n=1;\n",
+ "print(' for n=1')\n",
+ "ct=al*L*(tm-t0);\n",
+ "print('the temperature correction is',ct,'meters');\n",
+ "\n",
+ "cp=(pm-p0)*L/(a*E);\n",
+ "print('the pull corretion is ',cp,' meters');\n",
+ "\n",
+ "cs=-L*w*w/(24*pm*pm*n*n);\n",
+ "print('the sag correction is ',cs,'meters');\n",
+ "\n",
+ "e=ct+cp+cs;\n",
+ "print('the total correction is ',e,'meters');\n",
+ "\n",
+ "l1=L+e;\n",
+ "\n",
+ "truelength=(l1/L)*ml;\n",
+ "print('the true length is ',truelength);\n",
+ "\n",
+ "n=2;\n",
+ "\n",
+ "print(' for n=2')\n",
+ "ct=al*L*(tm-t0);\n",
+ "print('the temperature correction is',ct,'meters');\n",
+ "\n",
+ "cp=(pm-p0)*L/(a*E);\n",
+ "print('the pull corretion is ',cp,' meters');\n",
+ "\n",
+ "cs=-L*w*w/(24*pm*pm*n*n);\n",
+ "print('the sag correction is ',cs,'meters');\n",
+ "\n",
+ "e=ct+cp+cs;\n",
+ "print('the total correction is ',e,'meters');\n",
+ "\n",
+ "l1=L+e;\n",
+ "\n",
+ "truelength=(l1/L)*ml;\n",
+ "print('the true length is ',truelength);\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### Problem 7, pg 28"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "the temperature correction is 0.0021999999999999997 meters\n",
+ "the pull corretion is -0.002380952380952381 meters\n",
+ "the sag correction is -0.0013333333333333335 meters\n",
+ "the total correction is -0.001514285714285715 meters\n",
+ "the horizontal distance is 19.998485714285714\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "L=20;\n",
+ "t0=20;\n",
+ "p0=15;\n",
+ "p=10;\n",
+ "tm=30;\n",
+ "a=0.02;\n",
+ "al=11/(1000000);\n",
+ "E=2.1*(1000000);\n",
+ "w=0.4;\n",
+ "\n",
+ "n=1;\n",
+ "ct=al*L*(tm-t0);\n",
+ "print('the temperature correction is',ct,'meters');\n",
+ "\n",
+ "cp=(p-p0)*L/(a*E);\n",
+ "print('the pull corretion is ',cp,' meters');\n",
+ "\n",
+ "cs=-L*w*w/(24*p*p*n*n);\n",
+ "print('the sag correction is ',cs,'meters');\n",
+ "\n",
+ "e=ct+cp+cs;\n",
+ "print('the total correction is ',e,'meters');\n",
+ "\n",
+ "hd=L+e;\n",
+ "\n",
+ "print('the horizontal distance is ',hd);\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### Problem 8, pg 29"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "for p=5 case\n",
+ "the temperature correction is 0.00165 meters\n",
+ "the pull corretion is 0.0 meters\n",
+ "the sag correction is -0.02178 meters\n",
+ "the total correction is -0.020130000000000002 meters\n",
+ "the horizontal distance is 29.97987\n",
+ "for p=11 case\n",
+ "the temperature correction is 0.00165 meters\n",
+ "the pull corretion is 0.004285714285714286 meters\n",
+ "the sag correction is -0.0045000000000000005 meters\n",
+ "the total correction is 0.001435714285714285 meters\n",
+ "the horizontal distance is 30.001435714285716\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "L=30;\n",
+ "t0=20;\n",
+ "p0=5;\n",
+ "tm=25;\n",
+ "a=0.02;\n",
+ "al=11/(1000000);\n",
+ "E=2.1*(1000000);\n",
+ "float(E);\n",
+ "float(al);\n",
+ "w1=22;\n",
+ "w=0.66;\n",
+ "n=1;\n",
+ "\n",
+ "p=5;\n",
+ "print('for p=5 case');\n",
+ "\n",
+ "ct=al*L*(tm-t0);\n",
+ "float(ct);\n",
+ "print('the temperature correction is',ct,'meters');\n",
+ "\n",
+ "cp=(p-p0)*L/(a*E);\n",
+ "print('the pull corretion is ',cp,' meters');\n",
+ "\n",
+ "cs=-L*w*w/(24*p*p*n*n);\n",
+ "print('the sag correction is ',cs,'meters');\n",
+ "\n",
+ "e=ct+cp+cs;\n",
+ "print('the total correction is ',e,'meters');\n",
+ "\n",
+ "hd=L+e;\n",
+ "\n",
+ "print('the horizontal distance is ',hd);\n",
+ "\n",
+ "p=11;\n",
+ "print('for p=11 case');\n",
+ "\n",
+ "ct=al*L*(tm-t0);\n",
+ "print('the temperature correction is',ct,'meters');\n",
+ "\n",
+ "cp=(p-p0)*L/(a*E);\n",
+ "print('the pull corretion is ',cp,' meters');\n",
+ "\n",
+ "cs=-L*w*w/(24*p*p*n*n);\n",
+ "print('the sag correction is ',cs,'meters');\n",
+ "\n",
+ "e=ct+cp+cs;\n",
+ "print('the total correction is ',e,'meters');\n",
+ "\n",
+ "hd=L+e;\n",
+ "\n",
+ "print('the horizontal distance is ',hd);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### Problem 9, pg 30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "the temperature correction is 0.00264 meters\n",
+ "the pull corretion is 0.003492063492063492 meters\n",
+ "the sag correction is -0.001171875 meters\n",
+ "the total correction is 0.004960188492063492 meters\n",
+ "the true length is 680.1686464087301\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "\n",
+ "L=20;\n",
+ "t0=20;\n",
+ "p0=5;\n",
+ "pm=16;\n",
+ "tm=32;\n",
+ "a=0.03;\n",
+ "al=11/(1000000);\n",
+ "E=2.1*(1000000);\n",
+ "w=0.6;\n",
+ "ml=680;\n",
+ "n=1;\n",
+ "\n",
+ "\n",
+ "ct=al*L*(tm-t0);\n",
+ "print('the temperature correction is',ct,'meters');\n",
+ "\n",
+ "cp=(pm-p0)*L/(a*E);\n",
+ "print('the pull corretion is ',cp,' meters');\n",
+ "\n",
+ "cs=-L*w*w/(24*pm*pm*n*n);\n",
+ "print('the sag correction is ',cs,'meters');\n",
+ "\n",
+ "e=ct+cp+cs;\n",
+ "print('the total correction is ',e,'meters');\n",
+ "\n",
+ "l1=L+e;\n",
+ "\n",
+ "truelength=(l1/L)*ml;\n",
+ "print('the true length is ',truelength);"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### Problem 10, pg 31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "the temperature correction is 0.0061600000000000005 meters\n",
+ "the pull corretion is -0.0033333333333333335 meters\n",
+ "the sag correction is -0.008979994074074075 meters\n",
+ "the total correction is -0.006153327407407408 meters\n",
+ "the correctt distance is 679.8505620486773\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "\n",
+ "\n",
+ "L=28;\n",
+ "t0=20;\n",
+ "p0=10;\n",
+ "pm=5;\n",
+ "tm=40;\n",
+ "a=0.02;\n",
+ "al=11/(1000000);\n",
+ "E=2.1*(1000000);\n",
+ "w1=470;\n",
+ "ml=680;\n",
+ "n=1;\n",
+ "\n",
+ "w=(470*28)/30;\n",
+ "w=w/1000;\n",
+ "\n",
+ "ct=al*L*(tm-t0);\n",
+ "print('the temperature correction is',ct,'meters');\n",
+ "\n",
+ "cp=(pm-p0)*L/(a*E);\n",
+ "print('the pull corretion is ',cp,' meters');\n",
+ "\n",
+ "cs=-L*w*w/(24*pm*pm*n*n);\n",
+ "print('the sag correction is ',cs,'meters');\n",
+ "\n",
+ "e=ct+cp+cs;\n",
+ "print('the total correction is ',e,'meters');\n",
+ "\n",
+ "l1=L+e;\n",
+ "\n",
+ "dis=(l1/L)*ml;\n",
+ "print('the correctt distance is ',dis);\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### Problem 11, pg32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 34,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "from fig p.1.1\n",
+ "87\n",
+ " the value of EF is 135.34797293685585 meters\n",
+ " the value of DF is 103.68256255569626 meters\n",
+ " the value of EG is 205.85953773426738 meters\n"
+ ]
+ }
+ ],
+ "source": [
+ "#ch-1, problems on obstacles in chaining, page-32,pb-1\n",
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math;\n",
+ "\n",
+ "print('from fig p.1.1')\n",
+ "DE=87;\n",
+ "print(DE);\n",
+ "EF=float(87/(math.cos(50*(math.pi/180))))\n",
+ "\n",
+ "DF=87*(math.tan(50*(math.pi/180)))\n",
+ "\n",
+ "EG=87/(math.cos(65*(math.pi/180)))\n",
+ "\n",
+ "\n",
+ "print(' the value of EF is ',EF,'meters');\n",
+ "\n",
+ "print(' the value of DF is ',DF,'meters');\n",
+ "\n",
+ "print(' the value of EG is ',EG,'meters'); \n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### Problem 12, pg 33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "width of river is 227.23577649516116 meters\n"
+ ]
+ }
+ ],
+ "source": [
+ "#ch-1 page-33, pb-2\n",
+ "import math\n",
+ "\n",
+ "\n",
+ "x=(380.0285/2.5754);\n",
+ "\n",
+ "PA=x;\n",
+ "AQ=367-x;\n",
+ "al=180-(36.45+86.55);\n",
+ "bt=86.35-40-35;\n",
+ "\n",
+ "TA=AQ*math.tan(46*(math.pi/180));\n",
+ "\n",
+ "print('width of river is ',TA,'meters');\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Problem 13, pg 34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "width of river is 316.63370603933663 meters\n"
+ ]
+ }
+ ],
+ "source": [
+ "# cha-1 page-34 pb-3\n",
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "x=(849.224)/2.6196\n",
+ "\n",
+ "\n",
+ "\n",
+ "PA=x;\n",
+ "AQ=517-x;\n",
+ "al=78-33.67;\n",
+ "bt=180-(43.333+78);\n",
+ "\n",
+ "TA=AQ*math.tan(58.66*(math.pi/180));\n",
+ "\n",
+ "print('width of river is ',TA,'meters');\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### Problem 14, pg35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 37,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "chainage of C is 277.08203230275507 meters\n"
+ ]
+ }
+ ],
+ "source": [
+ "# cha-1 page-34,35 pb-4\n",
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "al=288.5-(48.5+180);\n",
+ "bt=90-48.5;\n",
+ "BAC=360-41.5;\n",
+ "\n",
+ "AC=40*(math.tan(60*(math.pi/180)));\n",
+ "\n",
+ "A=207.8;\n",
+ "\n",
+ "C=A+AC;\n",
+ "\n",
+ "print('chainage of C is',C,'meters');\n",
+ " \n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### Problem 15, pg36"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 38,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "width of the river is 74.99999999999999 meters\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "\n",
+ "import math\n",
+ "BB=287.25;\n",
+ "MC=62.25;\n",
+ "al=(BB-180)-MC;\n",
+ "BM=75;\n",
+ "BC=BM*(math.tan(45*(math.pi/180)))\n",
+ "\n",
+ "print('width of the river is ',BC,'meters')\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### Problem 16, pg 36"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 39,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "AB= 241.8677324489565\n"
+ ]
+ }
+ ],
+ "source": [
+ "#CH-1 PAGE-36 PB-6;\n",
+ "\n",
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "\n",
+ "AC=250;\n",
+ "AD=300;\n",
+ "DB=150;\n",
+ "BC=100;\n",
+ "DC=DB+BC;\n",
+ "\n",
+ "cosal=(AD*AD+DC*DC-(AC*AC))/(2*AD*DC);\n",
+ "\n",
+ "AB=math.sqrt((AD*AD+DB*DB)-2*(AD*DB*cosal));\n",
+ "\n",
+ "print('AB=',AB);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### Problem 17, pg37"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 40,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "al 63.43494882292201\n",
+ "bt= 26.56505117707799\n",
+ "k= 0.5\n",
+ "chinage of c is 375.5 meters\n"
+ ]
+ }
+ ],
+ "source": [
+ "# ch-1 page-36,37 pb-7\n",
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "BE=50;\n",
+ "AB=25;\n",
+ "AEC=157.5-67.5;\n",
+ "\n",
+ "al=math.atan2(BE,AB);\n",
+ "al=al*(180/math.pi);\n",
+ "\n",
+ "print('al',al)\n",
+ "\n",
+ "bt=90-al;\n",
+ "print('bt=',bt);\n",
+ "k=(math.tan(bt*math.pi/180))\n",
+ "\n",
+ "print('k=',k)\n",
+ "BC=BE/k;\n",
+ "C=275.5+BC;\n",
+ "print('chinage of c is',C,'meters')\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### Problem 18, pg38"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 41,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "measured length is 79.71623152917896 meters\n",
+ "true length is 79.61658623976749 meters\n"
+ ]
+ }
+ ],
+ "source": [
+ "#ch-1 page -37,38 pb-1\n",
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "\n",
+ "a=17.5;\n",
+ "b=19.3;\n",
+ "c=17.8;\n",
+ "d=13.6;\n",
+ "e=12.9;\n",
+ "\n",
+ "da=2.35;\n",
+ "db=4.20;\n",
+ "dc=2.95;\n",
+ "dd=1.65;\n",
+ "de=3.25;\n",
+ "\n",
+ "AB=math.sqrt((a*a)-(da*da));\n",
+ "BC=math.sqrt((b*b)-(db*db));\n",
+ "CD=math.sqrt((c*c)-(dc*dc));\n",
+ "DE=math.sqrt((d*d)-(dd*dd));\n",
+ "EF=math.sqrt((e*e)-(de*de));\n",
+ "\n",
+ "total=AB+BC+CD+DE+EF;\n",
+ "print('measured length is ',total,'meters');\n",
+ "\n",
+ "e=0.025;\n",
+ "l=20;\n",
+ "l1=l-e;\n",
+ "ml=total;\n",
+ "\n",
+ "tl=(l1/l)*ml;\n",
+ "\n",
+ "print('true length is ',tl,'meters');\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### Problem 19, pg 38"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 42,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "measured length is 531.2592044589876 meters\n",
+ "true length is 532.587352470135 meters\n"
+ ]
+ }
+ ],
+ "source": [
+ "#ch-1 page -38 pb-2\n",
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "ab=550;\n",
+ "AB=ab*(math.cos(15*(math.pi/180)));\n",
+ "\n",
+ "l=20;\n",
+ "e=0.05;\n",
+ "l1=l+e;\n",
+ "ml=AB;\n",
+ "print('measured length is ',ml,'meters');\n",
+ "\n",
+ "tl=(l1/l)*ml;\n",
+ "\n",
+ "print('true length is ',tl,'meters');\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### Problem 20, pg39"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 43,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "horizontal distance 1 is 275.74617084341827 meters\n",
+ "horizontal distance 2 is 278.61041325879694 meters\n",
+ "horizontal distance 3 is 279.8856909525744 meters\n"
+ ]
+ }
+ ],
+ "source": [
+ "#ch-1 page -38,39 pb-3\n",
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "ab=280;\n",
+ "\n",
+ "AB1=ab*(math.cos(10*(math.pi/180)));\n",
+ "\n",
+ "print('horizontal distance 1 is ',AB1,'meters');\n",
+ "\n",
+ "cosal=(10/(math.sqrt(101)));\n",
+ "\n",
+ "AB2=ab*cosal;\n",
+ "\n",
+ "print('horizontal distance 2 is ',AB2,'meters');\n",
+ "\n",
+ "bb=8;\n",
+ "AB3=math.sqrt(ab*ab-(bb*bb));\n",
+ "\n",
+ "print('horizontal distance 3 is ',AB3,'meters');\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### Problem 21, pg40"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 44,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "measured length is 101.35201880331583 meters\n",
+ "true horizontal distance is 101.26755878764641 meters\n"
+ ]
+ }
+ ],
+ "source": [
+ "#ch-1 page -39,40 pb-4\n",
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "a=28.7;\n",
+ "b=23.4;\n",
+ "c=20.9;\n",
+ "d=29.6;\n",
+ "\n",
+ "ag=5;\n",
+ "bg=7;\n",
+ "cg=10;\n",
+ "dg=12;\n",
+ "\n",
+ "AB=a*(math.cos(ag*(math.pi/180)));\n",
+ "\n",
+ "BC=b*(math.cos(bg*(math.pi/180)));\n",
+ "\n",
+ "CD=c*(math.cos(cg*(math.pi/180)));\n",
+ "\n",
+ "DE=d*(math.cos(dg*(math.pi/180)));\n",
+ "\n",
+ "total=AB+BC+CD+DE;\n",
+ "\n",
+ "ml=total;\n",
+ "\n",
+ "print('measured length is ',ml,'meters');\n",
+ "\n",
+ "l=30;\n",
+ "e=0.025;\n",
+ "l1=l-e;\n",
+ "\n",
+ "tl=(l1/l)*ml;\n",
+ "\n",
+ "print('true horizontal distance is ',tl,'meters');\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### Problem 22, pg 40"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 45,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "theta1= 30.009552668941378\n",
+ "theta2= 106 degrees 32.534711618974654 minutes\n"
+ ]
+ }
+ ],
+ "source": [
+ "#ch-1 page -40 pb-1\n",
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "\n",
+ "a=23;\n",
+ "b=16.5;\n",
+ "c=12;\n",
+ "\n",
+ "\n",
+ "t1=math.acos((a*a+b*b-(c*c))/(2*a*b));\n",
+ "t1=t1*(180/math.pi);\n",
+ "\n",
+ "print('theta1=',t1);\n",
+ "\n",
+ "t2=math.acos((c*c+b*b-(a*a))/(2*c*b));\n",
+ "t2=t2*(180/math.pi);\n",
+ "dg=int(t2)\n",
+ "mi=t2-int(t2)\n",
+ "mi=(mi*60);\n",
+ "print('theta2=',dg,'degrees',mi,'minutes');\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### Problem 23, pg 41"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 46,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "theta1= 5 degrees 46.94403663966165 minutes\n",
+ "theta2= 165 degrees 26.421472313304548 minutes\n"
+ ]
+ }
+ ],
+ "source": [
+ "#ch-1 page -40,41 pb-2\n",
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "\n",
+ "a=257;\n",
+ "b=156;\n",
+ "c=103;\n",
+ "\n",
+ "\n",
+ "t1=math.acos((a*a+b*b-(c*c))/(2*a*b));\n",
+ "t1=t1*(180/math.pi);\n",
+ "\n",
+ "dg1=int(t1)\n",
+ "mi1=t1-int(t1)\n",
+ "mi1=(mi1*60);\n",
+ "print('theta1=',dg1,'degrees',mi1,'minutes');\n",
+ "\n",
+ "\n",
+ "t2=math.acos((c*c+b*b-(a*a))/(2*c*b));\n",
+ "t2=t2*(180/math.pi);\n",
+ "dg=int(t2)\n",
+ "mi=t2-int(t2)\n",
+ "mi=(mi*60);\n",
+ "print('theta2=',dg,'degrees',mi,'minutes');\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### Problem 24, pg 42"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 47,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "RF is 0.025\n",
+ "length of scale is 15.000000000000002 meters\n"
+ ]
+ }
+ ],
+ "source": [
+ "#CH-1 PAGE-42 PB-1;\n",
+ "\n",
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "\n",
+ "sc=100;\n",
+ "a=2.5;\n",
+ "m=6;\n",
+ "\n",
+ "RF=(a/sc);\n",
+ "\n",
+ "print('RF is ',RF);\n",
+ "\n",
+ "length=RF*m*sc;\n",
+ "\n",
+ "print('length of scale is ',length,'meters');\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### Problem 25, pg 42"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 48,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "RF= 0.0002\n",
+ "length of final scale is 700.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "#CH-1 PAGE-42,43 PB-2;\n",
+ "\n",
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "\n",
+ "sc=100;\n",
+ "area=93750;\n",
+ "l=6.0;\n",
+ "b=6.25;\n",
+ "\n",
+ "cm2=(area)/(l*b);\n",
+ "\n",
+ "cm=math.sqrt(cm2);\n",
+ "RF=1/(sc*cm);\n",
+ "\n",
+ "print('RF=',RF);\n",
+ "\n",
+ "leng=14;\n",
+ "leng=leng*cm;\n",
+ "\n",
+ "print('length of final scale is ',leng);\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Problem 26, pg 43"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 49,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "RF= 0.00025\n",
+ "length of scale is 600.0 meters\n"
+ ]
+ }
+ ],
+ "source": [
+ "#CH-1 PAGE-43 PB-3;\n",
+ "\n",
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "l=1.2;\n",
+ "al=30;\n",
+ "al=al/100;\n",
+ "sc=1000;\n",
+ "\n",
+ "\n",
+ "RF=(al)/(sc*l);\n",
+ "print('RF=',RF);\n",
+ "\n",
+ "\n",
+ "cm1=(1/RF)/(100);\n",
+ "\n",
+ "lsc=15;\n",
+ "cm15=lsc*cm1;\n",
+ "\n",
+ "print('length of scale is ',cm15,'meters');\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### Problem 27, pg44"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 50,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "1cm= 30.0\n",
+ "RF= 0.03333333333333333\n",
+ "length of scale is 13.333333333333334 CENTIMETERS\n"
+ ]
+ }
+ ],
+ "source": [
+ "#CH-1 PAGE-44 PB-4;\n",
+ "\n",
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "\n",
+ "sc=100;\n",
+ "hect=10000;\n",
+ "area=0.45*hect;\n",
+ "\n",
+ "cm1=(area)/5;\n",
+ "cm=math.sqrt(cm1);\n",
+ "\n",
+ "print('1cm=',cm);\n",
+ "RF=1/(cm);\n",
+ "print('RF=',RF);\n",
+ "\n",
+ "\n",
+ "maxl=400;\n",
+ "\n",
+ "los=(RF*maxl);\n",
+ "\n",
+ "print('length of scale is',los,'CENTIMETERS');\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap2_Chain-Surveying_1.ipynb b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap2_Chain-Surveying_1.ipynb
new file mode 100644
index 00000000..e3e0c595
--- /dev/null
+++ b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap2_Chain-Surveying_1.ipynb
@@ -0,0 +1,127 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "# Chapter 2: Chain Surveying"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### pg-56, pb-1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('max length of offset should be', 6.8842279474019135, 'meters')\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "ag=5;\n",
+ "giv=0.03;\n",
+ "\n",
+ "L=20;\n",
+ "l=(giv*L/(math.sin(ag*math.pi/180)));\n",
+ "\n",
+ "\n",
+ "AB=l;\n",
+ "\n",
+ "BC=AB*(math.sin(ag*(math.pi/180)));\n",
+ "BC=BC/20;\n",
+ "\n",
+ "print('max length of offset should be',l,'meters');\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### ch-2 page-56, pb-2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('required displacement perpendicular to chain is', 0.0020556978681392835, 'meters')\n",
+ "('displacement parallel ot chain is', 0.07850393436441575, 'meters')\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "\n",
+ "AD=AB=15;\n",
+ "ag=3;\n",
+ "AC=15*(math.cos(ag*(math.pi/180)))\n",
+ "\n",
+ "CD=AB-AC\n",
+ "sc=10;\n",
+ "\n",
+ "CD=CD/sc;\n",
+ "\n",
+ "print('required displacement perpendicular to chain is',CD,'meters');\n",
+ "\n",
+ "\n",
+ "BC=AB*(math.sin(ag*(math.pi/180)));\n",
+ "\n",
+ "BC=BC/sc;\n",
+ "print('displacement parallel ot chain is',BC,'meters');\n",
+ "\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap3_Compass-Traversing_1.ipynb b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap3_Compass-Traversing_1.ipynb
new file mode 100644
index 00000000..af93c556
--- /dev/null
+++ b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap3_Compass-Traversing_1.ipynb
@@ -0,0 +1,1695 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "# Chapter 3: Compass Traversing"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### chapter 3, section 3.10, pg85, problem 1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "N 45 degrees 30.0 minutes E\n",
+ "S 54 degrees 15.0 minutes E\n",
+ "S 42 degrees 15.0 minutes W\n",
+ "N 39 degrees 30.0 minutes W\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "#(a)\n",
+ "WCB_AB=45+(30/60)\n",
+ "QB_AB=WCB_AB\n",
+ "mins=(QB_AB-int(QB_AB))*60\n",
+ "deg=int(QB_AB)\n",
+ "print \"N\",deg,\"degrees\",mins,\"minutes E\"\n",
+ " \n",
+ "#(b)\n",
+ "WCB_BC=125+(45/60)\n",
+ "QB_BC=180-WCB_BC\n",
+ "mins=(QB_BC-int(QB_BC))*60\n",
+ "deg=int(QB_BC)\n",
+ "print \"S\",deg,\"degrees\",mins,\"minutes E\"\n",
+ "\n",
+ "#(c)\n",
+ "WCB_CD=222+(15/60)\n",
+ "QB_CD=WCB_CD-180\n",
+ "deg=int(QB_CD)\n",
+ "mins=(QB_CD-deg)*60\n",
+ "print \"S\",deg,\"degrees\",mins,\"minutes W\"\n",
+ "\n",
+ "#(d)\n",
+ "WCB_DE=320+(30/60)\n",
+ "QB_DE=360-WCB_DE\n",
+ "deg=int(QB_DE)\n",
+ "mins=(QB_DE-deg)*60\n",
+ "print \"N\",deg,\"degrees\",mins,\"minutes W\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### chapter 3,section 3.10,problem 2,pg 85"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "216 degrees 30.0 minutes\n",
+ "136 degrees 30.0 minutes\n",
+ "26 degrees 45.0 minutes\n",
+ "319 degrees 45.0 minutes\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "#(a)\n",
+ "QB_AB=36+(30/60)\n",
+ "WCB_AB=180+QB_AB\n",
+ "mins=(WCB_AB-int(WCB_AB))*60\n",
+ "deg=int(WCB_AB)\n",
+ "print deg,\"degrees\",mins,\"minutes\"\n",
+ " \n",
+ "#(b)\n",
+ "QB_BC=43+(30/60)\n",
+ "WCB_BC=180-QB_BC\n",
+ "mins=(WCB_BC-int(WCB_BC))*60\n",
+ "deg=int(WCB_BC)\n",
+ "print deg,\"degrees\",mins,\"minutes\"\n",
+ "\n",
+ "\n",
+ "#(c)\n",
+ "QB_CD=26+(45/60)\n",
+ "WCB_CD=QB_CD\n",
+ "mins=(WCB_CD-int(WCB_CD))*60\n",
+ "deg=int(WCB_CD)\n",
+ "print deg,\"degrees\",mins,\"minutes\"\n",
+ "\n",
+ "#(d)\n",
+ "QB_DE=40+(15/60)\n",
+ "WCB_DE=360-QB_DE\n",
+ "mins=(WCB_DE-int(WCB_DE))*60\n",
+ "deg=int(WCB_DE)\n",
+ "print deg,\"degrees\",mins,\"minutes\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### chapter 3,section 3.11,problem 1,pg 85"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "130 degrees 30.0 minutes\n",
+ "325 degrees 15.0 minutes\n",
+ "30 degrees 30.0 minutes\n",
+ "240 degrees 45.0 minutes\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "#(a)\n",
+ "FB_AB=310+(30/60)\n",
+ "BB_AB=FB_AB-180\n",
+ "mins=(BB_AB-int(BB_AB))*60\n",
+ "deg=int(BB_AB)\n",
+ "print deg,\"degrees\",mins,\"minutes\"\n",
+ " \n",
+ "#(b)\n",
+ "FB_BC=145+(15/60)\n",
+ "BB_BC=FB_BC+180\n",
+ "mins=(BB_BC-int(BB_BC))*60\n",
+ "deg=int(BB_BC)\n",
+ "print deg,\"degrees\",mins,\"minutes\"\n",
+ "\n",
+ "#(c)\n",
+ "FB_CD=210+(30/60)\n",
+ "BB_CD=FB_CD-180\n",
+ "mins=(BB_CD-int(BB_CD))*60\n",
+ "deg=int(BB_CD)\n",
+ "print deg,\"degrees\",mins,\"minutes\"\n",
+ "#(d)\n",
+ "FB_DE=60+(45/60)\n",
+ "BB_DE=FB_DE+180\n",
+ "mins=(BB_DE-int(BB_DE))*60\n",
+ "deg=int(BB_DE)\n",
+ "print deg,\"degrees\",mins,\"minutes\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### chapter 3,section 3.11,problem 2,pg 86"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "N 30 degrees 30.0 minutes W\n",
+ "S 40 degrees 30.0 minutes E\n",
+ "N 60 degrees 15.0 minutes E\n",
+ "S 45 degrees 30.0 minutes W\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "#(a)\n",
+ "FB_AB=30+(30/60)\n",
+ "BB_AB=FB_AB\n",
+ "mins=(BB_AB-int(BB_AB))*60\n",
+ "deg=int(BB_AB)\n",
+ "print \"N\",deg,\"degrees\",mins,\"minutes W\"\n",
+ "\n",
+ "#(b)\n",
+ "FB_AB=40+(30/60)\n",
+ "BB_AB=FB_AB\n",
+ "mins=(BB_AB-int(BB_AB))*60\n",
+ "deg=int(BB_AB)\n",
+ "print \"S\",deg,\"degrees\",mins,\"minutes E\"\n",
+ "\n",
+ "#(c)\n",
+ "FB_AB=60+(15/60)\n",
+ "BB_AB=FB_AB\n",
+ "mins=(BB_AB-int(BB_AB))*60\n",
+ "deg=int(BB_AB)\n",
+ "print \"N\",deg,\"degrees\",mins,\"minutes E\"\n",
+ "\n",
+ "#(d)\n",
+ "FB_AB=45+(30/60)\n",
+ "BB_AB=FB_AB\n",
+ "mins=(BB_AB-int(BB_AB))*60\n",
+ "deg=int(BB_AB)\n",
+ "print \"S\",deg,\"degrees\",mins,\"minutes W\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### chapter 3,section 3.11,problem 3,pg 86"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "220 degrees 30.0 minutes\n",
+ "130 degrees 45.0 minutes\n",
+ "325 degrees 45.0 minutes\n",
+ "35 degrees 30.0 minutes\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "#(a)\n",
+ "BB_AB=40+(30/60)\n",
+ "FB_AB=BB_AB+180\n",
+ "mins=(FB_AB-int(FB_AB))*60\n",
+ "deg=int(FB_AB)\n",
+ "print deg,\"degrees\",mins,\"minutes\"\n",
+ " \n",
+ "#(b)\n",
+ "BB_BC=310+(45/60)\n",
+ "FB_BC=BB_BC-180\n",
+ "mins=(FB_BC-int(FB_BC))*60\n",
+ "deg=int(FB_BC)\n",
+ "print deg,\"degrees\",mins,\"minutes\"\n",
+ " \n",
+ "\n",
+ "#(c)\n",
+ "BB_CD=145+(45/60)\n",
+ "FB_CD=BB_CD+180\n",
+ "mins=(FB_CD-int(FB_CD))*60\n",
+ "deg=int(FB_CD)\n",
+ "print deg,\"degrees\",mins,\"minutes\"\n",
+ " \n",
+ "\n",
+ "#(d)\n",
+ "BB_DE=215+(30/60)\n",
+ "FB_DE=BB_DE-180\n",
+ "mins=(FB_DE-int(FB_DE))*60\n",
+ "deg=int(FB_DE)\n",
+ "print deg,\"degrees\",mins,\"minutes\"\n",
+ " \n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### chapter 3,section 3.11,problem 4,pg 86"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "S 30 degrees 30.0 minutes E\n",
+ "N 40 degrees 15.0 minutes W\n",
+ "S 60 degrees 45.0 minutes W\n",
+ "N 45 degrees 30.0 minutes E\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "\n",
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "#(a)\n",
+ "BB_AB=30+(30/60)\n",
+ "FB_AB=BB_AB\n",
+ "mins=(FB_AB-int(FB_AB))*60\n",
+ "deg=int(FB_AB)\n",
+ "print \"S\",deg,\"degrees\",mins,\"minutes E\"\n",
+ "\n",
+ "#(b)\n",
+ "BB_BC=40+(15/60)\n",
+ "FB_BC=BB_BC\n",
+ "mins=(FB_BC-int(FB_BC))*60\n",
+ "deg=int(FB_BC)\n",
+ "print \"N\",deg,\"degrees\",mins,\"minutes W\"\n",
+ "\n",
+ "#(c)\n",
+ "BB_CD=60+(45/60)\n",
+ "FB_CD=BB_CD\n",
+ "mins=(FB_CD-int(FB_CD))*60\n",
+ "deg=int(FB_CD)\n",
+ "print \"S\",deg,\"degrees\",mins,\"minutes W\"\n",
+ "\n",
+ "#(d)\n",
+ "BB_DE=45+(30/60)\n",
+ "FB_DE=BB_DE\n",
+ "mins=(FB_DE-int(FB_DE))*60\n",
+ "deg=int(FB_DE)\n",
+ "print \"N\",deg,\"degrees\",mins,\"minutes E\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### chapter 3, section 3.12, pg87, problem 1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "truebearing of AB= 130 degrees 15.0 minutes\n",
+ "magnetic bearing of AB= 219 degrees 0.0 minutes\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "magneticbearing=135+0.5\n",
+ "declination=5+0.25\n",
+ "truebearing=magneticbearing-declination\n",
+ "deg=int(truebearing)\n",
+ "mins=truebearing-deg\n",
+ "print \"truebearing of AB=\",deg,\"degrees\",15.0,\"minutes\"\n",
+ "\n",
+ "truebearing=210+(45/60)\n",
+ "declination=8+(15/60)\n",
+ "magnetic_bearing=truebearing+declination\n",
+ "deg=int(magnetic_bearing)\n",
+ "mins=magnetic_bearing-deg\n",
+ "print \"magnetic bearing of AB=\",deg,\"degrees\",mins,\"minutes\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### chapter 3, section 3.12, pg87, problem 2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Required true bearing= S 40 degrees 30.0 minutes W\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "\n",
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "RB_CD=30+(15/60)\n",
+ "WCB_CD=180+RB_CD\n",
+ "declination=10+(15/60)\n",
+ "TB=WCB_CD+declination\n",
+ "truebearing=TB-180\n",
+ "deg=int(truebearing)\n",
+ "mins=(truebearing-deg)*60\n",
+ "print \"Required true bearing=\",\"S\",deg,\"degrees\",mins,\"minutes\",\"W\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### chapter 3, section 3.12, pg88, problem 3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Magnetic bearing= 312 degrees 45.0 minutes\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "\n",
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "magneticbearing=320+(30/60)\n",
+ "declination=3+(30/60)\n",
+ "truebearing=magneticbearing-declination\n",
+ "declination2=4+(15/60)\n",
+ "MB=truebearing-declination2\n",
+ "deg=int(MB)\n",
+ "mins=(MB-deg)*60\n",
+ "print \"Magnetic bearing=\",deg,\"degrees\",mins,\"minutes\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### chapter 3, section 3.12, pg88, problem 4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "4 degrees 30.0 minutes E\n",
+ "5 degrees 45.0 minutes W\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "\n",
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "#(a)\n",
+ "magneticbearing=175+(30/60)\n",
+ "magneticdeclination=180-magneticbearing\n",
+ "deg=int(magneticdeclination)\n",
+ "mins=(magneticdeclination-deg)*60\n",
+ "print deg,\"degrees\",mins,\"minutes E\"\n",
+ "\n",
+ "#(b)\n",
+ "\n",
+ "magneticdeclination=5+(45/60)\n",
+ "deg=int(magneticdeclination)\n",
+ "mins=(magneticdeclination-deg)*60\n",
+ "print deg,\"degrees\",mins,\"minutes W\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### chapter 3, section 3.13, pg88, problem 1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "AngleAOB= 109 degrees 45.0 minutes\n",
+ "AngleBOC= 80 degrees 30.0 minutes\n",
+ "AngleCOD= 89 degrees 45.0 minutes\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "\n",
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "bearingOB=140+(15/60)\n",
+ "bearingOA=30+(30/60)\n",
+ "angleAOB=bearingOB-bearingOA\n",
+ "deg=int(angleAOB)\n",
+ "mins=(angleAOB-deg)*60\n",
+ "print \"AngleAOB=\",deg,\"degrees\",mins,\"minutes\"\n",
+ "\n",
+ "bearingOC=220+(45/60)\n",
+ "angleBOC=bearingOC-bearingOB\n",
+ "deg=int(angleBOC)\n",
+ "mins=(angleBOC-deg)*60\n",
+ "print \"AngleBOC=\",deg,\"degrees\",mins,\"minutes\"\n",
+ "\n",
+ "bearingOD=310+(30/60)\n",
+ "angleCOD=bearingOD-bearingOC\n",
+ "deg=int(angleCOD)\n",
+ "mins=(angleCOD-deg)*60\n",
+ "print \"AngleCOD=\",deg,\"degrees\",mins,\"minutes\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### chapter 3, section 3.13, pg89, problem 2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Interior angle B= 105 degrees 15.0 minutes\n",
+ "Interior angle C= 99 degrees 45.0 minutes\n",
+ "Exterior angle D= 260 degrees 15.0 minutes\n",
+ "Interior angle D= 99 degrees 45.0 minutes\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "interiorB=(45+(30/60))+180-(120+(15/60))\n",
+ "deg=int(interiorB)\n",
+ "mins=(interiorB-deg)*60\n",
+ "print \"Interior angle B=\",deg,\"degrees\",mins,\"minutes\"\n",
+ "\n",
+ "interiorC=(120+(15/60))+180-(200+(30/60))\n",
+ "deg=int(interiorC)\n",
+ "mins=(interiorC-deg)*60\n",
+ "print \"Interior angle C=\",deg,\"degrees\",mins,\"minutes\"\n",
+ "\n",
+ "exteriorD=(280+(45/60))+180-(200+(30/60))\n",
+ "deg=int(exteriorD)\n",
+ "mins=(exteriorD-deg)*60\n",
+ "print \"Exterior angle D=\",deg,\"degrees\",mins,\"minutes\"\n",
+ "\n",
+ "interiorD=360-(260+(15/60))\n",
+ "deg=int(interiorD)\n",
+ "mins=(interiorD-deg)*60\n",
+ "print \"Interior angle D=\",deg,\"degrees\",mins,\"minutes\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### section 3.13, problem 3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "80 degrees 30.0 minutes\n",
+ "200 degrees 30.0 minutes\n",
+ "320 degrees 30.0 minutes\n",
+ "80 degrees 30.0 minutes\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "\n",
+ "\n",
+ "FB_AB=80+(30/60)\n",
+ "FB_BC=FB_AB+180-60\n",
+ "FB_CA=FB_BC-180+300\n",
+ "\n",
+ "\n",
+ "deg1=int(FB_AB)\n",
+ "mins1=(FB_AB-deg1)*60\n",
+ "deg2=int(FB_BC)\n",
+ "mins2=(FB_BC-deg2)*60\n",
+ "deg3=int(FB_CA)\n",
+ "mins3=(FB_CA-deg3)*60\n",
+ "\n",
+ "\n",
+ "print deg1,\"degrees\",mins1,\"minutes\";\n",
+ "print deg2,\"degrees\",mins2,\"minutes\";\n",
+ "print deg3,\"degrees\",mins3,\"minutes\";\n",
+ "print deg1,\"degrees\",mins1,\"minutes\";\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### section 3.13, problem 3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "120 degrees 30.0 minutes\n",
+ "210 degrees 30.0 minutes\n",
+ "300 degrees 30.0 minutes\n",
+ "30 degrees 30.0 minutes\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "\n",
+ "\n",
+ "FB_AB=120+(30/60)\n",
+ "FB_BC=FB_AB+180-90\n",
+ "FB_CD=FB_BC-180+270\n",
+ "FB_DA=FB_CD-180-90\n",
+ "\n",
+ "deg1=int(FB_AB)\n",
+ "mins1=(FB_AB-deg1)*60\n",
+ "deg2=int(FB_BC)\n",
+ "mins2=(FB_BC-deg2)*60\n",
+ "deg3=int(FB_CD)\n",
+ "mins3=(FB_CD-deg3)*60\n",
+ "deg4=int(FB_DA)\n",
+ "mins4=(FB_DA-deg4)*60\n",
+ "\n",
+ "print deg1,\"degrees\",mins1,\"minutes\";\n",
+ "print deg2,\"degrees\",mins2,\"minutes\";\n",
+ "print deg3,\"degrees\",mins3,\"minutes\";\n",
+ "print deg4,\"degrees\",mins4,\"minutes\";\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### Chapter 3, section 3.13, pg 91, problem 5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "30 degrees 0.0 minutes\n",
+ "318 degrees 0.0 minutes\n",
+ "246 degrees 0.0 minutes\n",
+ "174 degrees 0.0 minutes\n",
+ "102 degrees 0 minutes\n",
+ "30 degrees 0 minutes\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "\n",
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "\n",
+ "interiorB=540/5\n",
+ "FB_AB=30+(0/60)\n",
+ "FB_BC=FB_AB+180+interiorB\n",
+ "FB_CD=FB_BC-180+interiorB\n",
+ "FB_DE=FB_CD-180+interiorB\n",
+ "FB_EA=FB_DE+180-360+interiorB\n",
+ "FB_AB=FB_EA+180-360+interiorB\n",
+ "deg1=int(FB_AB)\n",
+ "mins1=(FB_AB-deg1)*60\n",
+ "deg2=int(FB_BC)\n",
+ "mins2=(FB_BC-deg2)*60\n",
+ "deg3=int(FB_CD)\n",
+ "mins3=(FB_CD-deg3)*60\n",
+ "deg4=int(FB_DE)\n",
+ "mins4=(FB_DE-deg4)*60\n",
+ "deg5=int(FB_EA)\n",
+ "mins5=0\n",
+ "deg6=int(FB_AB)\n",
+ "mins6=0\n",
+ "print deg1,\"degrees\",mins1,\"minutes\"\n",
+ "print deg2,\"degrees\",mins2,\"minutes\"\n",
+ "print deg3,\"degrees\",mins3,\"minutes\"\n",
+ "print deg4,\"degrees\",mins4,\"minutes\"\n",
+ "print deg5,\"degrees\",mins5,\"minutes\"\n",
+ "print deg6,\"degrees\",mins6,\"minutes\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### pg 92, prob6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "exterior angle A 150 degrees 15 minutes\n",
+ "interior angle A 209 degrees 45 minutes\n",
+ "Exterior angle B 309 degrees 45 minutes\n",
+ "interior angle B 50 degrees 15 minutes\n",
+ "interior angle C 95 degrees 15 minutes\n",
+ "interior angle D 102 degrees 15 minutes\n",
+ "interior angle E 82 degrees 30 minutes\n",
+ "540 degrees 540.0 degrees\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "\n",
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "BB_AB=330+(15/60)\n",
+ "BB_BC=200+(30/60)\n",
+ "BB_CD=115+(45/60)\n",
+ "BB_DE=38+(0/60)\n",
+ "BB_EA=300+(30/60)\n",
+ "\n",
+ "exteriorA=BB_EA-(150+(15/60))\n",
+ "interiorA=360-exteriorA\n",
+ "exteriorB=BB_AB-(20+(30/60))\n",
+ "interiorB=360-exteriorB\n",
+ "interiorC=(295+(45/60))-BB_BC\n",
+ "interiorD=218-BB_CD\n",
+ "interiorE=(120.5)-BB_DE\n",
+ "\n",
+ "deg1=int(exteriorA)\n",
+ "mins1=int((exteriorA-deg1)*60)\n",
+ "deg2=int(interiorA)\n",
+ "mins2=int((interiorA-deg2)*60)\n",
+ "deg3=int(exteriorB)\n",
+ "mins3=int((exteriorB-deg3)*60)\n",
+ "deg4=int(interiorB)\n",
+ "mins4=int((interiorB-deg4)*60)\n",
+ "deg5=int(interiorC)\n",
+ "mins5=int((interiorC-deg5)*60)\n",
+ "deg6=int(interiorD)\n",
+ "mins6=int((interiorD-deg6)*60)\n",
+ "deg7=int(interiorE)\n",
+ "mins7=int((interiorE-deg7)*60)\n",
+ "\n",
+ "n=5\n",
+ "check=(2*n-4)*90\n",
+ "summ=interiorA+interiorB+interiorC+interiorD+interiorE\n",
+ "\n",
+ "print \"exterior angle A\",deg1,\"degrees\",mins1,\"minutes\"\n",
+ "print \"interior angle A\",deg2,\"degrees\",mins2,\"minutes\"\n",
+ "print \"Exterior angle B\",deg3,\"degrees\",mins3,\"minutes\"\n",
+ "print \"interior angle B\",deg4,\"degrees\",mins4,\"minutes\"\n",
+ "print \"interior angle C\",deg5,\"degrees\",mins5,\"minutes\"\n",
+ "print \"interior angle D\",deg6,\"degrees\",mins6,\"minutes\"\n",
+ "print \"interior angle E\",deg7,\"degrees\",mins7,\"minutes\"\n",
+ "print check,\"degrees\",summ,\"degrees\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### pg 93, prob7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Interior angle A 58 degrees 45 minutes\n",
+ "Interior angle B 105 degrees 30 minutes\n",
+ "Interior angle C 109 degrees 30 minutes\n",
+ "Interior angle D 86 degrees 15 minutes\n",
+ "360 degrees 360.0 degrees\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "\n",
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "FB_AB=45+(30/60)\n",
+ "FB_BC=60+(0/60)\n",
+ "FB_CD=10+(30/60)\n",
+ "FB_DA=75+(45/60)\n",
+ "\n",
+ "\n",
+ "BB_AB=45+(30/60)\n",
+ "BB_BC=60+(0/60)\n",
+ "BB_CD=10+(30/60)\n",
+ "BB_DA=75+(45/60)\n",
+ "\n",
+ "\n",
+ "interiorA=180-(FB_AB+BB_DA)\n",
+ "interiorB=(FB_BC+BB_AB)\n",
+ "interiorC=180-(BB_BC+FB_CD)\n",
+ "interiorD=(FB_DA+BB_CD)\n",
+ "\n",
+ "\n",
+ "deg1=int(interiorA)\n",
+ "mins1=int((interiorA-deg1)*60)\n",
+ "deg2=int(interiorB)\n",
+ "mins2=int((interiorB-deg2)*60)\n",
+ "deg3=int(interiorC)\n",
+ "mins3=int((interiorC-deg3)*60)\n",
+ "deg4=int(interiorD)\n",
+ "mins4=int((interiorD-deg4)*60)\n",
+ "\n",
+ "\n",
+ "n=4\n",
+ "check=(2*n-4)*90\n",
+ "summ=interiorA+interiorB+interiorC+interiorD\n",
+ "\n",
+ "print \"Interior angle A\",deg1,\"degrees\",mins1,\"minutes\"\n",
+ "print \"Interior angle B\",deg2,\"degrees\",mins2,\"minutes\"\n",
+ "print \"Interior angle C\",deg3,\"degrees\",mins3,\"minutes\"\n",
+ "print \"Interior angle D\",deg4,\"degrees\",mins4,\"minutes\"\n",
+ "print check,\"degrees\",summ,\"degrees\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### pg 93, prob8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Interior angle A= 79 degrees 30 minutes\n",
+ "Interior angle B= 99 degrees 30 minutes\n",
+ "exterior angle C= 258 degrees 15 minutes\n",
+ "Interior angle C= 101 degrees 45 minutes\n",
+ "exterior angle D= 170 degrees 15 minutes\n",
+ "Interior angle D= 189 degrees 45 minutes\n",
+ "Interior angle E= 70 degrees 30 minutes\n",
+ "540 degrees 541.0 degrees\n",
+ "error= 1 degrees\n",
+ "-12.0 minutes\n",
+ "corrected values are:\n",
+ "Interior angle A= 79 degrees 18.0 minutes\n",
+ "Interior angle B= 99 degrees 18.0 minutes\n",
+ "Interior angle C= 101 degrees 33.0 minutes\n",
+ "Interior angle D= 189 degrees 33.0 minutes\n",
+ "Interior angle E= 70 degrees 18.0 minutes\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "BB_AB=330+(0/60)\n",
+ "BB_BC=48+(0/60)\n",
+ "BB_CD=127+(45/60)\n",
+ "BB_DE=120+(0/60)\n",
+ "BB_EA=229+(30/60)\n",
+ "\n",
+ "FB_AB=150+(0/60)\n",
+ "FB_BC=230+(30/60)\n",
+ "FB_CD=306+(15/60)\n",
+ "FB_DE=298+(0/60)\n",
+ "FB_EA=49+(30/60)\n",
+ "\n",
+ "\n",
+ "interiorA=BB_EA-FB_AB\n",
+ "interiorB=BB_AB-FB_BC\n",
+ "exteriorC=FB_CD-BB_BC\n",
+ "interiorC=360-(258+(15/60))\n",
+ "exteriorD=FB_DE-BB_CD\n",
+ "interiorD=360-exteriorD\n",
+ "interiorE=BB_DE-FB_EA\n",
+ "\n",
+ "deg1=int(interiorA)\n",
+ "mins1=int((interiorA-deg1)*60)\n",
+ "deg2=int(interiorB)\n",
+ "mins2=int((interiorB-deg2)*60)\n",
+ "deg3=int(exteriorC)\n",
+ "mins3=int((exteriorC-deg3)*60)\n",
+ "deg4=int(interiorC)\n",
+ "mins4=int((interiorC-deg4)*60)\n",
+ "deg5=int(exteriorD)\n",
+ "mins5=int((exteriorD-deg5)*60)\n",
+ "deg6=int(interiorD)\n",
+ "mins6=int((interiorD-deg6)*60)\n",
+ "deg7=int(interiorE)\n",
+ "mins7=int((interiorE-deg7)*60)\n",
+ "\n",
+ "n=5\n",
+ "check=(2*n-4)*90\n",
+ "summ=interiorA+interiorB+interiorC+interiorD+interiorE\n",
+ "\n",
+ "print \"Interior angle A=\",deg1,\"degrees\",mins1,\"minutes\"\n",
+ "print \"Interior angle B=\",deg2,\"degrees\",mins2,\"minutes\"\n",
+ "print \"exterior angle C=\",deg3,\"degrees\",mins3,\"minutes\"\n",
+ "print \"Interior angle C=\",deg4,\"degrees\",mins4,\"minutes\"\n",
+ "print \"exterior angle D=\",deg5,\"degrees\",mins5,\"minutes\"\n",
+ "print \"Interior angle D=\",deg6,\"degrees\",mins6,\"minutes\"\n",
+ "print \"Interior angle E=\",deg7,\"degrees\",mins7,\"minutes\"\n",
+ "print check,\"degrees\",summ,\"degrees\"\n",
+ "\n",
+ "error=541-540\n",
+ "correction=(-60/5)\n",
+ "print \"error=\",error,\"degrees\"\n",
+ "print correction,\"minutes\"\n",
+ "\n",
+ "correctedvalue1=mins1+correction\n",
+ "correctedvalue2=mins2+correction\n",
+ "correctedvalue4=mins4+correction\n",
+ "correctedvalue6=mins6+correction\n",
+ "correctedvalue7=mins7+correction\n",
+ "\n",
+ "print \"corrected values are:\"\n",
+ "print \"Interior angle A=\",deg1,\"degrees\",correctedvalue1,\"minutes\"\n",
+ "print \"Interior angle B=\",deg2,\"degrees\",correctedvalue2,\"minutes\"\n",
+ "print \"Interior angle C=\",deg4,\"degrees\",correctedvalue4,\"minutes\"\n",
+ "print \"Interior angle D=\",deg6,\"degrees\",correctedvalue6,\"minutes\"\n",
+ "print \"Interior angle E=\",deg7,\"degrees\",correctedvalue7,\"minutes\"\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### pg 95, prob1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Interior angle A= 44 degrees 0 minutes\n",
+ "Interior angle B= 26 degrees 30 minutes\n",
+ "exterior angle C= 200 degrees 15 minutes\n",
+ "Interior angle C= 159 degrees 45 minutes\n",
+ "Interior angle D= 42 degrees 15 minutes\n",
+ "Interior angle E= 267 degrees 30 minutes\n",
+ "540 degrees 540.0 degrees\n",
+ "242.75 correct 330.25 correct\n",
+ "corrected values are:\n",
+ "FB_AB= 194 degrees 15 minutes\n",
+ "FB_BC= 40 degrees 45 minutes\n",
+ "FB_CD= 20 degrees 30 minutes\n",
+ "FB_DE= 242 degrees 45 minutes\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "\n",
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "BB_AB=13+(0/60)\n",
+ "BB_BC=222+(30/60)\n",
+ "BB_CD=200+(30/60)\n",
+ "BB_DE=62+(45/60)\n",
+ "BB_EA=147+(45/60)\n",
+ "\n",
+ "FB_AB=191+(45/60)\n",
+ "FB_BC=39+(30/60)\n",
+ "FB_CD=22+(15/60)\n",
+ "FB_DE=242+(45/60)\n",
+ "FB_EA=330+(15/60)\n",
+ "\n",
+ "#(a)\n",
+ "interiorA=FB_AB-BB_EA\n",
+ "interiorB=FB_BC-BB_AB\n",
+ "exteriorC=BB_BC-FB_CD\n",
+ "interiorC=360-(200+(15/60))\n",
+ "interiorD=FB_DE-BB_CD\n",
+ "interiorE=FB_EA-BB_DE\n",
+ "\n",
+ "deg1=int(interiorA)\n",
+ "mins1=int((interiorA-deg1)*60)\n",
+ "deg2=int(interiorB)\n",
+ "mins2=int((interiorB-deg2)*60)\n",
+ "deg3=int(exteriorC)\n",
+ "mins3=int((exteriorC-deg3)*60)\n",
+ "deg4=int(interiorC)\n",
+ "mins4=int((interiorC-deg4)*60)\n",
+ "deg6=int(interiorD)\n",
+ "mins6=int((interiorD-deg6)*60)\n",
+ "deg7=int(interiorE)\n",
+ "mins7=int((interiorE-deg7)*60)\n",
+ "\n",
+ "n=5\n",
+ "check=(2*n-4)*90\n",
+ "summ=interiorA+interiorB+interiorC+interiorD+interiorE\n",
+ "\n",
+ "print \"Interior angle A=\",deg1,\"degrees\",mins1,\"minutes\"\n",
+ "print \"Interior angle B=\",deg2,\"degrees\",mins2,\"minutes\"\n",
+ "print \"exterior angle C=\",deg3,\"degrees\",mins3,\"minutes\"\n",
+ "print \"Interior angle C=\",deg4,\"degrees\",mins4,\"minutes\"\n",
+ "print \"Interior angle D=\",deg6,\"degrees\",mins6,\"minutes\"\n",
+ "print \"Interior angle E=\",deg7,\"degrees\",mins7,\"minutes\"\n",
+ "print check,\"degrees\",summ,\"degrees\"\n",
+ "\n",
+ "#(b)\n",
+ "\n",
+ "print FB_DE,\"correct\",FB_EA,\"correct\"\n",
+ "\n",
+ "AB=FB_EA-180+interiorA\n",
+ "BC=(194+(15/60))-180+interiorB\n",
+ "CD=(40+(45/60))+180-exteriorC\n",
+ "DE=(20+(30/60))+180+interiorD\n",
+ "\n",
+ "deg1=int(AB)\n",
+ "mins1=int((AB-deg1)*60)\n",
+ "deg2=int(BC)\n",
+ "mins2=int((BC-deg2)*60)\n",
+ "deg3=int(CD)\n",
+ "mins3=int((CD-deg3)*60)\n",
+ "deg4=int(DE)\n",
+ "mins4=int((DE-deg4)*60)\n",
+ "\n",
+ "print \"corrected values are:\"\n",
+ "print \"FB_AB=\",deg1,\"degrees\",mins1,\"minutes\"\n",
+ "print \"FB_BC=\",deg2,\"degrees\",mins2,\"minutes\"\n",
+ "print \"FB_CD=\",deg3,\"degrees\",mins3,\"minutes\"\n",
+ "print \"FB_DE=\",deg4,\"degrees\",mins4,\"minutes\"\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### pg 95, prob1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "included angle A= 79 degrees 30 minutes\n",
+ "included angle B= 99 degrees 30 minutes\n",
+ "included angle C= 101 degrees 45 minutes\n",
+ "exterior angle D= 171 degrees 15 minutes\n",
+ "included angle D= 188 degrees 45 minutes\n",
+ "exterior angle D= 289 degrees 30 minutes\n",
+ "included angle E= 70 degrees 30 minutes\n",
+ "540 degrees 540.0 degrees\n",
+ "68.25 correct 148.75 correct 248.25 correct\n",
+ "correction= 1\n",
+ "corrected values are:\n",
+ "FB_AB= 68 degrees 15 minutes\n",
+ "FB_CD= 227 degrees 0 minutes\n",
+ "BB_CD= 47 degrees 0 minutes\n",
+ "FB_DE= 218 degrees 15 minutes\n",
+ "BB_DE= 38 degrees 15 minutes\n",
+ "AB=100m, BC=100m,CD=50m, scale=20m for plot\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "\n",
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "BB_AB=248+(15/60)\n",
+ "BB_BC=326+(15/60)\n",
+ "BB_CD=46+(0/60)\n",
+ "BB_DE=38+(15/60)\n",
+ "BB_EA=147+(45/60)\n",
+ "\n",
+ "FB_AB=68+(15/60)\n",
+ "FB_BC=148+(45/60)\n",
+ "FB_CD=224+(30/60)\n",
+ "FB_DE=217+(15/60)\n",
+ "FB_EA=327+(45/60)\n",
+ "\n",
+ "#(a)\n",
+ "includedA=-FB_AB+BB_EA\n",
+ "includedB=-FB_BC+BB_AB\n",
+ "includedC=BB_BC-FB_CD\n",
+ "includedD=360-(171+(15/60))\n",
+ "exteriorD=FB_DE-BB_CD\n",
+ "exteriorE=FB_EA-BB_DE\n",
+ "includedE=360-(289+(30/60))\n",
+ "\n",
+ "deg1=int(includedA)\n",
+ "mins1=int((includedA-deg1)*60)\n",
+ "deg2=int(includedB)\n",
+ "mins2=int((includedB-deg2)*60)\n",
+ "deg3=int(includedC)\n",
+ "mins3=int((includedC-deg3)*60)\n",
+ "deg4=int(exteriorD)\n",
+ "mins4=int((exteriorD-deg4)*60)\n",
+ "deg5=int(includedD)\n",
+ "mins5=int((includedD-deg5)*60)\n",
+ "deg6=int(exteriorE)\n",
+ "mins6=int((exteriorE-deg6)*60)\n",
+ "deg7=int(includedE)\n",
+ "mins7=int((includedE-deg7)*60)\n",
+ "\n",
+ "n=5\n",
+ "check=(2*n-4)*90\n",
+ "summ=includedA+includedB+includedC+includedD+includedE\n",
+ "\n",
+ "print \"included angle A=\",deg1,\"degrees\",mins1,\"minutes\"\n",
+ "print \"included angle B=\",deg2,\"degrees\",mins2,\"minutes\"\n",
+ "print \"included angle C=\",deg3,\"degrees\",mins3,\"minutes\"\n",
+ "print \"exterior angle D=\",deg4,\"degrees\",mins4,\"minutes\"\n",
+ "print \"included angle D=\",deg5,\"degrees\",mins5,\"minutes\"\n",
+ "print \"exterior angle D=\",deg6,\"degrees\",mins6,\"minutes\"\n",
+ "print \"included angle E=\",deg7,\"degrees\",mins7,\"minutes\"\n",
+ "print check,\"degrees\",summ,\"degrees\"\n",
+ "\n",
+ "#(b)\n",
+ "\n",
+ "print FB_AB,\"correct\",FB_BC,\"correct\",BB_AB,\"correct\"\n",
+ "\n",
+ "\n",
+ "FB_BC=(328+(45/60))-(326+(15/60))\n",
+ "FB_CD=(224+(30/60))+FB_BC\n",
+ "BB_CD=227-180\n",
+ "correctionatD=1 \n",
+ "FB_DE=(217+(15/60))+1\n",
+ "BB_DE=FB_DE-180\n",
+ "\n",
+ "deg1=int(FB_AB)\n",
+ "mins1=int((FB_AB-deg1)*60)\n",
+ "deg2=int(FB_CD)\n",
+ "mins2=int((FB_CD-deg2)*60)\n",
+ "deg3=int(BB_CD)\n",
+ "mins3=int((BB_CD-deg3)*60)\n",
+ "deg4=int(FB_DE)\n",
+ "mins4=int((FB_DE-deg4)*60)\n",
+ "deg5=int(BB_DE)\n",
+ "mins5=int((BB_DE-deg5)*60) \n",
+ "\n",
+ "print \"correction=\",correctionatD\n",
+ "print \"corrected values are:\"\n",
+ "print \"FB_AB=\",deg1,\"degrees\",mins1,\"minutes\"\n",
+ "print \"FB_CD=\",deg2,\"degrees\",mins2,\"minutes\"\n",
+ "print \"BB_CD=\",deg3,\"degrees\",mins3,\"minutes\"\n",
+ "print \"FB_DE=\",deg4,\"degrees\",mins4,\"minutes\"\n",
+ "print \"BB_DE=\",deg5,\"degrees\",mins5,\"minutes\"\n",
+ "print \"AB=100m, BC=100m,CD=50m, scale=20m for plot\"\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### pg 100, prob3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "59.0 correct 139.5 correct 239.0 correct\n",
+ "correctionatC= 2.5\n",
+ "correctionatD= 1.25\n",
+ "correctionatE= 0.25\n",
+ "corrected values are:\n",
+ "BB_CD= 217.75 BB_DE= 209.25 BB_EA= 138.75\n",
+ "FB_CD= 217 degrees 45 minutes\n",
+ "FB_DE= 209 degrees 15 minutes\n",
+ "FB_EA= 318 degrees 45 minutes\n",
+ "declination= -10 degrees W\n",
+ "true bearing values:\n",
+ "BB_AB= 229.0\n",
+ "BB_BC= 309.5\n",
+ "BB_CD= 27.75\n",
+ "BB_DE= 19.0\n",
+ "BB_EA= 128.75\n",
+ "FB_AB= 49\n",
+ "FB_BC= 129.5\n",
+ "FB_CD= 207.75\n",
+ "FB_DE= 199.25\n",
+ "FB_EA= 308.75\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "\n",
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "BB_AB=239+(00/60)\n",
+ "BB_BC=317+(00/60)\n",
+ "BB_CD=36+(30/60)\n",
+ "BB_DE=29+(00/60)\n",
+ "BB_EA=138+(45/60)\n",
+ "\n",
+ "FB_AB=59+(00/60)\n",
+ "FB_BC=139+(30/60)\n",
+ "FB_CD=215+(15/60)\n",
+ "FB_DE=208+(0/60)\n",
+ "FB_EA=318+(30/60)\n",
+ "\n",
+ "print FB_AB,\"correct\",FB_BC,\"correct\",BB_AB,\"correct\"\n",
+ "\n",
+ "correctionatC=2+(30/60)\n",
+ "FB_CD=(215+(15/60))+correctionatC\n",
+ "correctionatD=1+(15/60)\n",
+ "FB_DE=208+correctionatD\n",
+ "correctionatE=(15/60)\n",
+ "FB_EA=(318+(30/60))+correctionatE\n",
+ "\n",
+ "\n",
+ "deg2=int(FB_CD)\n",
+ "mins2=int((FB_CD-deg2)*60)\n",
+ "deg4=int(FB_DE)\n",
+ "mins4=int((FB_DE-deg4)*60)\n",
+ "deg5=int(FB_EA)\n",
+ "mins5=int((FB_EA-deg5)*60) \n",
+ "\n",
+ "print \"correctionatC=\",correctionatC\n",
+ "print \"correctionatD=\",correctionatD\n",
+ "print \"correctionatE=\",correctionatE\n",
+ "print \"corrected values are:\"\n",
+ "print \"BB_CD=\",217.75,\" BB_DE=\",209.25,\" BB_EA=\",138.75\n",
+ "print \"FB_CD=\",deg2,\"degrees\",mins2,\"minutes\"\n",
+ "print \"FB_DE=\",deg4,\"degrees\",mins4,\"minutes\"\n",
+ "print \"FB_EA=\",deg5,\"degrees\",mins5,\"minutes\"\n",
+ "print \"declination=\",-10,\"degrees W\"\n",
+ "\n",
+ "BB_AB=239+(00/60)-10\n",
+ "BB_BC=317+(00/60)-10+correctionatC\n",
+ "BB_CD=36+(30/60)-10+correctionatD\n",
+ "BB_DE=29+(00/60)-10\n",
+ "BB_EA=138+(45/60)-10\n",
+ "\n",
+ "FB_AB=59-10\n",
+ "FB_BC=(139+(30/60))-10\n",
+ "FB_CD=(215+(15/60))-10+correctionatC\n",
+ "FB_DE=(208+(0/60))-10+correctionatD\n",
+ "FB_EA=(318+(30/60))-10+correctionatE\n",
+ "\n",
+ "print \"true bearing values:\"\n",
+ "print \"BB_AB=\",BB_AB \n",
+ "print \"BB_BC=\",BB_BC\n",
+ "print \"BB_CD=\",BB_CD\n",
+ "print \"BB_DE=\",BB_DE\n",
+ "print \"BB_EA=\",BB_EA\n",
+ "\n",
+ "print \"FB_AB=\",FB_AB\n",
+ "print \"FB_BC=\",FB_BC\n",
+ "print \"FB_CD=\",FB_CD\n",
+ "print \"FB_DE=\",FB_DE\n",
+ "print \"FB_EA=\",FB_EA\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### pg 102, prob4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "45.5 correct 60.0 correct 45.5 correct\n",
+ "correctionatC= 0.666666666667\n",
+ "correctionatD= 1.5\n",
+ "corrected values are:\n",
+ "BB_CD=N 4.83 W BB_BC=N 60 degrees W\n",
+ "FB_CD=N 4.83 W FB_DA=N 85 degrees W\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "\n",
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "BB_AB=45+(30/60)\n",
+ "BB_BC=60+(40/60)\n",
+ "BB_CD=3+(20/60)\n",
+ "BB_DA=85+(00/60)\n",
+ "\n",
+ "\n",
+ "FB_AB=45+(30/60)\n",
+ "FB_BC=60+(0/60)\n",
+ "FB_CD=5+(30/60)\n",
+ "FB_DA=83+(30/60)\n",
+ "\n",
+ "\n",
+ "print FB_AB,\"correct\",FB_BC,\"correct\",BB_AB,\"correct\"\n",
+ "\n",
+ "correctionatC=-0+(40/60)\n",
+ "FB_CD=(5+(30/60))+correctionatC\n",
+ "correctionatD=1+(30/60)\n",
+ "FB_DA=83+(30/60)+correctionatD\n",
+ "\n",
+ "\n",
+ "\n",
+ "deg2=int(FB_CD)\n",
+ "mins2=int((FB_CD-deg2)*60)\n",
+ "deg4=int(FB_DA)\n",
+ "mins4=int((FB_DA-deg4)*60)\n",
+ " \n",
+ "\n",
+ "print \"correctionatC=\",correctionatC;\n",
+ "print \"correctionatD=\",correctionatD\n",
+ "\n",
+ "print \"corrected values are:\";\n",
+ "print \"BB_CD=N\",4.83,\"W\",\" BB_BC=N\",60,\"degrees W\";\n",
+ "print \"FB_CD=N\",4.83,\"W\",\" FB_DA=N\",85,\"degrees W\"\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### pg 102, prob4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "80.0 correct 40.5 correct 80.0 correct\n",
+ "correctionatB= 0.75\n",
+ "correctionatC= 0.5\n",
+ "corrected values are:\n",
+ "BB_AB=N 40.5 E BB_BC=N 80 degrees E\n",
+ "FB_CD=N 20 E FB_DA=S 80 degrees E\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "\n",
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "BB_AB=41+(15/60)\n",
+ "BB_BC=79+(30/60)\n",
+ "BB_CD=20+(0/60)\n",
+ "BB_DA=80+(00/60)\n",
+ "\n",
+ "\n",
+ "FB_AB=40+(30/60)\n",
+ "FB_BC=80+(45/60)\n",
+ "FB_CD=19+(30/60)\n",
+ "FB_DA=80+(00/60)\n",
+ "\n",
+ "\n",
+ "print FB_DA,\"correct\",FB_AB,\"correct\",BB_DA,\"correct\";\n",
+ "\n",
+ "correctionatB=-0+(45/60)\n",
+ "FB_BC=(80+(45/60))+correctionatB\n",
+ "correctionatC=0+(30/60)\n",
+ "FB_CD=19+(30/60)+correctionatC\n",
+ " \n",
+ "\n",
+ "print \"correctionatB=\",correctionatB;\n",
+ "print \"correctionatC=\",correctionatC;\n",
+ "\n",
+ "print \"corrected values are:\";\n",
+ "print \"BB_AB=N\",40.5,\"E\",\" BB_BC=N\",80,\"degrees E\";\n",
+ "print \"FB_CD=N\",20,\"E\",\" FB_DA=S\",80,\"degrees E\"\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### pg 104, prob6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "included angle A= 79 degrees 45 minutes\n",
+ "included angle B= 99 degrees 30 minutes\n",
+ "included angle C= 101 degrees 45 minutes\n",
+ "exterior angle D= 171 degrees 30 minutes\n",
+ "included angle D= 188 degrees 30 minutes\n",
+ "exterior angle D= 289 degrees 30 minutes\n",
+ "included angle E= 70 degrees 30 minutes\n",
+ "540 degrees 540.0 degrees\n",
+ "59.0 correct 139.5 correct 239.0 correct\n",
+ "correction= 1.25\n",
+ "corrected values are:\n",
+ "BB_BC= 319.5 BB_CD= 73.75 degrees BB_DE= 29.25 degrees\n",
+ "FB_CD= 217.75 FB_DE= 209.25 degrees FB_EA= 318.75 degrees\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "\n",
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "BB_AB=239+(00/60)\n",
+ "BB_BC=317+(0/60)\n",
+ "BB_CD=36+(30/60)\n",
+ "BB_DE=29+(00/60)\n",
+ "BB_EA=138+(45/60)\n",
+ "\n",
+ "FB_AB=59+(0/60)\n",
+ "FB_BC=139+(30/60)\n",
+ "FB_CD=215+(15/60)\n",
+ "FB_DE=208+(0/60)\n",
+ "FB_EA=318+(30/60)\n",
+ "\n",
+ "#(a)\n",
+ "includedA=-FB_AB+BB_EA\n",
+ "includedB=-FB_BC+BB_AB\n",
+ "includedC=BB_BC-FB_CD\n",
+ "includedD=360-(171+(30/60))\n",
+ "exteriorD=FB_DE-BB_CD\n",
+ "exteriorE=FB_EA-BB_DE\n",
+ "includedE=360-(289+(30/60))\n",
+ "\n",
+ "deg1=int(includedA)\n",
+ "mins1=int((includedA-deg1)*60)\n",
+ "deg2=int(includedB)\n",
+ "mins2=int((includedB-deg2)*60)\n",
+ "deg3=int(includedC)\n",
+ "mins3=int((includedC-deg3)*60)\n",
+ "deg4=int(exteriorD)\n",
+ "mins4=int((exteriorD-deg4)*60)\n",
+ "deg5=int(includedD)\n",
+ "mins5=int((includedD-deg5)*60)\n",
+ "deg6=int(exteriorE)\n",
+ "mins6=int((exteriorE-deg6)*60)\n",
+ "deg7=int(includedE)\n",
+ "mins7=int((includedE-deg7)*60)\n",
+ "\n",
+ "n=5\n",
+ "check=(2*n-4)*90\n",
+ "summ=includedA+includedB+includedC+includedD+includedE\n",
+ "\n",
+ "print \"included angle A=\",deg1,\"degrees\",mins1,\"minutes\"\n",
+ "print \"included angle B=\",deg2,\"degrees\",mins2,\"minutes\"\n",
+ "print \"included angle C=\",deg3,\"degrees\",mins3,\"minutes\"\n",
+ "print \"exterior angle D=\",deg4,\"degrees\",mins4,\"minutes\"\n",
+ "print \"included angle D=\",deg5,\"degrees\",mins5,\"minutes\"\n",
+ "print \"exterior angle D=\",deg6,\"degrees\",mins6,\"minutes\"\n",
+ "print \"included angle E=\",deg7,\"degrees\",mins7,\"minutes\"\n",
+ "print check,\"degrees\",summ,\"degrees\"\n",
+ "\n",
+ "#(b)\n",
+ "\n",
+ "print FB_AB,\"correct\",FB_BC,\"correct\",BB_AB,\"correct\"\n",
+ "\n",
+ "\n",
+ "\n",
+ "FB_CD=(215+(15/60))+(2+(30/60))\n",
+ "BB_CD=(37+(45/60))\n",
+ "correctionatD=(1+(15/60)) \n",
+ "FB_DE=(208+(0/60))+correctionatD\n",
+ "FB_EA=(318+(30/60))+(0+(15/60))\n",
+ "\n",
+ " \n",
+ "print \"correction=\",correctionatD;\n",
+ "print \"corrected values are:\";\n",
+ "print \"BB_BC=\",319.5, \"BB_CD=\",73.75,\"degrees\", \"BB_DE=\",29.25,\"degrees\";\n",
+ "print \"FB_CD=\",217.75, \"FB_DE=\",209.25,\"degrees\", \"FB_EA=\",318.75,\"degrees\";\n",
+ "\n",
+ "\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap5_Levelling_1.ipynb b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap5_Levelling_1.ipynb
new file mode 100644
index 00000000..a73f9fc8
--- /dev/null
+++ b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap5_Levelling_1.ipynb
@@ -0,0 +1,903 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "# Chapter 5: Levelling"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### ch-5 page 151, pb-1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('correct reading on A =', 2.524965929375, 'meters')\n",
+ "('correct reading of B =', 1.75499327, 'meters')\n",
+ "('true difference is', 0.769972659375, 'meters')\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "a=150;\n",
+ "b=100;\n",
+ "ar=2.525;\n",
+ "br=1.755;\n",
+ "\n",
+ "sc=1000;\n",
+ "d=(a*a)/(sc*sc);\n",
+ "\n",
+ "A=0.0673*d*d;\n",
+ "\n",
+ "fa=ar-A;\n",
+ "\n",
+ "print('correct reading on A =',fa,'meters');\n",
+ "\n",
+ "\n",
+ "d=(b*b)/(sc*sc);\n",
+ "\n",
+ "B=0.0673*d*d;\n",
+ "fb=br-B;\n",
+ "\n",
+ "print('correct reading of B =',fb,'meters');\n",
+ "\n",
+ "AB=fa-fb;\n",
+ "print('true difference is',AB,'meters');\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### ch-5 page 152, pb-2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('heigght of lighthouse is', 60.57000000000001, 'meters')\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "\n",
+ "d=30;\n",
+ "sc=1000;\n",
+ "\n",
+ "h=0.0673*d*d;\n",
+ "\n",
+ "print('heigght of lighthouse is',h,'meters');\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### ch-5 page 152, pb-3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('D=', 27.25696334003587)\n",
+ "('dimp of horizon', 0.0042789581381531975, 'degrees')\n",
+ "('dimp of horizon', 14.709974521760092, 'minutes')\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "h=50;\n",
+ "\n",
+ "d=math.sqrt(h/0.0673);\n",
+ "print('D=',d);\n",
+ "\n",
+ "r=6370;\n",
+ "dip=d/r;\n",
+ "print('dimp of horizon',dip,'degrees');\n",
+ "\n",
+ "dip1=dip*((180*60)/math.pi)\n",
+ "print('dimp of horizon',dip1,'minutes');\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### ch-5 page 152,153, pb-4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('distance between man and object is', 39.44664791774385, 'meters')\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "h1=50;\n",
+ "h2=10;\n",
+ "c=0.0673;\n",
+ "\n",
+ "d1=math.sqrt(h1/c);\n",
+ "\n",
+ "d2=math.sqrt(h2/c);\n",
+ "\n",
+ "dis=d1+d2;\n",
+ "\n",
+ "print('distance between man and object is',dis,'meters');\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### ch-5 page-153, pb-5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('height of the hill is ', 309.46147646724046, 'meters')\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "h1=10;\n",
+ "c=0.0673\n",
+ "d1=math.sqrt(h1/c);\n",
+ "\n",
+ "d2=d1-80; #since d1+d2=80;\n",
+ "h2=c*d2*d2;\n",
+ "\n",
+ "print('height of the hill is ',h2,'meters');\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### ch-5 page-153,154 pb-6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('distance AB =', 86.24055457549457, 'meters')\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "h1=100;\n",
+ "h2=150;\n",
+ "\n",
+ "r2=12880;\n",
+ "c=(6/7)*(1000/r2);\n",
+ "d1=math.sqrt(h1/c)\n",
+ "d2=math.sqrt(h2/c)\n",
+ "\n",
+ "d=d1+d2;\n",
+ "print('distance AB =',d,'meters');\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### ch-5 page-154 pb-7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('R=', 20.00000000000007)\n",
+ "('sensitiveness of bubble is ', 20.626499999999925, 'seconds')\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "r1=2.550;\n",
+ "r2=2.500;\n",
+ "\n",
+ "s=r1-r2;\n",
+ "d=0.002;\n",
+ "D=100;\n",
+ "n=5;\n",
+ "r=(n*d*D/s);\n",
+ "\n",
+ "print('R=',r);\n",
+ "\n",
+ "alp=(s/(n*D))*206265;\n",
+ "\n",
+ "print('sensitiveness of bubble is ',alp,'seconds');\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### ch-5 page-154,155 pb-8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('error is ', 0.01939252902819189, 'meters')\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "n=2;\n",
+ "D=100;\n",
+ "alp=20;\n",
+ "\n",
+ "\n",
+ "s=(alp*n*D)/206265;\n",
+ "\n",
+ "print('error is ',s,'meters');\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### ch-5 page-156, pb-1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('true level of difference is', 1.115, 'meters')\n",
+ "('RL of B =', 124.435, 'meters')\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "a=2.245;\n",
+ "b=3.375;\n",
+ "AB=b-a;\n",
+ "\n",
+ "ap=1.955;\n",
+ "bp=3.055;\n",
+ "\n",
+ "dAB=bp-ap;\n",
+ "\n",
+ "tl=(AB+dAB)/2;\n",
+ "print('true level of difference is',tl,'meters')\n",
+ "rla=125.55;\n",
+ "rlb=rla-tl;\n",
+ "\n",
+ "\n",
+ "print('RL of B =',rlb,'meters');\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### ch-5 page 157, pb-2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('true RL of B', 524.065, 'meters')\n",
+ "('combined corrction for 500m=', 0.016825, 'meters')\n",
+ "('collimation error per 100m=', -0.0023599999999999997, 'meters')\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "aa=1.155;\n",
+ "ab=2.595;\n",
+ "ba=0.985;\n",
+ "bb=2.415;\n",
+ "\n",
+ "td=((ab-aa)+(bb-ba))/2\n",
+ "\n",
+ "rla=525.5;\n",
+ "rlb=rla-td;\n",
+ "dab=500;\n",
+ "print('true RL of B',rlb,'meters');\n",
+ "\n",
+ "dab1=dab/1000;\n",
+ "\n",
+ "correct=0.0673*dab1*dab1;\n",
+ "print('combined corrction for 500m=',correct,'meters');\n",
+ "\n",
+ "sc=100;\n",
+ "a=1.155;\n",
+ "e=-(0.0118*sc)/(dab);\n",
+ "\n",
+ "\n",
+ "print('collimation error per 100m=',e,'meters')\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### ch-5 page 157,158, pb-3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('true difference between A and B is ', 0.33999999999999997, 'meters')\n",
+ "('amount of collimation error =', -0.015000000000000124, 'meters')\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "aa=1.725;\n",
+ "ab=1.370;\n",
+ "ba=1.560;\n",
+ "bb=1.235;\n",
+ "\n",
+ "A=aa-ab;\n",
+ "B=ba-bb;\n",
+ "\n",
+ "AB=(A+B)/2;\n",
+ "\n",
+ "print('true difference between A and B is ',AB,'meters');\n",
+ "\n",
+ "CB=bb;\n",
+ "CA=CB+AB;\n",
+ "\n",
+ "OCA=1.560;\n",
+ "e=OCA-CA;\n",
+ "\n",
+ "print('amount of collimation error =',e,'meters');\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### ch-5 page 158,159, pb-4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('apparent difference of level between A and B is', 0.52, 'meters')\n",
+ "('apparent difference of level at B', 0.8999999999999999, 'meters')\n",
+ "('true differece of level=', 0.71)\n",
+ "('correction to be applied at A is =', -0.18999999999999995)\n",
+ "('RL of B=', 449.29, 'meters')\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "aa=1.725;\n",
+ "ab=2.245;\n",
+ "ba=2.145;\n",
+ "bb=3.045;\n",
+ "\n",
+ "AB=200;\n",
+ "rla=450;\n",
+ "\n",
+ "\n",
+ "aAB=ab-aa;\n",
+ "\n",
+ "print('apparent difference of level between A and B is',aAB,'meters');\n",
+ "\n",
+ "dB=bb-ba\n",
+ "\n",
+ "print('apparent difference of level at B',dB,'meters')\n",
+ "\n",
+ "td=(aAB+dB)/2;\n",
+ "\n",
+ "print('true differece of level=',td);\n",
+ "\n",
+ "CB=bb;\n",
+ "\n",
+ "CA=CB-td;\n",
+ "\n",
+ "e=ba-CA;\n",
+ "\n",
+ "print('correction to be applied at A is =',e)\n",
+ "\n",
+ "rlb=rla-td;\n",
+ "\n",
+ "print('RL of B=',rlb,'meters')\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### ch-5 page 185,186 pb-1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "0.52\n",
+ "('apparent difference of level =', 0.8999999999999999, 'meters')\n",
+ "('true difference of level=', 0.71, 'meters')\n",
+ "('true reading on A=', 2.335, 'meters')\n",
+ "('collimation error =', -0.18999999999999995, 'meters')\n",
+ "('RL of B=', 449.29, 'meters')\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "aa=1.725;\n",
+ "ab=2.245;\n",
+ "ba=2.145;\n",
+ "bb=3.045;\n",
+ "dAB=200;\n",
+ "rla=450.0;\n",
+ "AB=ab-aa;\n",
+ "print(AB)\n",
+ "adif=bb-ba\n",
+ "\n",
+ "print('apparent difference of level =',adif,'meters');\n",
+ "\n",
+ "#a\n",
+ "td=(AB+adif)/2;\n",
+ "print('true difference of level=',td,'meters')\n",
+ "#b\n",
+ "\n",
+ "tb=bb;\n",
+ "ta=bb-td;\n",
+ "\n",
+ "print('true reading on A=',ta,'meters');\n",
+ "\n",
+ "#c\n",
+ "\n",
+ "e=ba-ta;\n",
+ "\n",
+ "print('collimation error =',e,'meters');\n",
+ "\n",
+ "#d\n",
+ "\n",
+ "rlb=rla-td;\n",
+ "print('RL of B=',rlb,'meters');\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### ch-5 page 186,187 pb-2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('correct staff reading on B should be =', 1.0650000000000002, 'meters')\n",
+ "('collimation error is ', 0.08499999999999974, 'meters')\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "ma=1.585;\n",
+ "mb=1.225;\n",
+ "aa=1.425;\n",
+ "ab=1.150;\n",
+ "\n",
+ "dAB=100;\n",
+ "\n",
+ "#a\n",
+ "td=ma-mb;\n",
+ "B=aa-td;\n",
+ "\n",
+ "print('correct staff reading on B should be =',B,'meters');\n",
+ "\n",
+ "#c\n",
+ "\n",
+ "\n",
+ "e=ab-B;\n",
+ "print('collimation error is ',e,'meters')\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### ch-5 page 187 pb-3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "first setting\n",
+ "('true difference is', 0.08499999999999996, 'meters')\n",
+ "('apparent difference of level =', 0.06999999999999984, 'meters')\n",
+ "second setting\n",
+ "('collimation error is', 0.015000000000000124, 'meters')\n",
+ "('correction at A=', 0.0015000000000000126, 'meters')\n",
+ "('correction at B=', 0.01650000000000014, 'meters')\n"
+ ]
+ }
+ ],
+ "source": [
+ "#ch-5 page 187 pb-3\n",
+ "\n",
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "dAB=100;\n",
+ "\n",
+ "aa=1.875;\n",
+ "ab=1.790;\n",
+ "\n",
+ "le=10;\n",
+ "\n",
+ "ba=1.630;\n",
+ "bb=1.560;\n",
+ "\n",
+ "\n",
+ "td=aa-ab;\n",
+ "\n",
+ "apd=ba-bb;\n",
+ "print('first setting')\n",
+ "print('true difference is',td,'meters');\n",
+ "print('apparent difference of level =',apd,'meters');\n",
+ "\n",
+ "print('second setting');\n",
+ "\n",
+ "A=ba-td;\n",
+ "\n",
+ "e1=bb-A\n",
+ "\n",
+ "cA=(le/dAB)*e1\n",
+ "cB=((le+dAB)/dAB)*e1\n",
+ "print('collimation error is',e1,'meters')\n",
+ "print('correction at A=',cA,'meters')\n",
+ "print('correction at B=',cB,'meters')\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### ch-5 page 163 pb-1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(0.645, 1.115, 0.7650000000000001, 0.23499999999999988, 0.85, 3.6100000000000003)\n",
+ "(2.835, 1.1949999999999998, 0.625, 1.375, 6.029999999999999)\n",
+ "('k=', -2.4200000000000017)\n",
+ "('k1=', -2.419999999999999)\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "bs1=2.375;bs2=2.835;bs3=0.435;\n",
+ "is1=1.730;is2=0.615;is3=2.070;is4=1.835;is5=1.630;\n",
+ "is6=2.255;\n",
+ "fs1=3.450;fs2=0.985;fs3=3.630;\n",
+ "\n",
+ "sbs=bs1+bs2+bs3;\n",
+ "sis=is1+is2+is3+is4+is5+is6;\n",
+ "sfs=fs1+fs2+fs3;\n",
+ "\n",
+ "r1=bs1-is1;\n",
+ "r2=is1-is2;\n",
+ "r3=bs2-is3;\n",
+ "r4=is3-is4;\n",
+ "r5=is4-fs2;\n",
+ "sr=r1+r2+r3+r4+r5;\n",
+ "print(r1,r2,r3,r4,r5,sr);\n",
+ "\n",
+ "\n",
+ "f1=bs2;\n",
+ "f2=is5-bs3;\n",
+ "f3=fs3-is6;\n",
+ "f4=is6-is5\n",
+ "sf=f1+f2+f3+f4;\n",
+ "print(f1,f2,f4,f3,sf);\n",
+ "\n",
+ "k=sbs-sfs\n",
+ "print('k=',k);\n",
+ "k1=sr-sf\n",
+ "print('k1=',k1);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### ch-5 page 163,164 pb-2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(0.9049999999999998, 1.12, 1.7349999999999999, 1.365, 5.125)\n",
+ "(1.4749999999999999, 1.465, 0.665, 1.29, 4.8950000000000005)\n",
+ "('k=', 0.22999999999999954)\n",
+ "('k1=', 0.22999999999999954)\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "bs1=3.150;bs2=3.860;bs3=0.470;\n",
+ "is1=2.245;is2=2.125;is3=0.760;is4=1.935;is5=3.225;\n",
+ "fs1=1.125;fs2=2.235;fs3=3.890;\n",
+ "\n",
+ "sbs=bs1+bs2+bs3;\n",
+ "sis=is1+is2+is3+is4+is5;\n",
+ "sfs=fs1+fs2+fs3;\n",
+ "\n",
+ "r1=bs1-is1;\n",
+ "r2=is1-fs1;\n",
+ "r3=bs2-is2;\n",
+ "r4=is2-is3;\n",
+ "\n",
+ "sr=r1+r2+r3+r4;\n",
+ "print(r1,r2,r3,r4,sr);\n",
+ "\n",
+ "\n",
+ "f1=fs2-is3;\n",
+ "f2=is4-bs3;\n",
+ "f3=is5-is4;\n",
+ "f4=fs3-is5;\n",
+ "sf=f1+f2+f3+f4;\n",
+ "print(f1,f2,f4,f3,sf);\n",
+ "\n",
+ "k=sbs-sfs\n",
+ "print('k=',k);\n",
+ "k1=sr-sf\n",
+ "print('k1=',k1);\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap7_Computation-of-Area_1.ipynb b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap7_Computation-of-Area_1.ipynb
new file mode 100644
index 00000000..25fe5def
--- /dev/null
+++ b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap7_Computation-of-Area_1.ipynb
@@ -0,0 +1,802 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "# Chapter 7: Computation of Area"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### ch-7 page 207 pb-1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "chainage 0 and 20\n",
+ "('area=', 420.0)\n",
+ "chainage 20 and 65\n",
+ "('area=', 2250.0)\n",
+ "chainage 65 and 110\n",
+ "('area=', 1305.0)\n",
+ "chainage 90 and 110\n",
+ "('area=', 600.0)\n",
+ "chainage 40 and 90\n",
+ "('area=', 2000.0)\n",
+ "chainage 0 and 40\n",
+ "('area=', 400.0)\n",
+ "('area of field =', 6975.0)\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "\n",
+ "print('chainage 0 and 20')\n",
+ "a1=0;b1=20;\n",
+ "\n",
+ "base=b1-a1;\n",
+ "o1=0;o2=42;\n",
+ "mo1=(o2+o1)/2;\n",
+ "\n",
+ "ae1=base*mo1;\n",
+ "print('area=',ae1);\n",
+ "\n",
+ "print('chainage 20 and 65')\n",
+ "a1=20;b1=65;\n",
+ "\n",
+ "base=b1-a1;\n",
+ "o1=58;o2=42;\n",
+ "mo2=(o2+o1)/2;\n",
+ "\n",
+ "ae2=base*mo2;\n",
+ "print('area=',ae2);\n",
+ "\n",
+ "\n",
+ "print('chainage 65 and 110')\n",
+ "a1=65;b1=110;\n",
+ "\n",
+ "base=b1-a1;\n",
+ "o1=0;o2=58;\n",
+ "mo3=(o2+o1)/2;\n",
+ "\n",
+ "ae3=base*mo3;\n",
+ "print('area=',ae3);\n",
+ "\n",
+ "\n",
+ "print('chainage 90 and 110')\n",
+ "a1=90;b1=110;\n",
+ "\n",
+ "base=b1-a1;\n",
+ "o1=0;o2=60;\n",
+ "mo4=(o2+o1)/2;\n",
+ "\n",
+ "ae4=base*mo4;\n",
+ "print('area=',ae4);\n",
+ "\n",
+ "print('chainage 40 and 90')\n",
+ "\n",
+ "a1=40;b1=90;\n",
+ "\n",
+ "base=b1-a1;\n",
+ "o1=60;o2=20;\n",
+ "mo5=(o2+o1)/2;\n",
+ "\n",
+ "ae5=base*mo5;\n",
+ "print('area=',ae5);\n",
+ "\n",
+ "print('chainage 0 and 40')\n",
+ "a1=0;b1=40;\n",
+ "\n",
+ "base=b1-a1;\n",
+ "o1=20;o2=0;\n",
+ "mo6=(o2+o1)/2;\n",
+ "\n",
+ "ae6=base*mo6\n",
+ "print('area=',ae6);\n",
+ "\n",
+ "\n",
+ "area=ae1+ae2+ae3+ae4+ae5+ae6;\n",
+ "\n",
+ "print('area of field =',area);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### ch-7 page 209,210 pb-2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "chainage 15.5 and 27.5\n",
+ "('area=', 135.0)\n",
+ "chainage 15.5 and 50\n",
+ "('area=', 905.625)\n",
+ "chainage 50 and 75.5\n",
+ "('area=', 835.125)\n",
+ "chainage 75.5 and 86.7\n",
+ "('area=', 198.80000000000004)\n",
+ "chainage 86.7 and 90\n",
+ "('area=', 17.324999999999985)\n",
+ "chainage 60 and 90\n",
+ "('area=', 532.5)\n",
+ "chainage 35.5 and 60\n",
+ "('area=', 490.0)\n",
+ "chainage 27.5 and 35.5\n",
+ "('area=', 60.0)\n",
+ "('ap,ae=', 3022.05, 152.325)\n",
+ "('total area of field =', 2869.7250000000004)\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "\n",
+ "print('chainage 15.5 and 27.5')\n",
+ "a1=15.5;b1=27.5;\n",
+ "\n",
+ "base=b1-a1;\n",
+ "o1=0;o2=22.5;\n",
+ "mo1=(o2+o1)/2;\n",
+ "\n",
+ "ae1=base*mo1;\n",
+ "ap1=0;\n",
+ "an1=ae1;\n",
+ "print('area=',ae1);\n",
+ "\n",
+ "print('chainage 15.5 and 50')\n",
+ "a1=15.5;b1=50;\n",
+ "\n",
+ "base=b1-a1;\n",
+ "o1=22.5;o2=30;\n",
+ "mo2=(o2+o1)/2;\n",
+ "\n",
+ "ae2=base*mo2;\n",
+ "ap2=ae2;\n",
+ "an2=0;\n",
+ "print('area=',ae2);\n",
+ "\n",
+ "\n",
+ "print('chainage 50 and 75.5')\n",
+ "a1=50;b1=75.5;\n",
+ "\n",
+ "base=b1-a1;\n",
+ "o1=30;o2=35.5;\n",
+ "mo3=(o2+o1)/2;\n",
+ "\n",
+ "ae3=base*mo3;\n",
+ "ap3=ae3;\n",
+ "an3=0;\n",
+ "print('area=',ae3);\n",
+ "\n",
+ "\n",
+ "print('chainage 75.5 and 86.7')\n",
+ "a1=75.5;b1=86.7;\n",
+ "\n",
+ "base=b1-a1;\n",
+ "o1=35.5;o2=0;\n",
+ "mo4=(o2+o1)/2;\n",
+ "\n",
+ "ae4=base*mo4;\n",
+ "ap4=ae4;\n",
+ "an4=0;\n",
+ "print('area=',ae4);\n",
+ "\n",
+ "print('chainage 86.7 and 90')\n",
+ "\n",
+ "a1=86.7;b1=90;\n",
+ "\n",
+ "base=b1-a1;\n",
+ "o1=0;o2=10.5;\n",
+ "mo5=(o2+o1)/2;\n",
+ "\n",
+ "ae5=base*mo5;\n",
+ "ap5=0;\n",
+ "an5=ae5;\n",
+ "print('area=',ae5);\n",
+ "\n",
+ "print('chainage 60 and 90')\n",
+ "a1=60;b1=90;\n",
+ "\n",
+ "base=b1-a1;\n",
+ "o1=10.5;o2=25.0;\n",
+ "mo6=(o2+o1)/2;\n",
+ "\n",
+ "ae6=base*mo6\n",
+ "ap6=ae6;\n",
+ "an6=0;\n",
+ "print('area=',ae6);\n",
+ "\n",
+ "print('chainage 35.5 and 60')\n",
+ "a1=35.5;b1=60;\n",
+ "\n",
+ "base=b1-a1;\n",
+ "o1=25;o2=15;\n",
+ "mo7=(o2+o1)/2;\n",
+ "\n",
+ "ae7=base*mo7\n",
+ "ap7=ae7;\n",
+ "an7=0;\n",
+ "print('area=',ae7);\n",
+ "\n",
+ "print('chainage 27.5 and 35.5')\n",
+ "a1=27.5;b1=35.5;\n",
+ "\n",
+ "base=b1-a1;\n",
+ "o1=15;o2=0;\n",
+ "mo8=(o2+o1)/2;\n",
+ "\n",
+ "ae8=base*mo8\n",
+ "ap8=ae8;\n",
+ "an8=0\n",
+ "print('area=',ae8);\n",
+ "\n",
+ "an=an1+an2+an3+an4+an5+an6+an7+an8;\n",
+ "ap=ap1+ap2+ap3+ap4+ap5+ap6+ap7+ap8;\n",
+ "\n",
+ "area=ap-an;\n",
+ "print('ap,ae=',ap,an)\n",
+ "print('total area of field =',area);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### ch-7 page 214 pb-1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Mid ordinate rule\n",
+ "('required area is', 188.0, 'square meters')\n",
+ "average ordinate rule\n",
+ "('required area is', 161.14285714285714, 'sqare meters')\n",
+ "trapezoidal rule\n",
+ "('required area is ', 188.0, 'square meters')\n",
+ "simpsons rule\n",
+ "('required area is ', 196.66666666666669, 'square meters')\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "\n",
+ "dis=10;\n",
+ "a=0;g=0;\n",
+ "b=2.5;c=3.5;d=5;e=4.6;f=3.2;\n",
+ "\n",
+ "print('Mid ordinate rule');\n",
+ "\n",
+ "h1=(a+b)/2;\n",
+ "h2=(b+c)/2;\n",
+ "h3=(c+d)/2;\n",
+ "h4=(d+e)/2;\n",
+ "h5=(e+f)/2;\n",
+ "h6=(f+g)/2;\n",
+ "area=dis*(h1+h2+h3+h4+h5+h6);\n",
+ "\n",
+ "print('required area is',area,'square meters');\n",
+ "\n",
+ "print('average ordinate rule');\n",
+ "dis=10;\n",
+ "p=6;\n",
+ "bl=dis*p;\n",
+ "no=7;\n",
+ "\n",
+ "\n",
+ "area2=bl*(a+b+c+d+e+f+g)/no;\n",
+ "\n",
+ "print('required area is',area2,'sqare meters');\n",
+ "\n",
+ "print('trapezoidal rule');\n",
+ "\n",
+ "\n",
+ "area3=(dis/2)*(2*(a+b+c+d+e+f+g));\n",
+ "\n",
+ "print('required area is ',area3,'square meters');\n",
+ "print('simpsons rule');\n",
+ "\n",
+ "area4=(dis/3)*(4*(b+d+f)+2*(c+e));\n",
+ "print('required area is ',area4,'square meters');\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### ch-7 page 216 pb-2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "trapezoidal rule\n",
+ "('required area is ', 820.125, 'square meters')\n",
+ "simpsons rule\n",
+ "(756.0, 57.375)\n",
+ "('required area is ', 813.375, 'square meters')\n"
+ ]
+ }
+ ],
+ "source": [
+ "#ch-7 page 216 pb-2\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "print('trapezoidal rule');\n",
+ "\n",
+ "o1=3.5;o2=4.3;o3=6.75;o4=5.25;o5=7.5;o6=8.8;o7=7.9;\n",
+ "o8=6.4;o9=4.4;o10=3.25;\n",
+ "\n",
+ "dis=15;\n",
+ "\n",
+ "area1=(dis/2)*(o1+o10+(2*(o2+o3+o4+o5+o6+o7+o8+o9)));\n",
+ "\n",
+ "print('required area is ',area1,'square meters');\n",
+ "\n",
+ "print('simpsons rule')\n",
+ "\n",
+ "A1=dis/3*(o1+o9+4*(o2+o4+o6+o8)+2*(o3+o5+o7));\n",
+ "\n",
+ "A2=dis/2*(o10+o9);\n",
+ "\n",
+ "area2=A1+A2;\n",
+ "print(A1,A2)\n",
+ "\n",
+ "print('required area is ',area2,'square meters');\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### cha 7 page -216 pb-3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "trapezoidal rule\n",
+ "(89.5, 106.49999999999999, 158.0)\n",
+ "('total area=', 354.0, 'meters')\n",
+ "simpsons rule\n",
+ "(89.66666666666667, 102.33333333333333, 157.33333333333334)\n",
+ "('total area is ', 349.33333333333337, 'meters')\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "o1=2.5;o2=3.8;o3=4.6;o4=5.2;o5=6.1;o6=4.7;o7=5.8;o8=3.9;o9=2.20;\n",
+ "\n",
+ "d1=5;\n",
+ "d2=10;\n",
+ "d3=20;\n",
+ "\n",
+ "\n",
+ "print('trapezoidal rule')\n",
+ "\n",
+ "del1=(d1/2)*(o1+o5+2*(o2+o3+o4));\n",
+ "del2=(d2/2)*(o5+o7+2*(o6));\n",
+ "del3=(d3/2)*(o7+o9+2*(o8));\n",
+ "\n",
+ "total1=del1+del2+del3;\n",
+ "print(del1,del2,del3)\n",
+ "\n",
+ "print('total area=',total1,'meters');\n",
+ "\n",
+ "print('simpsons rule')\n",
+ "\n",
+ "de1=(d1/3)*(o1+o5+4*(o2+o4)+2*(o3));\n",
+ "de2=(d2/3)*(o5+o7+4*(o6));\n",
+ "de3=(d3/3)*(o7+o9+4*(o8));\n",
+ "\n",
+ "\n",
+ "total2=de1+de2+de3;\n",
+ "print(de1,de2,de3)\n",
+ "\n",
+ "print('total area is ',total2,'meters')\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### cha 7 page -225 pb-1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('A=', 748.0)\n",
+ "('required area is', 748.0, 'meters')\n"
+ ]
+ }
+ ],
+ "source": [
+ "#cha 7 page -225 ;pb-1\n",
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "ir=9.377;\n",
+ "fr=3.336;\n",
+ "m=100;\n",
+ "c=23.521;\n",
+ "\n",
+ "n=1;\n",
+ "\n",
+ "a1=m*(fr-ir+10*(n)+c);\n",
+ "\n",
+ "a2=m*(fr-ir-10*(n)+c);\n",
+ "\n",
+ "print('A=',a2);\n",
+ "print('required area is',a2,'meters');\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### cha 7 page -225,226 pb-2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('A=', 81460.00000000001)\n",
+ "('required area is', 81460.00000000001, 'meters')\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "ir=8.652;\n",
+ "fr=6.798;\n",
+ "c=20;\n",
+ "m=100;\n",
+ "n=1;\n",
+ "\n",
+ "sc=100;\n",
+ "\n",
+ "a2=m*(fr-ir-10*(n)+c);\n",
+ "\n",
+ "a2=a2*sc;\n",
+ "\n",
+ "print('A=',a2);\n",
+ "print('required area is',a2,'meters');\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### cha 7 page -226 pb-3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('required area is', 9747.499999999998, 'meters')\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "ir=4.855;\n",
+ "fr=8.754;\n",
+ "m=100;\n",
+ "\n",
+ "n=0;\n",
+ "c=0;\n",
+ "sc=25\n",
+ "a=m*(fr-ir)\n",
+ "a=a*sc;\n",
+ "print('required area is',a,'meters');\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### cha-7 page-226 pb-4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "case 1\n",
+ "('A=', 100.0)\n",
+ "('M=', 100.0)\n",
+ "case 2\n",
+ "('required area is', 1347.0)\n",
+ "('area of zero circle is', 2122.0)\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "print('case 1')\n",
+ "\n",
+ "ir=3.415;\n",
+ "fr=4.415;\n",
+ "n=0;\n",
+ "c=0;\n",
+ "sc=16; #1cm^2=16m^2;\n",
+ "h=10000;\n",
+ "ag=0.16*h;\n",
+ "\n",
+ "am=ag/sc;\n",
+ "print('A=',am);\n",
+ "\n",
+ "m=am/(fr-ir);\n",
+ "\n",
+ "print('M=',m);\n",
+ "\n",
+ "print('case 2');\n",
+ "\n",
+ "fr_ir=2.25;\n",
+ "c=21.22;\n",
+ "n=1\n",
+ "\n",
+ "a1=m*(fr_ir-10+c);\n",
+ "print('required area is',a1);\n",
+ "\n",
+ "area=m*c;\n",
+ "\n",
+ "print('area of zero circle is',area);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### cha-7 page-227 pb-5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('area of zero circle is', 1221.0, 'square centimeters')\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "l=10;b=15;\n",
+ "a1=l*b;\n",
+ "\n",
+ "ir=0.686;\n",
+ "fr=9.976;\n",
+ "n=2;\n",
+ "m=100;\n",
+ "\n",
+ "marea=150;\n",
+ "\n",
+ "c=(marea/100)+10.710;\n",
+ "\n",
+ "area=m*c;\n",
+ "print('area of zero circle is',area,'square centimeters');\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### cha-7 page-228 pb-6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "case 1\n",
+ "('area of figure is', 705.0, 'square cm')\n",
+ "case 2\n",
+ "('area of figure is', -1357.0, 'sq cm')\n",
+ "('C=', 20.62)\n",
+ "('area of zero circle is', 2062.0, 'square cm')\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "print('case 1')\n",
+ "n=1;\n",
+ "c=0;\n",
+ "m=100;\n",
+ "fr=4.825;\n",
+ "ir=7.775;\n",
+ "area1=m*(fr-ir+10*n)\n",
+ "\n",
+ "print('area of figure is',area1,'square cm');\n",
+ "\n",
+ "print('case 2')\n",
+ "fr=8.755;\n",
+ "ir=2.325;\n",
+ "m=100;\n",
+ "n=2;\n",
+ "area2=m*(fr-ir-10*n+c)\n",
+ "\n",
+ "print('area of figure is',area2,'sq cm')\n",
+ "c=(area1/m)+13.570;\n",
+ "print('C=',c)\n",
+ "\n",
+ "areac=m*c;\n",
+ "print('area of zero circle is',areac,'square cm');\n",
+ "\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap8_Computation-of-Volume_1.ipynb b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap8_Computation-of-Volume_1.ipynb
new file mode 100644
index 00000000..197ff573
--- /dev/null
+++ b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap8_Computation-of-Volume_1.ipynb
@@ -0,0 +1,713 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "# Chapter 8: Computation of volume"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### cha-8 page-241 pb-1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(10.215, 14.84375, 28.433749999999996, 34.375, 23.633750000000003, 16.23375, 9.58375)\n",
+ "by trapezoidal rule\n",
+ "('V=', 5096.775, 'meter cube')\n",
+ "by prismoidal rule\n",
+ "('V=', 5143.25, 'meter cube')\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "h1=0.90;h2=1.25;h3=2.15;h4=2.50;h5=1.85;h6=1.35;h7=0.85;\n",
+ "\n",
+ "b=10;\n",
+ "sh=1.5;\n",
+ "\n",
+ "h=40;\n",
+ "\n",
+ "d1=(b+(sh*h1))*h1;\n",
+ "d2=(b+(sh*h2))*h2;\n",
+ "d3=(b+(sh*h3))*h3;\n",
+ "d4=(b+(sh*h4))*h4;\n",
+ "d5=(b+(sh*h5))*h5;\n",
+ "d6=(b+(sh*h6))*h6;\n",
+ "d7=(b+(sh*h7))*h7;\n",
+ "\n",
+ "print(d1,d2,d3,d4,d5,d6,d7)\n",
+ "print('by trapezoidal rule');\n",
+ "v=(h/2)*(d1+d7+2*(d2+d3+d4+d5+d6));\n",
+ "print('V=',v,'meter cube');\n",
+ "\n",
+ "print('by prismoidal rule');\n",
+ "\n",
+ "v1=(h/3)*(d1+d7+4*(d2+d4+d6)+2*(d3+d5));\n",
+ "\n",
+ "print('V=',v1,'meter cube');\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### cha-8 page-241,242 pb-2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(19.736842105263158, 29.487179487179485, 19.047619047619047, 23.214285714285715)\n",
+ "(7.125, 11.845, 7.68, 13.78, 16.5, 7.125)\n",
+ "from chainage 0 to 50\n",
+ "(70.3125, 179.3165955128205)\n",
+ "from chainage 50 to 100\n",
+ "(78.74925714285715, 174.63782051282053)\n",
+ "from chainage 100 to 150\n",
+ "(73.14285714285714, 213.2455)\n",
+ "from chainage 150 to 200\n",
+ "(221.13535714285715, 159.94642857142858)\n",
+ "from chainage 200 to 250\n",
+ "590.625\n",
+ "('total cutting =', 1033.9649714285715)\n",
+ "('total fitting=', 727.1463445970695)\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "h1=0.75;h2=1.15;h3=0.80;h4=1.30;h5=1.5;h6=0.75\n",
+ "b=8;sh=2;\n",
+ "\n",
+ "x1=(50*h1)/(h1+h2);\n",
+ "x2=(50*h2)/(h2+h3);\n",
+ "x3=(50*h3)/(h4+h3);\n",
+ "x4=(50*h4)/(h4+h5);\n",
+ "print(x1,x2,x3,x4);\n",
+ "\n",
+ "a1=(b+(sh*h1))*h1;\n",
+ "a2=(b+(sh*h2))*h2;\n",
+ "a3=(b+(sh*h3))*h3;\n",
+ "a4=(b+(sh*h4))*h4;\n",
+ "a5=(b+(sh*h5))*h5;\n",
+ "a6=(b+(sh*h6))*h6;\n",
+ "print(a1,a2,a3,a4,a5,a6)\n",
+ "\n",
+ "print('from chainage 0 to 50');\n",
+ "c1=(a1/2)*(x1);\n",
+ "f1=(a2/2)*(x2+0.79);\n",
+ "print(c1,f1);\n",
+ "\n",
+ "\n",
+ "\n",
+ "print('from chainage 50 to 100');\n",
+ "f2=(a2/2)*(x2);\n",
+ "c2=(a3/2)*(x3+1.46);\n",
+ "print(c2,f2);\n",
+ "\n",
+ "print('from chainage 100 to 150');\n",
+ "c3=(a3/2)*(x3);\n",
+ "f3=(a4/2)*(30.95);\n",
+ "print(c3,f3);\n",
+ "\n",
+ "print('from chainage 150 to 200');\n",
+ "f4=(a4/2)*(x4);\n",
+ "c4=(a5/2)*(x4+3.59);\n",
+ "print(c4,f4);\n",
+ "\n",
+ "print('from chainage 200 to 250');\n",
+ "c5=((a1+a5)/2)*50;\n",
+ "\n",
+ "print(c5);\n",
+ "\n",
+ "tc=c1+c2+c3+c4+c5;\n",
+ "tf=f1+f2+f3+f4;\n",
+ "\n",
+ "print('total cutting =',tc);\n",
+ "print('total fitting=',tf);\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### cha-8 page-244 pb-3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(26.25, 11.5625, 8.5025, 15.9225, 22.44, 30.9225, 6.5625)\n",
+ "('volume=', 5472.125)\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "h=50;\n",
+ "h1=2.50;h2=1.25;h3=0.95;h4=1.65;h5=2.20;h6=2.85;h7=0.75;\n",
+ "b=8;sh=1;\n",
+ "\n",
+ "\n",
+ "a1=(b+(sh*h1))*h1;\n",
+ "a2=(b+(sh*h2))*h2;\n",
+ "a3=(b+(sh*h3))*h3;\n",
+ "a4=(b+(sh*h4))*h4;\n",
+ "a5=(b+(sh*h5))*h5;\n",
+ "a6=(b+(sh*h6))*h6;\n",
+ "a7=(b+(sh*h7))*h7;\n",
+ "\n",
+ "print(a1,a2,a3,a4,a5,a6,a7);\n",
+ "\n",
+ "v=(h/3)*(a1+a7+4*(a2+a4+a6)+2*(a3+a5));\n",
+ "\n",
+ "\n",
+ "print('volume=',v);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### cha-8 page-245 pb-4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "according to trapezoidal rule\n",
+ "('volume =', 330375.0)\n",
+ "according to prismoidal rule\n",
+ "('volume =', 330250.0)\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "a1=2050;a2=8400;a3=16300;a4=24600;a5=31500;\n",
+ "\n",
+ "h=5;\n",
+ "\n",
+ "print('according to trapezoidal rule')\n",
+ "\n",
+ "v1=(h/2)*(a1+a5+2*(a2+a3+a4));\n",
+ "\n",
+ "print('volume =',v1);\n",
+ "\n",
+ "print('according to prismoidal rule')\n",
+ "\n",
+ "v2=(h/3)*(a1+a5+4*(a2+a4)+2*(a3));\n",
+ "\n",
+ "print('volume =',v2)\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### cha-8 page-245,246 pb-5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "bottom section\n",
+ "('area A1=', 1200)\n",
+ "mid section\n",
+ "('area A2=', 2000.0)\n",
+ "top section\n",
+ "('area A3=', 30000)\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "print('bottom section')\n",
+ "L=40;\n",
+ "B=30;\n",
+ "a1=L*B;\n",
+ "print('area A1=',a1)\n",
+ "\n",
+ "print('mid section')\n",
+ "b=40;\n",
+ "sh=2.5;\n",
+ "\n",
+ "l=L+2*2*sh;\n",
+ "b=B+2*2*sh;\n",
+ "a2=l*b;\n",
+ "print('area A2=',a2);\n",
+ "\n",
+ "print('top section')\n",
+ "sh=5;\n",
+ "\n",
+ "l1=L+2*sh;\n",
+ "b1=B*2*2*sh;\n",
+ "a3=l1*b1;\n",
+ "print('area A3=',a3)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### cha-8 page-246,247 pb-6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "first section\n",
+ "(6.666666666666666, 5.454545454545455)\n",
+ "('area A1=', 20.36363636363636)\n",
+ "second section\n",
+ "(7.777777777777778, 6.363636363636363)\n",
+ "('area A2=', 33.494949494949495)\n",
+ "third section\n",
+ "(8.88888888888889, 7.2727272727272725)\n",
+ "('area A3=', 48.64646464646465)\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "b=8;\n",
+ "h=2;\n",
+ "n=10;\n",
+ "s=1;\n",
+ "\n",
+ "print('first section');\n",
+ "b1=(b/2)+((n*s)/(n-s))*(h+(b/(2*n)));\n",
+ "b2=(b/2)+((n*s)/(n+s))*(h-(b/(2*n)));\n",
+ "\n",
+ "a1=0.5*((((b/(2*s))+h))*(b1+b2)-((b*b)/(2*s)));\n",
+ "print(b1,b2)\n",
+ "\n",
+ "print('area A1=',a1);\n",
+ "\n",
+ "print('second section');\n",
+ "b=8;h=3;n=10;s=1;\n",
+ "\n",
+ "\n",
+ "b1=(b/2)+((n*s)/(n-s))*(h+(b/(2*n)));\n",
+ "b2=(b/2)+((n*s)/(n+s))*(h-(b/(2*n)));\n",
+ "\n",
+ "a2=0.5*((((b/(2*s))+h))*(b1+b2)-((b*b)/(2*s)));\n",
+ "print(b1,b2)\n",
+ "\n",
+ "print('area A2=',a2);\n",
+ "\n",
+ "print('third section');\n",
+ "b=8;h=4;n=10;s=1;\n",
+ "\n",
+ "\n",
+ "b1=(b/2)+((n*s)/(n-s))*(h+(b/(2*n)));\n",
+ "b2=(b/2)+((n*s)/(n+s))*(h-(b/(2*n)));\n",
+ "\n",
+ "a3=0.5*((((b/(2*s))+h))*(b1+b2)-((b*b)/(2*s)));\n",
+ "print(b1,b2)\n",
+ "\n",
+ "print('area A3=',a3);\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### cha-8 page-247,248 pb-7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "first section\n",
+ "(6.666666666666667, 5.454545454545454)\n",
+ "('area A1=', 11.36363636363636)\n",
+ "second section\n",
+ "(8.75, 5.833333333333333)\n",
+ "('area A2=', 26.041666666666664)\n",
+ "third section\n",
+ "(7.428571428571429, 5.777777777777778)\n",
+ "('area A3=', 17.920634920634917)\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "b=10;\n",
+ "h=1;\n",
+ "n=10;\n",
+ "s=1;\n",
+ "\n",
+ "print('first section');\n",
+ "b1=(b/2)+((n*s)/(n-s))*(h+(b/(2*n)));\n",
+ "b2=(b/2)+((n*s)/(n+s))*(h-(b/(2*n)));\n",
+ "\n",
+ "a1=0.5*((((b/(2*s))+h))*(b1+b2)-((b*b)/(2*s)));\n",
+ "print(b1,b2)\n",
+ "\n",
+ "print('area A1=',a1);\n",
+ "\n",
+ "print('second section');\n",
+ "b=10;h=2;n=5;s=1;\n",
+ "\n",
+ "\n",
+ "b1=(b/2)+((n*s)/(n-s))*(h+(b/(2*n)));\n",
+ "b2=(b/2)+((n*s)/(n+s))*(h-(b/(2*n)));\n",
+ "\n",
+ "a2=0.5*((((b/(2*s))+h))*(b1+b2)-((b*b)/(2*s)));\n",
+ "print(b1,b2)\n",
+ "\n",
+ "print('area A2=',a2);\n",
+ "\n",
+ "print('third section');\n",
+ "b=10;h=1.5;n=8;s=1;\n",
+ "\n",
+ "\n",
+ "b1=(b/2)+((n*s)/(n-s))*(h+(b/(2*n)));\n",
+ "b2=(b/2)+((n*s)/(n+s))*(h-(b/(2*n)));\n",
+ "\n",
+ "a3=0.5*((((b/(2*s))+h))*(b1+b2)-((b*b)/(2*s)));\n",
+ "print(b1,b2)\n",
+ "\n",
+ "print('area A3=',a3);\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### cha-8 page-248 pb-8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "at station 1\n",
+ "('area=', 14.25)\n",
+ "at station 2\n",
+ "('area=', 18.975)\n",
+ "('v=', 830.625, 'cp=', 0.20833333333333262)\n",
+ "('correct volume =', 830.4166666666666)\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "print('at station 1');\n",
+ "h=1;h1=2.55;h2=0.95;b=9;b1=7.5;b2=5.25;\n",
+ "w1=b1+b2\n",
+ "a=(((h/2)*(b1+b2))+((b/4)*(h1+h2)));\n",
+ "print('area=',a)\n",
+ "\n",
+ "print('at station 2');\n",
+ "h=1.5;h1=2.8;h2=1.35;b=9;b1=8.1;b2=4.75;\n",
+ "\n",
+ "a1=(((h/2)*(b1+b2))+((b/4)*(h1+h2)));\n",
+ "d=50;\n",
+ "k=10.01;\n",
+ "v=(d/2)*(a+a1);\n",
+ "w2=b1+b2\n",
+ "print('area=',a1)\n",
+ "h2=1;\n",
+ "h1=1.5;\n",
+ "cp=(d/12)*(h1-h2)*(w2-w1);\n",
+ "\n",
+ "\n",
+ "cv=v-cp;\n",
+ "print('v=',v,'cp=',cp)\n",
+ "print('correct volume =',cv);\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### cha-8 page-249 pb-9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "section 1\n",
+ "(7.03125, 1.0416666666666667)\n",
+ "section 2\n",
+ "(9.03125, 0.375)\n",
+ "('vc=', 401.5625, 'vf=', 35.41666666666667)\n",
+ "('corrected volume (in cutting)=', 400.5208333333333)\n",
+ "('corrected volume(in filling)', 34.027777777777786)\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "print('section 1')\n",
+ "b=10;n=5;s=1;s1=2;\n",
+ "d=50;h1=0.5;h2=0.7;\n",
+ "\n",
+ "ac=0.5*(((0.5*b+n*h1)*(0.5*b+n*h1))/(n-s));\n",
+ "\n",
+ "af=0.5*(((0.5*b-n*h1)*(0.5*b-n*h1))/(n-s1));\n",
+ "\n",
+ "print(ac,af)\n",
+ "\n",
+ "\n",
+ "print('section 2')\n",
+ "\n",
+ "\n",
+ "ac1=0.5*(((0.5*b+n*h2)*(0.5*b+n*h2))/(n-s));\n",
+ "\n",
+ "af1=0.5*(((0.5*b-n*h2)*(0.5*b-n*h2))/(n-s1));\n",
+ "D=50;\n",
+ "print(ac1,af1)\n",
+ "vc=((ac+ac1)/2)*D;\n",
+ "vf=((af+af1)/2)*D;\n",
+ "\n",
+ "print('vc=',vc,'vf=',vf);\n",
+ "\n",
+ "D=50;\n",
+ "pcc=(D/(12*(n-s)))*(n*n*(h1-h2)*(h1-h2));\n",
+ "\n",
+ "\n",
+ "pcf=(D/(12*(n-s1)))*(n*n*(h1-h2)*(h1-h2));\n",
+ "\n",
+ "\n",
+ "cvc=vc-pcc;\n",
+ "cvf=vf-pcf;\n",
+ "\n",
+ "print('corrected volume (in cutting)=',cvc);\n",
+ "\n",
+ "print('corrected volume(in filling)',cvf)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### cha-8 page-251 pb-10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "at station 1\n",
+ "(40.2, 82.475)\n",
+ "('area =', 21.137499999999996)\n",
+ "at station 2\n",
+ "(53.7, 105.675)\n",
+ "('area =', 25.987499999999997)\n",
+ "volume by average end area rule\n",
+ "('volume=', 1178.1249999999998)\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "a1=0;a2=3.0;\n",
+ "b1=2.20;b2=5.50;\n",
+ "c1=1.75;c2=3.0;\n",
+ "d1=1.5;d2=0;\n",
+ "e1=4.75;e2=5.25;\n",
+ "f1=6.40;f2=7.30;\n",
+ "g1=0;g2=3.0;\n",
+ "\n",
+ "print('at station 1')\n",
+ "sp=(e1*d2)+(f1*e2)+(d2*f2)+(c1*d2)+(b1*c2)+(a1*b2);\n",
+ "\n",
+ "sq=(e2*d1)+(e1*f2)+(f1*g2)+(d1*c2)+(c1*b2)+(b1*a2);\n",
+ "\n",
+ "area1=0.5*(sp-sq)\n",
+ "area1=abs(area1);\n",
+ "print(sp,sq)\n",
+ "print('area =',area1)\n",
+ "\n",
+ "a1=0;a2=3.0;\n",
+ "b1=3.1;b2=5.25;\n",
+ "c1=2.20;c2=3.0;\n",
+ "d1=2;d2=0;\n",
+ "e1=5.25;e2=6;\n",
+ "f1=7.40;f2=8.5;\n",
+ "g1=0;g2=3.0;\n",
+ "print('at station 2')\n",
+ "sp1=(e1*d2)+(f1*e2)+(d2*f2)+(c1*d2)+(b1*c2)+(a1*b2);\n",
+ "\n",
+ "sq1=(d1*e2)+(e1*f2)+(f1*g2)+(d1*c2)+(c1*b2)+(b1*a2);\n",
+ "print(sp1,sq1)\n",
+ "\n",
+ "\n",
+ "area2=0.5*(sp1-sq1)\n",
+ "area2=abs(area2);\n",
+ "print('area =',area2)\n",
+ "\n",
+ "print('volume by average end area rule')\n",
+ "v=50*((area1+area2)/2);\n",
+ "print('volume=',v)\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap9_Theodolite-Traversing_1.ipynb b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap9_Theodolite-Traversing_1.ipynb
new file mode 100644
index 00000000..3153bd76
--- /dev/null
+++ b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap9_Theodolite-Traversing_1.ipynb
@@ -0,0 +1,502 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "# Chapter 9: Theodolite Traversing"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### ch-9 page 302 pb-1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(65.11978202514794, -63.50741753704864, -51.91315691660193)\n",
+ "(38.20554919114786, 168.9587462008847, -30.579186368382416)\n",
+ "(50.300792428502625, -176.58510902365015)\n",
+ "('distance DA=', 183.60955979422673)\n",
+ "('bearing of DA=', 74.10023981818601)\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "l1=75.5;\n",
+ "l2=180.5\n",
+ "l3=60.25\n",
+ "\n",
+ "t1=30.4;t2=69.4;t3=30.5;\n",
+ "t2=180-t2;\n",
+ "t3=180-t3;\n",
+ "\n",
+ "Lc1=l1*math.cos(t1*(math.pi/180))\n",
+ "Lc2=l2*math.cos(t2*(math.pi/180))\n",
+ "Lc3=l3*math.cos(t3*(math.pi/180))\n",
+ "\n",
+ "Ls1=l1*math.sin(t1*(math.pi/180))\n",
+ "Ls2=l2*math.sin(t2*(math.pi/180))\n",
+ "Ls3=-l3*math.sin(t3*(math.pi/180))\n",
+ "\n",
+ "print(Lc1,Lc2,Lc3);\n",
+ "print(Ls1,Ls2,Ls3);\n",
+ "Lc4=-Lc1-Lc2-Lc3;\n",
+ "Ls4=-Ls1-Ls2-Ls3;\n",
+ "\n",
+ "print(Lc4,Ls4);\n",
+ "\n",
+ "t4=-math.atan(Ls4/Lc4);\n",
+ "t4=t4*(180/math.pi);\n",
+ "\n",
+ "l4=math.sqrt(Lc4*Lc4+Ls4*Ls4);\n",
+ "\n",
+ "print('distance DA=',l4);\n",
+ "print('bearing of DA=',t4);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### ch-9 page 304 pb-2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('length of DA is', 145.80634036039953, 'or', 12.053659639600497)\n",
+ "when length of DA ,L=145.8\n",
+ "('bearing at AB is=N', 82.44640641462031)\n",
+ "when length of DA ,L=12.04\n",
+ "0.999661660714\n",
+ "('bearing at AB is=N', 1.4904797844587976)\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "l1=100;\n",
+ "l2=80;\n",
+ "l3=60;\n",
+ "\n",
+ "t2=39.5;t3=40.5;t4=49.75;\n",
+ "\n",
+ "L2=l2*math.cos(t2*(math.pi/180));\n",
+ "L3=l3*math.cos(t3*(math.pi/180));\n",
+ "\n",
+ "D2=l2*math.sin(t2*(math.pi/180));\n",
+ "D3=l3*math.sin(t3*(math.pi/180));\n",
+ "\n",
+ "l41=(157.86+math.sqrt(157.86*157.86-4*1757.5))/2;\n",
+ "l42=(157.86-math.sqrt(157.86*157.86-4*1757.5))/2;\n",
+ "\n",
+ "print('length of DA is',l41,'or',l42);\n",
+ "\n",
+ "print('when length of DA ,L=145.8')\n",
+ "\n",
+ "k=math.cos(t4*(math.pi/180))\n",
+ "k1=(L2+L3-(k*l41))/100;\n",
+ "t1=math.acos(k1);\n",
+ "t1=t1*(180/(math.pi))\n",
+ "print('bearing at AB is=N',t1)\n",
+ "\n",
+ "\n",
+ "print('when length of DA ,L=12.04')\n",
+ "\n",
+ "k=math.cos(t4*(math.pi/180))\n",
+ "k1=(L2+L3-(k*l42))/100;\n",
+ "k1=k1+0.004;\n",
+ "t11=math.acos(k1);\n",
+ "t11=t11*(180/(math.pi))\n",
+ "print(k1)\n",
+ "print('bearing at AB is=N',t11)\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### ch-9 page 305 pb-3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('latitude of AB,CD,DE are', 86.59373062437335, -57.03044742000232, -25.250000000000007)\n",
+ "('Depature of AB,CD,DE are', 51.00760547755076, -48.708603624763775, -43.73428289111415)\n",
+ "(-4.313283204371025, 41.43528103832716)\n",
+ "('length of BC=', 348.51410778926174)\n",
+ "('length of EA=', 317.28203276885586)\n"
+ ]
+ }
+ ],
+ "source": [
+ "#ch-9 page 305 pb-3\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "l1=100.5;l3=75;l4=50.5;\n",
+ "t1=30.5;t2=45;t3=40.5;t4=60;t5=40.25;\n",
+ "\n",
+ "\n",
+ "L1=l1*math.cos(t1*(math.pi/180))\n",
+ "L3=-l3*math.cos(t3*(math.pi/180))\n",
+ "L4=-l4*math.cos(t4*(math.pi/180))\n",
+ "\n",
+ "print('latitude of AB,CD,DE are',L1,L3,L4);\n",
+ "D1=l1*math.sin(t1*(math.pi/180))\n",
+ "D3=-l3*math.sin(t3*(math.pi/180))\n",
+ "D4=-l4*math.sin(t4*(math.pi/180))\n",
+ "print('Depature of AB,CD,DE are',D1,D3,D4);\n",
+ "\n",
+ "L2_L5=-(L1+L3+L4);\n",
+ "D2_D5=-(D1+D3+D4);\n",
+ "print(L2_L5,D2_D5)\n",
+ "\n",
+ "k=0.117;\n",
+ "l5=(L2_L5+D2_D5)/(k);\n",
+ "\n",
+ "k1=0.763;\n",
+ "\n",
+ "l2=(k1*l5)-L2_L5;\n",
+ "l2=l2/0.707;\n",
+ "\n",
+ "print('length of BC=',l2);\n",
+ "print('length of EA=',l5);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### ch-9 page 307 pb-4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('latitudes of AQ,QR,RB are', 65.21958064293187, -61.02257873940248, -36.93176700776003)\n",
+ "('Depature of AQ,QR,RB are', 38.03493526693723, 52.118205878497236, -65.27667719549248)\n",
+ "('length of AB=', 41.114514530539196, 'meters')\n"
+ ]
+ }
+ ],
+ "source": [
+ "#ch-9 page 307 pb-4\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "l1=75.5;l2=80.25;l3=75;\n",
+ "t1=30.25;t2=40.5;t3=60.5;\n",
+ "\n",
+ "\n",
+ "L1=l1*math.cos(t1*(math.pi/180))\n",
+ "L2=-l2*math.cos(t2*(math.pi/180))\n",
+ "L3=-l3*math.cos(t3*(math.pi/180))\n",
+ "print('latitudes of AQ,QR,RB are',L1,L2,L3);\n",
+ "\n",
+ "\n",
+ "D1=l1*math.sin(t1*(math.pi/180))\n",
+ "D2=l2*math.sin(t2*(math.pi/180))\n",
+ "D3=-l3*math.sin(t3*(math.pi/180))\n",
+ "print('Depature of AQ,QR,RB are',D1,D2,D3);\n",
+ "\n",
+ "L4=-(L1+L2+L3);\n",
+ "D4=-(D1+D2+D3);\n",
+ "\n",
+ "l4=math.sqrt(L4*L4+(D4*D4));\n",
+ "\n",
+ "print('length of AB=',l4,'meters');\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### ch-9 page 308 pb-5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('latitudes of BQ,QP,PA are', -96.23556979807799, -172.32583208830516, -61.552945012933385)\n",
+ "('Depature of BQ,QP,PA are', 115.71069572705566, -101.50767259214082, -108.79446199248746)\n",
+ "('length of AB=', 343.3992171422471, 'meters')\n",
+ "('bearing of AB=', 15.989201746570728)\n",
+ "('PAB=', 44.51079825342927, 'QBA=', 66.23920174657073)\n"
+ ]
+ }
+ ],
+ "source": [
+ "#ch-9 page 308 pb-5\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "l1=150.5;l2=200;l3=125;\n",
+ "t1=50.25;t2=30.5;t3=60.5;\n",
+ "\n",
+ "\n",
+ "L1=-l1*math.cos(t1*(math.pi/180))\n",
+ "L2=-l2*math.cos(t2*(math.pi/180))\n",
+ "L3=-l3*math.cos(t3*(math.pi/180))\n",
+ "print('latitudes of BQ,QP,PA are',L1,L2,L3);\n",
+ "\n",
+ "\n",
+ "D1=l1*math.sin(t1*(math.pi/180))\n",
+ "D2=-l2*math.sin(t2*(math.pi/180))\n",
+ "D3=-l3*math.sin(t3*(math.pi/180))\n",
+ "print('Depature of BQ,QP,PA are',D1,D2,D3);\n",
+ "\n",
+ "L4=-(L1+L2+L3);\n",
+ "D4=-(D1+D2+D3);\n",
+ "\n",
+ "l4=math.sqrt(L4*L4+(D4*D4));\n",
+ "\n",
+ "print('length of AB=',l4,'meters');\n",
+ "\n",
+ "t4=math.atan(D4/L4);\n",
+ "t4=t4*(180/math.pi);\n",
+ "print('bearing of AB=',t4);\n",
+ "\n",
+ "PAB=t3-t4;\n",
+ "QBA=t1+t4;\n",
+ "\n",
+ "print('PAB=',PAB,'QBA=',QBA);\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### ch-9 page 308 pb-6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('latitudes of AB,BC,CD,DE are', 121.76738460229168, 106.68654829016975, -133.98333444865727, 19.805712703281312)\n",
+ "('Depature of AB,BC,CD,DE are', 45.52695956373076, 186.6627451151656, 78.9222154403895, 118.35427218446777)\n",
+ "('length of EA=', 444.4100422146986, 'meters')\n",
+ "('bearing of EA=', 75.09947760257306)\n",
+ "('bearing from F to C is =', 5.818201574554788)\n",
+ "('distance from F to C is =', 172.2028708809785)\n"
+ ]
+ }
+ ],
+ "source": [
+ "#ch-9 page 308 pb-6\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "l1=130;l2=215;l3=155.5;l4=120;\n",
+ "t1=20.5;t2=60.25;t3=30.5;t4=80.5;\n",
+ "\n",
+ "\n",
+ "L1=l1*math.cos(t1*(math.pi/180))\n",
+ "L2=l2*math.cos(t2*(math.pi/180))\n",
+ "L3=-l3*math.cos(t3*(math.pi/180))\n",
+ "L4=l4*math.cos(t4*(math.pi/180))\n",
+ "print('latitudes of AB,BC,CD,DE are',L1,L2,L3,L4);\n",
+ "\n",
+ "\n",
+ "D1=l1*math.sin(t1*(math.pi/180))\n",
+ "D2=l2*math.sin(t2*(math.pi/180))\n",
+ "D3=l3*math.sin(t3*(math.pi/180))\n",
+ "D4=l4*math.sin(t4*(math.pi/180))\n",
+ "print('Depature of AB,BC,CD,DE are',D1,D2,D3,D4);\n",
+ "\n",
+ "L5=-(L1+L2+L3+L4);\n",
+ "D5=-(D1+D2+D3+D4);\n",
+ "\n",
+ "l5=math.sqrt(L5*L5+(D5*D5));\n",
+ "\n",
+ "print('length of EA=',l5,'meters');\n",
+ "\n",
+ "t5=math.atan(D5/L5);\n",
+ "t5=t5*(180/math.pi);\n",
+ "print('bearing of EA=',t5);\n",
+ "\n",
+ "FA=l5/2;\n",
+ "l6=FA;\n",
+ "t6=t5;\n",
+ "L6=-l6*math.cos(t6*(math.pi/180))\n",
+ "D6=-l6*math.sin(t6*(math.pi/180))\n",
+ "\n",
+ "L7=-(L1+L2+L6)\n",
+ "D7=-(D1+D2+D6)\n",
+ "\n",
+ "t7=math.atan(D7/L7);\n",
+ "t7=t7*(180/math.pi);\n",
+ "print('bearing from F to C is =',t7);\n",
+ "\n",
+ "l7=math.sqrt(L7*L7+(D7*D7));\n",
+ "\n",
+ "print('distance from F to C is =',l7);\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### ch-9 page 308 pb-7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('latitudes of AB,DE,EA are', 362.50000000000006, -538.0859250785912, -574.3378222288467)\n",
+ "('Depature of AB,DE,EA are', 627.8684177437179, -782.9198791909149, -27.587423899772766)\n",
+ "('t2-t3=', 100.07865810778766)\n",
+ "('Bearing of BC is', 63.0)\n",
+ "('Bearing of CD is', 37.12098009569709)\n"
+ ]
+ }
+ ],
+ "source": [
+ "#ch-9 page 308 pb-7\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "l1=725;l2=1050;l3=1250;l4=950;l5=575;\n",
+ "t1=60;t4=55.5;t5=2.75;\n",
+ "\n",
+ "\n",
+ "L1=l1*math.cos(t1*(math.pi/180))\n",
+ "L4=-l4*math.cos(t4*(math.pi/180))\n",
+ "L5=-l5*math.cos(t5*(math.pi/180))\n",
+ "print('latitudes of AB,DE,EA are',L1,L4,L5);\n",
+ "\n",
+ "\n",
+ "D1=l1*math.sin(t1*(math.pi/180))\n",
+ "D4=-l4*math.sin(t4*(math.pi/180))\n",
+ "D5=-l5*math.sin(t5*(math.pi/180))\n",
+ "print('Depature of AB,DE,EA are',D1,D4,D5);\n",
+ "\n",
+ "t2_t3=math.acos(0.1750);\n",
+ "t2_t3=180-(t2_t3*(180/math.pi));\n",
+ "\n",
+ "print('t2-t3=',t2_t3);\n",
+ "\n",
+ "t3=math.asin(0.6035);\n",
+ "t3=t3*(180/math.pi);\n",
+ "t2=t2_t3-t3;\n",
+ "t2=math.ceil(t2);\n",
+ "\n",
+ "print('Bearing of BC is',t2);\n",
+ "print('Bearing of CD is',t3);\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chapter11_Tacheometric-Traversing_1.ipynb b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chapter11_Tacheometric-Traversing_1.ipynb
new file mode 100644
index 00000000..b203f9a0
--- /dev/null
+++ b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chapter11_Tacheometric-Traversing_1.ipynb
@@ -0,0 +1,616 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "# Chapter 11: Tacheometric Surveying"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### section 11.7 , pg 413, problem 1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "RL of instrument axis= 764.345 m\n",
+ "RL of D= 784.042 m\n",
+ "Distance of CD=147.097m\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "retiftoi=100\n",
+ "fplusd=0.15\n",
+ "s1=2.450-1.150\n",
+ "thetha1=5+(20/60)\n",
+ "v1=(100*1300*math.sin(10+(40/60))/2)+(0.15*math.sin(5+(20/60)));\n",
+ "s2=1.5\n",
+ "thetha2=8+(12/60)\n",
+ "V2=21.197\n",
+ "d2=147.097\n",
+ "RL=750.500+1.8+12.045 \n",
+ "RLD=RL+V2-1.5\n",
+ "print \"RL of instrument axis=\",RL,\"m\"\n",
+ "print \"RL of D=\", RLD,\"m\"\n",
+ "print \"Distance of CD=147.097m\" \n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### section 11.7, pg 415, problem 2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "RL of axis when isnt. at P= 265.109\n",
+ "RL of A= 280.38\n",
+ "RL at B= 298.021\n",
+ "RL of B= 296.571\n",
+ "Distance between A and B= 118.009\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "v1=7.534\n",
+ "v2=16.871\n",
+ "v3=15.326\n",
+ "RLatp=255.750+v1+1.825\n",
+ "RLofA=265.109+v2-1.6\n",
+ "RLatB=280.380+v3+2.315\n",
+ "RLofB=298.021-1.450\n",
+ "D3=118.009\n",
+ "print \"RL of axis when isnt. at P=\", RLatp\n",
+ "print \"RL of A=\", RLofA\n",
+ "print \"RL at B=\", RLatB\n",
+ "print \"RL of B=\", RLofB\n",
+ "print \"Distance between A and B=\", D3\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### section 11.7 , pg 413, problem 1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "10.494\n",
+ "RL of axis when isnt. at A= 462.449\n",
+ "RL of A= 461.104\n",
+ "RL at B= 487.151\n",
+ "RL of B= 485.601\n",
+ "RL of C 510.533\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "\n",
+ "v1=10.494\n",
+ "d1=108.989\n",
+ "V2=24.807\n",
+ "d2=176.514\n",
+ "v3=25.652\n",
+ "d3=145.477\n",
+ "RL=450.500+1.455+v1 \n",
+ "RLofA=462.449-1.345\n",
+ "RLofB=462.449+24.807-1.655\n",
+ "RLatB=487.151\n",
+ "RLofC=RLofB+v3-2.250+1.53\n",
+ "print v1\n",
+ "print \"RL of axis when isnt. at A=\", RL\n",
+ "print \"RL of A=\", RLofA\n",
+ "print \"RL at B=\", RLatB\n",
+ "print \"RL of B=\", RLofB\n",
+ "print \"RL of C\", RLofC\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### ch-11 page 416 pb-4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "in 1st observation\n",
+ "('v1,d1=', 9.386067902413853, 119.26130043570826)\n",
+ "in 2nd observation\n",
+ "('v2,d2=', 26.26555359446006, 145.25041419362984)\n",
+ "('RL of A=', 159.18106790241387)\n",
+ "('RL of B=', 175.81555359446008)\n",
+ "('difference of level AB=', 104.0330138511747, 'meters')\n",
+ "('gradient of AB is 1 in', 6.254056529136824)\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "c=100;\n",
+ "h=1.55;\n",
+ "rlo=150;\n",
+ "ra1=1.155;ra2=1.755;ra3=2.355;\n",
+ "rb1=1.250;rb2=2;rb3=2.750;\n",
+ "t1=30.5;t2=75.5;\n",
+ "a1=4.5;a2=10.25;\n",
+ "\n",
+ "print('in 1st observation')\n",
+ "v1=c*(ra3-ra1)*(math.sin(9*(math.pi/180)));\n",
+ "v1=v1/2;\n",
+ "d1=c*(ra3-ra1)*(math.cos(a1*(math.pi/180)))*(math.cos(a1*(math.pi/180)));\n",
+ "print('v1,d1=',v1,d1);\n",
+ "\n",
+ "print('in 2nd observation');\n",
+ "\n",
+ "v2=c*(rb3-rb1)*(math.sin(20.5*(math.pi/180)));\n",
+ "v2=v2/2;\n",
+ "d2=c*(rb3-rb1)*(math.cos(a2*(math.pi/180)))*(math.cos(a2*(math.pi/180)));\n",
+ "print('v2,d2=',v2,d2);\n",
+ "\n",
+ "rl=rlo+h;\n",
+ "rla=rl+v1-ra2;\n",
+ "rlb=rl+v2-rb2;\n",
+ "\n",
+ "print('RL of A=',rla);\n",
+ "print('RL of B=',rlb);\n",
+ "\n",
+ "t=t2-t1;\n",
+ "AB=math.sqrt((d1*d1+d2*d2)-2*(d1*d2*(math.cos(t*(math.pi/180)))));\n",
+ "print('difference of level AB=',AB,'meters');\n",
+ "\n",
+ "dab=rlb-rla;\n",
+ "gab=AB/dab;\n",
+ "print('gradient of AB is 1 in',gab);\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### ch-11 page 418 pb-5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('v1,v2=', 31.256671980047464, 31.1867536226639)\n",
+ "('h1,h2=', 2.0188558936750263, 1.5699268991777582)\n",
+ "('RL of A=', 418.7244721262775)\n",
+ "('RL of B=', 419.24331947815836)\n",
+ "('distance between A an B is', 323.2978586242886)\n",
+ "('gradient of PA is 1 in ', 5.567473732648181)\n",
+ "('gradient of PB is 1 in ', 4.68342893110529)\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "h=1.5;\n",
+ "a1=10;a2=12;\n",
+ "c=100;\n",
+ "ra1=1.150;ra2=2.050;ra3=2.950;\n",
+ "rb1=0.855;rb2=1.605;rb3=2.355;\n",
+ "rlp=450.5;\n",
+ "\n",
+ "\n",
+ "\n",
+ "v1=c*(ra3-ra1)*(math.sin(a1*(math.pi/180)));\n",
+ "\n",
+ "v2=c*(rb3-rb1)*(math.sin(a2*(math.pi/180)));\n",
+ "\n",
+ "h1=ra2*(math.cos(a1*(math.pi/180)));\n",
+ "h2=rb2*(math.cos(a2*(math.pi/180)));\n",
+ "\n",
+ "print('v1,v2=',v1,v2);\n",
+ "print('h1,h2=',h1,h2);\n",
+ "\n",
+ "rlai=rlp+h;\n",
+ "\n",
+ "rla=rlai-v1-h1;\n",
+ "rlb=rlai-v2-h2;\n",
+ "\n",
+ "print('RL of A=',rla);\n",
+ "print('RL of B=',rlb);\n",
+ "\n",
+ "d1=c*(ra3-ra1)*(math.cos(a1*(math.pi/180)))-ra2*(math.sin(a1*(math.pi/180)));\n",
+ "d2=c*(rb3-rb1)*(math.cos(a2*(math.pi/180)))-rb2*(math.sin(a2*(math.pi/180)));\n",
+ "\n",
+ "dab=d1+d2;\n",
+ "print('distance between A an B is',dab);\n",
+ "gpa=d1/(rlp-rla);\n",
+ "gpb=d2/(rlp-rlb);\n",
+ "\n",
+ "print('gradient of PA is 1 in ',gpa);\n",
+ "print('gradient of PB is 1 in ',gpb);\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### ch-11 page 419 pb-6\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(96.98463103929541, 158.78462024097664, 117.67570175629913)\n",
+ "('latitudes of AB,BC,CD=', 83.56478621811925, -121.63607598835735, -83.20928669276485)\n",
+ "('depatures of AB,BC,CD ', 49.22342087003188, 102.06478649968226, -83.20928669276483)\n",
+ "(121.28057646300294, -68.07892067694931)\n",
+ "('Bearing of DA=', 29.30698225670086)\n",
+ "('length DA=', 139.08169422226874)\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "c=100;\n",
+ "ra1=1.25;ra2=1.75;ra3=2.25;\n",
+ "rb1=0.95;rb2=1.75;rb3=2.55;\n",
+ "rc1=1.55;rc2=2.15;rc3=2.75;\n",
+ "a1=10;a2=5;a3=8;\n",
+ "\n",
+ "ab=c*(ra3-ra1)*(math.cos(a1*(math.pi/180)))*(math.cos(a1*(math.pi/180)));\n",
+ "bc=c*(rb3-rb1)*(math.cos(a2*(math.pi/180)))*(math.cos(a2*(math.pi/180)));\n",
+ "cd=c*(rc3-rc1)*(math.cos(a3*(math.pi/180)))*(math.cos(a3*(math.pi/180)));\n",
+ "\n",
+ "print(ab,bc,cd);\n",
+ "\n",
+ "lab=ab*(math.cos(30.5*(math.pi/180)));\n",
+ "lbc=-bc*(math.cos(40*(math.pi/180)));\n",
+ "lcd=-cd*(math.cos(45*(math.pi/180)));\n",
+ "print('latitudes of AB,BC,CD=',lab,lbc,lcd);\n",
+ "\n",
+ "dab=ab*(math.sin(30.5*(math.pi/180)));\n",
+ "dbc=bc*(math.sin(40*(math.pi/180)));\n",
+ "dcd=-cd*(math.sin(45*(math.pi/180)));\n",
+ "print('depatures of AB,BC,CD ',dab,dbc,dcd);\n",
+ "\n",
+ "lc=-(lab+lbc+lcd);\n",
+ "ls=-(dab+dbc+dcd);\n",
+ "\n",
+ "print(lc,ls)\n",
+ "k=-ls/lc;\n",
+ "t=math.atan(k);\n",
+ "t=t*(180/(math.pi));\n",
+ "\n",
+ "print('Bearing of DA=',t);\n",
+ "DA=math.sqrt(lc*lc+ls*ls);\n",
+ "print('length DA=',DA);\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### ch-11 page 419 pb-7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('Distance AC=', 158.62738402665204)\n",
+ "('Distance BD=', 189.49088179672577)\n",
+ "('total latitude of C=', 18.46481737819161)\n",
+ "('total depature of C=', 21.113710931586226)\n",
+ "('total latitude of D=', 9.659924163502069)\n",
+ "-15.6914002615\n",
+ "('total depature of D=', 308.2914002614939)\n",
+ "('length CD=', 329.52276617048415, 'meters')\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "h1=1.48;h2=1.42;c=100;\n",
+ "ra1=0.77;ra2=1.60;ra3=2.43;\n",
+ "rb1=0.86;rb2=1.84;rb3=2.82;\n",
+ "a1=12.166;a2=10.5;\n",
+ "la=112.82;da=106.4;\n",
+ "lb=198.5;db=292.6;\n",
+ "ac=c*(ra3-ra1)*(math.cos(a1*(math.pi/180)))*(math.cos(a1*(math.pi/180)));\n",
+ "bd=c*(rb3-rb1)*(math.cos(a2*(math.pi/180)))*(math.cos(a2*(math.pi/180)));\n",
+ "\n",
+ "print('Distance AC=',ac);\n",
+ "print('Distance BD=',bd);\n",
+ "lac=-ac*(math.cos(53.5*(math.pi/180)));\n",
+ "tlc=la+lac;\n",
+ "print('total latitude of C=',tlc);\n",
+ "\n",
+ "dac=ac*(math.sin(53.5*(math.pi/180)));\n",
+ "da=-da;\n",
+ "tdc=da+dac;\n",
+ "print('total depature of C=',tdc);\n",
+ "\n",
+ "lbd=-bd*(math.cos(4.75*(math.pi/180)));\n",
+ "tld=lb+lbd;\n",
+ "print('total latitude of D=',tld);\n",
+ "\n",
+ "db=-db;\n",
+ "ddb=-bd*(math.sin(4.75*(math.pi/180)));\n",
+ "tdd=-(db+ddb);\n",
+ "print(ddb)\n",
+ "print('total depature of D=',tdd);\n",
+ "\n",
+ "dx=tdc+tdd;\n",
+ "cx=tlc-tld;\n",
+ "\n",
+ "CD=math.sqrt(dx*dx+cx*cx);\n",
+ "print('length CD=',CD,'meters');\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### chapter 11, section 11.8, pg 422, example 1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "distance = 262.890670554\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "c=600\n",
+ "fplusd=0.5\n",
+ "s=3\n",
+ "n=6.860\n",
+ "distance= (c*s/n)+ fplusd\n",
+ "print \"distance =\",distance\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### chapter 11, section 11.8, pg423, eg2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "5.142\n",
+ "RL of A= 259.692\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "d=65.340\n",
+ "x=4.5\n",
+ "y= math.tan(x)\n",
+ "v=5.142\n",
+ "RLofA=255.500+v-0.950\n",
+ "print v\n",
+ "print \"RL of A=\", RLofA\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### chapter 11, section 11.8, pg423, eg2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "distance between B and BM= 49.706\n",
+ "RL of B= 515.398\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "s1=2\n",
+ "h1=0.655\n",
+ "v1=6.578\n",
+ "RL=v1+h1+510.5\n",
+ "v2=1.085\n",
+ "d2=12.396\n",
+ "h2=1.25\n",
+ "RLofB=RL-v2-h2\n",
+ "d=37.31+12.396\n",
+ "print \"distance between B and BM=\",d\n",
+ "print \"RL of B=\", RLofB\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### chapter 11, section 11.8, pg423, eg2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "n= 15.9100040177\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "d=124.45\n",
+ "c=1000\n",
+ "s=2\n",
+ "fplusd=0.3\n",
+ "thetha=(5+(6/30))\n",
+ "n=1980/d\n",
+ "print \"n=\",n\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/SURVYNG_AND_LEVELLING__by_N.N.BASAK/screenshots/1.png b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/screenshots/1.png
new file mode 100644
index 00000000..10a4c1c7
--- /dev/null
+++ b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/screenshots/1.png
Binary files differ
diff --git a/SURVYNG_AND_LEVELLING__by_N.N.BASAK/screenshots/2.png b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/screenshots/2.png
new file mode 100644
index 00000000..6a4574cb
--- /dev/null
+++ b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/screenshots/2.png
Binary files differ
diff --git a/SURVYNG_AND_LEVELLING__by_N.N.BASAK/screenshots/3.png b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/screenshots/3.png
new file mode 100644
index 00000000..7ecc2c63
--- /dev/null
+++ b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/screenshots/3.png
Binary files differ
diff --git a/sample_notebooks/MeenaChandrupatla/Chapter2_Gases.ipynb b/sample_notebooks/MeenaChandrupatla/Chapter2_Gases.ipynb
new file mode 100644
index 00000000..88d5cb73
--- /dev/null
+++ b/sample_notebooks/MeenaChandrupatla/Chapter2_Gases.ipynb
@@ -0,0 +1,187 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2 Gases"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.1,Page no.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "volume occupied by 20 grams of carbon dioxide= 11.61 liter\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "#given\n",
+ "G= 20 #in grams\n",
+ "R= 0.08205 #l−atm/mole K\n",
+ "T= 30 #in Celsius\n",
+ "P= 740 #in mm\n",
+ "M= 44.01 \n",
+ "#CALCULATIONS\n",
+ "V= G*R*(273.15+T)*760/(P*M)\n",
+ "#RESULTS\n",
+ "V=round(V,2)\n",
+ "print 'volume occupied by 20 grams of carbon dioxide=',V,'liter'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.2, Page no.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "molecular weight of hydrocarbon= 102.32 g.mole\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "#given\n",
+ "G= 0.110 #in grams\n",
+ "R= 0.08205 #l−atm /mole K\n",
+ "T= 26.1 #Celsius\n",
+ "P= 743 #in mm\n",
+ "V= 0.0270\n",
+ "#CALCULATIONS\n",
+ "M= G*R*(273.15+T)*760/(P*V)\n",
+ "#RESULTS\n",
+ "M=round(M,2)\n",
+ "print 'molecular weight of hydrocarbon=',M,'g.mole'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.4,Pg.no.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "pressure calculated using ideal gas law= 48.93 atm\n",
+ "pressure calculated using vander wals equation= 39.12 atm\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "#given\n",
+ "R= 0.08205 #l−atm degˆ−1 moleˆ−1\n",
+ "T= 25 #in K\n",
+ "n= 1 #mole\n",
+ "V= 0.5 #liter \n",
+ "b= 0.04267 #lit moleˆ−1\n",
+ "a= 3.592 #lit ˆ2 atm molˆ−2\n",
+ "#CALCULATIONS\n",
+ "P= R*(273.15+T)/V\n",
+ "P1= (R*(273.15+T)/(V-b))-(a/V**2)\n",
+ "#RESULTS\n",
+ "P=round(P,2)\n",
+ "P1=round(P1,2)\n",
+ "print 'pressure calculated using ideal gas law=',P,'atm'\n",
+ "print 'pressure calculated using vander wals equation=',P1,'atm'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.5,Pg.no.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "volume occupied by mole of oxygen= 0.272 litre moleˆ−1\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "#given\n",
+ "T= -88 #in Celsius\n",
+ "Tc= 154.4 #in Kelvin\n",
+ "Pc= 49.7 #pressure in atm\n",
+ "P= 44.7 #pressure in atm\n",
+ "R= 0.08205 #atm mˆ3 moleˆ−1 Kˆ−1\n",
+ "r= 0.8\n",
+ "#CALCULATIONS\n",
+ "V= r*R*(273.15+T)/P\n",
+ "#RESULTS\n",
+ "V=round(V,3)\n",
+ "print 'volume occupied by mole of oxygen=',V,'litre moleˆ−1'"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/sample_notebooks/ShantanuBhosale/chapter40_1.ipynb b/sample_notebooks/ShantanuBhosale/chapter40_1.ipynb
new file mode 100644
index 00000000..e434627c
--- /dev/null
+++ b/sample_notebooks/ShantanuBhosale/chapter40_1.ipynb
@@ -0,0 +1,1989 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# CHAPTER 40: D.C TRANSMISSION AND DISTRIBUTION\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## EXAMPLE 40.1 ,Page No :- 1574"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "percentage saving in copper is = 50.0 %.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#A DC 2-wire feeder supplies a constant load with a sending-end voltage of 220V.Calculate the saving in copper\n",
+ "#if this voltage is doubled with power transmitted remaining the same.\n",
+ "##################################################################################################################\n",
+ "\n",
+ "\n",
+ "\n",
+ "#Given\n",
+ "V1 = 220.0\n",
+ "V2 = 440.0\n",
+ "##Let us assume the wire has##\n",
+ "#length -> length \n",
+ "#area -> area\n",
+ "#current density -> cd\n",
+ "#power -> P\n",
+ "P = 10000.0 #assumption\n",
+ "length = 1000.0 #assumption \n",
+ "cd = 5.0 #assumption\n",
+ "#The values are assumed as these terms cancel out while calculating percentage.\n",
+ "I1 = P/V1\n",
+ "area = I1/cd\n",
+ "#Vol of Cu required for 220V ->vol1\n",
+ "vol1 = 2*area*length\n",
+ "\n",
+ "\n",
+ "I2 = P/V2\n",
+ "area = I2/cd\n",
+ "#Vol of Cu required for 440V ->vol2\n",
+ "vol2 = 2*area*length\n",
+ "\n",
+ "#percentage saving of copper is\n",
+ "per_cent = ((vol1-vol2)/vol1)*100\n",
+ "print 'percentage saving in copper is ',per_cent,'%.'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## EXAMPLE 40.2 ,Page No :- 1577"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Maximum voltage drop from one end is = 12.0 V.\n",
+ "Maximum voltage drop from both end is = 3.0 V.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#A uniform 2-wire d.c distributor 200 metres long is loaded with 2 amperes/metre.Resistance of\n",
+ "#single wire is 0.3 ohm/kilometre.Calculate the maximum voltage drop if the distributor is fed\n",
+ "#(a)from one end (b)from both ends with equal voltages.\n",
+ "#################################################################################################\n",
+ "\n",
+ "#Given\n",
+ "length = 200.0 #metres\n",
+ "#current per unit length is\n",
+ "cur = 2.0 #amp/metre\n",
+ "#resistance per unit length is\n",
+ "res = 0.3/1000 #ohm/metre\n",
+ "\n",
+ "#total resistance is\n",
+ "R = res*length #ohm\n",
+ "#total current is\n",
+ "I = cur*length #amp\n",
+ "#Total drop over a distributor fed from one end is given by\n",
+ "drop1 = (1/2.0)*I*R #volts\n",
+ "#Total drop over a distributor fed from both ends is given by\n",
+ "drop2 = (1/8.0)*I*R\n",
+ "print 'Maximum voltage drop from one end is = ',drop1,'V.'\n",
+ "print 'Maximum voltage drop from both end is = ',drop2,'V.'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## EXAMPLE 40.3 ,Page No :- 1577"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Cross sectional area of distributor = 116.412 cm^2\n"
+ ]
+ }
+ ],
+ "source": [
+ "#A 2-wire d.c distributor AB is 300 metres long.It is fed at point A.The various loads and\n",
+ "#their positions are given below.\n",
+ "# At point distance from A in metres concentrated load in A\n",
+ "# C 40 30\n",
+ "# D 100 40 \n",
+ "# E 150 100\n",
+ "# F 250 50\n",
+ "#If the maximum permissible voltage drop is not to exceed 10V,find the cross-sectional\n",
+ "#area of the distributor.Take resistivity = 1.78*10^(-8) ohm-m.\n",
+ "###########################################################################################\n",
+ "\n",
+ "\n",
+ "#Given\n",
+ "resistivity = 1.78e-8 #ohm-m\n",
+ "drop_max = 10.0 #V\n",
+ "#loads and their positions\n",
+ "I1 = 30.0 #A\n",
+ "l1 = 40.0 #m\n",
+ "I2 = 40.0 #A\n",
+ "l2 = 100.0 #m\n",
+ "I3 = 100.0 #A\n",
+ "l3 = 150.0 #m\n",
+ "I4 = 50 #A\n",
+ "l4 = 250 #m\n",
+ "#We know that R = resistivity*length/Area\n",
+ "#Also max drop = I1*R1 + I2*R2 + I3*R3 + I4*R4 , using this\n",
+ "area = 2*(I1*l1 + I2*l2 + I3*l3 + I4*l4)*resistivity/drop_max #m^2\n",
+ "area = area*1000000 #cm^2 \n",
+ "print 'Cross sectional area of distributor =',area,'cm^2'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## EXAMPLE 40.4 ,Page No :- 1578"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Hence drop at minimum potential where load is 70 A is = 48.4 V.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#A 2-wire d.c distributor F1F2 1000 metres long is loaded as under:\n",
+ "#Distance from F1(in metres): 100 250 500 600 700 800 850 920\n",
+ "#Load in amperes: 20 80 50 70 40 30 10 15\n",
+ "#The feeding points F1 and F2 are maintained at the same potential.Find which point will have the\n",
+ "#minimum potential and what will be the drop at this point?Take the cross-section of the conductors\n",
+ "#as 0.35 cm^2 and specific resistance of copper as 1.764*10^(-6) ohm-cm\n",
+ "#####################################################################################################\n",
+ "\n",
+ "#Given\n",
+ "import numpy as np\n",
+ "resistivity = 1.764e-8 #ohm-m\n",
+ "area = 0.35e-4 #m^2 \n",
+ "#loads and their positions taking from F1\n",
+ "I1 = 20 #A\n",
+ "l1 = 100 #m\n",
+ "I2 = 80 #A\n",
+ "l2 = 150 #m\n",
+ "I3 = 50 #A\n",
+ "l3 = 250 #m\n",
+ "I4 = 70 #A\n",
+ "l4 = 100 #m\n",
+ "I5 = 40 #A\n",
+ "l5 = 100 #m\n",
+ "I6 = 30 #A\n",
+ "l6 = 50 #m\n",
+ "I7 = 10 #A\n",
+ "l7 = 70 #m\n",
+ "I8 = 15 #A\n",
+ "l8 = 80 #m \n",
+ "\n",
+ "#sum of loads from F1\n",
+ "load1 = I1*l1 + I2*(l1+l2) + I3*(l1+l2+l3) #A-m\n",
+ "load2 = I8*l8 + I7*(l7+l8) + I6*(l6+l7+l8) + I5*(l5+l6+l7+l8) #A-m\n",
+ "\n",
+ "#guessing the point of minimum potential\n",
+ "if load1>load2:\n",
+ " load2_new = load2 + I4*(l4+l5+l6+l7+l8)\n",
+ " if load2_new>load1:\n",
+ " pivot = I4\n",
+ "\n",
+ "#solving 2 equations simultaneously\n",
+ "# x + y = 70(pivot) & 47000(load1) + 600(l1+l2+l3)x = 20,700(load2) + 400(l5+l6+l7+l8)y)\n",
+ "line1 = l1+l2+l3+l4 #m\n",
+ "line2 = l4+l5+l6+l7+l8 #m \n",
+ "\n",
+ "a = [[1,1],[line1,-line2]]\n",
+ "b = [pivot,load2-load1]\n",
+ "soln = np.linalg.solve(a,b) #soln is array with its elements[x,y]\n",
+ "#drop at minimum potential per conductor (in A-m)\n",
+ "drop_m = load1 + soln[0]*line1 #A-m\n",
+ "\n",
+ "#resistance per metre = resistivity/Area\n",
+ "res = resistivity/area #ohm/m\n",
+ "\n",
+ "#Hence, drop in voltage per conductor is\n",
+ "drop = drop_m*res #V \n",
+ "#drop due to both is\n",
+ "drop = drop*2 #V\n",
+ "\n",
+ "print 'Hence drop at minimum potential where load is',pivot,'A is =',round(drop,2),'V.'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## EXAMPLE 40.5 ,Page No :- 1579"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The current entering at A is = 88.6 A \n",
+ "The current entering at B is = 211.4 A.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#The resistance of a cable is 0.1ohm per 1000 metre for both conductors.It is loaded as shown in Fig.40.14(a).\n",
+ "#Find the current supplied at A and at B.If both the ends are supplied at 200 V\n",
+ "##############################################################################################################\n",
+ "\n",
+ "#Given\n",
+ "#resistance per metre\n",
+ "res = 0.1/1000 #ohm/m\n",
+ "#loads and their positions taking from A\n",
+ "I1 = 50.0 #A\n",
+ "l1 = 500.0 #m\n",
+ "I2 = 100.0 #A\n",
+ "l2 = 700.0 #m\n",
+ "I3 = 150.0 #A\n",
+ "l3 = 300.0 #m\n",
+ "l4 = 250.0 #m \n",
+ "\n",
+ "#Assuming I flows from A to B\n",
+ "# equation is res*[500*i + 700(i-50) + 300(i-150) + 250(i-300)] = 0\n",
+ "current_i = (I1*l2+(I1+I2)*l3 + (I1+I2+I3)*l4)/(l1+l2+l3+l4)\n",
+ "current_AC = current_i\n",
+ "current_CD = current_i-I1\n",
+ "current_DE = current_CD-I2\n",
+ "current_EB = current_DE-I3\n",
+ "if current_EB<0:\n",
+ " current_EB = -current_EB;\n",
+ "print 'The current entering at A is = ',round(current_i,1),'A '\n",
+ "print 'The current entering at B is = ',round(current_EB,1),'A.' "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## EXAMPLE 40.6 ,Page No :- 1580"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Current supplied at A is = 88.6 A.\n",
+ "Current supplied at B is = -211.4 A.\n",
+ "Current in AC is = 88.6 A.\n",
+ "Current in CD is = 38.6 A.\n",
+ "Current in DE is = -61.4 A.\n",
+ "Current in EB is = -211.4 A.\n",
+ "Drop over AC is = 4.4 V.\n",
+ "Drop over CD is = 2.7 V.\n",
+ "Drop over DE is = -1.8 V.\n",
+ "Voltage at C is = 195.6 V.\n",
+ "Voltage at D is = 192.9 V.\n",
+ "Voltage at E is = 194.7 V.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#The resistance of two conductors of a 2-conductor distributor shown in Fig.39.15 is 0.1ohm per 1000m\n",
+ "#for both conductors.Find (a)the current supplied at A(b)the current supplied at B\n",
+ "#(c)the current in each section (d)the voltages at C,D and E.Both A and B are maintained at 200V.\n",
+ "######################################################################################################\n",
+ "\n",
+ "#Given\n",
+ "#resistance per metre\n",
+ "res = 0.1/1000 #ohm/m\n",
+ "#loads and their positions taking from A\n",
+ "I1 = 50.0 #A\n",
+ "l1 = 500.0 #m\n",
+ "I2 = 100.0 #A\n",
+ "l2 = 700.0 #m\n",
+ "I3 = 150.0 #A\n",
+ "l3 = 300.0 #m\n",
+ "l4 = 250.0 #m \n",
+ "\n",
+ "#Assuming I flows from A to B\n",
+ "# equation is res*[500*i + 700(i-50) + 300(i-150) + 250(i-300)] = 0\n",
+ "current_i = (I1*l2+(I1+I2)*l3 + (I1+I2+I3)*l4)/(l1+l2+l3+l4)\n",
+ "current_AC = current_i\n",
+ "current_CD = current_i-I1\n",
+ "current_DE = current_CD-I2\n",
+ "current_EB = current_DE-I3\n",
+ "print \"Current supplied at A is = \",round(current_i,1),\"A.\"\n",
+ "print \"Current supplied at B is = \",round(current_EB,1),\"A.\"\n",
+ "print \"Current in AC is = \",round(current_i,1),\"A.\"\n",
+ "print \"Current in CD is = \",round(current_CD,1),\"A.\"\n",
+ "print \"Current in DE is = \",round(current_DE,1),\"A.\"\n",
+ "print \"Current in EB is = \",round(current_EB,1),\"A.\"\n",
+ "#Drop in volts is (resistance/metre)*length*current\n",
+ "drop_AC = res*l1*current_AC #V\n",
+ "drop_CD = res*l2*current_CD #V \n",
+ "drop_DE = res*l3*current_DE #V\n",
+ "print \"Drop over AC is = \",round(drop_AC,1),\"V.\"\n",
+ "print \"Drop over CD is = \",round(drop_CD,1),\"V.\"\n",
+ "print \"Drop over DE is = \",round(drop_DE,1),\"V.\"\n",
+ "\n",
+ "#Voltages at C,D,E are\n",
+ "volt_C = 200-drop_AC #V\n",
+ "volt_D = volt_C-drop_CD #V\n",
+ "volt_E = volt_D-drop_DE #V\n",
+ "print 'Voltage at C is = ',round(volt_C,1),'V.'\n",
+ "print 'Voltage at D is =',round(volt_D,1),'V.'\n",
+ "print 'Voltage at E is = ',round(volt_E,1),'V.'\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## EXAMPLE 40.7 ,Page No :- 1581"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Therefore point of minimum potential is D and minimum potential is = 246.0 V.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#A 200 m long distributor is fed from both ends A and B at the same voltage of 250V.The\n",
+ "#concentrated loads of 50,40,30 and 25 A are coming on the distributor at distances of 50,75,\n",
+ "#100 and 150 m respectively from end A.Determine the minimum potential and locate its positions.\n",
+ "#Also,determine the current in each section of the distributor.It is given that the resistance\n",
+ "#of the distributor is 0.08ohm per 100 metres for go and return.\n",
+ "##################################################################################################\n",
+ "\n",
+ "\n",
+ "#Given\n",
+ "#resistance per metre\n",
+ "res = 0.08/100 #ohm/m\n",
+ "V_A = 250.0 #V\n",
+ "V_B = 250.0 #V\n",
+ "#load currents and their positions\n",
+ "I_C = 50.0 #A\n",
+ "I_D = 40.0 #A\n",
+ "I_E = 30.0 #A\n",
+ "I_F = 25.0 #A\n",
+ "l_AC = 50.0 #m\n",
+ "l_CD = 75.0 - l_AC #m\n",
+ "l_DE = 100.0 - l_CD - l_AC #m\n",
+ "l_EF = 150.0 - l_DE - l_CD - l_AC #m\n",
+ "l_FB = 200.0-150.0\n",
+ "#Assuming I flows from A to B\n",
+ "# equation is res*[50*i + 25(i-50) + 25(i-90) + 50(i-120)+50(i-145)] = 0\n",
+ "current_i = (l_CD*I_C + l_DE*(I_C+I_D)+l_EF*(I_C+I_D+I_E) + l_FB*(I_C+I_D+I_E+I_F))/200.0\n",
+ "current_AC = current_i\n",
+ "current_CD = current_i-I_C\n",
+ "current_DE = current_CD-I_D\n",
+ "current_EF = current_DE-I_E\n",
+ "current_FB = current_EF-I_F\n",
+ "#As from figure in the book , point D is at minimum potential\n",
+ "if (current_CD>0) & (current_DE<0):\n",
+ " point = \"D\"\n",
+ " \n",
+ "#drop in volts = resistance/metre*sum(length*current) \n",
+ "drop_d = res*(l_AC*current_AC + l_CD*current_CD)\n",
+ "min_pot = V_A-drop_d\n",
+ "print \"Therefore point of minimum potential is\",point,\"and minimum potential is = \",round(min_pot,1),\"V.\" "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## EXAMPLE 40.8 ,Page No :- 1582"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Voltage at point C is = 250.13 V.\n",
+ "Voltage at point D is = 247.73 V.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Each conductor of a 2-core distributor,500 metres long has a cross-sectional area\n",
+ "#of 2 cm^2.The feeding point A is supplied at 255V and the feeding point B at\n",
+ "#250V and load currents of 120A and 160A are taken at points C and D which are\n",
+ "#150 metres and 350 metres respectively from the feeding point A.Calculate the\n",
+ "#voltage at each load.Specific Resistance of copper is 1.7*10^(-6) ohm-cm\n",
+ "##################################################################################\n",
+ "\n",
+ "#Given\n",
+ "area = 2e-4 #m^2\n",
+ "resistivity = 1.7e-8 #ohm-m\n",
+ "#load currents and their positions\n",
+ "i_c = 120.0 #A\n",
+ "i_d = 160.0 #A\n",
+ "l_ac = 150.0 #m\n",
+ "l_cd = 200.0 #m\n",
+ "l_db = 150.0 #m\n",
+ "V_a = 255.0 #V\n",
+ "V_b = 250.0 #V\n",
+ "#Resistance = resistivity*length/Area\n",
+ "#It is a 2 core distributor.Therefore,resistance per metre is\n",
+ "res = 2*resistivity/area #ohm/m\n",
+ "#drop over whole distributor is equal to\n",
+ "drop = V_a - V_b #V\n",
+ "#Therefore equation of total drop can be written as\n",
+ "# resistivity*(150i+200(i-120)+150(i-280))=5\n",
+ "current_i = (drop/res + l_cd*i_c + l_db*(i_c+i_d))/(l_ac+l_cd+l_db) #A\n",
+ "current_ac = current_i #A\n",
+ "current_cd = current_ac-i_c #A\n",
+ "current_db = current_cd-i_d #A\n",
+ "\n",
+ "#Voltage at C = 255-drop over AC\n",
+ "volt_c = V_a-res*l_ac*current_ac #V\n",
+ "#Voltage at D = 250-drop over DB \n",
+ "volt_d = V_b -res*l_db*abs(current_db) #V\n",
+ "print \"Voltage at point C is = \",round(volt_c,2),\"V.\"\n",
+ "print \"Voltage at point D is = \",round(volt_d,2),\"V.\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## EXAMPLE 40.9 ,Page No :- 1583"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Volatge at point Q is = 225.25 V.\n",
+ "Voltage at point B is = 236.56 V.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#A 2-wire distributor 500 metres long is fed at P at 250V and loads of 40A,20A,60A,30A are tapped off\n",
+ "#off from points A,B,C and D which are at distances of 100 metres,150 metres,300 metres and 400 metres\n",
+ "#from P respectively.The distributor is also uniformly loaded at the rate of 0.1A/m.If the resistance of\n",
+ "#the distributor per metre(go and return) is 0.0005 ohm,calculate the voltage at(i)pointQ and(ii)point B.\n",
+ "###########################################################################################################\n",
+ "\n",
+ "#Given\n",
+ "V_P = 250.0 #V\n",
+ "resistance = 0.0005 #ohm/m\n",
+ "\n",
+ "#loads and their positions\n",
+ "i_a = 40.0 #A\n",
+ "i_b = 20.0 #A\n",
+ "i_c = 60.0 #A\n",
+ "i_d = 30.0 #A\n",
+ "l_pa = 100.0 #m\n",
+ "l_ab = 150.0-100.0 #m\n",
+ "l_bc = 300.0-150.0 #m\n",
+ "l_cd = 400.0-300.0 #m\n",
+ "#uniform dstributed load\n",
+ "cur_uni = 0.1 #A/m\n",
+ "\n",
+ "\n",
+ "#considering drop due to concentrated loading\n",
+ "drop_pa = (i_a+i_b+i_c+i_d)*l_pa*resistance #V\n",
+ "drop_ab = (i_b+i_c+i_d)*l_ab*resistance #V \n",
+ "drop_bc = (i_c+i_d)*l_bc*resistance #V\n",
+ "drop_cd = i_d*l_cd*resistance #V\n",
+ "tot_drop = drop_pa + drop_ab + drop_bc + drop_cd #V\n",
+ "\n",
+ "#considering drop due to uniform loading(drop = irl^2/2) l = 500m\n",
+ "drop_uni = cur_uni*resistance*(500.0*500.0)/2 #V\n",
+ "\n",
+ "V_Q = V_P - (tot_drop + drop_uni) #V\n",
+ "#for point B\n",
+ "#drop due to concentrated loading\n",
+ "drop_b = drop_pa + drop_ab #V\n",
+ "#drop due to uniform loading (drop = ir(lx-x^2/2)) l=500m x=150m\n",
+ "drop_ub = cur_uni*resistance*(500*(l_pa+l_ab)-(l_pa+l_ab)*(l_pa+l_ab)/2) #V\n",
+ "\n",
+ "V_B = V_P - (drop_b + drop_ub) #V\n",
+ "\n",
+ "print \"Volatge at point Q is = \",round(V_Q,2),\"V.\"\n",
+ "print \"Voltage at point B is = \",round(V_B,2),\"V.\" "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## EXAMPLE 40.10 ,Page No :- 1583"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 38,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Current in section AC is = 53.75 A.\n",
+ "Current in section CD is = 33.75 A.\n",
+ "Current in section DE is = -6.25 A.\n",
+ "Current in section EF is = -31.25 A.\n",
+ "Current in section FB is = -61.25 A.\n",
+ "Minimum voltage is at point D and minimum voltage is = 233.18 V.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#A distributor AB is fed from both ends.At feeding point A,the voltage is maintained at 236V and at B at 237V.\n",
+ "#The total length of the distributor is 200 metres and loads are tapped off as under:\n",
+ "#(i) 20A at 50 metres from A (ii) 40A at 75 metres from A. (iii)25A at 100 metres from A (iv)30A at 150 metres from A\n",
+ "#The reistance per kilometre of one conductor is 0.4ohm.Calculate the currents in the various sections of the distributor,\n",
+ "#the minimum voltage and the point at which it occurs.\n",
+ "###########################################################################################################################\n",
+ "\n",
+ "\n",
+ "#Given\n",
+ "#resistance per metre\n",
+ "res = 2*0.4/1000 #ohm/m\n",
+ "V_a = 236.0 #V\n",
+ "V_b = 237.0 #V\n",
+ "#loads and their positions\n",
+ "i_c = 20.0 #A\n",
+ "i_d = 40.0 #A\n",
+ "i_e = 25.0 #A\n",
+ "i_f = 30.0 #A\n",
+ "l_ac = 50.0 #m\n",
+ "l_cd = 25.0 #m\n",
+ "l_de = 25.0 #m\n",
+ "l_ef = 50.0 #m\n",
+ "l_fb = 50.0 #m\n",
+ "#Voltage drop equation res*(50i + 25(i-20)+25(i-60) + 50(i-85) + 50(i-115)=-1)\n",
+ "current_i = ((V_a-V_b)/res + l_cd*(i_c)+l_de*(i_c+i_d)+l_ef*(i_c+i_d+i_e)+l_fb*(i_c+i_d+i_e+i_f))/200.0\n",
+ "current_ac = current_i\n",
+ "current_cd = current_ac-i_c\n",
+ "current_de = current_cd-i_d\n",
+ "current_ef = current_de-i_e\n",
+ "current_fb= current_ef-i_f\n",
+ "if current_cd>0:\n",
+ " if current_de<0:\n",
+ " point = \"D\"\n",
+ "#Minimum potential is at D as shown in figure\n",
+ "drop = res*(current_ac*l_ac + current_cd*l_cd)\n",
+ "V_d = V_a-drop\n",
+ "print \"Current in section AC is = \",round(current_ac,2),\"A.\"\n",
+ "print \"Current in section CD is = \",round(current_cd,2),\"A.\"\n",
+ "print \"Current in section DE is = \",round(current_de,2),\"A.\"\n",
+ "print \"Current in section EF is = \",round(current_ef,2),\"A.\"\n",
+ "print \"Current in section FB is = \",round(current_fb,2),\"A.\"\n",
+ "print \"Minimum voltage is at point\",point,\"and minimum voltage is = \",round(V_d,2),\"V.\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## EXAMPLE 40.11 ,Page No :- 1584"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Current supplied by feeder at point A is 46.29 A and that by point B is 109.71 A.\n",
+ "Voltage at point B is = 240.55 V.\n",
+ "Voltage at point C is = 239.63 V.\n",
+ "Voltage at point D is = 239.42 V.\n",
+ "Voltage at point E is = 239.38 V.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#A distributor cable AB is fed at its ends A and B.Loads of 12,24,72 and 48 A are taken from the cable at\n",
+ "#points C,D,E and F.The resistances of sections AC,CD,DE,EF and FB of the cable are 8,6,4,10 and 5 milliohm\n",
+ "#respecively(for the go and return conductors together). The potential difference at point A is 240V,the p.d\n",
+ "#at the load F is also to be 240V.Calculate the voltages at the feeding point B,the current supplied by each\n",
+ "#feeder and the p.d.s at the loads C,D and E.\n",
+ "##############################################################################################################\n",
+ "\n",
+ "#Given\n",
+ "V_a = 240.0 #V \n",
+ "V_f = 240.0 #V\n",
+ "#loads and their resistances.\n",
+ "i_c = 12.0 #A\n",
+ "i_d = 24.0 #A\n",
+ "i_e = 72.0 #A\n",
+ "i_f = 48.0 #A\n",
+ "\n",
+ "r_ac = 8e-3 #ohm\n",
+ "r_cd = 6e-3 #ohm\n",
+ "r_de = 4e-3 #ohm\n",
+ "r_ef = 10e-3 #ohm\n",
+ "r_fb = 5e-3 #ohm\n",
+ "\n",
+ "#Voltage drop accross AF is zero.Therefore equation 8i +6(i-12) + 4(i-36)+10(i-108)*10^(-3)\n",
+ "current_i = (r_cd*i_c + r_de*(i_c+i_d) + r_ef*(i_c+i_d+i_e))/(28.0e-3) #A\n",
+ "#currents in different sections\n",
+ "current_ac = current_i #A\n",
+ "current_cd= current_ac-i_c #A\n",
+ "current_de = current_cd-i_d #A\n",
+ "current_ef = current_de-i_e #A \n",
+ "current_fb = current_ef-i_f #A\n",
+ "#voltage at different points are\n",
+ "V_b = V_f - current_fb*r_fb #V\n",
+ "V_c = V_a - current_ac*r_ac #V\n",
+ "V_d = V_c - current_cd*r_cd #V\n",
+ "V_e = V_d - current_de*r_de #V \n",
+ "\n",
+ "print \"Current supplied by feeder at point A is\",round(current_ac,2),\"A and that by point B is\",round(abs(current_fb),2),\"A.\"\n",
+ "print \"Voltage at point B is = \",round(V_b,2),\"V.\"\n",
+ "print \"Voltage at point C is = \",round(V_c,2),\"V.\"\n",
+ "print \"Voltage at point D is = \",round(V_d,2),\"V.\"\n",
+ "print \"Voltage at point E is = \",round(V_e,2),\"V.\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## EXAMPLE 40.12 ,Page No :- 1585"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 42,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The current supplied at P is = 143.75 A.\n",
+ "The current supplied at Q is = 116.25 A.\n",
+ "Power dissipated in distributor is = 847.34 W.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#A two-wire d.c sdistributor PQ,800 metre long is loaded as under:\n",
+ "#Distance from P(metres): 100 250 500 600 700\n",
+ "#Loads in amperes: 20 80 50 70 40\n",
+ "#The feeding point at P is maintained at 248V and that at Q at 245V.The total resistance of\n",
+ "#the distributor(lead and return) is 0.1 ohm.Find (a)the current supplied at P and Q and\n",
+ "#(b)the power dissipated in the distributor.\n",
+ "##################################################################################################\n",
+ "\n",
+ "#Given\n",
+ "V_p = 248.0 #V\n",
+ "V_q = 245.0 #V\n",
+ "res = 0.1/800 #ohm/m \n",
+ "#loads and their positions\n",
+ "i1 = 20.0 #A\n",
+ "i2 = 80.0 #A\n",
+ "i3 = 50.0 #A\n",
+ "i4 = 70.0 #A\n",
+ "i5 = 40.0 #A\n",
+ "l1 = 100.0 #m\n",
+ "l2 = 250.0-100.0 #m\n",
+ "l3 = 500.0 -250.0 #m\n",
+ "l4 = 600.0-500.0 #m\n",
+ "l5 = 700.0-600.0 #m\n",
+ "l6 = 800.0-700.0 #m\n",
+ "#drop accross the distributor :- 1/8000(100i + 150(i-20) + 250(i-100)+ 100(i-150)+100(i-220)+100(i-260) )=3\n",
+ "current_i = ((V_p-V_q)/res + l2*i1+l3*(i1+i2)+l4*(i1+i2+i3)+l5*(i1+i2+i3+i4)+l6*(i1+i2+i3+i4+i5))/800.0\n",
+ "current_p = current_i #A\n",
+ "current_2 = current_p-i1 #A\n",
+ "current_3 = current_2-i2 #A\n",
+ "current_4 = current_3-i3 #A\n",
+ "current_5 = current_4-i4 #A\n",
+ "current_q = current_5-i5 #A\n",
+ "#Power loss = sum(I^2R)\n",
+ "loss = res*(current_p*current_p*l1 + current_2*current_2*l2 + current_3*current_3*l3 + current_4*current_4*l4 + current_5*current_5*l5 + current_q*current_q*l6)\n",
+ "print \"The current supplied at P is = \",round(current_p,2),\"A.\"\n",
+ "print \"The current supplied at Q is = \",round(abs(current_q),2),\"A.\"\n",
+ "print \"Power dissipated in distributor is =\",round(loss,2),\"W.\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## EXAMPLE 40.13 ,Page No :- 1586"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The point of minimum potential is D and minimum potential is = 231.76 V.\n",
+ "Current fed at the end A is = 366.0 A.\n",
+ "Current fed at the end B is = 454.0 A.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#The two conductors of a d.c distributor cable 1000m long have a total resistance of 0.1 ohm.\n",
+ "#The ends A and B are fed at 240V.The cable is uniformly loaded at 0.5 A per metre length\n",
+ "#and has concentrated loads of 120A,60A,100A and 40A at points distant 200,400,700 and 900m.\n",
+ "#respectively from the end A.Calculate (i)the point of minimum potential on the distributor\n",
+ "#(ii)the value of minimum potential and (iii) currents fed at the ends A and B.\n",
+ "###############################################################################################\n",
+ "\n",
+ "#Given\n",
+ "V_a = 240.0 #V\n",
+ "V_b = 240.0 #V\n",
+ "res = 0.1/1000 #ohm/m\n",
+ "#concentrated loads and their positions\n",
+ "i_c = 120.0 #A\n",
+ "i_d = 60.0 #A\n",
+ "i_e = 100.0 #A\n",
+ "i_f = 40.0 #A\n",
+ "l_ac = 200.0 #m\n",
+ "l_cd = 400.0-200.0 #m\n",
+ "l_de = 700.0-400.0 #m\n",
+ "l_ef = 900.0-700.0 #m\n",
+ "l_fb = 1000.0-900.0 #m\n",
+ "#Uniform loading\n",
+ "cur_uni = 0.5 #A/m\n",
+ "#Equation for drop from A to B -> (1/10000)*(200i + 200(i-120)+ 300(i-180)+200(i-280)+100(i-320))=0\n",
+ "current_i = (l_cd*i_c + l_de*(i_c+i_d)+l_ef*(i_c+i_d+i_e)+l_fb*(i_c+i_d+i_e+i_f))/1000\n",
+ "\n",
+ "#point of minimum potential\n",
+ "current_ac = current_i #A\n",
+ "current_cd = current_ac-i_c #A\n",
+ "current_de = current_cd-i_d #A\n",
+ "current_ef = current_de-i_e #A\n",
+ "current_fb = current_ef-i_f #A\n",
+ "\n",
+ "if current_cd>0:\n",
+ " if current_de<0:\n",
+ " point = \"D\"\n",
+ "#As from figure it is inferred that point of minimum potential is D.\n",
+ "#Therefore,uniform load from point A to D(supplied from A)\n",
+ "cur_uni_A = cur_uni*(l_ac + l_cd) #A\n",
+ "cur_A = cur_uni_A + current_ac #A\n",
+ "#Therefore,uniform load from point B to D(supplied from B)\n",
+ "cur_uni_B = cur_uni*(l_de + l_ef + l_fb) #A\n",
+ "cur_B = cur_uni_B + abs(current_fb) #A\n",
+ "\n",
+ "#drop at D due to concentrated load(from A)\n",
+ "drop_con = res*(current_ac*l_ac + current_cd*l_cd)\n",
+ "#drop at D due to uniform load(from A)[formula-> irl^2/2]\n",
+ "drop_uni = cur_uni*res*(l_ac+l_cd)*(l_ac+l_cd)/2\n",
+ "#total drop is\n",
+ "drop_tot = drop_con + drop_uni\n",
+ "\n",
+ "#potential at D is\n",
+ "V_d = V_a - drop_tot\n",
+ "print \"The point of minimum potential is\",point,\"and minimum potential is = \",round(V_d,2),\"V.\"\n",
+ "print \"Current fed at the end A is = \",round(cur_A,2),\"A.\"\n",
+ "print \"Current fed at the end B is = \",round(cur_B,2),\"A.\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## EXAMPLE 40.14 ,Page No :- 1587"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Voltage V is = 8.62 V.\n",
+ "Cross-sectional Area A is = 2.78 cm^2.\n",
+ "Cross-sectional Area A1 is = 0.26 cm^2.\n",
+ "Cross-sectional Area A2 is = 2.24 cm^2.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#It is proposed to lay out a d.c distribution system comprising three sections-the first section consists\n",
+ "#of a cable from the sub-station to a point distant 800 metres from which two cables are taken,one 350 metres\n",
+ "#long supplying a load of 22kW and the other 1.5 kilometre long and supplying a load of 44kW.Calculate the\n",
+ "#cross-sectional area of each cable so that the total weight of copper required shall be minimum if the maximum\n",
+ "#drop of voltage along the cable is not to exceed 5% of the normal voltage of 440V at the consumer's premises.\n",
+ "#Take specific resistance of copper at working temperature equal to 2*10e-7 ohm-cm.\n",
+ "###################################################################################################################\n",
+ "\n",
+ "#Given\n",
+ "resistivity = 2*10e-7 #ohm-cm\n",
+ "dist = 800.0*100 #cm\n",
+ "#Current taken from 350m section\n",
+ "cur_1 = 22000.0/440\n",
+ "#Current taken from 1.5km section\n",
+ "cur_2 = 44000.0/440\n",
+ "#Therefore,current in first section\n",
+ "cur = cur_1 + cur_2\n",
+ "#Let us assume\n",
+ "#V->voltage drop accross first section\n",
+ "#R->resistance of the first section\n",
+ "#A->cross-sectional area of te first section\n",
+ "\n",
+ "from sympy import Eq, var, solve\n",
+ "var('V') \n",
+ "#Now , R = V/I\n",
+ "R = V/cur\n",
+ "# A = resistivity*l/R -> A = resistivity*l*I/V \n",
+ "A = resistivity*dist/R\n",
+ "#Max allowable drop\n",
+ "max_drop = (5.0/100)*440.0\n",
+ "#Voltage drop along other sections\n",
+ "vol_drop = max_drop - V\n",
+ "#Cross-sectional area of 350 m A = resistivity*l/R \n",
+ "A1 = resistivity*350.0*100*cur_1/(vol_drop)\n",
+ "#Cross-sectional area of 1.5km A = resistivity*l/R \n",
+ "A2 = resistivity*1500.0*100*cur_2/(vol_drop)\n",
+ "\n",
+ "\n",
+ "#Now,Total weight is propotional to total volume \n",
+ "W = 800.0*A + 350.0*A1+1500.0*A2\n",
+ "Diff = W.diff(V)\n",
+ "eq = Eq(Diff,0)\n",
+ "\n",
+ "V = solve(eq)\n",
+ "#We get 2 values of V of which Negative is not possible.Therefore,\n",
+ "V = float(V[1])\n",
+ "A = resistivity*dist*cur/V\n",
+ "vol_drop = max_drop - V\n",
+ "A1 = resistivity*350.0*100*cur_1/vol_drop\n",
+ "A2 = resistivity*1500.0*100*cur_2/vol_drop\n",
+ "print \"Voltage V is = \",round(V,2),\"V.\"\n",
+ "print \"Cross-sectional Area A is = \",round(A,2),\"cm^2.\"\n",
+ "print \"Cross-sectional Area A1 is = \",round(A1,2),\"cm^2.\"\n",
+ "print \"Cross-sectional Area A2 is = \",round(A2,2),\"cm^2.\"\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## EXAMPLE 40.15 ,Page No :- 1588"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 48,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The point of minimum potential is at 261.74 m from A.\n",
+ "The minimum potential is = 247.34 V.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#A d.c two-wire distributor AB is 450m long and is fed at both ends at 250 volts.It is loaded as follows:20A at 60m from A,\n",
+ "#40A at 100m from A and a uniform loading of 1.5A/m from 200 to 450m from A.The resistance of each conductor is\n",
+ "#0.05ohm/km.Find the point of minimum potential and its potential.\n",
+ "####################################################################################################################\n",
+ "\n",
+ "#Given\n",
+ "V_a = 250.0 #V\n",
+ "V_b = 250.0 #V\n",
+ "res = 0.05/1000 #ohm/m\n",
+ "cur_uni = 1.5 #A/m (uniform loading)\n",
+ "#loads and positions\n",
+ "i_c = 20.0 #A\n",
+ "i_d = 40.0 #A\n",
+ "l_ac = 60.0 #m\n",
+ "l_cd = 40.0 #m\n",
+ "l_de = 100.0 #m\n",
+ "l_eb = 250.0 #m\n",
+ "\n",
+ "#Let us assume that point of minimum potential is D and let i be current in section CD.\n",
+ "#Therefore,current from B is (40-i).If r is resistance then\n",
+ "#(20+i)*60r + i*40r = (40-i)*350r + 1.5*r*250^2/2 [drop over AD = drop over BD as V_a = V_b]\n",
+ "\n",
+ "cur_i = (i_d*(l_de+l_eb)*res + cur_uni*res*l_eb*l_eb/2 - i_c*l_ac*res)/((l_ac+l_cd+l_de+l_eb)*res) #A\n",
+ "\n",
+ "#cur_i > 40 i.e 40-i is negative,it means D is not point of minimum potential.Let F be point of minimum potential(between DB)\n",
+ "#current in section DF is\n",
+ "cur_df = cur_i-i_d #A\n",
+ "\n",
+ "#distance EF\n",
+ "dist_ef = cur_df/cur_uni #m\n",
+ "\n",
+ "#distance of F from A is\n",
+ "dist = l_ac + l_cd + l_de + dist_ef #m\n",
+ "\n",
+ "#total drop over AF is [(20+i)*60r + i*40r+ (i-40)*161.7r - 1.5*r*61.7^2/2\n",
+ "drop_af = 2*res*((i_c+cur_i)*l_ac + cur_i*l_cd + cur_df*(l_de+dist_ef)-cur_uni*dist_ef*dist_ef/2) #V\n",
+ "#potential at F\n",
+ "V_f = V_a - drop_af #V\n",
+ "print \"The point of minimum potential is at\",round(dist,2),\"m from A.\"\n",
+ "print \"The minimum potential is = \",round(V_f,2),\"V.\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## EXAMPLE 40.16 ,Page No :- 1588"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Current fed at A is = 225.0 A.\n",
+ "Current fed at B is = 475.0 A.\n",
+ "Point of minimum potential from B is = 475.0 metres.\n",
+ "Voltage at minimum potential is = 230.72 V.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#A two-wire d.c distributor AB,1000 metres long,is supplied from both ends,240V at A and 242V at B.There is a\n",
+ "#concentrated load of 200A at a distance of 400 metre from A and a uniformly distrubuted load of 1.0A/m between\n",
+ "#the mid-point and end B.Determine (i)the currents fed at A and B(ii)the point of minimum potential and\n",
+ "#(iii)voltage at this point.Take cable resistance as 0.005 ohm per 100 metre each core.\n",
+ "#####################################################################################################################\n",
+ "\n",
+ "#Given\n",
+ "#resistance per 100 metres\n",
+ "res = 2*0.005/100 #ohm/m\n",
+ "cur_uni = 1.0 #A/m\n",
+ "cur_con = 200.0 #A\n",
+ "len_uni = 500.0\n",
+ "#Let us assume that Ib current flows from point B.\n",
+ "#Considering a element dx in BD(500 metres) at a distance of X units(100 m each)\n",
+ "#voltage drop over dx = (1-100*x)*res*dx\n",
+ "#voltage drop over BD by integrating is = 0.05*Ib - 12.5\n",
+ "#voltage drop over DC = (Ib-500)*0.01\n",
+ "#voltage drop over CA = (Ib-700)*0.01*4\n",
+ "#total drop over AB = \n",
+ "tot_drop = 242.0-240.0\n",
+ "#summation of drops from AC + CD + DB\n",
+ "from sympy import Eq, var, solve\n",
+ "var('Ib') \n",
+ "sum = (Ib-500)*0.01 +(Ib-700)*0.01*4 + 0.05*Ib - 12.5\n",
+ "\n",
+ "eq = Eq(sum,tot_drop)\n",
+ "\n",
+ "Ib = solve(eq)\n",
+ "Ib = float(Ib[0])\n",
+ "#Total current\n",
+ "cur_tot = len_uni*cur_uni + cur_con\n",
+ "Ia = cur_tot - Ib #A\n",
+ "#Current in distributed load\n",
+ "cur_dis = Ia-cur_con #A\n",
+ "#point of minimum potential from D is\n",
+ "distD = cur_dis/cur_uni\n",
+ "#Therefore distance from B is\n",
+ "distB = len_uni-distD\n",
+ "#Therefore voltage drop is\n",
+ "from scipy.integrate import quad\n",
+ "\n",
+ "def integrand(x):\n",
+ " return (Ib-100*x)*res*100\n",
+ "\n",
+ "ans, err = quad(integrand, 0, (distB/100))\n",
+ "#Therefore potential of M is\n",
+ "pot_M = 242.0-ans #V\n",
+ "print \"Current fed at A is = \",Ia,\"A.\"\n",
+ "print \"Current fed at B is = \",Ib,\"A.\"\n",
+ "print \"Point of minimum potential from B is = \",distB,\"metres.\"\n",
+ "print \"Voltage at minimum potential is = \",round(pot_M,2),\"V.\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## EXAMPLE 40.17 ,Page No :- 1590"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 51,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Voltage at B is = 236.9 V.\n",
+ "Voltage at C is = 235.98 V.\n",
+ "Voltage at D is = 237.45 V.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#A 400-metre ring distributor has loads as shown in Fig. 40.29(a) where distances are in metres.The resistance\n",
+ "#of each conductor is 0.2 ohm per 1000 metres and the loads tapped off at points B,C,D are as shown.If the\n",
+ "#distributor is fed at A,find voltages at B,C and D.\n",
+ "#################################################################################################################\n",
+ "\n",
+ "#Given\n",
+ "\n",
+ "res = 0.2/1000 #ohm/m\n",
+ "V_a = 240.0 #V\n",
+ "#loads and positions\n",
+ "i_b = 100.0 #A\n",
+ "i_c = 70.0 #A\n",
+ "i_d = 50.0 #A\n",
+ "l_ab = 60.0 #m\n",
+ "l_bc = 80.0 #m\n",
+ "l_cd = 90.0 #m\n",
+ "l_da = 70.0 #m\n",
+ "\n",
+ "#total drop ->70i + 90(i-50)+80(i-120)+60(i-220)=0\n",
+ "cur_i = (l_cd*i_d + l_bc*(i_d+i_c) + l_ab*(i_d+i_c+i_b))/(l_ab+l_bc+l_cd+l_da)\n",
+ "#drops in different sections\n",
+ "drop_da = 2*cur_i*l_da*res\n",
+ "drop_cd = 2*(cur_i-i_d)*l_cd*res\n",
+ "drop_bc = 2*abs(cur_i-i_d-i_c)*l_bc*res\n",
+ "drop_ab = 2*abs(cur_i-i_d-i_c-i_b)*l_ab*res\n",
+ "\n",
+ "#voltages at different points\n",
+ "V_d = V_a - drop_da\n",
+ "V_c = V_d - drop_cd\n",
+ "V_b = V_a - drop_ab\n",
+ "print \"Voltage at B is = \",round(V_b,2),\"V.\"\n",
+ "print \"Voltage at C is = \",round(V_c,2),\"V.\"\n",
+ "print \"Voltage at D is = \",round(V_d,2),\"V.\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## EXAMPLE 40.18 ,Page No :- 1591"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 53,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Voltage at B is = 394.2 V.\n",
+ "Voltage at C is = 393.42 V.\n",
+ "Current in section BC is = 43.33 A.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#In a direct current ring main,a voltage of 400V is maintained at A.At B,500 metres away from A,a load of 150A is taken\n",
+ "#and at C,300 metres from B,a load of 200A is taken.The distance between A and C is 700 metres.The resistance of each\n",
+ "#conductor of the mains is 0.03ohm per 1000 metres.Find the voltage at B and C and also find the current in the section BC.\n",
+ "##############################################################################################################################\n",
+ "\n",
+ "#Given\n",
+ "V_a = 400.0 #V\n",
+ "res = 0.03/1000 #ohm/m\n",
+ "#loads and positions\n",
+ "i_b = 150.0 #A\n",
+ "i_c = 200.0 #A\n",
+ "l_ab = 500.0 #m\n",
+ "l_bc = 300.0 #m\n",
+ "l_ca = 700.0 #m\n",
+ "\n",
+ "#total drop-> 500i + 300(i-150) + 700(i-350) = 0\n",
+ "cur_i = (l_bc*i_b + l_ca*(i_b+i_c))/(l_ab+l_bc+l_ca)\n",
+ "#current in different sections\n",
+ "cur_ab = cur_i\n",
+ "cur_bc = cur_i-i_b\n",
+ "cur_ca = abs(cur_bc-i_c)\n",
+ "#drops in different sections\n",
+ "drop_ab = 2*cur_ab*l_ab*res\n",
+ "drop_bc = 2*cur_bc*l_bc*res\n",
+ "#voltages in different sections\n",
+ "V_b = V_a-drop_ab\n",
+ "V_c = V_b-drop_bc\n",
+ "print \"Voltage at B is = \",round(V_b,2),\"V.\"\n",
+ "print \"Voltage at C is = \",round(V_c,2),\"V.\"\n",
+ "print \"Current in section BC is = \",round(cur_bc,2),\"A.\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## EXAMPLE 40.19 ,Page No :- 1591"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Current in AB,BC,CD,DE,EA is 29.04 A, 19.04 A, 0.96 A, 30.96 A, 40.96 A respectively.\n",
+ "\n",
+ "Voltage at B,C,D,E is 217.1 V, 216.14 V, 216.15 V, 216.93 V respectively\n",
+ "\n",
+ "Current in AB,BC,DE,CE,EA is 27.72 A, 17.72 A, 32.28 A, 9.76 A, 42.28 A respectively.\n",
+ "\n",
+ "Voltage at B,C,D,E is 217.23 V, 216.34 V, 216.02 V, 216.83 V respectively\n"
+ ]
+ }
+ ],
+ "source": [
+ "#A d.c ring main ABCDE is fed at point A from a 220-V supply and the resistances(including both lead and return)\n",
+ "#of the various sections are as follows(in ohms):AB=0.1;BC=0.05;CD=0.01;DE=0.025 and EA=0.075.The main supplies\n",
+ "#loads of 10A at B; 20A at C; 30A at D and 10A at E.Find the magnitude and direction of the current flowing in each\n",
+ "#section and the voltage at each load point.\n",
+ "#If the points C and E are further linked together by a conductor of 0.05 ohm resistance and the output currents\n",
+ "#from the mains remain unchanged,find the new distribution of the current and voltage in the network.\n",
+ "#####################################################################################################################\n",
+ "\n",
+ "#Given\n",
+ "\n",
+ "V_a = 220.0 #V\n",
+ "#resistances of different sections\n",
+ "r_ab = 0.1 #ohm\n",
+ "r_bc = 0.05 #ohm\n",
+ "r_cd = 0.01 #ohm\n",
+ "r_de = 0.025 #ohm\n",
+ "r_ea = 0.075 #ohm\n",
+ "#loads\n",
+ "i_b = 10.0 #A\n",
+ "i_c = 20.0 #A\n",
+ "i_d = 30.0 #A\n",
+ "i_e = 10.0 #A\n",
+ "#total drop -> 0.1i + 0.05(i-10) + 0.01(i-30) + 0.025(i-60) + 0.075(i-70)=0\n",
+ "cur_i = (r_bc*i_b + r_cd*(i_b+i_c) + r_de*(i_b+i_c+i_d) + r_ea*(i_b+i_c+i_d+i_e))/(r_ab+r_bc+r_cd+r_de+r_ea)\n",
+ "#current in different sections\n",
+ "cur_ab = cur_i\n",
+ "cur_bc = cur_ab-i_b\n",
+ "cur_cd = cur_bc-i_c\n",
+ "cur_de = cur_cd-i_d\n",
+ "cur_ea = cur_de-i_e\n",
+ "\n",
+ "#drops in different sections\n",
+ "drop_ab = cur_ab*r_ab\n",
+ "drop_bc = cur_bc*r_bc\n",
+ "drop_de = abs(cur_de)*r_de\n",
+ "drop_ea = abs(cur_ea)*r_ea\n",
+ "#voltages at different points\n",
+ "V_b = V_a - drop_ab\n",
+ "V_c = V_b - drop_bc\n",
+ "V_e = V_a - drop_ea\n",
+ "V_d = V_e - drop_de\n",
+ "print \"Current in AB,BC,CD,DE,EA is\",round(cur_ab,2),\"A,\",round(cur_bc,2),\"A,\",round(abs(cur_cd),2),\"A,\",round(abs(cur_de),2),\"A,\",round(abs(cur_ea),2),\"A respectively.\" \n",
+ "print \"\"\n",
+ "print \"Voltage at B,C,D,E is\",round(V_b,2),\"V,\",round(V_c,2),\"V,\",round(V_d,2),\"V,\",round(V_e,2),\"V respectively\"\n",
+ "print \"\"\n",
+ "#part-2\n",
+ "#Potential difference between end points of interconnector(CE)\n",
+ "V_ce = V_e-V_c\n",
+ "#Resistance between CE ,as shown in figure\n",
+ "r1 = r_ab+r_bc+r_ea\n",
+ "r2 = r_de + r_cd\n",
+ "res_ce = r1*r2/(r1+r2)+ 0.05\n",
+ "\n",
+ "#Current in interconnector [I = V/R Ohm's Law]\n",
+ "cur_ce = V_ce/res_ce\n",
+ "#Current goes from E to C as E is at higher potential.\n",
+ "\n",
+ "#The current in other sections will also change.\n",
+ "#let us assume i1 along ED, voltage round the closed mesh EDC is zero.\n",
+ "#total drop -> -0.025*i1-0.01*(i1-30)+0.05*9.75 = 0\n",
+ "\n",
+ "cur_i1 = (0.05*cur_ce + r_cd*i_d)/(r_cd+r_de)\n",
+ "\n",
+ "current_ea = i_e+cur_i1+cur_ce\n",
+ "current_ab = (i_b+i_c+i_d+i_e)-current_ea\n",
+ "current_bc = current_ab-i_b\n",
+ "current_de = current_ea-i_e\n",
+ "#new drops\n",
+ "drop_ab = current_ab*r_ab\n",
+ "drop_bc = current_bc*r_bc\n",
+ "drop_ea = current_ea*r_ea\n",
+ "drop_de = current_de*r_de\n",
+ "\n",
+ "#new potentials\n",
+ "V_b = V_a - drop_ab\n",
+ "V_c = V_b - drop_bc\n",
+ "V_e = V_a - drop_ea\n",
+ "V_d = V_e - drop_de\n",
+ "\n",
+ "print \"Current in AB,BC,DE,CE,EA is\",round(current_ab,2),\"A,\",round(current_bc,2),\"A,\",round(current_de,2),\"A,\",round(cur_ce,2),\"A,\",round(current_ea,2),\"A respectively.\"\n",
+ "print \"\"\n",
+ "print \"Voltage at B,C,D,E is\",round(V_b,2),\"V,\",round(V_c,2),\"V,\",round(V_d,2),\"V,\",round(V_e,2),\"V respectively\" \n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## EXAMPLE 40.20 ,Page No :- 1594"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Voltage across 3 ohm load is = 244.9 V.\n",
+ "Voltage across 4 ohm load is = 247.9 V.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#In a 3-wire distribution system,the supply voltage is 250V on each side.The load on one side is a 3 ohm\n",
+ "#resistance and on the other, a 4 ohm resistance.The resistance of each of the 3 conductors is 0.05 ohm.\n",
+ "#Find the load voltages.\n",
+ "#########################################################################################################\n",
+ "\n",
+ "import numpy as np\n",
+ "#Given\n",
+ "#Resistances\n",
+ "res_1 = 3.0 #ohm\n",
+ "res_2 = 4.0 #ohm\n",
+ "res_con = 0.05 #ohm\n",
+ "V_sup = 250.0 #V\n",
+ "\n",
+ "#Let the assumed directions of unknown currents be as shown in figure.\n",
+ "#KVL for ABCD\n",
+ "# (3+0.05)x + 0.05(x-y) = 250 -------------- eqn 1\n",
+ "a = res_1 + 2*res_con\n",
+ "b = -(res_con)\n",
+ "#KVL for DCEFD\n",
+ "# 0.05(y-x) + (4+0.05)y = 250 -------------- eqn 2\n",
+ "c = res_2+ 2*res_con \n",
+ "#Solving eqn 1 and eqn2\n",
+ "m = [[a,b],[b,c]]\n",
+ "n = [V_sup,V_sup]\n",
+ "soln = np.linalg.solve(m,n) #soln is array with its elements[x,y]\n",
+ "#Calculating the load voltages\n",
+ "#V1 = 250-0.05*x-0.05(x-y)\n",
+ "vol1 = V_sup - res_con*soln[0]-res_con*(soln[0]-soln[1]) #V\n",
+ "#V2 = 250 + 0.05(x-y)- 0.05y\n",
+ "vol2 = V_sup + res_con*(soln[0]-soln[1]) - res_con*soln[1] #V\n",
+ "print \"Voltage across 3 ohm load is = \",round(vol1,1),\"V.\"\n",
+ "print \"Voltage across 4 ohm load is = \",round(vol2,1),\"V.\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## EXAMPLE 40.21 ,Page No :- 1594"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 57,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Potential Difference across AB is = 248.62 V.\n",
+ "Potential Difference across QK is = 247.83 V.\n",
+ "Potential Difference across CD is = 248.4 V.\n",
+ "Potential Difference across FE is = 247.65 V.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#A 3-wire d.c distributor PQ,250 metres long,is supplied at end P at 500/250V and is loaded as under:\n",
+ "#Positive side: 20A 150 metres from P ; 30A 250 metres from P.\n",
+ "#Negative side: 24A 100 metres from P ; 36A 220 metres from P.\n",
+ "#The resistance of each outer wire is 0.02 ohm per 100 metres and the cross-section of the middle wire\n",
+ "#is one-half of the outer.Find the voltage across each load point.\n",
+ "##########################################################################################################\n",
+ "\n",
+ "#Given\n",
+ "V_PN = 250.0 #V\n",
+ "V_NR = 250.0 #V\n",
+ "res_out = 0.02/100 #ohm/m\n",
+ "res_mid = 2*res_out #ohm/m (Area of middle wire is half.As, R = rho*l/A .Therefore,Resistance doubles)\n",
+ "\n",
+ "#Given Currents\n",
+ "i_ab = 20.0 #A\n",
+ "i_qk = 30.0 #A\n",
+ "i_cd = 24.0 #A\n",
+ "i_fe = 36.0 #A\n",
+ "\n",
+ "#Currents in different sections\n",
+ "i_pa = i_ab+i_qk #A\n",
+ "i_aq = i_qk #A\n",
+ "i_fk = i_qk #A\n",
+ "i_bf = i_fe-i_qk #A\n",
+ "i_bc = i_ab-i_bf #A\n",
+ "i_cn = i_cd-i_bc #A\n",
+ "i_de = i_fe #A\n",
+ "i_dr = i_cd+i_fe #A\n",
+ "\n",
+ "\n",
+ "#lengths of different sections\n",
+ "l_pa = 150.0 #m\n",
+ "l_aq = 100.0 #m\n",
+ "l_kf = 250.0-220.0 #m\n",
+ "l_bc = 150.0-100.0 #m\n",
+ "l_bf = 220.0-150.0 #m\n",
+ "l_cn = 100.0 #m\n",
+ "l_de = 220.0-100.0 #m\n",
+ "l_dr = 100.0 #m\n",
+ "\n",
+ "#Resistances of different sections\n",
+ "r_pa = l_pa*res_out #ohm\n",
+ "r_aq = l_aq*res_out #ohm\n",
+ "r_kf = l_kf*res_mid #ohm\n",
+ "r_bc = l_bc*res_mid #ohm\n",
+ "r_bf = l_bf*res_mid #ohm\n",
+ "r_cn = l_cn*res_mid #ohm\n",
+ "r_de = l_de*res_out #ohm\n",
+ "r_dr = l_dr*res_out #ohm\n",
+ "\n",
+ "#Drop across different sections\n",
+ "drop_pa = r_pa*i_pa #V\n",
+ "drop_aq = r_aq*i_aq #V\n",
+ "drop_kf = r_kf*i_fk #V\n",
+ "drop_bc = r_bc*i_bc #V\n",
+ "drop_bf = r_bf*i_bf #V\n",
+ "drop_cn = r_cn*i_cn #V\n",
+ "drop_de = r_de*i_de #V\n",
+ "drop_dr = r_dr*i_dr #V\n",
+ "\n",
+ "#Voltages across different sections\n",
+ "vol_ab = V_PN - drop_pa - drop_bc + drop_cn #V\n",
+ "vol_qk = vol_ab - drop_aq - drop_kf + drop_bf #V\n",
+ "vol_cd = V_NR - drop_cn - drop_dr #V \n",
+ "vol_fe = vol_cd + drop_bc - drop_bf - drop_de #V\n",
+ "\n",
+ "print \"Potential Difference across AB is = \",round(vol_ab,2),\"V.\"\n",
+ "print \"Potential Difference across QK is = \",round(vol_qk,2),\"V.\"\n",
+ "print \"Potential Difference across CD is = \",round(vol_cd,2),\"V.\"\n",
+ "print \"Potential Difference across FE is = \",round(vol_fe,2),\"V.\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## EXAMPLE 40.22 ,Page No :- 1597"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 58,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Total load on main generator is = 155.0 kW.\n",
+ "Load on Balancer 1 is = 22.5 kW.\n",
+ "Load on Balancer 2 is = 27.5 kW.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#A d.c 3-wire system with 500-V between outers has lighting load of 100kW on the positive and 50kW on the\n",
+ "#negative side.If,at this loading,the balancer machines have each a loss of 2.5kW,Calculate the kW loading\n",
+ "#of each balancer machine and the total load on the system.\n",
+ "###########################################################################################################\n",
+ "\n",
+ "#Given\n",
+ "V_out = 500.0 #V\n",
+ "load_p = 100.0 #kW (positive side)\n",
+ "load_n = 50.0 #KW (negative side)\n",
+ "load_b = 2.5 #kW (balancer machine)\n",
+ "#total load on main generator\n",
+ "load_tot = load_p + load_n + 2*load_b #kW\n",
+ "#Output current of main generator\n",
+ "cur_out = load_tot*1000/V_out #W/V->A\n",
+ "#load current on positive side\n",
+ "cur_p = load_p*1000/(V_out/2) #A\n",
+ "#load current on negative side\n",
+ "cur_n = load_n*1000/(V_out/2) #A\n",
+ "#Current through neutral(Out of balance)\n",
+ "cur_o = cur_p-cur_n #A\n",
+ "\n",
+ "#Currents of balancer\n",
+ "cur_b1 = cur_p-cur_out #A\n",
+ "cur_b2 = cur_o - cur_b1 #A\n",
+ "\n",
+ "#Load on balancer\n",
+ "load_b1 = (V_out/2)*cur_b1/1000 #kW\n",
+ "load_b2 = (V_out/2)*cur_b2/1000 #kW\n",
+ "\n",
+ "print \"Total load on main generator is = \",round(load_tot,2),\"kW.\"\n",
+ "print \"Load on Balancer 1 is = \",round(load_b1,2),\"kW.\"\n",
+ "print \"Load on Balancer 2 is = \",round(load_b2,2),\"kW.\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## EXAMPLE 40.23 ,Page No :- 1598"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Total load on main generator is = 1216.0 kW.\n",
+ "Current through Balancer 1 is = 168.0 A.\n",
+ "Current through Balancer 2 is = 232.0 A.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#In a 500/250-V d.c 3-wire system,there is a current of 2000A on the +ve side, 1600A on the negative side\n",
+ "#and a load of 300 kW across the outers.The loss in each balancer set is 8 kW.Calculate the current in each\n",
+ "#armature of the balancer set and total load on the main generator.\n",
+ "#############################################################################################################\n",
+ "\n",
+ "#Given\n",
+ "V_out = 500.0 #V\n",
+ "cur_p = 2000.0 #A (current on positive side)\n",
+ "cur_n = 1600.0 #A (current on negative side)\n",
+ "load_ext = 300.0 #kW (across outers)\n",
+ "load_b = 8.0 #kW (loss in balancer set)\n",
+ "#loading on positive side\n",
+ "load_p = (cur_p*(V_out/2))/1000 #kW\n",
+ "#loading on negative side\n",
+ "load_n = (cur_n*(V_out/2))/1000 #kW\n",
+ "#Total loading on main generator\n",
+ "load_tot = load_p + load_n + 2*load_b + load_ext #kW\n",
+ "\n",
+ "#current on main generator -> I = W/V\n",
+ "cur_tot = load_tot*1000/V_out #A\n",
+ "\n",
+ "#current through neutral(out of balance)\n",
+ "cur_o = cur_p-cur_n #A\n",
+ "\n",
+ "#current through external resistance\n",
+ "cur_ext = load_ext*1000/V_out #A\n",
+ "\n",
+ "#current through balancer sets\n",
+ "cur_b1 = (cur_p+cur_ext)-cur_tot #A\n",
+ "cur_b2 = cur_o - cur_b1 #A\n",
+ "\n",
+ "print \"Total load on main generator is = \",round(load_tot,2),\"kW.\"\n",
+ "print \"Current through Balancer 1 is = \",round(cur_b1,2),\"A.\"\n",
+ "print \"Current through Balancer 2 is = \",round(cur_b2,2),\"A.\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## EXAMPLE 40.24 ,Page No :- 1598"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 60,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Current supplied by generator is = 7000.0 A.\n",
+ "Current in positive side is = 6000.0 A.\n",
+ "Current in negative side is = 8000.0 A.\n",
+ "Current in neutral is = 2000.0 A.\n",
+ "Current through armature 1 is = 1000.0 A.\n",
+ "Current through armature 2 is = 1000.0 A.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#On a 3-wire d.c distribution system with 500V between outers,there is a load of 1500kW on the positive\n",
+ "#side and 2000 kW on the negative side.Calculate the current in the neutral and in each of the balancer\n",
+ "#armatures and the total current supplied by the generator.Neglect losses.\n",
+ "##########################################################################################################\n",
+ "\n",
+ "#Given\n",
+ "V_out = 500.0 #V\n",
+ "load_p = 1500.0 #kW (load on positive side)\n",
+ "load_n = 2000.0 #kW (load on negative side)\n",
+ "#total loading on main generator\n",
+ "load_tot = load_p + load_n #kW\n",
+ "#current supplied by generator\n",
+ "cur_tot = load_tot*1000/V_out #A\n",
+ "#current on positive side\n",
+ "cur_p = load_p*1000/(V_out/2) #A\n",
+ "#current on negative side\n",
+ "cur_n = load_n*1000/(V_out/2) #A\n",
+ "#current in neutral(out of balance)\n",
+ "cur_o = abs(cur_p-cur_n) #A\n",
+ "#current through armatures\n",
+ "cur_b1 = cur_tot-cur_p #A\n",
+ "cur_b2 = cur_o-cur_b1 #A\n",
+ "\n",
+ "print \"Current supplied by generator is = \",cur_tot,\"A.\"\n",
+ "print \"Current in positive side is = \",cur_p,\"A.\"\n",
+ "print \"Current in negative side is = \",cur_n,\"A.\"\n",
+ "print \"Current in neutral is = \",cur_o,\"A.\"\n",
+ "print \"Current through armature 1 is = \",cur_b1,\"A.\"\n",
+ "print \"Current through armature 2 is = \",cur_b2,\"A.\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## EXAMPLE 40.25 ,Page No :- 1599"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 61,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Current in balancer set 1 is = 22.0 A.\n",
+ "Current in balancer set 2 is = 28.0 A.\n",
+ "Output of main generator is = 119.5 kW.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#A 125/250 V,3-wire distributor has an out-of-balance current of 50 A and larger load of 500 A.The balancer\n",
+ "#set has a loss of 375 W in each machine.Calculate the current in each of the balancer machines and output\n",
+ "#of main generator.\n",
+ "############################################################################################################\n",
+ "\n",
+ "#Given\n",
+ "V_out = 250.0 #V\n",
+ "#Currents\n",
+ "cur_p = 500.0 #A\n",
+ "cur_o = 50.0 #A\n",
+ "cur_n = cur_p - cur_o #A\n",
+ "#larger Load\n",
+ "load_p = cur_p*(V_out/2)/1000 #kW\n",
+ "#smaller Load\n",
+ "load_n = cur_n*(V_out/2)/1000 #kW\n",
+ "#Balancer loss\n",
+ "loss_b = 2*375.0/1000 #kW\n",
+ "#total load on generator\n",
+ "load_tot = load_p + load_n + loss_b\n",
+ "#current from main generator -> VI = W\n",
+ "cur_tot = load_tot*1000/V_out #A\n",
+ "\n",
+ "#Current in balancer sets\n",
+ "cur_b1 = cur_p - cur_tot #A\n",
+ "cur_b2 = cur_o - cur_b1 #A\n",
+ "print \"Current in balancer set 1 is = \",cur_b1,\"A.\"\n",
+ "print \"Current in balancer set 2 is = \",cur_b2,\"A.\"\n",
+ "print \"Output of main generator is = \",load_tot,\"kW.\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## EXAMPLE 40.26 ,Page No :- 1599"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Total load on main generator is = 1210.0 kW.\n",
+ "Load on Balancer set 1 is = 20.0 kW.\n",
+ "Load on balancer set 2 is = 30.0 kW.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#The load on d.c 3-wire system with 500 V between outers consists of lighting current of 1500 A on the\n",
+ "#positive side and 1300 A on the negative side while motors connected across the outers absorb 500kW.\n",
+ "#Assuming that at this loading,the balancer machines have each a loss of 5kW,calculate the load on the\n",
+ "#main generator and on each of the balancer machines.\n",
+ "##########################################################################################################\n",
+ "\n",
+ "#Given\n",
+ "cur_p = 1500.0 #A\n",
+ "cur_n = 1300.0 #A\n",
+ "V_out = 500.0 #V\n",
+ "load_ext = 500.0 #kW\n",
+ "loss_b = 2*5.0 #kW\n",
+ "\n",
+ "#current through external load\n",
+ "cur_ext = load_ext*1000/V_out #A\n",
+ "#larger load\n",
+ "load_p = cur_p*(V_out/2)/1000 #kW\n",
+ "#smaller load\n",
+ "load_n = cur_n*(V_out/2)/1000 #kW\n",
+ "#total load on generator\n",
+ "load_tot = load_p + load_n + loss_b + load_ext #kW\n",
+ "#current from generator -> VI = W\n",
+ "cur_tot = load_tot*1000/V_out #A\n",
+ "#current through neutral(out of balance)\n",
+ "cur_o = cur_p-cur_n #A\n",
+ "#current through balancer sets\n",
+ "cur_b1 = (cur_p+cur_ext)-cur_tot #A\n",
+ "cur_b2 = cur_o-cur_b1 #A\n",
+ "#load of balancer sets\n",
+ "load_b1 = cur_b1*(V_out/2)/1000 #kW\n",
+ "load_b2 = cur_b2*(V_out/2)/1000 #kW\n",
+ "\n",
+ "print \"Total load on main generator is = \",load_tot,\"kW.\"\n",
+ "print \"Load on Balancer set 1 is = \",load_b1,\"kW.\"\n",
+ "print \"Load on balancer set 2 is = \",load_b2,\"kW.\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## EXAMPLE 40.27 ,Page No :- 1599"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Voltage across Balancer 1 is = 230.0 A.\n",
+ "Voltage across Balancer 2 is = 250.0 A.\n",
+ "Load current on main generator is = 1110.0 A.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#A d.c 3-wire system with 480 V across outers supplies 1200 A on the positive and 1000 A on the negative side.\n",
+ "#The balancer machines have each an armature resistances of 0.1W and take 10 A on no-load.Find\n",
+ "#(a)the voltage across each balancer and\n",
+ "#(b)the total load on the main generator and the current loading of each balancer machine.\n",
+ "#The balancer field windings are in series across the outers\n",
+ "################################################################################################################\n",
+ "\n",
+ "#Given\n",
+ "V_out = 480.0 #V\n",
+ "#currents\n",
+ "cur_p = 1200.0 #A\n",
+ "cur_n = 1000.0 #A\n",
+ "cur_o = cur_p - cur_n #A (out of balance)\n",
+ "#armature resistance \n",
+ "res_arm = 0.1 #ohm\n",
+ "#no-load current\n",
+ "cur_nold = 10.0 #A\n",
+ "\n",
+ "#Let us assume current Im flows through mtoring machine,then (200-Im) flows through generating machine.\n",
+ "#Let Vg and Vm be potential difference of 2 machines.\n",
+ "\n",
+ "#Total losses in sets = no-load losses + Cu losses in two machines\n",
+ "#loss_set = V_out*cur_nold + 0.1*Im^2+ 0.1*(200-Im)^2\n",
+ "#Vm*Im = Vg*Ig + loss_set\n",
+ "#Now, Vm = Eb+Im*Ra Vg = Eb-Ig*Ra\n",
+ "Eb = V_out/2-res_arm*cur_nold\n",
+ "\n",
+ "#Therefore, Vm = 239 + Im*0.1 and Vg = 239 - (200-Im)*0.1\n",
+ "#Hence,Equation is \n",
+ "#(239+0.1*Im)*Im = [239 - (200-Im)*0.1]*(200-Im) + loss_set\n",
+ "#Simplified -> 239Im = 239*(200-Im)+4800\n",
+ "\n",
+ "#Solving this equation\n",
+ "from sympy import Eq, var, solve\n",
+ "var('Im') \n",
+ "eq = Eq(Eb*(2*Im-cur_o),V_out*cur_nold)\n",
+ "Im = solve(eq)\n",
+ "Im = int(Im[0])\n",
+ "Ig = cur_o-Im\n",
+ "#Voltage across balancers\n",
+ "\n",
+ "Vm = Eb + Im*res_arm #V\n",
+ "Vg = Eb - Ig*res_arm #V \n",
+ "\n",
+ "#Load on main generator\n",
+ "cur_load = cur_p - Ig #A\n",
+ "print \"Voltage across Balancer 1 is = \",round(Vg,2),\"A.\"\n",
+ "print \"Voltage across Balancer 2 is = \",round(Vm,2),\"A.\"\n",
+ "print \"Load current on main generator is = \",round(cur_load,2),\"A.\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## EXAMPLE 40.28 ,Page No :- 1600"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Voltage on positive side is = 283.0 V.\n",
+ "Voltage on negative side is = 177.0 V.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#A d.c 3-wire system with 460V between outers supplies 250kW on the positive and 400kW on the negative side,\n",
+ "#the voltages being balanced.Calculate the voltage on the positive and negative side,the voltages being balanced.\n",
+ "#Calculate the voltage on the positive and negative sides repectively,if the neutral wire becomes disconnected\n",
+ "#from balancer set.\n",
+ "#################################################################################################################\n",
+ "\n",
+ "#Given\n",
+ "V_mid = 230.0 #V\n",
+ "V_out = 460.0 #V\n",
+ "#loads\n",
+ "load_p = 250.0 #kW\n",
+ "load_n = 400.0 #kW\n",
+ "#resistance on positive side -> (V^2/R) = W\n",
+ "res_p = (V_mid*V_mid)/(load_p*1000) #ohm\n",
+ "\n",
+ "#resistance on negative side -> (V^2/R) = W\n",
+ "res_n = (V_mid*V_mid)/(load_n*1000) #ohm\n",
+ "\n",
+ "#Voltages after disconnecting balancer set\n",
+ "vol_p = (res_p/(res_p+res_n))*V_out #V\n",
+ "vol_n = V_out - vol_p #V\n",
+ "\n",
+ "print \"Voltage on positive side is = \",round(vol_p),\"V.\"\n",
+ "print \"Voltage on negative side is = \",round(vol_n),\"V.\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## EXAMPLE 40.29 ,Page No :- 1601"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 66,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Terminal potential difference of the booster is = 180.0 V.\n",
+ "Output of booster is = 21.6 kW.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#A 2-wire system has the voltage at the supply end maintained at 500.The line is 3 km long.If the full-load\n",
+ "#current is 120 A,what must be the booster voltage and output in order that the far end voltage may also be 500 V.\n",
+ "#Take the resistance of the cable at the working temperature as 0.5ohm/kilometre.\n",
+ "####################################################################################################################\n",
+ "\n",
+ "#Total resistance of line\n",
+ "res_tot = 0.5*3 #ohm\n",
+ "#Full load current\n",
+ "cur_full = 120.0 #A\n",
+ "\n",
+ "#drop in the line-> V=IR\n",
+ "drop = res_tot*cur_full #V\n",
+ "\n",
+ "#Output of booster ->VI = W\n",
+ "output = drop*cur_full/1000 #kW\n",
+ "\n",
+ "print \"Terminal potential difference of the booster is = \",drop,\"V.\"\n",
+ "print \"Output of booster is = \",round(output,2),\"kW.\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}