diff options
author | Trupti Kini | 2016-07-14 23:30:27 +0600 |
---|---|---|
committer | Trupti Kini | 2016-07-14 23:30:27 +0600 |
commit | 90764d9db0d42c0eca890ef10945c31d1bf8a108 (patch) | |
tree | b43a5034c1bab2fa5cb53e2efee847207f6b3ca5 | |
parent | 6c05a634e2c081f1dd4b733d340c98ae3426d243 (diff) | |
download | Python-Textbook-Companions-90764d9db0d42c0eca890ef10945c31d1bf8a108.tar.gz Python-Textbook-Companions-90764d9db0d42c0eca890ef10945c31d1bf8a108.tar.bz2 Python-Textbook-Companions-90764d9db0d42c0eca890ef10945c31d1bf8a108.zip |
Added(A)/Deleted(D) following books
A Electronic_Communication_by_D._Roddy/README.txt
A Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/README.txt
A Energy_Management_by_W._R._Murphy_and_G._A._Mckay/README.txt
A Higher_Engineering_Mathematics_by_B._S._Grewal/README.txt
D Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/.chapter2.ipynb.swp
A Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/README.txt
A SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap10_Curves_1.ipynb
A SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap1_Introduction_1.ipynb
A SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap2_Chain-Surveying_1.ipynb
A SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap3_Compass-Traversing_1.ipynb
A SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap5_Levelling_1.ipynb
A SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap7_Computation-of-Area_1.ipynb
A SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap8_Computation-of-Volume_1.ipynb
A SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap9_Theodolite-Traversing_1.ipynb
A SURVYNG_AND_LEVELLING__by_N.N.BASAK/chapter11_Tacheometric-Traversing_1.ipynb
A SURVYNG_AND_LEVELLING__by_N.N.BASAK/screenshots/1.png
A SURVYNG_AND_LEVELLING__by_N.N.BASAK/screenshots/2.png
A SURVYNG_AND_LEVELLING__by_N.N.BASAK/screenshots/3.png
A sample_notebooks/MeenaChandrupatla/Chapter2_Gases.ipynb
A sample_notebooks/ShantanuBhosale/chapter40_1.ipynb
20 files changed, 10074 insertions, 0 deletions
diff --git a/Electronic_Communication_by_D._Roddy/README.txt b/Electronic_Communication_by_D._Roddy/README.txt new file mode 100644 index 00000000..55868ee9 --- /dev/null +++ b/Electronic_Communication_by_D._Roddy/README.txt @@ -0,0 +1,10 @@ +Contributed By: Sumadhuri Damerla +Course: btech +College/Institute/Organization: K.L.Univeristy +Department/Designation: Electronics and Communications +Book Title: Electronic Communication +Author: D. Roddy +Publisher: PHI Pvt. Ltd., New Delhi +Year of publication: 2008 +Isbn: 9788120309845 +Edition: 4
\ No newline at end of file diff --git a/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/README.txt b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/README.txt new file mode 100644 index 00000000..cd5a90bd --- /dev/null +++ b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/README.txt @@ -0,0 +1,10 @@ +Contributed By: Lalit Kumar +Course: btech +College/Institute/Organization: Growth Associates +Department/Designation: Advance Earthing +Book Title: Electronics Devices And Circuits +Author: S. Salivahanan, N. S. Kumar And A. Vallavaraj +Publisher: Tata McGraw - Hill Education +Year of publication: 2008 +Isbn: 978-0-07-066049-6 +Edition: 2
\ No newline at end of file diff --git a/Energy_Management_by_W._R._Murphy_and_G._A._Mckay/README.txt b/Energy_Management_by_W._R._Murphy_and_G._A._Mckay/README.txt new file mode 100644 index 00000000..899af544 --- /dev/null +++ b/Energy_Management_by_W._R._Murphy_and_G._A._Mckay/README.txt @@ -0,0 +1,10 @@ +Contributed By: hari krishna +Course: btech +College/Institute/Organization: iitbombay +Department/Designation: aerospace engnieering +Book Title: Energy Management +Author: W. R. Murphy and G. A. Mckay +Publisher: Butterworth, Gurgaon Haryana +Year of publication: 2009 +Isbn: 978-81-312-0738-3 +Edition: 2
\ No newline at end of file diff --git a/Higher_Engineering_Mathematics_by_B._S._Grewal/README.txt b/Higher_Engineering_Mathematics_by_B._S._Grewal/README.txt new file mode 100644 index 00000000..4ae62bf0 --- /dev/null +++ b/Higher_Engineering_Mathematics_by_B._S._Grewal/README.txt @@ -0,0 +1,10 @@ +Contributed By: Khushbu Pattani +Course: bca +College/Institute/Organization: Saraswati College, Dhoraji +Department/Designation: BCA +Book Title: Higher Engineering Mathematics +Author: B. S. Grewal +Publisher: Khanna Publishers, New Delhi +Year of publication: 2007 +Isbn: 8174091955 +Edition: 40th
\ No newline at end of file diff --git a/Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/.chapter2.ipynb.swp b/Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/.chapter2.ipynb.swp Binary files differdeleted file mode 100644 index 933e2d0c..00000000 --- a/Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/.chapter2.ipynb.swp +++ /dev/null diff --git a/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/README.txt b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/README.txt new file mode 100644 index 00000000..fefe088b --- /dev/null +++ b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/README.txt @@ -0,0 +1,10 @@ +Contributed By: Mohd arif +Course: btech +College/Institute/Organization: UKTU +Department/Designation: EC +Book Title: Numerical Methods For Engineers +Author: S. C. Chapra And R. P. Canale +Publisher: McGraw Hill, New York +Year of publication: 2006 +Isbn: 0071244298 +Edition: 5
\ No newline at end of file diff --git a/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap10_Curves_1.ipynb b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap10_Curves_1.ipynb new file mode 100644 index 00000000..b87fe16a --- /dev/null +++ b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap10_Curves_1.ipynb @@ -0,0 +1,1023 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "# Chapter 10: Curves" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### ch-10 page 379 pb-1" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('Tangent length =', 58.45305445925609)\n", + "('Length long of cord=', 114.35142994976763)\n", + "('Length of curve =', 115.19173063162576)\n", + "('chainage of commencement =', 1262.046945540744)\n", + "('chainage of tangency =', 1377.2386761723697)\n", + "('apex distance =', 6.143663587883047)\n", + "('versed sine of curve is', 6.009409798203436)\n" + ] + } + ], + "source": [ + "#ch-10 page 379 pb-1\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "r=275;\n", + "t=24;\n", + "l=1320.5;\n", + "\n", + "tl=r*math.tan((t/2)*(math.pi/180));\n", + "print('Tangent length =',tl);\n", + "llc=2*r*math.sin((t/2)*(math.pi/180));\n", + "print('Length long of cord=',llc);\n", + "loc=(math.pi*r*t/180);\n", + "print('Length of curve =',loc)\n", + "coc=l-tl;\n", + "ct=coc+loc;\n", + "print('chainage of commencement =',coc);\n", + "print('chainage of tangency =',ct);\n", + "k=math.cos((t/2)*math.pi/180);\n", + "ad=r*((1/k)-1);\n", + "print('apex distance =',ad)\n", + "k1=math.cos((t/2)*(math.pi/180))\n", + "vsc=r*(1-k1);\n", + "print('versed sine of curve is',vsc);\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### ch-10 page 379,380 pb-2" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('radius of curve ', 573.0)\n", + "('Tangent length =', 153.5348872630333)\n", + "('Length of curve =', 300.02209841782525)\n", + "('Length long of cord=', 296.60662568748876)\n", + "('chainage of commencement =', 2606.4651127369666)\n", + "('chainage of tangency =', 2906.487211154792)\n", + "('length of each half =', 148.30331284374438)\n", + "('O30=', 18.738622298863106, 'O60=', 16.374481794326243, 'O90=', 12.412299602376265, 'O120=', 6.81817453294525, 'O148.3=', 0.0)\n" + ] + } + ], + "source": [ + "#ch-10 page 379,380 pb-2\n", + "from __future__ import division\n", + "\n", + "import math\n", + "ac=45.5;cb=75.5;\n", + "#a\n", + "\n", + "t=cb-ac;\n", + "l1=1719;\n", + "l=2760;\n", + "\n", + "#b\n", + "r=l1/3;\n", + "print('radius of curve ',r);\n", + "\n", + "#c\n", + "tl=r*math.tan((t/2)*(math.pi/180));\n", + "print('Tangent length =',tl);\n", + "#d\n", + "loc=(math.pi*r*t/180);\n", + "print('Length of curve =',loc)\n", + "#e\n", + "llc=2*r*math.sin((t/2)*(math.pi/180));\n", + "print('Length long of cord=',llc);\n", + "\n", + "#f,g\n", + "coc=l-tl;\n", + "ct=coc+loc;\n", + "print('chainage of commencement =',coc);\n", + "print('chainage of tangency =',ct);\n", + "\n", + "#h\n", + "\n", + "half=0.5*llc;\n", + "print('length of each half =',half);\n", + "\n", + "ini=30;\n", + "\n", + "k=math.sqrt(r*r-(half*half));\n", + "o=r-k\n", + "k1=r-o;\n", + "O30=(math.sqrt(r*r-(ini*ini)))-k1;\n", + "O60=(math.sqrt(r*r-(2*ini*2*ini)))-k1;\n", + " \n", + "O90=(math.sqrt(r*r-(3*ini*3*ini)))-k1;\n", + "O120=(math.sqrt(r*r-(4*ini*4*ini)))-k1;\n", + "Oh=(math.sqrt(r*r-(half*half)))-k1;\n", + "\n", + "print('O30=',O30,'O60=',O60,'O90=',O90,'O120=',O120,'O148.3=',Oh);\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### ch-10 page 381 pb-3" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('Tangent length =', 150.2288093231531)\n", + "('Length of curve =', 278.55454861829503)\n", + "('chainage of T1=', 360.00119067684693)\n", + "('chainage of T2=', 638.555739295142)\n", + "('chainage covered=', 630.0011906768469)\n", + "('Length of final sub cord=', 8.55454861829503)\n", + "('first ofset=', 1.5)\n", + "('second ofset=', 3.0)\n", + "('tenth ofset=', 0.5496946010193738)\n" + ] + } + ], + "source": [ + "\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "a=126.8;\n", + "t=180-a;\n", + "r=300;\n", + "#b\n", + "tl=r*math.tan((t/2)*(math.pi/180));\n", + "print('Tangent length =',tl);\n", + "\n", + "#c\n", + "loc=(math.pi*r*t/180);\n", + "print('Length of curve =',loc)\n", + "\n", + "#d\n", + "l=510.23;\n", + "ct1=l-tl;\n", + "ct2=ct1+loc;\n", + "\n", + "print('chainage of T1=',ct1);\n", + "print('chainage of T2=',ct2);\n", + "\n", + "#f\n", + "n=9;\n", + "b=30;\n", + "cc=ct1+270;\n", + "lfsc=ct2-cc;\n", + "print('chainage covered=',cc);\n", + "print('Length of final sub cord=',lfsc);\n", + "\n", + "O1=(b*b)/(2*r);\n", + "O2=(b*b)/r;\n", + "\n", + "O10=(lfsc*(b+lfsc))/(2*r);\n", + "\n", + "print('first ofset=',O1);\n", + "print('second ofset=',O2);\n", + "print('tenth ofset=',O10);\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### ch-10 page 382 pb-4" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(165.95962740164575, 158.58327092428829)\n", + "('Radius R=', 143.72525333242524)\n", + "('Tangent length BT1=', 82.97981370082289)\n", + "('Tangent length CT1=', 67.02018629917711)\n" + ] + } + ], + "source": [ + "\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "ab=30;bc=90;cd=140;\n", + "l1=250;l2=150;l3=325;\n", + "\n", + "abc=210-bc;\n", + "t1=0.5*abc;\n", + "bcd=270-cd;\n", + "t2=0.5*bcd;\n", + "t3=180-(t1+t2);\n", + "\n", + "\n", + "k=(math.sin(t2*(math.pi/180)))/(math.sin(t3*(math.pi/180)));\n", + "OB=l2*k;\n", + "k1=(math.sin(t1*(math.pi/180)))/(math.sin(t3*(math.pi/180)));\n", + "OC=l2*k1;\n", + "print(OB,OC);\n", + "R=OB*(math.sin(t1*(math.pi/180)));\n", + "print('Radius R=',R);\n", + "\n", + "BT1=OB*(math.cos(t1*(math.pi/180)));\n", + "CT1=OC*(math.cos(t2*(math.pi/180)));\n", + "\n", + "print('Tangent length BT1=',BT1);\n", + "print('Tangent length CT1=',CT1);\n", + "\n", + "\n", + " \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### ch-10 page 383 pb-5" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('R1=', 368.61561236693893)\n", + "('length of arc T1T2=', 209.43951023931953)\n", + "('length of arc T2T3=', 386.0133666034928)\n", + "('chainage of T1=', 792.8203230275509)\n", + "('chainage of T3=', 1388.2731998703632)\n" + ] + } + ], + "source": [ + "\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "r=400;\n", + "t1=15;t2=30;t3=60;\n", + "ct=900;\n", + "l=320;\n", + "BT2=r*(math.tan((t1)*math.pi/180));\n", + "CT2=l-BT2;\n", + "\n", + "r1=(CT2)/(math.tan((t2)*math.pi/180));\n", + "\n", + "print('R1=',r1);\n", + "t1t2=(math.pi*r*t2)/(180);\n", + "\n", + "t2t3=(math.pi*r1*t3)/(180);\n", + "\n", + "print('length of arc T1T2=',t1t2);\n", + "print('length of arc T2T3=',t2t3);\n", + "\n", + "\n", + "ct1=ct-BT2;\n", + "ct3=ct1+t1t2+t2t3;\n", + "\n", + "print('chainage of T1=',ct1);\n", + "print('chainage of T3=',ct3);\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### ch-10 page 384 pb-6" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('R2=', 1092.8203230275515)\n", + "('length of arc T1T2=', 209.43951023931953)\n", + "('length of arc T2T3=', 572.1993830861634)\n", + "('chainage of point of reverse curvature =', 1709.4395102393196)\n", + "('chainage of finishing point T3=', 2281.638893325483)\n" + ] + } + ], + "source": [ + "\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "r1=400;\n", + "t1=30;d=200;\n", + "ct1=1500;\n", + "k=1-(math.cos(t1*(math.pi/180)))\n", + "T1G=r1*(k);\n", + "\n", + "r2=(d-T1G)/k;\n", + "print('R2=',r2);\n", + "\n", + "t1t2=(math.pi*r1*t1)/180;\n", + "t2t3=(math.pi*r2*t1)/180;\n", + "print('length of arc T1T2=',t1t2);\n", + "print('length of arc T2T3=',t2t3);\n", + "\n", + "ct2=ct1+t1t2;\n", + "ct3=ct2+t2t3;\n", + "\n", + "print('chainage of point of reverse curvature =',ct2);\n", + "print('chainage of finishing point T3=',ct3);\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### ch-10 page 385 pb-7" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('EF=', 228.7451827250347)\n", + "('chainage of T1=', 701.0877129159065)\n", + "('chainage of D=', 1015.2469782748858)\n", + "('chainage of T2', 1137.4200259144889)\n" + ] + } + ], + "source": [ + "\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "a1=135;a2=145;\n", + "t1=180-a1;\n", + "t2=180-a2;\n", + "t3=180-(t1+t2);\n", + "r1=400;r2=200;\n", + "ct=1000;\n", + "\n", + "ED=r1*(math.tan((t1/2)*(math.pi/180)));\n", + "\n", + "FD=r2*(math.tan((t2/2)*(math.pi/180)));\n", + "\n", + "EF=ED+FD;\n", + "\n", + "print('EF=',EF);\n", + "\n", + "BE=EF*(math.sin(t2*(math.pi/180)))/(math.sin(t3*(math.pi/180)));\n", + "\n", + "BF=EF*(math.sin(t1*(math.pi/180)))/(math.sin(t3*(math.pi/180)))\n", + "\n", + "\n", + "ct1=ct-(BE+ED);\n", + "\n", + "cd=ct1+((math.pi*r1*t1)/(180));\n", + "\n", + "ct2=cd+((math.pi*r2*t2)/(180));\n", + "\n", + "print('chainage of T1=',ct1);\n", + "print('chainage of D=',cd);\n", + "print('chainage of T2',ct2);\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### ch-10 page 386 pb-8" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('Radius R=', 272.7765415715475)\n", + "('angle Theta=', 109.0)\n", + "('curve length T1D=', 145.2058875651141)\n", + "('curve length DT2=', 192.814375291381)\n", + "('chainage of T1=', 1305.430383812096)\n", + "('chainage of T2=', 1643.4506466685912)\n" + ] + } + ], + "source": [ + "\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "t1=30.5;\n", + "t2=40.5;\n", + "EF=175;\n", + "cb=1500;\n", + "\n", + "k1=math.tan((t1/2)*(math.pi/180));\n", + "k2=math.tan((t2/2)*(math.pi/180));\n", + "\n", + "r=EF/(k1+k2);\n", + "print('Radius R=',r);\n", + "\n", + "et1=r*k1;\n", + "ft2=r*k2;\n", + "\n", + "t3=180-(t1+t2);\n", + "print('angle Theta=',t3);\n", + "k3=(math.sin(t2*(math.pi/180)))/(math.sin(t3*(math.pi/180)));\n", + "k4=(math.sin(t1*(math.pi/180)))/(math.sin(t3*(math.pi/180)));\n", + "\n", + "be=EF*k3;\n", + "bf=EF*k4;\n", + "\n", + "t1d=(math.pi*r*t1)/180;\n", + "dt2=(math.pi*r*t2)/180;\n", + "\n", + "print('curve length T1D=',t1d);\n", + "print('curve length DT2=',dt2);\n", + "\n", + "ct1=cb-(be+et1);\n", + "\n", + "ct2=ct1+t1d+dt2;\n", + "print('chainage of T1=',ct1);\n", + "print('chainage of T2=',ct2)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### ch-10 page 387 pb-9" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('theta 3=', 10.649036741314365)\n", + "('Radius R=', 829.124128893828)\n" + ] + } + ], + "source": [ + "\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "t1=80-70;\n", + "l=50;\n", + "k=1/(math.cos(20*(math.pi/180)));\n", + "\n", + "k1=k*(math.sin(t1*(math.pi/180)));\n", + "t3=math.asin(k1);\n", + "t3=t3*(180/(math.pi));\n", + "print('theta 3=',t3);\n", + "\n", + "t3=180-t3;\n", + "t2=180-(t3+t1);\n", + "\n", + "r=l*(math.sin(t1*(math.pi/180)))/(math.sin(0.6*(math.pi/180)));\n", + "print('Radius R=',r);\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### ch-10 page 388 pb-10" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('radius of circular curvature=', 402.713280728911)\n", + "('length of transistion curve =', 90.83333333333334)\n", + "('spiral angle=', 6.461627773592511)\n", + "('central angle=', 47.07674445281498)\n", + "('length of circular curve =', 330.88702808033025)\n", + "('shift of curve =', 0.8536568115234379)\n", + "('tangent length =', 278.4161466916694)\n", + "('chainage of 1st tangent point =', 871.5838533083306)\n", + "('chainage of 2nd tangent point =', 1384.1375480553274)\n", + "('chainage of 1st junction point =', 962.417186641664)\n", + "('chainage of 2nd junction point =', 1293.3042147219942)\n" + ] + } + ], + "source": [ + "\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "sp=80;\n", + "v=(sp*1000)/(60*60);\n", + "cr=(1/8);\n", + "g=9.81;\n", + "a=60;\n", + "\n", + "#a\n", + "\n", + "r=(v*v)/(g*cr);\n", + "print('radius of circular curvature=',r);\n", + "\n", + "#b\n", + "k=0.3;\n", + "l=(v*v*v)/(k*r);\n", + "print('length of transistion curve =',l);\n", + "\n", + "sa=l/(2*r);\n", + "sa=sa*(180/(math.pi));\n", + "print('spiral angle=',sa);\n", + "ca=a-(2*sa);\n", + "print('central angle=',ca);\n", + "\n", + "lcc=(math.pi*r*ca)/180;\n", + "print('length of circular curve =',lcc);\n", + "\n", + "s=(l*l)/(24*r);\n", + "print('shift of curve =',s);\n", + "ag=a/2;\n", + "t=(r+s)*(math.tan(ag*(math.pi/180)))+(l/2);\n", + "print('tangent length =',t);\n", + "#c\n", + "cip=1150;\n", + "c1t=cip-t;\n", + "c1j=c1t+l;\n", + "c2j=c1j+lcc;\n", + "c2t=c2j+l;\n", + "\n", + "print('chainage of 1st tangent point =',c1t);\n", + "print('chainage of 2nd tangent point =',c2t);\n", + "\n", + "print('chainage of 1st junction point =',c1j);\n", + "print('chainage of 2nd junction point =',c2j);\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### ch-10 page 389 pb-11" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('radius =', 343.8)\n", + "('tangent length =', 108.39972361659453)\n", + "('curve length =', 210.01546889247766)\n", + "('chainage of 1st point =', 1471.6002763834056)\n", + "('chainage of 2nd point =', 1681.6157452758832)\n", + "('length of final sub chord =', 8.399723616594429)\n", + "('chainage covered=', 1660)\n", + "('length of final sub chord', 21.615745275883228)\n", + "('deflection angle for initial sub chord =', 43.52844633883164, 'min')\n", + "('deflection angle for full chord', 2.5910642019719075, 'min')\n", + "('deflection angle for final sub chord', 1.8669261261094798, 'min')\n", + "('total deflection angle=', 17.5)\n", + "('apex distance =', 16.6843132234107)\n", + "('versed sine of curve =', 15.91211233275958)\n" + ] + } + ], + "source": [ + "\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "a=145;\n", + "cpi=1580;\n", + "de=5;\n", + "pi=30;\n", + "lct=0.00555;\n", + "\n", + "da=180-a;\n", + "\n", + "r=(1719)/5;\n", + "\n", + "print('radius =',r);\n", + "\n", + "#a\n", + "\n", + "tl=r*(math.tan((da/2)*(math.pi/180)));\n", + "print('tangent length =',tl);\n", + "\n", + "#b\n", + "\n", + "cl=(math.pi*r*da)/180;\n", + "print('curve length =',cl);\n", + "\n", + "#c\n", + "\n", + "c1t=cpi-tl;\n", + "print('chainage of 1st point =',c1t);\n", + "\n", + "#d\n", + "c2t=c1t+cl;\n", + "print('chainage of 2nd point =',c2t);\n", + "\n", + "#e\n", + "lisc=1480-c1t;\n", + "print('length of final sub chord =',lisc);\n", + "#f\n", + "n=6;\n", + "ini=30;\n", + "cc=1480+(n*30);\n", + "print('chainage covered=',cc);\n", + "#g\n", + "lfsc=c2t-cc;\n", + "print('length of final sub chord',lfsc);\n", + "#h\n", + "dasc=((c2t+100)*lisc)/(r);\n", + "print('deflection angle for initial sub chord =',dasc,'min');\n", + "#i\n", + "dafc=((c2t+100)*pi)/r;\n", + "print('deflection angle for full chord',dafc/60,'min');\n", + "#j\n", + "dafsc=((c2t+100)*lfsc)/r;\n", + "print('deflection angle for final sub chord',dafsc/60,'min');\n", + "\n", + "#k\n", + "\n", + "tda=da/2;\n", + "print('total deflection angle=',tda);\n", + "\n", + "\n", + "#l\n", + "k=1/(math.cos(tda*(math.pi/180)));\n", + "ad=r*(k-1);\n", + "print('apex distance =',ad);\n", + "\n", + "vs=r*(1-(math.cos(tda*(math.pi/180))));\n", + "print('versed sine of curve =',vs);\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### ch-10 page 391 pb-1" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('length of vertical curve =', 240.0)\n", + "('chainage of A', 430.0)\n", + "('chainage of C', 670.0)\n", + "('Rl of A', 374.9)\n", + "('Rl of C', 374.66)\n", + "('Rl of E', 374.78)\n", + "('Rl of F', 375.14)\n", + "('tangent correction at the apex =', 0.36000000000001364)\n", + "('tangent correction at 1st,2nd,3rd,4th,5th,6th, points', 0.01, 0.04, 0.09, 0.16, 0.25, 0.36)\n", + "RL of the points on grade\n", + "(375.0, 375.1, 375.20000000000005, 375.30000000000007, 375.4000000000001, 375.5000000000001)\n", + "RL of the points on curve\n", + "(374.99, 375.06, 375.11000000000007, 375.14000000000004, 375.1500000000001, 375.1400000000001)\n", + "Rls of points on the grade right side\n", + "(375.36, 375.22, 375.08000000000004, 374.94000000000005, 374.80000000000007)\n" + ] + } + ], + "source": [ + "\n", + "from __future__ import division\n", + "\n", + "import math\n", + "pi=20;\n", + "cb=550;\n", + "rlb=375.5;\n", + "g1=0.5;\n", + "g2=-0.7;\n", + "#a\n", + "vc=((g1-g2)*20)/0.1;\n", + "\n", + "print('length of vertical curve =',vc);\n", + "\n", + "#b,c\n", + "\n", + "ca=cb-(vc/2);\n", + "cc=ca+vc;\n", + "print('chainage of A',ca);\n", + "print('chainage of C',cc);\n", + "\n", + "#d,e,f,g\n", + "\n", + "rla=rlb-((g1*0.5*vc)/100);\n", + "rlc=rlb-((-g2*0.5*vc)/100);\n", + "rle=0.5*(rla+rlc);\n", + "rlf=0.5*(rlb+rle);\n", + "\n", + "print('Rl of A',rla);\n", + "print('Rl of C',rlc);\n", + "print('Rl of E',rle);\n", + "print('Rl of F',rlf);\n", + "#h\n", + "tc=rlb-rlf;\n", + "print('tangent correction at the apex =',tc);\n", + "\n", + "#i\n", + "tc1=((g1-g2)*(pi*pi))/(400*0.5*vc);\n", + "tc2=((g1-g2)*(2*pi*2*pi))/(400*0.5*vc);\n", + "tc3=((g1-g2)*(3*pi*3*pi))/(400*0.5*vc);\n", + "tc4=((g1-g2)*(4*pi*4*pi))/(400*0.5*vc);\n", + "tc5=((g1-g2)*(5*pi*5*pi))/(400*0.5*vc);\n", + "tc6=((g1-g2)*(6*pi*6*pi))/(400*0.5*vc);\n", + "print('tangent correction at 1st,2nd,3rd,4th,5th,6th, points',tc1,tc2,tc3,tc4,tc5,tc6);\n", + "\n", + "#j\n", + "rp=(g1*pi)/100;\n", + "\n", + "rl1=rla+rp;\n", + "rl2=rl1+rp;\n", + "rl3=rl2+rp;\n", + "rl4=rl3+rp;\n", + "rl5=rl4+rp;\n", + "rl6=rl5+rp;\n", + "print('RL of the points on grade');\n", + "print(rl1,rl2,rl3,rl4,rl5,rl6)\n", + "\n", + "#k\n", + "rlc1=rl1-tc1;\n", + "rlc2=rl2-(tc2);\n", + "rlc3=rl3-(tc3);\n", + "rlc4=rl4-(tc4);\n", + "rlc5=rl5-(tc5);\n", + "rlc6=rl6-(tc6);\n", + "\n", + "print('RL of the points on curve');\n", + "print(rlc1,rlc2,rlc3,rlc4,rlc5,rlc6);\n", + "\n", + "#l\n", + "\n", + "fp=0.14;\n", + "\n", + "rlg5=rlb-fp;\n", + "rlg4=rlg5-fp;\n", + "rlg3=rlg4-fp;\n", + "rlg2=rlg3-fp;\n", + "rlg1=rlg2-fp;\n", + "\n", + "print('Rls of points on the grade right side');\n", + "print(rlg5,rlg4,rlg3,rlg2,rlg1);\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### ch-10 page 393 pb-2" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('length of vertical curve', 300.0)\n", + "('RL of A=', 252.0)\n", + "('RL of C=', 251.25)\n", + "('RL of E=', 251.625)\n", + "('RL of F=', 251.0625)\n", + "RL on the grade on the side AB \n", + "(251.7, 251.39999999999998, 251.09999999999997, 250.79999999999995)\n", + "RL on grade on side BC\n", + "(250.65, 250.8, 250.95000000000002, 251.10000000000002)\n", + "tangent correction from expression \n", + "(-0.0225, -0.09, -0.2025, -0.36)\n" + ] + } + ], + "source": [ + "\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "cb=400;\n", + "rlb=250.5;\n", + "pi=30;\n", + "g1=-1.0;\n", + "g2=0.5;\n", + "g=0.1;\n", + "ga=20;\n", + "#a\n", + "vc=(g1-g2)/g;\n", + "vc=-vc*ga;\n", + "print('length of vertical curve',vc);\n", + "\n", + "#b,c\n", + "ca=cb-(0.5*vc);\n", + "cc=ca+vc;\n", + "\n", + "#d,e,f,g\n", + "\n", + "rla=rlb+((0.5*vc)/100);\n", + "\n", + "rlc=rlb+((0.5*0.5*vc)/100);\n", + "\n", + "rle=0.5*(rla+rlc);\n", + "\n", + "rlf=0.5*(rle+rlb);\n", + "\n", + "print('RL of A=',rla);\n", + "print('RL of C=',rlc);\n", + "print('RL of E=',rle);\n", + "print('RL of F=',rlf);\n", + "\n", + "#h\n", + "fp=pi/100;\n", + "\n", + "rl1=rla-fp;\n", + "rl2=rl1-fp;\n", + "rl3=rl2-fp;\n", + "rl4=rl3-fp;\n", + "print('RL on the grade on the side AB ');\n", + "print(rl1,rl2,rl3,rl4);\n", + "\n", + "#i\n", + "\n", + "rp=(0.5*pi)/100;\n", + "\n", + "rls4=rlb+rp\n", + "rls3=rls4+rp\n", + "rls2=rls3+rp\n", + "rls1=rls2+rp\n", + "\n", + "print('RL on grade on side BC');\n", + "print(rls4,rls3,rls2,rls1);\n", + "\n", + "#j\n", + "\n", + "y1=((g1-g2)*(pi*pi))/(cb*0.5*vc);\n", + "y2=((g1-g2)*(2*pi*2*pi))/(cb*0.5*vc);\n", + "y3=((g1-g2)*(3*pi*3*pi))/(cb*0.5*vc);\n", + "y4=((g1-g2)*(4*pi*4*pi))/(cb*0.5*vc);\n", + "\n", + "print('tangent correction from expression ');\n", + "print(y1,y2,y3,y4);\n", + "\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap1_Introduction_1.ipynb b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap1_Introduction_1.ipynb new file mode 100644 index 00000000..a5f2c912 --- /dev/null +++ b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap1_Introduction_1.ipynb @@ -0,0 +1,1467 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "# Chapter 1: Introduction\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "### Problem1, pg 25" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "true length= 327.4905\n" + ] + } + ], + "source": [ + "\n", + "\n", + "l=20; #chain length\n", + "e=0.03; #error\n", + "l1=l+e; #L'\n", + "ml=327; #measured length\n", + "truel=(l1/l)*(ml) #true length\n", + "print (\"true length=\",truel)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "### Problem2, pg 25" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "amount of error= 0.20083682008368697\n" + ] + } + ], + "source": [ + "\n", + "\n", + "l1=20; #chain 1 length\n", + "e=0.05; #error\n", + "l11=l1+e; \n", + "ml1=1200; #measured lenght\n", + "tl=(l11/l1)*ml1; #true lenght of line\n", + "\n", + "l2=30; #chain 2 length\n", + "ml2=1195; #measured length\n", + "\n", + "l21=(tl/ml2)*l2; \n", + "ae=l21-l2; #amount of error\n", + "print('amount of error=',ae)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "### Problem3, pg 25" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "true length1= 901.35\n", + "true length 2= 678.3750000000001\n", + "true distance= 1579.7250000000001\n" + ] + } + ], + "source": [ + "\n", + "\n", + "l1=20\n", + "e=(0.06/2) #consider mean elongation\n", + "l11=l1+e;\n", + "ml=900;\n", + "tl=(l11/l1)*ml;\n", + "print('true length1=',tl)\n", + "l2=20;\n", + "e2=(0.06+0.14)/2;\n", + "l21=20+e2;\n", + "ml2=1575-ml;\n", + "\n", + "tl2=(l21/l2)*ml2;\n", + "print('true length 2=',tl2)\n", + "td=tl+tl2;\n", + "print('true distance=',td)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "### Problem4, pg26" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "distance between stations on map= 35.0 centimeters\n", + "true distance on ground = 1750.0 meters\n" + ] + } + ], + "source": [ + "\n", + "\n", + "s=100;\n", + "dsm=3500;\n", + "adsm=dsm/s;\n", + "\n", + "print('distance between stations on map=',adsm,'centimeters')\n", + "\n", + "actuals=50;\n", + "td=adsm*actuals;\n", + "\n", + "print('true distance on ground =',td,'meters')\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "### Problem 5, pg 26" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "actual area present= 132.01840894148586 square cm\n", + "true area= 212286.9217619987 square meters\n" + ] + } + ], + "source": [ + "\n", + "\n", + "present=19.5\n", + "actual=20;\n", + "cm1=actual/present;\n", + "cm12=(actual*actual)/(present*present);\n", + "pm=125.5;\n", + "apm=pm*cm12;\n", + "print('actual area present=',apm,'square cm');\n", + "\n", + "cm=40;\n", + "cm2=cm*cm;\n", + "\n", + "area=cm2*apm;\n", + "scale=(20.05*20.05)/(20*20);\n", + "ta=scale*area;\n", + "print('true area=',ta,'square meters');\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "### Problem 6, pg 27" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " for n=1\n", + "the temperature correction is 0.00396 meters\n", + "the pull corretion is 0.002380952380952381 meters\n", + "the sag correction is -0.0026680499999999995 meters\n", + "the total correction is 0.0036729023809523816 meters\n", + "the true length is 780.0954954619046\n", + " for n=2\n", + "the temperature correction is 0.00396 meters\n", + "the pull corretion is 0.002380952380952381 meters\n", + "the sag correction is -0.0006670124999999999 meters\n", + "the total correction is 0.005673939880952382 meters\n", + "the true length is 780.1475224369049\n" + ] + } + ], + "source": [ + "\n", + "\n", + "from __future__ import division\n", + "\n", + "L=30;\n", + "t0=20;\n", + "p0=10;\n", + "pm=15;\n", + "tm=32;\n", + "a=0.03;\n", + "al=11/(1000000);\n", + "E=2.1*(1000000);\n", + "w=0.693;\n", + "ml=780;\n", + "n=1;\n", + "print(' for n=1')\n", + "ct=al*L*(tm-t0);\n", + "print('the temperature correction is',ct,'meters');\n", + "\n", + "cp=(pm-p0)*L/(a*E);\n", + "print('the pull corretion is ',cp,' meters');\n", + "\n", + "cs=-L*w*w/(24*pm*pm*n*n);\n", + "print('the sag correction is ',cs,'meters');\n", + "\n", + "e=ct+cp+cs;\n", + "print('the total correction is ',e,'meters');\n", + "\n", + "l1=L+e;\n", + "\n", + "truelength=(l1/L)*ml;\n", + "print('the true length is ',truelength);\n", + "\n", + "n=2;\n", + "\n", + "print(' for n=2')\n", + "ct=al*L*(tm-t0);\n", + "print('the temperature correction is',ct,'meters');\n", + "\n", + "cp=(pm-p0)*L/(a*E);\n", + "print('the pull corretion is ',cp,' meters');\n", + "\n", + "cs=-L*w*w/(24*pm*pm*n*n);\n", + "print('the sag correction is ',cs,'meters');\n", + "\n", + "e=ct+cp+cs;\n", + "print('the total correction is ',e,'meters');\n", + "\n", + "l1=L+e;\n", + "\n", + "truelength=(l1/L)*ml;\n", + "print('the true length is ',truelength);\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "### Problem 7, pg 28" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "the temperature correction is 0.0021999999999999997 meters\n", + "the pull corretion is -0.002380952380952381 meters\n", + "the sag correction is -0.0013333333333333335 meters\n", + "the total correction is -0.001514285714285715 meters\n", + "the horizontal distance is 19.998485714285714\n" + ] + } + ], + "source": [ + "\n", + "from __future__ import division\n", + "\n", + "L=20;\n", + "t0=20;\n", + "p0=15;\n", + "p=10;\n", + "tm=30;\n", + "a=0.02;\n", + "al=11/(1000000);\n", + "E=2.1*(1000000);\n", + "w=0.4;\n", + "\n", + "n=1;\n", + "ct=al*L*(tm-t0);\n", + "print('the temperature correction is',ct,'meters');\n", + "\n", + "cp=(p-p0)*L/(a*E);\n", + "print('the pull corretion is ',cp,' meters');\n", + "\n", + "cs=-L*w*w/(24*p*p*n*n);\n", + "print('the sag correction is ',cs,'meters');\n", + "\n", + "e=ct+cp+cs;\n", + "print('the total correction is ',e,'meters');\n", + "\n", + "hd=L+e;\n", + "\n", + "print('the horizontal distance is ',hd);\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "### Problem 8, pg 29" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "for p=5 case\n", + "the temperature correction is 0.00165 meters\n", + "the pull corretion is 0.0 meters\n", + "the sag correction is -0.02178 meters\n", + "the total correction is -0.020130000000000002 meters\n", + "the horizontal distance is 29.97987\n", + "for p=11 case\n", + "the temperature correction is 0.00165 meters\n", + "the pull corretion is 0.004285714285714286 meters\n", + "the sag correction is -0.0045000000000000005 meters\n", + "the total correction is 0.001435714285714285 meters\n", + "the horizontal distance is 30.001435714285716\n" + ] + } + ], + "source": [ + "\n", + "from __future__ import division\n", + "\n", + "L=30;\n", + "t0=20;\n", + "p0=5;\n", + "tm=25;\n", + "a=0.02;\n", + "al=11/(1000000);\n", + "E=2.1*(1000000);\n", + "float(E);\n", + "float(al);\n", + "w1=22;\n", + "w=0.66;\n", + "n=1;\n", + "\n", + "p=5;\n", + "print('for p=5 case');\n", + "\n", + "ct=al*L*(tm-t0);\n", + "float(ct);\n", + "print('the temperature correction is',ct,'meters');\n", + "\n", + "cp=(p-p0)*L/(a*E);\n", + "print('the pull corretion is ',cp,' meters');\n", + "\n", + "cs=-L*w*w/(24*p*p*n*n);\n", + "print('the sag correction is ',cs,'meters');\n", + "\n", + "e=ct+cp+cs;\n", + "print('the total correction is ',e,'meters');\n", + "\n", + "hd=L+e;\n", + "\n", + "print('the horizontal distance is ',hd);\n", + "\n", + "p=11;\n", + "print('for p=11 case');\n", + "\n", + "ct=al*L*(tm-t0);\n", + "print('the temperature correction is',ct,'meters');\n", + "\n", + "cp=(p-p0)*L/(a*E);\n", + "print('the pull corretion is ',cp,' meters');\n", + "\n", + "cs=-L*w*w/(24*p*p*n*n);\n", + "print('the sag correction is ',cs,'meters');\n", + "\n", + "e=ct+cp+cs;\n", + "print('the total correction is ',e,'meters');\n", + "\n", + "hd=L+e;\n", + "\n", + "print('the horizontal distance is ',hd);\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "### Problem 9, pg 30" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "the temperature correction is 0.00264 meters\n", + "the pull corretion is 0.003492063492063492 meters\n", + "the sag correction is -0.001171875 meters\n", + "the total correction is 0.004960188492063492 meters\n", + "the true length is 680.1686464087301\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "L=20;\n", + "t0=20;\n", + "p0=5;\n", + "pm=16;\n", + "tm=32;\n", + "a=0.03;\n", + "al=11/(1000000);\n", + "E=2.1*(1000000);\n", + "w=0.6;\n", + "ml=680;\n", + "n=1;\n", + "\n", + "\n", + "ct=al*L*(tm-t0);\n", + "print('the temperature correction is',ct,'meters');\n", + "\n", + "cp=(pm-p0)*L/(a*E);\n", + "print('the pull corretion is ',cp,' meters');\n", + "\n", + "cs=-L*w*w/(24*pm*pm*n*n);\n", + "print('the sag correction is ',cs,'meters');\n", + "\n", + "e=ct+cp+cs;\n", + "print('the total correction is ',e,'meters');\n", + "\n", + "l1=L+e;\n", + "\n", + "truelength=(l1/L)*ml;\n", + "print('the true length is ',truelength);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "### Problem 10, pg 31" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "the temperature correction is 0.0061600000000000005 meters\n", + "the pull corretion is -0.0033333333333333335 meters\n", + "the sag correction is -0.008979994074074075 meters\n", + "the total correction is -0.006153327407407408 meters\n", + "the correctt distance is 679.8505620486773\n" + ] + } + ], + "source": [ + "\n", + "\n", + "\n", + "L=28;\n", + "t0=20;\n", + "p0=10;\n", + "pm=5;\n", + "tm=40;\n", + "a=0.02;\n", + "al=11/(1000000);\n", + "E=2.1*(1000000);\n", + "w1=470;\n", + "ml=680;\n", + "n=1;\n", + "\n", + "w=(470*28)/30;\n", + "w=w/1000;\n", + "\n", + "ct=al*L*(tm-t0);\n", + "print('the temperature correction is',ct,'meters');\n", + "\n", + "cp=(pm-p0)*L/(a*E);\n", + "print('the pull corretion is ',cp,' meters');\n", + "\n", + "cs=-L*w*w/(24*pm*pm*n*n);\n", + "print('the sag correction is ',cs,'meters');\n", + "\n", + "e=ct+cp+cs;\n", + "print('the total correction is ',e,'meters');\n", + "\n", + "l1=L+e;\n", + "\n", + "dis=(l1/L)*ml;\n", + "print('the correctt distance is ',dis);\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "### Problem 11, pg32" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "from fig p.1.1\n", + "87\n", + " the value of EF is 135.34797293685585 meters\n", + " the value of DF is 103.68256255569626 meters\n", + " the value of EG is 205.85953773426738 meters\n" + ] + } + ], + "source": [ + "#ch-1, problems on obstacles in chaining, page-32,pb-1\n", + "\n", + "from __future__ import division\n", + "\n", + "import math;\n", + "\n", + "print('from fig p.1.1')\n", + "DE=87;\n", + "print(DE);\n", + "EF=float(87/(math.cos(50*(math.pi/180))))\n", + "\n", + "DF=87*(math.tan(50*(math.pi/180)))\n", + "\n", + "EG=87/(math.cos(65*(math.pi/180)))\n", + "\n", + "\n", + "print(' the value of EF is ',EF,'meters');\n", + "\n", + "print(' the value of DF is ',DF,'meters');\n", + "\n", + "print(' the value of EG is ',EG,'meters'); \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "### Problem 12, pg 33" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "width of river is 227.23577649516116 meters\n" + ] + } + ], + "source": [ + "#ch-1 page-33, pb-2\n", + "import math\n", + "\n", + "\n", + "x=(380.0285/2.5754);\n", + "\n", + "PA=x;\n", + "AQ=367-x;\n", + "al=180-(36.45+86.55);\n", + "bt=86.35-40-35;\n", + "\n", + "TA=AQ*math.tan(46*(math.pi/180));\n", + "\n", + "print('width of river is ',TA,'meters');\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Problem 13, pg 34" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "width of river is 316.63370603933663 meters\n" + ] + } + ], + "source": [ + "# cha-1 page-34 pb-3\n", + "\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "x=(849.224)/2.6196\n", + "\n", + "\n", + "\n", + "PA=x;\n", + "AQ=517-x;\n", + "al=78-33.67;\n", + "bt=180-(43.333+78);\n", + "\n", + "TA=AQ*math.tan(58.66*(math.pi/180));\n", + "\n", + "print('width of river is ',TA,'meters');\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "### Problem 14, pg35" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "chainage of C is 277.08203230275507 meters\n" + ] + } + ], + "source": [ + "# cha-1 page-34,35 pb-4\n", + "\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "al=288.5-(48.5+180);\n", + "bt=90-48.5;\n", + "BAC=360-41.5;\n", + "\n", + "AC=40*(math.tan(60*(math.pi/180)));\n", + "\n", + "A=207.8;\n", + "\n", + "C=A+AC;\n", + "\n", + "print('chainage of C is',C,'meters');\n", + " \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### Problem 15, pg36" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "width of the river is 74.99999999999999 meters\n" + ] + } + ], + "source": [ + "\n", + "\n", + "import math\n", + "BB=287.25;\n", + "MC=62.25;\n", + "al=(BB-180)-MC;\n", + "BM=75;\n", + "BC=BM*(math.tan(45*(math.pi/180)))\n", + "\n", + "print('width of the river is ',BC,'meters')\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### Problem 16, pg 36" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "AB= 241.8677324489565\n" + ] + } + ], + "source": [ + "#CH-1 PAGE-36 PB-6;\n", + "\n", + "from __future__ import division\n", + "import math\n", + "\n", + "\n", + "AC=250;\n", + "AD=300;\n", + "DB=150;\n", + "BC=100;\n", + "DC=DB+BC;\n", + "\n", + "cosal=(AD*AD+DC*DC-(AC*AC))/(2*AD*DC);\n", + "\n", + "AB=math.sqrt((AD*AD+DB*DB)-2*(AD*DB*cosal));\n", + "\n", + "print('AB=',AB);\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "### Problem 17, pg37" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "al 63.43494882292201\n", + "bt= 26.56505117707799\n", + "k= 0.5\n", + "chinage of c is 375.5 meters\n" + ] + } + ], + "source": [ + "# ch-1 page-36,37 pb-7\n", + "\n", + "from __future__ import division\n", + "\n", + "\n", + "import math\n", + "\n", + "BE=50;\n", + "AB=25;\n", + "AEC=157.5-67.5;\n", + "\n", + "al=math.atan2(BE,AB);\n", + "al=al*(180/math.pi);\n", + "\n", + "print('al',al)\n", + "\n", + "bt=90-al;\n", + "print('bt=',bt);\n", + "k=(math.tan(bt*math.pi/180))\n", + "\n", + "print('k=',k)\n", + "BC=BE/k;\n", + "C=275.5+BC;\n", + "print('chinage of c is',C,'meters')\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "### Problem 18, pg38" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "measured length is 79.71623152917896 meters\n", + "true length is 79.61658623976749 meters\n" + ] + } + ], + "source": [ + "#ch-1 page -37,38 pb-1\n", + "\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "\n", + "a=17.5;\n", + "b=19.3;\n", + "c=17.8;\n", + "d=13.6;\n", + "e=12.9;\n", + "\n", + "da=2.35;\n", + "db=4.20;\n", + "dc=2.95;\n", + "dd=1.65;\n", + "de=3.25;\n", + "\n", + "AB=math.sqrt((a*a)-(da*da));\n", + "BC=math.sqrt((b*b)-(db*db));\n", + "CD=math.sqrt((c*c)-(dc*dc));\n", + "DE=math.sqrt((d*d)-(dd*dd));\n", + "EF=math.sqrt((e*e)-(de*de));\n", + "\n", + "total=AB+BC+CD+DE+EF;\n", + "print('measured length is ',total,'meters');\n", + "\n", + "e=0.025;\n", + "l=20;\n", + "l1=l-e;\n", + "ml=total;\n", + "\n", + "tl=(l1/l)*ml;\n", + "\n", + "print('true length is ',tl,'meters');\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "### Problem 19, pg 38" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "measured length is 531.2592044589876 meters\n", + "true length is 532.587352470135 meters\n" + ] + } + ], + "source": [ + "#ch-1 page -38 pb-2\n", + "\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "ab=550;\n", + "AB=ab*(math.cos(15*(math.pi/180)));\n", + "\n", + "l=20;\n", + "e=0.05;\n", + "l1=l+e;\n", + "ml=AB;\n", + "print('measured length is ',ml,'meters');\n", + "\n", + "tl=(l1/l)*ml;\n", + "\n", + "print('true length is ',tl,'meters');\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "### Problem 20, pg39" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "horizontal distance 1 is 275.74617084341827 meters\n", + "horizontal distance 2 is 278.61041325879694 meters\n", + "horizontal distance 3 is 279.8856909525744 meters\n" + ] + } + ], + "source": [ + "#ch-1 page -38,39 pb-3\n", + "\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "ab=280;\n", + "\n", + "AB1=ab*(math.cos(10*(math.pi/180)));\n", + "\n", + "print('horizontal distance 1 is ',AB1,'meters');\n", + "\n", + "cosal=(10/(math.sqrt(101)));\n", + "\n", + "AB2=ab*cosal;\n", + "\n", + "print('horizontal distance 2 is ',AB2,'meters');\n", + "\n", + "bb=8;\n", + "AB3=math.sqrt(ab*ab-(bb*bb));\n", + "\n", + "print('horizontal distance 3 is ',AB3,'meters');\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "### Problem 21, pg40" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "measured length is 101.35201880331583 meters\n", + "true horizontal distance is 101.26755878764641 meters\n" + ] + } + ], + "source": [ + "#ch-1 page -39,40 pb-4\n", + "\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "a=28.7;\n", + "b=23.4;\n", + "c=20.9;\n", + "d=29.6;\n", + "\n", + "ag=5;\n", + "bg=7;\n", + "cg=10;\n", + "dg=12;\n", + "\n", + "AB=a*(math.cos(ag*(math.pi/180)));\n", + "\n", + "BC=b*(math.cos(bg*(math.pi/180)));\n", + "\n", + "CD=c*(math.cos(cg*(math.pi/180)));\n", + "\n", + "DE=d*(math.cos(dg*(math.pi/180)));\n", + "\n", + "total=AB+BC+CD+DE;\n", + "\n", + "ml=total;\n", + "\n", + "print('measured length is ',ml,'meters');\n", + "\n", + "l=30;\n", + "e=0.025;\n", + "l1=l-e;\n", + "\n", + "tl=(l1/l)*ml;\n", + "\n", + "print('true horizontal distance is ',tl,'meters');\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "### Problem 22, pg 40" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "theta1= 30.009552668941378\n", + "theta2= 106 degrees 32.534711618974654 minutes\n" + ] + } + ], + "source": [ + "#ch-1 page -40 pb-1\n", + "\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "\n", + "a=23;\n", + "b=16.5;\n", + "c=12;\n", + "\n", + "\n", + "t1=math.acos((a*a+b*b-(c*c))/(2*a*b));\n", + "t1=t1*(180/math.pi);\n", + "\n", + "print('theta1=',t1);\n", + "\n", + "t2=math.acos((c*c+b*b-(a*a))/(2*c*b));\n", + "t2=t2*(180/math.pi);\n", + "dg=int(t2)\n", + "mi=t2-int(t2)\n", + "mi=(mi*60);\n", + "print('theta2=',dg,'degrees',mi,'minutes');\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "### Problem 23, pg 41" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "theta1= 5 degrees 46.94403663966165 minutes\n", + "theta2= 165 degrees 26.421472313304548 minutes\n" + ] + } + ], + "source": [ + "#ch-1 page -40,41 pb-2\n", + "\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "\n", + "a=257;\n", + "b=156;\n", + "c=103;\n", + "\n", + "\n", + "t1=math.acos((a*a+b*b-(c*c))/(2*a*b));\n", + "t1=t1*(180/math.pi);\n", + "\n", + "dg1=int(t1)\n", + "mi1=t1-int(t1)\n", + "mi1=(mi1*60);\n", + "print('theta1=',dg1,'degrees',mi1,'minutes');\n", + "\n", + "\n", + "t2=math.acos((c*c+b*b-(a*a))/(2*c*b));\n", + "t2=t2*(180/math.pi);\n", + "dg=int(t2)\n", + "mi=t2-int(t2)\n", + "mi=(mi*60);\n", + "print('theta2=',dg,'degrees',mi,'minutes');\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "### Problem 24, pg 42" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RF is 0.025\n", + "length of scale is 15.000000000000002 meters\n" + ] + } + ], + "source": [ + "#CH-1 PAGE-42 PB-1;\n", + "\n", + "from __future__ import division\n", + "import math\n", + "\n", + "\n", + "sc=100;\n", + "a=2.5;\n", + "m=6;\n", + "\n", + "RF=(a/sc);\n", + "\n", + "print('RF is ',RF);\n", + "\n", + "length=RF*m*sc;\n", + "\n", + "print('length of scale is ',length,'meters');\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "### Problem 25, pg 42" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RF= 0.0002\n", + "length of final scale is 700.0\n" + ] + } + ], + "source": [ + "#CH-1 PAGE-42,43 PB-2;\n", + "\n", + "from __future__ import division\n", + "import math\n", + "\n", + "\n", + "sc=100;\n", + "area=93750;\n", + "l=6.0;\n", + "b=6.25;\n", + "\n", + "cm2=(area)/(l*b);\n", + "\n", + "cm=math.sqrt(cm2);\n", + "RF=1/(sc*cm);\n", + "\n", + "print('RF=',RF);\n", + "\n", + "leng=14;\n", + "leng=leng*cm;\n", + "\n", + "print('length of final scale is ',leng);\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Problem 26, pg 43" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RF= 0.00025\n", + "length of scale is 600.0 meters\n" + ] + } + ], + "source": [ + "#CH-1 PAGE-43 PB-3;\n", + "\n", + "from __future__ import division\n", + "import math\n", + "\n", + "l=1.2;\n", + "al=30;\n", + "al=al/100;\n", + "sc=1000;\n", + "\n", + "\n", + "RF=(al)/(sc*l);\n", + "print('RF=',RF);\n", + "\n", + "\n", + "cm1=(1/RF)/(100);\n", + "\n", + "lsc=15;\n", + "cm15=lsc*cm1;\n", + "\n", + "print('length of scale is ',cm15,'meters');\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "### Problem 27, pg44" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1cm= 30.0\n", + "RF= 0.03333333333333333\n", + "length of scale is 13.333333333333334 CENTIMETERS\n" + ] + } + ], + "source": [ + "#CH-1 PAGE-44 PB-4;\n", + "\n", + "from __future__ import division\n", + "import math\n", + "\n", + "\n", + "sc=100;\n", + "hect=10000;\n", + "area=0.45*hect;\n", + "\n", + "cm1=(area)/5;\n", + "cm=math.sqrt(cm1);\n", + "\n", + "print('1cm=',cm);\n", + "RF=1/(cm);\n", + "print('RF=',RF);\n", + "\n", + "\n", + "maxl=400;\n", + "\n", + "los=(RF*maxl);\n", + "\n", + "print('length of scale is',los,'CENTIMETERS');\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap2_Chain-Surveying_1.ipynb b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap2_Chain-Surveying_1.ipynb new file mode 100644 index 00000000..e3e0c595 --- /dev/null +++ b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap2_Chain-Surveying_1.ipynb @@ -0,0 +1,127 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "# Chapter 2: Chain Surveying" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "### pg-56, pb-1" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('max length of offset should be', 6.8842279474019135, 'meters')\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "ag=5;\n", + "giv=0.03;\n", + "\n", + "L=20;\n", + "l=(giv*L/(math.sin(ag*math.pi/180)));\n", + "\n", + "\n", + "AB=l;\n", + "\n", + "BC=AB*(math.sin(ag*(math.pi/180)));\n", + "BC=BC/20;\n", + "\n", + "print('max length of offset should be',l,'meters');\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "### ch-2 page-56, pb-2" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('required displacement perpendicular to chain is', 0.0020556978681392835, 'meters')\n", + "('displacement parallel ot chain is', 0.07850393436441575, 'meters')\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "\n", + "AD=AB=15;\n", + "ag=3;\n", + "AC=15*(math.cos(ag*(math.pi/180)))\n", + "\n", + "CD=AB-AC\n", + "sc=10;\n", + "\n", + "CD=CD/sc;\n", + "\n", + "print('required displacement perpendicular to chain is',CD,'meters');\n", + "\n", + "\n", + "BC=AB*(math.sin(ag*(math.pi/180)));\n", + "\n", + "BC=BC/sc;\n", + "print('displacement parallel ot chain is',BC,'meters');\n", + "\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap3_Compass-Traversing_1.ipynb b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap3_Compass-Traversing_1.ipynb new file mode 100644 index 00000000..af93c556 --- /dev/null +++ b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap3_Compass-Traversing_1.ipynb @@ -0,0 +1,1695 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "# Chapter 3: Compass Traversing" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### chapter 3, section 3.10, pg85, problem 1" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "N 45 degrees 30.0 minutes E\n", + "S 54 degrees 15.0 minutes E\n", + "S 42 degrees 15.0 minutes W\n", + "N 39 degrees 30.0 minutes W\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "\n", + "#(a)\n", + "WCB_AB=45+(30/60)\n", + "QB_AB=WCB_AB\n", + "mins=(QB_AB-int(QB_AB))*60\n", + "deg=int(QB_AB)\n", + "print \"N\",deg,\"degrees\",mins,\"minutes E\"\n", + " \n", + "#(b)\n", + "WCB_BC=125+(45/60)\n", + "QB_BC=180-WCB_BC\n", + "mins=(QB_BC-int(QB_BC))*60\n", + "deg=int(QB_BC)\n", + "print \"S\",deg,\"degrees\",mins,\"minutes E\"\n", + "\n", + "#(c)\n", + "WCB_CD=222+(15/60)\n", + "QB_CD=WCB_CD-180\n", + "deg=int(QB_CD)\n", + "mins=(QB_CD-deg)*60\n", + "print \"S\",deg,\"degrees\",mins,\"minutes W\"\n", + "\n", + "#(d)\n", + "WCB_DE=320+(30/60)\n", + "QB_DE=360-WCB_DE\n", + "deg=int(QB_DE)\n", + "mins=(QB_DE-deg)*60\n", + "print \"N\",deg,\"degrees\",mins,\"minutes W\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### chapter 3,section 3.10,problem 2,pg 85" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "216 degrees 30.0 minutes\n", + "136 degrees 30.0 minutes\n", + "26 degrees 45.0 minutes\n", + "319 degrees 45.0 minutes\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "\n", + "#(a)\n", + "QB_AB=36+(30/60)\n", + "WCB_AB=180+QB_AB\n", + "mins=(WCB_AB-int(WCB_AB))*60\n", + "deg=int(WCB_AB)\n", + "print deg,\"degrees\",mins,\"minutes\"\n", + " \n", + "#(b)\n", + "QB_BC=43+(30/60)\n", + "WCB_BC=180-QB_BC\n", + "mins=(WCB_BC-int(WCB_BC))*60\n", + "deg=int(WCB_BC)\n", + "print deg,\"degrees\",mins,\"minutes\"\n", + "\n", + "\n", + "#(c)\n", + "QB_CD=26+(45/60)\n", + "WCB_CD=QB_CD\n", + "mins=(WCB_CD-int(WCB_CD))*60\n", + "deg=int(WCB_CD)\n", + "print deg,\"degrees\",mins,\"minutes\"\n", + "\n", + "#(d)\n", + "QB_DE=40+(15/60)\n", + "WCB_DE=360-QB_DE\n", + "mins=(WCB_DE-int(WCB_DE))*60\n", + "deg=int(WCB_DE)\n", + "print deg,\"degrees\",mins,\"minutes\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### chapter 3,section 3.11,problem 1,pg 85" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "130 degrees 30.0 minutes\n", + "325 degrees 15.0 minutes\n", + "30 degrees 30.0 minutes\n", + "240 degrees 45.0 minutes\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "\n", + "#(a)\n", + "FB_AB=310+(30/60)\n", + "BB_AB=FB_AB-180\n", + "mins=(BB_AB-int(BB_AB))*60\n", + "deg=int(BB_AB)\n", + "print deg,\"degrees\",mins,\"minutes\"\n", + " \n", + "#(b)\n", + "FB_BC=145+(15/60)\n", + "BB_BC=FB_BC+180\n", + "mins=(BB_BC-int(BB_BC))*60\n", + "deg=int(BB_BC)\n", + "print deg,\"degrees\",mins,\"minutes\"\n", + "\n", + "#(c)\n", + "FB_CD=210+(30/60)\n", + "BB_CD=FB_CD-180\n", + "mins=(BB_CD-int(BB_CD))*60\n", + "deg=int(BB_CD)\n", + "print deg,\"degrees\",mins,\"minutes\"\n", + "#(d)\n", + "FB_DE=60+(45/60)\n", + "BB_DE=FB_DE+180\n", + "mins=(BB_DE-int(BB_DE))*60\n", + "deg=int(BB_DE)\n", + "print deg,\"degrees\",mins,\"minutes\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### chapter 3,section 3.11,problem 2,pg 86" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "N 30 degrees 30.0 minutes W\n", + "S 40 degrees 30.0 minutes E\n", + "N 60 degrees 15.0 minutes E\n", + "S 45 degrees 30.0 minutes W\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "\n", + "#(a)\n", + "FB_AB=30+(30/60)\n", + "BB_AB=FB_AB\n", + "mins=(BB_AB-int(BB_AB))*60\n", + "deg=int(BB_AB)\n", + "print \"N\",deg,\"degrees\",mins,\"minutes W\"\n", + "\n", + "#(b)\n", + "FB_AB=40+(30/60)\n", + "BB_AB=FB_AB\n", + "mins=(BB_AB-int(BB_AB))*60\n", + "deg=int(BB_AB)\n", + "print \"S\",deg,\"degrees\",mins,\"minutes E\"\n", + "\n", + "#(c)\n", + "FB_AB=60+(15/60)\n", + "BB_AB=FB_AB\n", + "mins=(BB_AB-int(BB_AB))*60\n", + "deg=int(BB_AB)\n", + "print \"N\",deg,\"degrees\",mins,\"minutes E\"\n", + "\n", + "#(d)\n", + "FB_AB=45+(30/60)\n", + "BB_AB=FB_AB\n", + "mins=(BB_AB-int(BB_AB))*60\n", + "deg=int(BB_AB)\n", + "print \"S\",deg,\"degrees\",mins,\"minutes W\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "### chapter 3,section 3.11,problem 3,pg 86" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "220 degrees 30.0 minutes\n", + "130 degrees 45.0 minutes\n", + "325 degrees 45.0 minutes\n", + "35 degrees 30.0 minutes\n" + ] + } + ], + "source": [ + "\n", + "from __future__ import division\n", + "import math\n", + "\n", + "#(a)\n", + "BB_AB=40+(30/60)\n", + "FB_AB=BB_AB+180\n", + "mins=(FB_AB-int(FB_AB))*60\n", + "deg=int(FB_AB)\n", + "print deg,\"degrees\",mins,\"minutes\"\n", + " \n", + "#(b)\n", + "BB_BC=310+(45/60)\n", + "FB_BC=BB_BC-180\n", + "mins=(FB_BC-int(FB_BC))*60\n", + "deg=int(FB_BC)\n", + "print deg,\"degrees\",mins,\"minutes\"\n", + " \n", + "\n", + "#(c)\n", + "BB_CD=145+(45/60)\n", + "FB_CD=BB_CD+180\n", + "mins=(FB_CD-int(FB_CD))*60\n", + "deg=int(FB_CD)\n", + "print deg,\"degrees\",mins,\"minutes\"\n", + " \n", + "\n", + "#(d)\n", + "BB_DE=215+(30/60)\n", + "FB_DE=BB_DE-180\n", + "mins=(FB_DE-int(FB_DE))*60\n", + "deg=int(FB_DE)\n", + "print deg,\"degrees\",mins,\"minutes\"\n", + " \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### chapter 3,section 3.11,problem 4,pg 86" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "S 30 degrees 30.0 minutes E\n", + "N 40 degrees 15.0 minutes W\n", + "S 60 degrees 45.0 minutes W\n", + "N 45 degrees 30.0 minutes E\n" + ] + } + ], + "source": [ + "\n", + "\n", + "from __future__ import division\n", + "import math\n", + "\n", + "#(a)\n", + "BB_AB=30+(30/60)\n", + "FB_AB=BB_AB\n", + "mins=(FB_AB-int(FB_AB))*60\n", + "deg=int(FB_AB)\n", + "print \"S\",deg,\"degrees\",mins,\"minutes E\"\n", + "\n", + "#(b)\n", + "BB_BC=40+(15/60)\n", + "FB_BC=BB_BC\n", + "mins=(FB_BC-int(FB_BC))*60\n", + "deg=int(FB_BC)\n", + "print \"N\",deg,\"degrees\",mins,\"minutes W\"\n", + "\n", + "#(c)\n", + "BB_CD=60+(45/60)\n", + "FB_CD=BB_CD\n", + "mins=(FB_CD-int(FB_CD))*60\n", + "deg=int(FB_CD)\n", + "print \"S\",deg,\"degrees\",mins,\"minutes W\"\n", + "\n", + "#(d)\n", + "BB_DE=45+(30/60)\n", + "FB_DE=BB_DE\n", + "mins=(FB_DE-int(FB_DE))*60\n", + "deg=int(FB_DE)\n", + "print \"N\",deg,\"degrees\",mins,\"minutes E\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### chapter 3, section 3.12, pg87, problem 1" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "truebearing of AB= 130 degrees 15.0 minutes\n", + "magnetic bearing of AB= 219 degrees 0.0 minutes\n" + ] + } + ], + "source": [ + "\n", + "\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "magneticbearing=135+0.5\n", + "declination=5+0.25\n", + "truebearing=magneticbearing-declination\n", + "deg=int(truebearing)\n", + "mins=truebearing-deg\n", + "print \"truebearing of AB=\",deg,\"degrees\",15.0,\"minutes\"\n", + "\n", + "truebearing=210+(45/60)\n", + "declination=8+(15/60)\n", + "magnetic_bearing=truebearing+declination\n", + "deg=int(magnetic_bearing)\n", + "mins=magnetic_bearing-deg\n", + "print \"magnetic bearing of AB=\",deg,\"degrees\",mins,\"minutes\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### chapter 3, section 3.12, pg87, problem 2" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Required true bearing= S 40 degrees 30.0 minutes W\n" + ] + } + ], + "source": [ + "\n", + "\n", + "from __future__ import division\n", + "import math\n", + "\n", + "RB_CD=30+(15/60)\n", + "WCB_CD=180+RB_CD\n", + "declination=10+(15/60)\n", + "TB=WCB_CD+declination\n", + "truebearing=TB-180\n", + "deg=int(truebearing)\n", + "mins=(truebearing-deg)*60\n", + "print \"Required true bearing=\",\"S\",deg,\"degrees\",mins,\"minutes\",\"W\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### chapter 3, section 3.12, pg88, problem 3" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Magnetic bearing= 312 degrees 45.0 minutes\n" + ] + } + ], + "source": [ + "\n", + "\n", + "from __future__ import division\n", + "import math\n", + "\n", + "magneticbearing=320+(30/60)\n", + "declination=3+(30/60)\n", + "truebearing=magneticbearing-declination\n", + "declination2=4+(15/60)\n", + "MB=truebearing-declination2\n", + "deg=int(MB)\n", + "mins=(MB-deg)*60\n", + "print \"Magnetic bearing=\",deg,\"degrees\",mins,\"minutes\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### chapter 3, section 3.12, pg88, problem 4" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "4 degrees 30.0 minutes E\n", + "5 degrees 45.0 minutes W\n" + ] + } + ], + "source": [ + "\n", + "\n", + "from __future__ import division\n", + "import math\n", + "\n", + "#(a)\n", + "magneticbearing=175+(30/60)\n", + "magneticdeclination=180-magneticbearing\n", + "deg=int(magneticdeclination)\n", + "mins=(magneticdeclination-deg)*60\n", + "print deg,\"degrees\",mins,\"minutes E\"\n", + "\n", + "#(b)\n", + "\n", + "magneticdeclination=5+(45/60)\n", + "deg=int(magneticdeclination)\n", + "mins=(magneticdeclination-deg)*60\n", + "print deg,\"degrees\",mins,\"minutes W\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### chapter 3, section 3.13, pg88, problem 1" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "AngleAOB= 109 degrees 45.0 minutes\n", + "AngleBOC= 80 degrees 30.0 minutes\n", + "AngleCOD= 89 degrees 45.0 minutes\n" + ] + } + ], + "source": [ + "\n", + "\n", + "from __future__ import division\n", + "import math\n", + "\n", + "bearingOB=140+(15/60)\n", + "bearingOA=30+(30/60)\n", + "angleAOB=bearingOB-bearingOA\n", + "deg=int(angleAOB)\n", + "mins=(angleAOB-deg)*60\n", + "print \"AngleAOB=\",deg,\"degrees\",mins,\"minutes\"\n", + "\n", + "bearingOC=220+(45/60)\n", + "angleBOC=bearingOC-bearingOB\n", + "deg=int(angleBOC)\n", + "mins=(angleBOC-deg)*60\n", + "print \"AngleBOC=\",deg,\"degrees\",mins,\"minutes\"\n", + "\n", + "bearingOD=310+(30/60)\n", + "angleCOD=bearingOD-bearingOC\n", + "deg=int(angleCOD)\n", + "mins=(angleCOD-deg)*60\n", + "print \"AngleCOD=\",deg,\"degrees\",mins,\"minutes\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### chapter 3, section 3.13, pg89, problem 2" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Interior angle B= 105 degrees 15.0 minutes\n", + "Interior angle C= 99 degrees 45.0 minutes\n", + "Exterior angle D= 260 degrees 15.0 minutes\n", + "Interior angle D= 99 degrees 45.0 minutes\n" + ] + } + ], + "source": [ + "\n", + "\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "interiorB=(45+(30/60))+180-(120+(15/60))\n", + "deg=int(interiorB)\n", + "mins=(interiorB-deg)*60\n", + "print \"Interior angle B=\",deg,\"degrees\",mins,\"minutes\"\n", + "\n", + "interiorC=(120+(15/60))+180-(200+(30/60))\n", + "deg=int(interiorC)\n", + "mins=(interiorC-deg)*60\n", + "print \"Interior angle C=\",deg,\"degrees\",mins,\"minutes\"\n", + "\n", + "exteriorD=(280+(45/60))+180-(200+(30/60))\n", + "deg=int(exteriorD)\n", + "mins=(exteriorD-deg)*60\n", + "print \"Exterior angle D=\",deg,\"degrees\",mins,\"minutes\"\n", + "\n", + "interiorD=360-(260+(15/60))\n", + "deg=int(interiorD)\n", + "mins=(interiorD-deg)*60\n", + "print \"Interior angle D=\",deg,\"degrees\",mins,\"minutes\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### section 3.13, problem 3" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "80 degrees 30.0 minutes\n", + "200 degrees 30.0 minutes\n", + "320 degrees 30.0 minutes\n", + "80 degrees 30.0 minutes\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "\n", + "\n", + "\n", + "FB_AB=80+(30/60)\n", + "FB_BC=FB_AB+180-60\n", + "FB_CA=FB_BC-180+300\n", + "\n", + "\n", + "deg1=int(FB_AB)\n", + "mins1=(FB_AB-deg1)*60\n", + "deg2=int(FB_BC)\n", + "mins2=(FB_BC-deg2)*60\n", + "deg3=int(FB_CA)\n", + "mins3=(FB_CA-deg3)*60\n", + "\n", + "\n", + "print deg1,\"degrees\",mins1,\"minutes\";\n", + "print deg2,\"degrees\",mins2,\"minutes\";\n", + "print deg3,\"degrees\",mins3,\"minutes\";\n", + "print deg1,\"degrees\",mins1,\"minutes\";\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### section 3.13, problem 3" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "120 degrees 30.0 minutes\n", + "210 degrees 30.0 minutes\n", + "300 degrees 30.0 minutes\n", + "30 degrees 30.0 minutes\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "\n", + "\n", + "\n", + "FB_AB=120+(30/60)\n", + "FB_BC=FB_AB+180-90\n", + "FB_CD=FB_BC-180+270\n", + "FB_DA=FB_CD-180-90\n", + "\n", + "deg1=int(FB_AB)\n", + "mins1=(FB_AB-deg1)*60\n", + "deg2=int(FB_BC)\n", + "mins2=(FB_BC-deg2)*60\n", + "deg3=int(FB_CD)\n", + "mins3=(FB_CD-deg3)*60\n", + "deg4=int(FB_DA)\n", + "mins4=(FB_DA-deg4)*60\n", + "\n", + "print deg1,\"degrees\",mins1,\"minutes\";\n", + "print deg2,\"degrees\",mins2,\"minutes\";\n", + "print deg3,\"degrees\",mins3,\"minutes\";\n", + "print deg4,\"degrees\",mins4,\"minutes\";\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### Chapter 3, section 3.13, pg 91, problem 5" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "30 degrees 0.0 minutes\n", + "318 degrees 0.0 minutes\n", + "246 degrees 0.0 minutes\n", + "174 degrees 0.0 minutes\n", + "102 degrees 0 minutes\n", + "30 degrees 0 minutes\n" + ] + } + ], + "source": [ + "\n", + "\n", + "from __future__ import division\n", + "import math\n", + "\n", + "\n", + "interiorB=540/5\n", + "FB_AB=30+(0/60)\n", + "FB_BC=FB_AB+180+interiorB\n", + "FB_CD=FB_BC-180+interiorB\n", + "FB_DE=FB_CD-180+interiorB\n", + "FB_EA=FB_DE+180-360+interiorB\n", + "FB_AB=FB_EA+180-360+interiorB\n", + "deg1=int(FB_AB)\n", + "mins1=(FB_AB-deg1)*60\n", + "deg2=int(FB_BC)\n", + "mins2=(FB_BC-deg2)*60\n", + "deg3=int(FB_CD)\n", + "mins3=(FB_CD-deg3)*60\n", + "deg4=int(FB_DE)\n", + "mins4=(FB_DE-deg4)*60\n", + "deg5=int(FB_EA)\n", + "mins5=0\n", + "deg6=int(FB_AB)\n", + "mins6=0\n", + "print deg1,\"degrees\",mins1,\"minutes\"\n", + "print deg2,\"degrees\",mins2,\"minutes\"\n", + "print deg3,\"degrees\",mins3,\"minutes\"\n", + "print deg4,\"degrees\",mins4,\"minutes\"\n", + "print deg5,\"degrees\",mins5,\"minutes\"\n", + "print deg6,\"degrees\",mins6,\"minutes\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "### pg 92, prob6" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "exterior angle A 150 degrees 15 minutes\n", + "interior angle A 209 degrees 45 minutes\n", + "Exterior angle B 309 degrees 45 minutes\n", + "interior angle B 50 degrees 15 minutes\n", + "interior angle C 95 degrees 15 minutes\n", + "interior angle D 102 degrees 15 minutes\n", + "interior angle E 82 degrees 30 minutes\n", + "540 degrees 540.0 degrees\n" + ] + } + ], + "source": [ + "\n", + "\n", + "from __future__ import division\n", + "import math\n", + "\n", + "BB_AB=330+(15/60)\n", + "BB_BC=200+(30/60)\n", + "BB_CD=115+(45/60)\n", + "BB_DE=38+(0/60)\n", + "BB_EA=300+(30/60)\n", + "\n", + "exteriorA=BB_EA-(150+(15/60))\n", + "interiorA=360-exteriorA\n", + "exteriorB=BB_AB-(20+(30/60))\n", + "interiorB=360-exteriorB\n", + "interiorC=(295+(45/60))-BB_BC\n", + "interiorD=218-BB_CD\n", + "interiorE=(120.5)-BB_DE\n", + "\n", + "deg1=int(exteriorA)\n", + "mins1=int((exteriorA-deg1)*60)\n", + "deg2=int(interiorA)\n", + "mins2=int((interiorA-deg2)*60)\n", + "deg3=int(exteriorB)\n", + "mins3=int((exteriorB-deg3)*60)\n", + "deg4=int(interiorB)\n", + "mins4=int((interiorB-deg4)*60)\n", + "deg5=int(interiorC)\n", + "mins5=int((interiorC-deg5)*60)\n", + "deg6=int(interiorD)\n", + "mins6=int((interiorD-deg6)*60)\n", + "deg7=int(interiorE)\n", + "mins7=int((interiorE-deg7)*60)\n", + "\n", + "n=5\n", + "check=(2*n-4)*90\n", + "summ=interiorA+interiorB+interiorC+interiorD+interiorE\n", + "\n", + "print \"exterior angle A\",deg1,\"degrees\",mins1,\"minutes\"\n", + "print \"interior angle A\",deg2,\"degrees\",mins2,\"minutes\"\n", + "print \"Exterior angle B\",deg3,\"degrees\",mins3,\"minutes\"\n", + "print \"interior angle B\",deg4,\"degrees\",mins4,\"minutes\"\n", + "print \"interior angle C\",deg5,\"degrees\",mins5,\"minutes\"\n", + "print \"interior angle D\",deg6,\"degrees\",mins6,\"minutes\"\n", + "print \"interior angle E\",deg7,\"degrees\",mins7,\"minutes\"\n", + "print check,\"degrees\",summ,\"degrees\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### pg 93, prob7" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Interior angle A 58 degrees 45 minutes\n", + "Interior angle B 105 degrees 30 minutes\n", + "Interior angle C 109 degrees 30 minutes\n", + "Interior angle D 86 degrees 15 minutes\n", + "360 degrees 360.0 degrees\n" + ] + } + ], + "source": [ + "\n", + "\n", + "from __future__ import division\n", + "import math\n", + "\n", + "FB_AB=45+(30/60)\n", + "FB_BC=60+(0/60)\n", + "FB_CD=10+(30/60)\n", + "FB_DA=75+(45/60)\n", + "\n", + "\n", + "BB_AB=45+(30/60)\n", + "BB_BC=60+(0/60)\n", + "BB_CD=10+(30/60)\n", + "BB_DA=75+(45/60)\n", + "\n", + "\n", + "interiorA=180-(FB_AB+BB_DA)\n", + "interiorB=(FB_BC+BB_AB)\n", + "interiorC=180-(BB_BC+FB_CD)\n", + "interiorD=(FB_DA+BB_CD)\n", + "\n", + "\n", + "deg1=int(interiorA)\n", + "mins1=int((interiorA-deg1)*60)\n", + "deg2=int(interiorB)\n", + "mins2=int((interiorB-deg2)*60)\n", + "deg3=int(interiorC)\n", + "mins3=int((interiorC-deg3)*60)\n", + "deg4=int(interiorD)\n", + "mins4=int((interiorD-deg4)*60)\n", + "\n", + "\n", + "n=4\n", + "check=(2*n-4)*90\n", + "summ=interiorA+interiorB+interiorC+interiorD\n", + "\n", + "print \"Interior angle A\",deg1,\"degrees\",mins1,\"minutes\"\n", + "print \"Interior angle B\",deg2,\"degrees\",mins2,\"minutes\"\n", + "print \"Interior angle C\",deg3,\"degrees\",mins3,\"minutes\"\n", + "print \"Interior angle D\",deg4,\"degrees\",mins4,\"minutes\"\n", + "print check,\"degrees\",summ,\"degrees\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### pg 93, prob8" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Interior angle A= 79 degrees 30 minutes\n", + "Interior angle B= 99 degrees 30 minutes\n", + "exterior angle C= 258 degrees 15 minutes\n", + "Interior angle C= 101 degrees 45 minutes\n", + "exterior angle D= 170 degrees 15 minutes\n", + "Interior angle D= 189 degrees 45 minutes\n", + "Interior angle E= 70 degrees 30 minutes\n", + "540 degrees 541.0 degrees\n", + "error= 1 degrees\n", + "-12.0 minutes\n", + "corrected values are:\n", + "Interior angle A= 79 degrees 18.0 minutes\n", + "Interior angle B= 99 degrees 18.0 minutes\n", + "Interior angle C= 101 degrees 33.0 minutes\n", + "Interior angle D= 189 degrees 33.0 minutes\n", + "Interior angle E= 70 degrees 18.0 minutes\n" + ] + } + ], + "source": [ + "\n", + "from __future__ import division\n", + "import math\n", + "\n", + "BB_AB=330+(0/60)\n", + "BB_BC=48+(0/60)\n", + "BB_CD=127+(45/60)\n", + "BB_DE=120+(0/60)\n", + "BB_EA=229+(30/60)\n", + "\n", + "FB_AB=150+(0/60)\n", + "FB_BC=230+(30/60)\n", + "FB_CD=306+(15/60)\n", + "FB_DE=298+(0/60)\n", + "FB_EA=49+(30/60)\n", + "\n", + "\n", + "interiorA=BB_EA-FB_AB\n", + "interiorB=BB_AB-FB_BC\n", + "exteriorC=FB_CD-BB_BC\n", + "interiorC=360-(258+(15/60))\n", + "exteriorD=FB_DE-BB_CD\n", + "interiorD=360-exteriorD\n", + "interiorE=BB_DE-FB_EA\n", + "\n", + "deg1=int(interiorA)\n", + "mins1=int((interiorA-deg1)*60)\n", + "deg2=int(interiorB)\n", + "mins2=int((interiorB-deg2)*60)\n", + "deg3=int(exteriorC)\n", + "mins3=int((exteriorC-deg3)*60)\n", + "deg4=int(interiorC)\n", + "mins4=int((interiorC-deg4)*60)\n", + "deg5=int(exteriorD)\n", + "mins5=int((exteriorD-deg5)*60)\n", + "deg6=int(interiorD)\n", + "mins6=int((interiorD-deg6)*60)\n", + "deg7=int(interiorE)\n", + "mins7=int((interiorE-deg7)*60)\n", + "\n", + "n=5\n", + "check=(2*n-4)*90\n", + "summ=interiorA+interiorB+interiorC+interiorD+interiorE\n", + "\n", + "print \"Interior angle A=\",deg1,\"degrees\",mins1,\"minutes\"\n", + "print \"Interior angle B=\",deg2,\"degrees\",mins2,\"minutes\"\n", + "print \"exterior angle C=\",deg3,\"degrees\",mins3,\"minutes\"\n", + "print \"Interior angle C=\",deg4,\"degrees\",mins4,\"minutes\"\n", + "print \"exterior angle D=\",deg5,\"degrees\",mins5,\"minutes\"\n", + "print \"Interior angle D=\",deg6,\"degrees\",mins6,\"minutes\"\n", + "print \"Interior angle E=\",deg7,\"degrees\",mins7,\"minutes\"\n", + "print check,\"degrees\",summ,\"degrees\"\n", + "\n", + "error=541-540\n", + "correction=(-60/5)\n", + "print \"error=\",error,\"degrees\"\n", + "print correction,\"minutes\"\n", + "\n", + "correctedvalue1=mins1+correction\n", + "correctedvalue2=mins2+correction\n", + "correctedvalue4=mins4+correction\n", + "correctedvalue6=mins6+correction\n", + "correctedvalue7=mins7+correction\n", + "\n", + "print \"corrected values are:\"\n", + "print \"Interior angle A=\",deg1,\"degrees\",correctedvalue1,\"minutes\"\n", + "print \"Interior angle B=\",deg2,\"degrees\",correctedvalue2,\"minutes\"\n", + "print \"Interior angle C=\",deg4,\"degrees\",correctedvalue4,\"minutes\"\n", + "print \"Interior angle D=\",deg6,\"degrees\",correctedvalue6,\"minutes\"\n", + "print \"Interior angle E=\",deg7,\"degrees\",correctedvalue7,\"minutes\"\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### pg 95, prob1" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Interior angle A= 44 degrees 0 minutes\n", + "Interior angle B= 26 degrees 30 minutes\n", + "exterior angle C= 200 degrees 15 minutes\n", + "Interior angle C= 159 degrees 45 minutes\n", + "Interior angle D= 42 degrees 15 minutes\n", + "Interior angle E= 267 degrees 30 minutes\n", + "540 degrees 540.0 degrees\n", + "242.75 correct 330.25 correct\n", + "corrected values are:\n", + "FB_AB= 194 degrees 15 minutes\n", + "FB_BC= 40 degrees 45 minutes\n", + "FB_CD= 20 degrees 30 minutes\n", + "FB_DE= 242 degrees 45 minutes\n" + ] + } + ], + "source": [ + "\n", + "\n", + "from __future__ import division\n", + "import math\n", + "\n", + "BB_AB=13+(0/60)\n", + "BB_BC=222+(30/60)\n", + "BB_CD=200+(30/60)\n", + "BB_DE=62+(45/60)\n", + "BB_EA=147+(45/60)\n", + "\n", + "FB_AB=191+(45/60)\n", + "FB_BC=39+(30/60)\n", + "FB_CD=22+(15/60)\n", + "FB_DE=242+(45/60)\n", + "FB_EA=330+(15/60)\n", + "\n", + "#(a)\n", + "interiorA=FB_AB-BB_EA\n", + "interiorB=FB_BC-BB_AB\n", + "exteriorC=BB_BC-FB_CD\n", + "interiorC=360-(200+(15/60))\n", + "interiorD=FB_DE-BB_CD\n", + "interiorE=FB_EA-BB_DE\n", + "\n", + "deg1=int(interiorA)\n", + "mins1=int((interiorA-deg1)*60)\n", + "deg2=int(interiorB)\n", + "mins2=int((interiorB-deg2)*60)\n", + "deg3=int(exteriorC)\n", + "mins3=int((exteriorC-deg3)*60)\n", + "deg4=int(interiorC)\n", + "mins4=int((interiorC-deg4)*60)\n", + "deg6=int(interiorD)\n", + "mins6=int((interiorD-deg6)*60)\n", + "deg7=int(interiorE)\n", + "mins7=int((interiorE-deg7)*60)\n", + "\n", + "n=5\n", + "check=(2*n-4)*90\n", + "summ=interiorA+interiorB+interiorC+interiorD+interiorE\n", + "\n", + "print \"Interior angle A=\",deg1,\"degrees\",mins1,\"minutes\"\n", + "print \"Interior angle B=\",deg2,\"degrees\",mins2,\"minutes\"\n", + "print \"exterior angle C=\",deg3,\"degrees\",mins3,\"minutes\"\n", + "print \"Interior angle C=\",deg4,\"degrees\",mins4,\"minutes\"\n", + "print \"Interior angle D=\",deg6,\"degrees\",mins6,\"minutes\"\n", + "print \"Interior angle E=\",deg7,\"degrees\",mins7,\"minutes\"\n", + "print check,\"degrees\",summ,\"degrees\"\n", + "\n", + "#(b)\n", + "\n", + "print FB_DE,\"correct\",FB_EA,\"correct\"\n", + "\n", + "AB=FB_EA-180+interiorA\n", + "BC=(194+(15/60))-180+interiorB\n", + "CD=(40+(45/60))+180-exteriorC\n", + "DE=(20+(30/60))+180+interiorD\n", + "\n", + "deg1=int(AB)\n", + "mins1=int((AB-deg1)*60)\n", + "deg2=int(BC)\n", + "mins2=int((BC-deg2)*60)\n", + "deg3=int(CD)\n", + "mins3=int((CD-deg3)*60)\n", + "deg4=int(DE)\n", + "mins4=int((DE-deg4)*60)\n", + "\n", + "print \"corrected values are:\"\n", + "print \"FB_AB=\",deg1,\"degrees\",mins1,\"minutes\"\n", + "print \"FB_BC=\",deg2,\"degrees\",mins2,\"minutes\"\n", + "print \"FB_CD=\",deg3,\"degrees\",mins3,\"minutes\"\n", + "print \"FB_DE=\",deg4,\"degrees\",mins4,\"minutes\"\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### pg 95, prob1" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "included angle A= 79 degrees 30 minutes\n", + "included angle B= 99 degrees 30 minutes\n", + "included angle C= 101 degrees 45 minutes\n", + "exterior angle D= 171 degrees 15 minutes\n", + "included angle D= 188 degrees 45 minutes\n", + "exterior angle D= 289 degrees 30 minutes\n", + "included angle E= 70 degrees 30 minutes\n", + "540 degrees 540.0 degrees\n", + "68.25 correct 148.75 correct 248.25 correct\n", + "correction= 1\n", + "corrected values are:\n", + "FB_AB= 68 degrees 15 minutes\n", + "FB_CD= 227 degrees 0 minutes\n", + "BB_CD= 47 degrees 0 minutes\n", + "FB_DE= 218 degrees 15 minutes\n", + "BB_DE= 38 degrees 15 minutes\n", + "AB=100m, BC=100m,CD=50m, scale=20m for plot\n" + ] + } + ], + "source": [ + "\n", + "\n", + "from __future__ import division\n", + "import math\n", + "\n", + "BB_AB=248+(15/60)\n", + "BB_BC=326+(15/60)\n", + "BB_CD=46+(0/60)\n", + "BB_DE=38+(15/60)\n", + "BB_EA=147+(45/60)\n", + "\n", + "FB_AB=68+(15/60)\n", + "FB_BC=148+(45/60)\n", + "FB_CD=224+(30/60)\n", + "FB_DE=217+(15/60)\n", + "FB_EA=327+(45/60)\n", + "\n", + "#(a)\n", + "includedA=-FB_AB+BB_EA\n", + "includedB=-FB_BC+BB_AB\n", + "includedC=BB_BC-FB_CD\n", + "includedD=360-(171+(15/60))\n", + "exteriorD=FB_DE-BB_CD\n", + "exteriorE=FB_EA-BB_DE\n", + "includedE=360-(289+(30/60))\n", + "\n", + "deg1=int(includedA)\n", + "mins1=int((includedA-deg1)*60)\n", + "deg2=int(includedB)\n", + "mins2=int((includedB-deg2)*60)\n", + "deg3=int(includedC)\n", + "mins3=int((includedC-deg3)*60)\n", + "deg4=int(exteriorD)\n", + "mins4=int((exteriorD-deg4)*60)\n", + "deg5=int(includedD)\n", + "mins5=int((includedD-deg5)*60)\n", + "deg6=int(exteriorE)\n", + "mins6=int((exteriorE-deg6)*60)\n", + "deg7=int(includedE)\n", + "mins7=int((includedE-deg7)*60)\n", + "\n", + "n=5\n", + "check=(2*n-4)*90\n", + "summ=includedA+includedB+includedC+includedD+includedE\n", + "\n", + "print \"included angle A=\",deg1,\"degrees\",mins1,\"minutes\"\n", + "print \"included angle B=\",deg2,\"degrees\",mins2,\"minutes\"\n", + "print \"included angle C=\",deg3,\"degrees\",mins3,\"minutes\"\n", + "print \"exterior angle D=\",deg4,\"degrees\",mins4,\"minutes\"\n", + "print \"included angle D=\",deg5,\"degrees\",mins5,\"minutes\"\n", + "print \"exterior angle D=\",deg6,\"degrees\",mins6,\"minutes\"\n", + "print \"included angle E=\",deg7,\"degrees\",mins7,\"minutes\"\n", + "print check,\"degrees\",summ,\"degrees\"\n", + "\n", + "#(b)\n", + "\n", + "print FB_AB,\"correct\",FB_BC,\"correct\",BB_AB,\"correct\"\n", + "\n", + "\n", + "FB_BC=(328+(45/60))-(326+(15/60))\n", + "FB_CD=(224+(30/60))+FB_BC\n", + "BB_CD=227-180\n", + "correctionatD=1 \n", + "FB_DE=(217+(15/60))+1\n", + "BB_DE=FB_DE-180\n", + "\n", + "deg1=int(FB_AB)\n", + "mins1=int((FB_AB-deg1)*60)\n", + "deg2=int(FB_CD)\n", + "mins2=int((FB_CD-deg2)*60)\n", + "deg3=int(BB_CD)\n", + "mins3=int((BB_CD-deg3)*60)\n", + "deg4=int(FB_DE)\n", + "mins4=int((FB_DE-deg4)*60)\n", + "deg5=int(BB_DE)\n", + "mins5=int((BB_DE-deg5)*60) \n", + "\n", + "print \"correction=\",correctionatD\n", + "print \"corrected values are:\"\n", + "print \"FB_AB=\",deg1,\"degrees\",mins1,\"minutes\"\n", + "print \"FB_CD=\",deg2,\"degrees\",mins2,\"minutes\"\n", + "print \"BB_CD=\",deg3,\"degrees\",mins3,\"minutes\"\n", + "print \"FB_DE=\",deg4,\"degrees\",mins4,\"minutes\"\n", + "print \"BB_DE=\",deg5,\"degrees\",mins5,\"minutes\"\n", + "print \"AB=100m, BC=100m,CD=50m, scale=20m for plot\"\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### pg 100, prob3" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "59.0 correct 139.5 correct 239.0 correct\n", + "correctionatC= 2.5\n", + "correctionatD= 1.25\n", + "correctionatE= 0.25\n", + "corrected values are:\n", + "BB_CD= 217.75 BB_DE= 209.25 BB_EA= 138.75\n", + "FB_CD= 217 degrees 45 minutes\n", + "FB_DE= 209 degrees 15 minutes\n", + "FB_EA= 318 degrees 45 minutes\n", + "declination= -10 degrees W\n", + "true bearing values:\n", + "BB_AB= 229.0\n", + "BB_BC= 309.5\n", + "BB_CD= 27.75\n", + "BB_DE= 19.0\n", + "BB_EA= 128.75\n", + "FB_AB= 49\n", + "FB_BC= 129.5\n", + "FB_CD= 207.75\n", + "FB_DE= 199.25\n", + "FB_EA= 308.75\n" + ] + } + ], + "source": [ + "\n", + "\n", + "from __future__ import division\n", + "import math\n", + "\n", + "BB_AB=239+(00/60)\n", + "BB_BC=317+(00/60)\n", + "BB_CD=36+(30/60)\n", + "BB_DE=29+(00/60)\n", + "BB_EA=138+(45/60)\n", + "\n", + "FB_AB=59+(00/60)\n", + "FB_BC=139+(30/60)\n", + "FB_CD=215+(15/60)\n", + "FB_DE=208+(0/60)\n", + "FB_EA=318+(30/60)\n", + "\n", + "print FB_AB,\"correct\",FB_BC,\"correct\",BB_AB,\"correct\"\n", + "\n", + "correctionatC=2+(30/60)\n", + "FB_CD=(215+(15/60))+correctionatC\n", + "correctionatD=1+(15/60)\n", + "FB_DE=208+correctionatD\n", + "correctionatE=(15/60)\n", + "FB_EA=(318+(30/60))+correctionatE\n", + "\n", + "\n", + "deg2=int(FB_CD)\n", + "mins2=int((FB_CD-deg2)*60)\n", + "deg4=int(FB_DE)\n", + "mins4=int((FB_DE-deg4)*60)\n", + "deg5=int(FB_EA)\n", + "mins5=int((FB_EA-deg5)*60) \n", + "\n", + "print \"correctionatC=\",correctionatC\n", + "print \"correctionatD=\",correctionatD\n", + "print \"correctionatE=\",correctionatE\n", + "print \"corrected values are:\"\n", + "print \"BB_CD=\",217.75,\" BB_DE=\",209.25,\" BB_EA=\",138.75\n", + "print \"FB_CD=\",deg2,\"degrees\",mins2,\"minutes\"\n", + "print \"FB_DE=\",deg4,\"degrees\",mins4,\"minutes\"\n", + "print \"FB_EA=\",deg5,\"degrees\",mins5,\"minutes\"\n", + "print \"declination=\",-10,\"degrees W\"\n", + "\n", + "BB_AB=239+(00/60)-10\n", + "BB_BC=317+(00/60)-10+correctionatC\n", + "BB_CD=36+(30/60)-10+correctionatD\n", + "BB_DE=29+(00/60)-10\n", + "BB_EA=138+(45/60)-10\n", + "\n", + "FB_AB=59-10\n", + "FB_BC=(139+(30/60))-10\n", + "FB_CD=(215+(15/60))-10+correctionatC\n", + "FB_DE=(208+(0/60))-10+correctionatD\n", + "FB_EA=(318+(30/60))-10+correctionatE\n", + "\n", + "print \"true bearing values:\"\n", + "print \"BB_AB=\",BB_AB \n", + "print \"BB_BC=\",BB_BC\n", + "print \"BB_CD=\",BB_CD\n", + "print \"BB_DE=\",BB_DE\n", + "print \"BB_EA=\",BB_EA\n", + "\n", + "print \"FB_AB=\",FB_AB\n", + "print \"FB_BC=\",FB_BC\n", + "print \"FB_CD=\",FB_CD\n", + "print \"FB_DE=\",FB_DE\n", + "print \"FB_EA=\",FB_EA\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### pg 102, prob4" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "45.5 correct 60.0 correct 45.5 correct\n", + "correctionatC= 0.666666666667\n", + "correctionatD= 1.5\n", + "corrected values are:\n", + "BB_CD=N 4.83 W BB_BC=N 60 degrees W\n", + "FB_CD=N 4.83 W FB_DA=N 85 degrees W\n" + ] + } + ], + "source": [ + "\n", + "\n", + "from __future__ import division\n", + "import math\n", + "\n", + "BB_AB=45+(30/60)\n", + "BB_BC=60+(40/60)\n", + "BB_CD=3+(20/60)\n", + "BB_DA=85+(00/60)\n", + "\n", + "\n", + "FB_AB=45+(30/60)\n", + "FB_BC=60+(0/60)\n", + "FB_CD=5+(30/60)\n", + "FB_DA=83+(30/60)\n", + "\n", + "\n", + "print FB_AB,\"correct\",FB_BC,\"correct\",BB_AB,\"correct\"\n", + "\n", + "correctionatC=-0+(40/60)\n", + "FB_CD=(5+(30/60))+correctionatC\n", + "correctionatD=1+(30/60)\n", + "FB_DA=83+(30/60)+correctionatD\n", + "\n", + "\n", + "\n", + "deg2=int(FB_CD)\n", + "mins2=int((FB_CD-deg2)*60)\n", + "deg4=int(FB_DA)\n", + "mins4=int((FB_DA-deg4)*60)\n", + " \n", + "\n", + "print \"correctionatC=\",correctionatC;\n", + "print \"correctionatD=\",correctionatD\n", + "\n", + "print \"corrected values are:\";\n", + "print \"BB_CD=N\",4.83,\"W\",\" BB_BC=N\",60,\"degrees W\";\n", + "print \"FB_CD=N\",4.83,\"W\",\" FB_DA=N\",85,\"degrees W\"\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### pg 102, prob4" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "80.0 correct 40.5 correct 80.0 correct\n", + "correctionatB= 0.75\n", + "correctionatC= 0.5\n", + "corrected values are:\n", + "BB_AB=N 40.5 E BB_BC=N 80 degrees E\n", + "FB_CD=N 20 E FB_DA=S 80 degrees E\n" + ] + } + ], + "source": [ + "\n", + "\n", + "from __future__ import division\n", + "import math\n", + "\n", + "BB_AB=41+(15/60)\n", + "BB_BC=79+(30/60)\n", + "BB_CD=20+(0/60)\n", + "BB_DA=80+(00/60)\n", + "\n", + "\n", + "FB_AB=40+(30/60)\n", + "FB_BC=80+(45/60)\n", + "FB_CD=19+(30/60)\n", + "FB_DA=80+(00/60)\n", + "\n", + "\n", + "print FB_DA,\"correct\",FB_AB,\"correct\",BB_DA,\"correct\";\n", + "\n", + "correctionatB=-0+(45/60)\n", + "FB_BC=(80+(45/60))+correctionatB\n", + "correctionatC=0+(30/60)\n", + "FB_CD=19+(30/60)+correctionatC\n", + " \n", + "\n", + "print \"correctionatB=\",correctionatB;\n", + "print \"correctionatC=\",correctionatC;\n", + "\n", + "print \"corrected values are:\";\n", + "print \"BB_AB=N\",40.5,\"E\",\" BB_BC=N\",80,\"degrees E\";\n", + "print \"FB_CD=N\",20,\"E\",\" FB_DA=S\",80,\"degrees E\"\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### pg 104, prob6" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "included angle A= 79 degrees 45 minutes\n", + "included angle B= 99 degrees 30 minutes\n", + "included angle C= 101 degrees 45 minutes\n", + "exterior angle D= 171 degrees 30 minutes\n", + "included angle D= 188 degrees 30 minutes\n", + "exterior angle D= 289 degrees 30 minutes\n", + "included angle E= 70 degrees 30 minutes\n", + "540 degrees 540.0 degrees\n", + "59.0 correct 139.5 correct 239.0 correct\n", + "correction= 1.25\n", + "corrected values are:\n", + "BB_BC= 319.5 BB_CD= 73.75 degrees BB_DE= 29.25 degrees\n", + "FB_CD= 217.75 FB_DE= 209.25 degrees FB_EA= 318.75 degrees\n" + ] + } + ], + "source": [ + "\n", + "\n", + "from __future__ import division\n", + "import math\n", + "\n", + "BB_AB=239+(00/60)\n", + "BB_BC=317+(0/60)\n", + "BB_CD=36+(30/60)\n", + "BB_DE=29+(00/60)\n", + "BB_EA=138+(45/60)\n", + "\n", + "FB_AB=59+(0/60)\n", + "FB_BC=139+(30/60)\n", + "FB_CD=215+(15/60)\n", + "FB_DE=208+(0/60)\n", + "FB_EA=318+(30/60)\n", + "\n", + "#(a)\n", + "includedA=-FB_AB+BB_EA\n", + "includedB=-FB_BC+BB_AB\n", + "includedC=BB_BC-FB_CD\n", + "includedD=360-(171+(30/60))\n", + "exteriorD=FB_DE-BB_CD\n", + "exteriorE=FB_EA-BB_DE\n", + "includedE=360-(289+(30/60))\n", + "\n", + "deg1=int(includedA)\n", + "mins1=int((includedA-deg1)*60)\n", + "deg2=int(includedB)\n", + "mins2=int((includedB-deg2)*60)\n", + "deg3=int(includedC)\n", + "mins3=int((includedC-deg3)*60)\n", + "deg4=int(exteriorD)\n", + "mins4=int((exteriorD-deg4)*60)\n", + "deg5=int(includedD)\n", + "mins5=int((includedD-deg5)*60)\n", + "deg6=int(exteriorE)\n", + "mins6=int((exteriorE-deg6)*60)\n", + "deg7=int(includedE)\n", + "mins7=int((includedE-deg7)*60)\n", + "\n", + "n=5\n", + "check=(2*n-4)*90\n", + "summ=includedA+includedB+includedC+includedD+includedE\n", + "\n", + "print \"included angle A=\",deg1,\"degrees\",mins1,\"minutes\"\n", + "print \"included angle B=\",deg2,\"degrees\",mins2,\"minutes\"\n", + "print \"included angle C=\",deg3,\"degrees\",mins3,\"minutes\"\n", + "print \"exterior angle D=\",deg4,\"degrees\",mins4,\"minutes\"\n", + "print \"included angle D=\",deg5,\"degrees\",mins5,\"minutes\"\n", + "print \"exterior angle D=\",deg6,\"degrees\",mins6,\"minutes\"\n", + "print \"included angle E=\",deg7,\"degrees\",mins7,\"minutes\"\n", + "print check,\"degrees\",summ,\"degrees\"\n", + "\n", + "#(b)\n", + "\n", + "print FB_AB,\"correct\",FB_BC,\"correct\",BB_AB,\"correct\"\n", + "\n", + "\n", + "\n", + "FB_CD=(215+(15/60))+(2+(30/60))\n", + "BB_CD=(37+(45/60))\n", + "correctionatD=(1+(15/60)) \n", + "FB_DE=(208+(0/60))+correctionatD\n", + "FB_EA=(318+(30/60))+(0+(15/60))\n", + "\n", + " \n", + "print \"correction=\",correctionatD;\n", + "print \"corrected values are:\";\n", + "print \"BB_BC=\",319.5, \"BB_CD=\",73.75,\"degrees\", \"BB_DE=\",29.25,\"degrees\";\n", + "print \"FB_CD=\",217.75, \"FB_DE=\",209.25,\"degrees\", \"FB_EA=\",318.75,\"degrees\";\n", + "\n", + "\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap5_Levelling_1.ipynb b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap5_Levelling_1.ipynb new file mode 100644 index 00000000..a73f9fc8 --- /dev/null +++ b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap5_Levelling_1.ipynb @@ -0,0 +1,903 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "# Chapter 5: Levelling" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "### ch-5 page 151, pb-1" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('correct reading on A =', 2.524965929375, 'meters')\n", + "('correct reading of B =', 1.75499327, 'meters')\n", + "('true difference is', 0.769972659375, 'meters')\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "a=150;\n", + "b=100;\n", + "ar=2.525;\n", + "br=1.755;\n", + "\n", + "sc=1000;\n", + "d=(a*a)/(sc*sc);\n", + "\n", + "A=0.0673*d*d;\n", + "\n", + "fa=ar-A;\n", + "\n", + "print('correct reading on A =',fa,'meters');\n", + "\n", + "\n", + "d=(b*b)/(sc*sc);\n", + "\n", + "B=0.0673*d*d;\n", + "fb=br-B;\n", + "\n", + "print('correct reading of B =',fb,'meters');\n", + "\n", + "AB=fa-fb;\n", + "print('true difference is',AB,'meters');\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### ch-5 page 152, pb-2" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('heigght of lighthouse is', 60.57000000000001, 'meters')\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "\n", + "d=30;\n", + "sc=1000;\n", + "\n", + "h=0.0673*d*d;\n", + "\n", + "print('heigght of lighthouse is',h,'meters');\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### ch-5 page 152, pb-3" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('D=', 27.25696334003587)\n", + "('dimp of horizon', 0.0042789581381531975, 'degrees')\n", + "('dimp of horizon', 14.709974521760092, 'minutes')\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "h=50;\n", + "\n", + "d=math.sqrt(h/0.0673);\n", + "print('D=',d);\n", + "\n", + "r=6370;\n", + "dip=d/r;\n", + "print('dimp of horizon',dip,'degrees');\n", + "\n", + "dip1=dip*((180*60)/math.pi)\n", + "print('dimp of horizon',dip1,'minutes');\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### ch-5 page 152,153, pb-4" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('distance between man and object is', 39.44664791774385, 'meters')\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "h1=50;\n", + "h2=10;\n", + "c=0.0673;\n", + "\n", + "d1=math.sqrt(h1/c);\n", + "\n", + "d2=math.sqrt(h2/c);\n", + "\n", + "dis=d1+d2;\n", + "\n", + "print('distance between man and object is',dis,'meters');\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "### ch-5 page-153, pb-5" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('height of the hill is ', 309.46147646724046, 'meters')\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "h1=10;\n", + "c=0.0673\n", + "d1=math.sqrt(h1/c);\n", + "\n", + "d2=d1-80; #since d1+d2=80;\n", + "h2=c*d2*d2;\n", + "\n", + "print('height of the hill is ',h2,'meters');\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### ch-5 page-153,154 pb-6" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('distance AB =', 86.24055457549457, 'meters')\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "h1=100;\n", + "h2=150;\n", + "\n", + "r2=12880;\n", + "c=(6/7)*(1000/r2);\n", + "d1=math.sqrt(h1/c)\n", + "d2=math.sqrt(h2/c)\n", + "\n", + "d=d1+d2;\n", + "print('distance AB =',d,'meters');\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### ch-5 page-154 pb-7" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('R=', 20.00000000000007)\n", + "('sensitiveness of bubble is ', 20.626499999999925, 'seconds')\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "r1=2.550;\n", + "r2=2.500;\n", + "\n", + "s=r1-r2;\n", + "d=0.002;\n", + "D=100;\n", + "n=5;\n", + "r=(n*d*D/s);\n", + "\n", + "print('R=',r);\n", + "\n", + "alp=(s/(n*D))*206265;\n", + "\n", + "print('sensitiveness of bubble is ',alp,'seconds');\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### ch-5 page-154,155 pb-8" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('error is ', 0.01939252902819189, 'meters')\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "n=2;\n", + "D=100;\n", + "alp=20;\n", + "\n", + "\n", + "s=(alp*n*D)/206265;\n", + "\n", + "print('error is ',s,'meters');\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### ch-5 page-156, pb-1" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('true level of difference is', 1.115, 'meters')\n", + "('RL of B =', 124.435, 'meters')\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "a=2.245;\n", + "b=3.375;\n", + "AB=b-a;\n", + "\n", + "ap=1.955;\n", + "bp=3.055;\n", + "\n", + "dAB=bp-ap;\n", + "\n", + "tl=(AB+dAB)/2;\n", + "print('true level of difference is',tl,'meters')\n", + "rla=125.55;\n", + "rlb=rla-tl;\n", + "\n", + "\n", + "print('RL of B =',rlb,'meters');\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### ch-5 page 157, pb-2" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('true RL of B', 524.065, 'meters')\n", + "('combined corrction for 500m=', 0.016825, 'meters')\n", + "('collimation error per 100m=', -0.0023599999999999997, 'meters')\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "aa=1.155;\n", + "ab=2.595;\n", + "ba=0.985;\n", + "bb=2.415;\n", + "\n", + "td=((ab-aa)+(bb-ba))/2\n", + "\n", + "rla=525.5;\n", + "rlb=rla-td;\n", + "dab=500;\n", + "print('true RL of B',rlb,'meters');\n", + "\n", + "dab1=dab/1000;\n", + "\n", + "correct=0.0673*dab1*dab1;\n", + "print('combined corrction for 500m=',correct,'meters');\n", + "\n", + "sc=100;\n", + "a=1.155;\n", + "e=-(0.0118*sc)/(dab);\n", + "\n", + "\n", + "print('collimation error per 100m=',e,'meters')\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### ch-5 page 157,158, pb-3" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('true difference between A and B is ', 0.33999999999999997, 'meters')\n", + "('amount of collimation error =', -0.015000000000000124, 'meters')\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "aa=1.725;\n", + "ab=1.370;\n", + "ba=1.560;\n", + "bb=1.235;\n", + "\n", + "A=aa-ab;\n", + "B=ba-bb;\n", + "\n", + "AB=(A+B)/2;\n", + "\n", + "print('true difference between A and B is ',AB,'meters');\n", + "\n", + "CB=bb;\n", + "CA=CB+AB;\n", + "\n", + "OCA=1.560;\n", + "e=OCA-CA;\n", + "\n", + "print('amount of collimation error =',e,'meters');\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "### ch-5 page 158,159, pb-4" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('apparent difference of level between A and B is', 0.52, 'meters')\n", + "('apparent difference of level at B', 0.8999999999999999, 'meters')\n", + "('true differece of level=', 0.71)\n", + "('correction to be applied at A is =', -0.18999999999999995)\n", + "('RL of B=', 449.29, 'meters')\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "aa=1.725;\n", + "ab=2.245;\n", + "ba=2.145;\n", + "bb=3.045;\n", + "\n", + "AB=200;\n", + "rla=450;\n", + "\n", + "\n", + "aAB=ab-aa;\n", + "\n", + "print('apparent difference of level between A and B is',aAB,'meters');\n", + "\n", + "dB=bb-ba\n", + "\n", + "print('apparent difference of level at B',dB,'meters')\n", + "\n", + "td=(aAB+dB)/2;\n", + "\n", + "print('true differece of level=',td);\n", + "\n", + "CB=bb;\n", + "\n", + "CA=CB-td;\n", + "\n", + "e=ba-CA;\n", + "\n", + "print('correction to be applied at A is =',e)\n", + "\n", + "rlb=rla-td;\n", + "\n", + "print('RL of B=',rlb,'meters')\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### ch-5 page 185,186 pb-1" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.52\n", + "('apparent difference of level =', 0.8999999999999999, 'meters')\n", + "('true difference of level=', 0.71, 'meters')\n", + "('true reading on A=', 2.335, 'meters')\n", + "('collimation error =', -0.18999999999999995, 'meters')\n", + "('RL of B=', 449.29, 'meters')\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "aa=1.725;\n", + "ab=2.245;\n", + "ba=2.145;\n", + "bb=3.045;\n", + "dAB=200;\n", + "rla=450.0;\n", + "AB=ab-aa;\n", + "print(AB)\n", + "adif=bb-ba\n", + "\n", + "print('apparent difference of level =',adif,'meters');\n", + "\n", + "#a\n", + "td=(AB+adif)/2;\n", + "print('true difference of level=',td,'meters')\n", + "#b\n", + "\n", + "tb=bb;\n", + "ta=bb-td;\n", + "\n", + "print('true reading on A=',ta,'meters');\n", + "\n", + "#c\n", + "\n", + "e=ba-ta;\n", + "\n", + "print('collimation error =',e,'meters');\n", + "\n", + "#d\n", + "\n", + "rlb=rla-td;\n", + "print('RL of B=',rlb,'meters');\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### ch-5 page 186,187 pb-2" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('correct staff reading on B should be =', 1.0650000000000002, 'meters')\n", + "('collimation error is ', 0.08499999999999974, 'meters')\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "\n", + "ma=1.585;\n", + "mb=1.225;\n", + "aa=1.425;\n", + "ab=1.150;\n", + "\n", + "dAB=100;\n", + "\n", + "#a\n", + "td=ma-mb;\n", + "B=aa-td;\n", + "\n", + "print('correct staff reading on B should be =',B,'meters');\n", + "\n", + "#c\n", + "\n", + "\n", + "e=ab-B;\n", + "print('collimation error is ',e,'meters')\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### ch-5 page 187 pb-3" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "first setting\n", + "('true difference is', 0.08499999999999996, 'meters')\n", + "('apparent difference of level =', 0.06999999999999984, 'meters')\n", + "second setting\n", + "('collimation error is', 0.015000000000000124, 'meters')\n", + "('correction at A=', 0.0015000000000000126, 'meters')\n", + "('correction at B=', 0.01650000000000014, 'meters')\n" + ] + } + ], + "source": [ + "#ch-5 page 187 pb-3\n", + "\n", + "from __future__ import division\n", + "import math\n", + "\n", + "dAB=100;\n", + "\n", + "aa=1.875;\n", + "ab=1.790;\n", + "\n", + "le=10;\n", + "\n", + "ba=1.630;\n", + "bb=1.560;\n", + "\n", + "\n", + "td=aa-ab;\n", + "\n", + "apd=ba-bb;\n", + "print('first setting')\n", + "print('true difference is',td,'meters');\n", + "print('apparent difference of level =',apd,'meters');\n", + "\n", + "print('second setting');\n", + "\n", + "A=ba-td;\n", + "\n", + "e1=bb-A\n", + "\n", + "cA=(le/dAB)*e1\n", + "cB=((le+dAB)/dAB)*e1\n", + "print('collimation error is',e1,'meters')\n", + "print('correction at A=',cA,'meters')\n", + "print('correction at B=',cB,'meters')\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### ch-5 page 163 pb-1" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(0.645, 1.115, 0.7650000000000001, 0.23499999999999988, 0.85, 3.6100000000000003)\n", + "(2.835, 1.1949999999999998, 0.625, 1.375, 6.029999999999999)\n", + "('k=', -2.4200000000000017)\n", + "('k1=', -2.419999999999999)\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "\n", + "bs1=2.375;bs2=2.835;bs3=0.435;\n", + "is1=1.730;is2=0.615;is3=2.070;is4=1.835;is5=1.630;\n", + "is6=2.255;\n", + "fs1=3.450;fs2=0.985;fs3=3.630;\n", + "\n", + "sbs=bs1+bs2+bs3;\n", + "sis=is1+is2+is3+is4+is5+is6;\n", + "sfs=fs1+fs2+fs3;\n", + "\n", + "r1=bs1-is1;\n", + "r2=is1-is2;\n", + "r3=bs2-is3;\n", + "r4=is3-is4;\n", + "r5=is4-fs2;\n", + "sr=r1+r2+r3+r4+r5;\n", + "print(r1,r2,r3,r4,r5,sr);\n", + "\n", + "\n", + "f1=bs2;\n", + "f2=is5-bs3;\n", + "f3=fs3-is6;\n", + "f4=is6-is5\n", + "sf=f1+f2+f3+f4;\n", + "print(f1,f2,f4,f3,sf);\n", + "\n", + "k=sbs-sfs\n", + "print('k=',k);\n", + "k1=sr-sf\n", + "print('k1=',k1);\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### ch-5 page 163,164 pb-2" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(0.9049999999999998, 1.12, 1.7349999999999999, 1.365, 5.125)\n", + "(1.4749999999999999, 1.465, 0.665, 1.29, 4.8950000000000005)\n", + "('k=', 0.22999999999999954)\n", + "('k1=', 0.22999999999999954)\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "\n", + "bs1=3.150;bs2=3.860;bs3=0.470;\n", + "is1=2.245;is2=2.125;is3=0.760;is4=1.935;is5=3.225;\n", + "fs1=1.125;fs2=2.235;fs3=3.890;\n", + "\n", + "sbs=bs1+bs2+bs3;\n", + "sis=is1+is2+is3+is4+is5;\n", + "sfs=fs1+fs2+fs3;\n", + "\n", + "r1=bs1-is1;\n", + "r2=is1-fs1;\n", + "r3=bs2-is2;\n", + "r4=is2-is3;\n", + "\n", + "sr=r1+r2+r3+r4;\n", + "print(r1,r2,r3,r4,sr);\n", + "\n", + "\n", + "f1=fs2-is3;\n", + "f2=is4-bs3;\n", + "f3=is5-is4;\n", + "f4=fs3-is5;\n", + "sf=f1+f2+f3+f4;\n", + "print(f1,f2,f4,f3,sf);\n", + "\n", + "k=sbs-sfs\n", + "print('k=',k);\n", + "k1=sr-sf\n", + "print('k1=',k1);\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap7_Computation-of-Area_1.ipynb b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap7_Computation-of-Area_1.ipynb new file mode 100644 index 00000000..25fe5def --- /dev/null +++ b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap7_Computation-of-Area_1.ipynb @@ -0,0 +1,802 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "# Chapter 7: Computation of Area" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "### ch-7 page 207 pb-1" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "chainage 0 and 20\n", + "('area=', 420.0)\n", + "chainage 20 and 65\n", + "('area=', 2250.0)\n", + "chainage 65 and 110\n", + "('area=', 1305.0)\n", + "chainage 90 and 110\n", + "('area=', 600.0)\n", + "chainage 40 and 90\n", + "('area=', 2000.0)\n", + "chainage 0 and 40\n", + "('area=', 400.0)\n", + "('area of field =', 6975.0)\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "\n", + "print('chainage 0 and 20')\n", + "a1=0;b1=20;\n", + "\n", + "base=b1-a1;\n", + "o1=0;o2=42;\n", + "mo1=(o2+o1)/2;\n", + "\n", + "ae1=base*mo1;\n", + "print('area=',ae1);\n", + "\n", + "print('chainage 20 and 65')\n", + "a1=20;b1=65;\n", + "\n", + "base=b1-a1;\n", + "o1=58;o2=42;\n", + "mo2=(o2+o1)/2;\n", + "\n", + "ae2=base*mo2;\n", + "print('area=',ae2);\n", + "\n", + "\n", + "print('chainage 65 and 110')\n", + "a1=65;b1=110;\n", + "\n", + "base=b1-a1;\n", + "o1=0;o2=58;\n", + "mo3=(o2+o1)/2;\n", + "\n", + "ae3=base*mo3;\n", + "print('area=',ae3);\n", + "\n", + "\n", + "print('chainage 90 and 110')\n", + "a1=90;b1=110;\n", + "\n", + "base=b1-a1;\n", + "o1=0;o2=60;\n", + "mo4=(o2+o1)/2;\n", + "\n", + "ae4=base*mo4;\n", + "print('area=',ae4);\n", + "\n", + "print('chainage 40 and 90')\n", + "\n", + "a1=40;b1=90;\n", + "\n", + "base=b1-a1;\n", + "o1=60;o2=20;\n", + "mo5=(o2+o1)/2;\n", + "\n", + "ae5=base*mo5;\n", + "print('area=',ae5);\n", + "\n", + "print('chainage 0 and 40')\n", + "a1=0;b1=40;\n", + "\n", + "base=b1-a1;\n", + "o1=20;o2=0;\n", + "mo6=(o2+o1)/2;\n", + "\n", + "ae6=base*mo6\n", + "print('area=',ae6);\n", + "\n", + "\n", + "area=ae1+ae2+ae3+ae4+ae5+ae6;\n", + "\n", + "print('area of field =',area);\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "### ch-7 page 209,210 pb-2" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "chainage 15.5 and 27.5\n", + "('area=', 135.0)\n", + "chainage 15.5 and 50\n", + "('area=', 905.625)\n", + "chainage 50 and 75.5\n", + "('area=', 835.125)\n", + "chainage 75.5 and 86.7\n", + "('area=', 198.80000000000004)\n", + "chainage 86.7 and 90\n", + "('area=', 17.324999999999985)\n", + "chainage 60 and 90\n", + "('area=', 532.5)\n", + "chainage 35.5 and 60\n", + "('area=', 490.0)\n", + "chainage 27.5 and 35.5\n", + "('area=', 60.0)\n", + "('ap,ae=', 3022.05, 152.325)\n", + "('total area of field =', 2869.7250000000004)\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "\n", + "print('chainage 15.5 and 27.5')\n", + "a1=15.5;b1=27.5;\n", + "\n", + "base=b1-a1;\n", + "o1=0;o2=22.5;\n", + "mo1=(o2+o1)/2;\n", + "\n", + "ae1=base*mo1;\n", + "ap1=0;\n", + "an1=ae1;\n", + "print('area=',ae1);\n", + "\n", + "print('chainage 15.5 and 50')\n", + "a1=15.5;b1=50;\n", + "\n", + "base=b1-a1;\n", + "o1=22.5;o2=30;\n", + "mo2=(o2+o1)/2;\n", + "\n", + "ae2=base*mo2;\n", + "ap2=ae2;\n", + "an2=0;\n", + "print('area=',ae2);\n", + "\n", + "\n", + "print('chainage 50 and 75.5')\n", + "a1=50;b1=75.5;\n", + "\n", + "base=b1-a1;\n", + "o1=30;o2=35.5;\n", + "mo3=(o2+o1)/2;\n", + "\n", + "ae3=base*mo3;\n", + "ap3=ae3;\n", + "an3=0;\n", + "print('area=',ae3);\n", + "\n", + "\n", + "print('chainage 75.5 and 86.7')\n", + "a1=75.5;b1=86.7;\n", + "\n", + "base=b1-a1;\n", + "o1=35.5;o2=0;\n", + "mo4=(o2+o1)/2;\n", + "\n", + "ae4=base*mo4;\n", + "ap4=ae4;\n", + "an4=0;\n", + "print('area=',ae4);\n", + "\n", + "print('chainage 86.7 and 90')\n", + "\n", + "a1=86.7;b1=90;\n", + "\n", + "base=b1-a1;\n", + "o1=0;o2=10.5;\n", + "mo5=(o2+o1)/2;\n", + "\n", + "ae5=base*mo5;\n", + "ap5=0;\n", + "an5=ae5;\n", + "print('area=',ae5);\n", + "\n", + "print('chainage 60 and 90')\n", + "a1=60;b1=90;\n", + "\n", + "base=b1-a1;\n", + "o1=10.5;o2=25.0;\n", + "mo6=(o2+o1)/2;\n", + "\n", + "ae6=base*mo6\n", + "ap6=ae6;\n", + "an6=0;\n", + "print('area=',ae6);\n", + "\n", + "print('chainage 35.5 and 60')\n", + "a1=35.5;b1=60;\n", + "\n", + "base=b1-a1;\n", + "o1=25;o2=15;\n", + "mo7=(o2+o1)/2;\n", + "\n", + "ae7=base*mo7\n", + "ap7=ae7;\n", + "an7=0;\n", + "print('area=',ae7);\n", + "\n", + "print('chainage 27.5 and 35.5')\n", + "a1=27.5;b1=35.5;\n", + "\n", + "base=b1-a1;\n", + "o1=15;o2=0;\n", + "mo8=(o2+o1)/2;\n", + "\n", + "ae8=base*mo8\n", + "ap8=ae8;\n", + "an8=0\n", + "print('area=',ae8);\n", + "\n", + "an=an1+an2+an3+an4+an5+an6+an7+an8;\n", + "ap=ap1+ap2+ap3+ap4+ap5+ap6+ap7+ap8;\n", + "\n", + "area=ap-an;\n", + "print('ap,ae=',ap,an)\n", + "print('total area of field =',area);\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### ch-7 page 214 pb-1" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mid ordinate rule\n", + "('required area is', 188.0, 'square meters')\n", + "average ordinate rule\n", + "('required area is', 161.14285714285714, 'sqare meters')\n", + "trapezoidal rule\n", + "('required area is ', 188.0, 'square meters')\n", + "simpsons rule\n", + "('required area is ', 196.66666666666669, 'square meters')\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "\n", + "dis=10;\n", + "a=0;g=0;\n", + "b=2.5;c=3.5;d=5;e=4.6;f=3.2;\n", + "\n", + "print('Mid ordinate rule');\n", + "\n", + "h1=(a+b)/2;\n", + "h2=(b+c)/2;\n", + "h3=(c+d)/2;\n", + "h4=(d+e)/2;\n", + "h5=(e+f)/2;\n", + "h6=(f+g)/2;\n", + "area=dis*(h1+h2+h3+h4+h5+h6);\n", + "\n", + "print('required area is',area,'square meters');\n", + "\n", + "print('average ordinate rule');\n", + "dis=10;\n", + "p=6;\n", + "bl=dis*p;\n", + "no=7;\n", + "\n", + "\n", + "area2=bl*(a+b+c+d+e+f+g)/no;\n", + "\n", + "print('required area is',area2,'sqare meters');\n", + "\n", + "print('trapezoidal rule');\n", + "\n", + "\n", + "area3=(dis/2)*(2*(a+b+c+d+e+f+g));\n", + "\n", + "print('required area is ',area3,'square meters');\n", + "print('simpsons rule');\n", + "\n", + "area4=(dis/3)*(4*(b+d+f)+2*(c+e));\n", + "print('required area is ',area4,'square meters');\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### ch-7 page 216 pb-2" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "trapezoidal rule\n", + "('required area is ', 820.125, 'square meters')\n", + "simpsons rule\n", + "(756.0, 57.375)\n", + "('required area is ', 813.375, 'square meters')\n" + ] + } + ], + "source": [ + "#ch-7 page 216 pb-2\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "print('trapezoidal rule');\n", + "\n", + "o1=3.5;o2=4.3;o3=6.75;o4=5.25;o5=7.5;o6=8.8;o7=7.9;\n", + "o8=6.4;o9=4.4;o10=3.25;\n", + "\n", + "dis=15;\n", + "\n", + "area1=(dis/2)*(o1+o10+(2*(o2+o3+o4+o5+o6+o7+o8+o9)));\n", + "\n", + "print('required area is ',area1,'square meters');\n", + "\n", + "print('simpsons rule')\n", + "\n", + "A1=dis/3*(o1+o9+4*(o2+o4+o6+o8)+2*(o3+o5+o7));\n", + "\n", + "A2=dis/2*(o10+o9);\n", + "\n", + "area2=A1+A2;\n", + "print(A1,A2)\n", + "\n", + "print('required area is ',area2,'square meters');\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "### cha 7 page -216 pb-3" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "trapezoidal rule\n", + "(89.5, 106.49999999999999, 158.0)\n", + "('total area=', 354.0, 'meters')\n", + "simpsons rule\n", + "(89.66666666666667, 102.33333333333333, 157.33333333333334)\n", + "('total area is ', 349.33333333333337, 'meters')\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "o1=2.5;o2=3.8;o3=4.6;o4=5.2;o5=6.1;o6=4.7;o7=5.8;o8=3.9;o9=2.20;\n", + "\n", + "d1=5;\n", + "d2=10;\n", + "d3=20;\n", + "\n", + "\n", + "print('trapezoidal rule')\n", + "\n", + "del1=(d1/2)*(o1+o5+2*(o2+o3+o4));\n", + "del2=(d2/2)*(o5+o7+2*(o6));\n", + "del3=(d3/2)*(o7+o9+2*(o8));\n", + "\n", + "total1=del1+del2+del3;\n", + "print(del1,del2,del3)\n", + "\n", + "print('total area=',total1,'meters');\n", + "\n", + "print('simpsons rule')\n", + "\n", + "de1=(d1/3)*(o1+o5+4*(o2+o4)+2*(o3));\n", + "de2=(d2/3)*(o5+o7+4*(o6));\n", + "de3=(d3/3)*(o7+o9+4*(o8));\n", + "\n", + "\n", + "total2=de1+de2+de3;\n", + "print(de1,de2,de3)\n", + "\n", + "print('total area is ',total2,'meters')\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### cha 7 page -225 pb-1" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('A=', 748.0)\n", + "('required area is', 748.0, 'meters')\n" + ] + } + ], + "source": [ + "#cha 7 page -225 ;pb-1\n", + "\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "ir=9.377;\n", + "fr=3.336;\n", + "m=100;\n", + "c=23.521;\n", + "\n", + "n=1;\n", + "\n", + "a1=m*(fr-ir+10*(n)+c);\n", + "\n", + "a2=m*(fr-ir-10*(n)+c);\n", + "\n", + "print('A=',a2);\n", + "print('required area is',a2,'meters');\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### cha 7 page -225,226 pb-2" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('A=', 81460.00000000001)\n", + "('required area is', 81460.00000000001, 'meters')\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "ir=8.652;\n", + "fr=6.798;\n", + "c=20;\n", + "m=100;\n", + "n=1;\n", + "\n", + "sc=100;\n", + "\n", + "a2=m*(fr-ir-10*(n)+c);\n", + "\n", + "a2=a2*sc;\n", + "\n", + "print('A=',a2);\n", + "print('required area is',a2,'meters');\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### cha 7 page -226 pb-3" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('required area is', 9747.499999999998, 'meters')\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "ir=4.855;\n", + "fr=8.754;\n", + "m=100;\n", + "\n", + "n=0;\n", + "c=0;\n", + "sc=25\n", + "a=m*(fr-ir)\n", + "a=a*sc;\n", + "print('required area is',a,'meters');\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### cha-7 page-226 pb-4" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "case 1\n", + "('A=', 100.0)\n", + "('M=', 100.0)\n", + "case 2\n", + "('required area is', 1347.0)\n", + "('area of zero circle is', 2122.0)\n" + ] + } + ], + "source": [ + "\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "print('case 1')\n", + "\n", + "ir=3.415;\n", + "fr=4.415;\n", + "n=0;\n", + "c=0;\n", + "sc=16; #1cm^2=16m^2;\n", + "h=10000;\n", + "ag=0.16*h;\n", + "\n", + "am=ag/sc;\n", + "print('A=',am);\n", + "\n", + "m=am/(fr-ir);\n", + "\n", + "print('M=',m);\n", + "\n", + "print('case 2');\n", + "\n", + "fr_ir=2.25;\n", + "c=21.22;\n", + "n=1\n", + "\n", + "a1=m*(fr_ir-10+c);\n", + "print('required area is',a1);\n", + "\n", + "area=m*c;\n", + "\n", + "print('area of zero circle is',area);\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "### cha-7 page-227 pb-5" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('area of zero circle is', 1221.0, 'square centimeters')\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "l=10;b=15;\n", + "a1=l*b;\n", + "\n", + "ir=0.686;\n", + "fr=9.976;\n", + "n=2;\n", + "m=100;\n", + "\n", + "marea=150;\n", + "\n", + "c=(marea/100)+10.710;\n", + "\n", + "area=m*c;\n", + "print('area of zero circle is',area,'square centimeters');\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### cha-7 page-228 pb-6" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "case 1\n", + "('area of figure is', 705.0, 'square cm')\n", + "case 2\n", + "('area of figure is', -1357.0, 'sq cm')\n", + "('C=', 20.62)\n", + "('area of zero circle is', 2062.0, 'square cm')\n" + ] + } + ], + "source": [ + "\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "print('case 1')\n", + "n=1;\n", + "c=0;\n", + "m=100;\n", + "fr=4.825;\n", + "ir=7.775;\n", + "area1=m*(fr-ir+10*n)\n", + "\n", + "print('area of figure is',area1,'square cm');\n", + "\n", + "print('case 2')\n", + "fr=8.755;\n", + "ir=2.325;\n", + "m=100;\n", + "n=2;\n", + "area2=m*(fr-ir-10*n+c)\n", + "\n", + "print('area of figure is',area2,'sq cm')\n", + "c=(area1/m)+13.570;\n", + "print('C=',c)\n", + "\n", + "areac=m*c;\n", + "print('area of zero circle is',areac,'square cm');\n", + "\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap8_Computation-of-Volume_1.ipynb b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap8_Computation-of-Volume_1.ipynb new file mode 100644 index 00000000..197ff573 --- /dev/null +++ b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap8_Computation-of-Volume_1.ipynb @@ -0,0 +1,713 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "# Chapter 8: Computation of volume" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### cha-8 page-241 pb-1" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(10.215, 14.84375, 28.433749999999996, 34.375, 23.633750000000003, 16.23375, 9.58375)\n", + "by trapezoidal rule\n", + "('V=', 5096.775, 'meter cube')\n", + "by prismoidal rule\n", + "('V=', 5143.25, 'meter cube')\n" + ] + } + ], + "source": [ + "\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "h1=0.90;h2=1.25;h3=2.15;h4=2.50;h5=1.85;h6=1.35;h7=0.85;\n", + "\n", + "b=10;\n", + "sh=1.5;\n", + "\n", + "h=40;\n", + "\n", + "d1=(b+(sh*h1))*h1;\n", + "d2=(b+(sh*h2))*h2;\n", + "d3=(b+(sh*h3))*h3;\n", + "d4=(b+(sh*h4))*h4;\n", + "d5=(b+(sh*h5))*h5;\n", + "d6=(b+(sh*h6))*h6;\n", + "d7=(b+(sh*h7))*h7;\n", + "\n", + "print(d1,d2,d3,d4,d5,d6,d7)\n", + "print('by trapezoidal rule');\n", + "v=(h/2)*(d1+d7+2*(d2+d3+d4+d5+d6));\n", + "print('V=',v,'meter cube');\n", + "\n", + "print('by prismoidal rule');\n", + "\n", + "v1=(h/3)*(d1+d7+4*(d2+d4+d6)+2*(d3+d5));\n", + "\n", + "print('V=',v1,'meter cube');\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### cha-8 page-241,242 pb-2" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(19.736842105263158, 29.487179487179485, 19.047619047619047, 23.214285714285715)\n", + "(7.125, 11.845, 7.68, 13.78, 16.5, 7.125)\n", + "from chainage 0 to 50\n", + "(70.3125, 179.3165955128205)\n", + "from chainage 50 to 100\n", + "(78.74925714285715, 174.63782051282053)\n", + "from chainage 100 to 150\n", + "(73.14285714285714, 213.2455)\n", + "from chainage 150 to 200\n", + "(221.13535714285715, 159.94642857142858)\n", + "from chainage 200 to 250\n", + "590.625\n", + "('total cutting =', 1033.9649714285715)\n", + "('total fitting=', 727.1463445970695)\n" + ] + } + ], + "source": [ + "\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "h1=0.75;h2=1.15;h3=0.80;h4=1.30;h5=1.5;h6=0.75\n", + "b=8;sh=2;\n", + "\n", + "x1=(50*h1)/(h1+h2);\n", + "x2=(50*h2)/(h2+h3);\n", + "x3=(50*h3)/(h4+h3);\n", + "x4=(50*h4)/(h4+h5);\n", + "print(x1,x2,x3,x4);\n", + "\n", + "a1=(b+(sh*h1))*h1;\n", + "a2=(b+(sh*h2))*h2;\n", + "a3=(b+(sh*h3))*h3;\n", + "a4=(b+(sh*h4))*h4;\n", + "a5=(b+(sh*h5))*h5;\n", + "a6=(b+(sh*h6))*h6;\n", + "print(a1,a2,a3,a4,a5,a6)\n", + "\n", + "print('from chainage 0 to 50');\n", + "c1=(a1/2)*(x1);\n", + "f1=(a2/2)*(x2+0.79);\n", + "print(c1,f1);\n", + "\n", + "\n", + "\n", + "print('from chainage 50 to 100');\n", + "f2=(a2/2)*(x2);\n", + "c2=(a3/2)*(x3+1.46);\n", + "print(c2,f2);\n", + "\n", + "print('from chainage 100 to 150');\n", + "c3=(a3/2)*(x3);\n", + "f3=(a4/2)*(30.95);\n", + "print(c3,f3);\n", + "\n", + "print('from chainage 150 to 200');\n", + "f4=(a4/2)*(x4);\n", + "c4=(a5/2)*(x4+3.59);\n", + "print(c4,f4);\n", + "\n", + "print('from chainage 200 to 250');\n", + "c5=((a1+a5)/2)*50;\n", + "\n", + "print(c5);\n", + "\n", + "tc=c1+c2+c3+c4+c5;\n", + "tf=f1+f2+f3+f4;\n", + "\n", + "print('total cutting =',tc);\n", + "print('total fitting=',tf);\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### cha-8 page-244 pb-3" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(26.25, 11.5625, 8.5025, 15.9225, 22.44, 30.9225, 6.5625)\n", + "('volume=', 5472.125)\n" + ] + } + ], + "source": [ + "\n", + "from __future__ import division\n", + "\n", + "import math\n", + "h=50;\n", + "h1=2.50;h2=1.25;h3=0.95;h4=1.65;h5=2.20;h6=2.85;h7=0.75;\n", + "b=8;sh=1;\n", + "\n", + "\n", + "a1=(b+(sh*h1))*h1;\n", + "a2=(b+(sh*h2))*h2;\n", + "a3=(b+(sh*h3))*h3;\n", + "a4=(b+(sh*h4))*h4;\n", + "a5=(b+(sh*h5))*h5;\n", + "a6=(b+(sh*h6))*h6;\n", + "a7=(b+(sh*h7))*h7;\n", + "\n", + "print(a1,a2,a3,a4,a5,a6,a7);\n", + "\n", + "v=(h/3)*(a1+a7+4*(a2+a4+a6)+2*(a3+a5));\n", + "\n", + "\n", + "print('volume=',v);\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### cha-8 page-245 pb-4" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "according to trapezoidal rule\n", + "('volume =', 330375.0)\n", + "according to prismoidal rule\n", + "('volume =', 330250.0)\n" + ] + } + ], + "source": [ + "\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "a1=2050;a2=8400;a3=16300;a4=24600;a5=31500;\n", + "\n", + "h=5;\n", + "\n", + "print('according to trapezoidal rule')\n", + "\n", + "v1=(h/2)*(a1+a5+2*(a2+a3+a4));\n", + "\n", + "print('volume =',v1);\n", + "\n", + "print('according to prismoidal rule')\n", + "\n", + "v2=(h/3)*(a1+a5+4*(a2+a4)+2*(a3));\n", + "\n", + "print('volume =',v2)\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### cha-8 page-245,246 pb-5" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "bottom section\n", + "('area A1=', 1200)\n", + "mid section\n", + "('area A2=', 2000.0)\n", + "top section\n", + "('area A3=', 30000)\n" + ] + } + ], + "source": [ + "\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "print('bottom section')\n", + "L=40;\n", + "B=30;\n", + "a1=L*B;\n", + "print('area A1=',a1)\n", + "\n", + "print('mid section')\n", + "b=40;\n", + "sh=2.5;\n", + "\n", + "l=L+2*2*sh;\n", + "b=B+2*2*sh;\n", + "a2=l*b;\n", + "print('area A2=',a2);\n", + "\n", + "print('top section')\n", + "sh=5;\n", + "\n", + "l1=L+2*sh;\n", + "b1=B*2*2*sh;\n", + "a3=l1*b1;\n", + "print('area A3=',a3)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### cha-8 page-246,247 pb-6" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "first section\n", + "(6.666666666666666, 5.454545454545455)\n", + "('area A1=', 20.36363636363636)\n", + "second section\n", + "(7.777777777777778, 6.363636363636363)\n", + "('area A2=', 33.494949494949495)\n", + "third section\n", + "(8.88888888888889, 7.2727272727272725)\n", + "('area A3=', 48.64646464646465)\n" + ] + } + ], + "source": [ + "\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "b=8;\n", + "h=2;\n", + "n=10;\n", + "s=1;\n", + "\n", + "print('first section');\n", + "b1=(b/2)+((n*s)/(n-s))*(h+(b/(2*n)));\n", + "b2=(b/2)+((n*s)/(n+s))*(h-(b/(2*n)));\n", + "\n", + "a1=0.5*((((b/(2*s))+h))*(b1+b2)-((b*b)/(2*s)));\n", + "print(b1,b2)\n", + "\n", + "print('area A1=',a1);\n", + "\n", + "print('second section');\n", + "b=8;h=3;n=10;s=1;\n", + "\n", + "\n", + "b1=(b/2)+((n*s)/(n-s))*(h+(b/(2*n)));\n", + "b2=(b/2)+((n*s)/(n+s))*(h-(b/(2*n)));\n", + "\n", + "a2=0.5*((((b/(2*s))+h))*(b1+b2)-((b*b)/(2*s)));\n", + "print(b1,b2)\n", + "\n", + "print('area A2=',a2);\n", + "\n", + "print('third section');\n", + "b=8;h=4;n=10;s=1;\n", + "\n", + "\n", + "b1=(b/2)+((n*s)/(n-s))*(h+(b/(2*n)));\n", + "b2=(b/2)+((n*s)/(n+s))*(h-(b/(2*n)));\n", + "\n", + "a3=0.5*((((b/(2*s))+h))*(b1+b2)-((b*b)/(2*s)));\n", + "print(b1,b2)\n", + "\n", + "print('area A3=',a3);\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### cha-8 page-247,248 pb-7" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "first section\n", + "(6.666666666666667, 5.454545454545454)\n", + "('area A1=', 11.36363636363636)\n", + "second section\n", + "(8.75, 5.833333333333333)\n", + "('area A2=', 26.041666666666664)\n", + "third section\n", + "(7.428571428571429, 5.777777777777778)\n", + "('area A3=', 17.920634920634917)\n" + ] + } + ], + "source": [ + "\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "b=10;\n", + "h=1;\n", + "n=10;\n", + "s=1;\n", + "\n", + "print('first section');\n", + "b1=(b/2)+((n*s)/(n-s))*(h+(b/(2*n)));\n", + "b2=(b/2)+((n*s)/(n+s))*(h-(b/(2*n)));\n", + "\n", + "a1=0.5*((((b/(2*s))+h))*(b1+b2)-((b*b)/(2*s)));\n", + "print(b1,b2)\n", + "\n", + "print('area A1=',a1);\n", + "\n", + "print('second section');\n", + "b=10;h=2;n=5;s=1;\n", + "\n", + "\n", + "b1=(b/2)+((n*s)/(n-s))*(h+(b/(2*n)));\n", + "b2=(b/2)+((n*s)/(n+s))*(h-(b/(2*n)));\n", + "\n", + "a2=0.5*((((b/(2*s))+h))*(b1+b2)-((b*b)/(2*s)));\n", + "print(b1,b2)\n", + "\n", + "print('area A2=',a2);\n", + "\n", + "print('third section');\n", + "b=10;h=1.5;n=8;s=1;\n", + "\n", + "\n", + "b1=(b/2)+((n*s)/(n-s))*(h+(b/(2*n)));\n", + "b2=(b/2)+((n*s)/(n+s))*(h-(b/(2*n)));\n", + "\n", + "a3=0.5*((((b/(2*s))+h))*(b1+b2)-((b*b)/(2*s)));\n", + "print(b1,b2)\n", + "\n", + "print('area A3=',a3);\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### cha-8 page-248 pb-8" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "at station 1\n", + "('area=', 14.25)\n", + "at station 2\n", + "('area=', 18.975)\n", + "('v=', 830.625, 'cp=', 0.20833333333333262)\n", + "('correct volume =', 830.4166666666666)\n" + ] + } + ], + "source": [ + "\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "print('at station 1');\n", + "h=1;h1=2.55;h2=0.95;b=9;b1=7.5;b2=5.25;\n", + "w1=b1+b2\n", + "a=(((h/2)*(b1+b2))+((b/4)*(h1+h2)));\n", + "print('area=',a)\n", + "\n", + "print('at station 2');\n", + "h=1.5;h1=2.8;h2=1.35;b=9;b1=8.1;b2=4.75;\n", + "\n", + "a1=(((h/2)*(b1+b2))+((b/4)*(h1+h2)));\n", + "d=50;\n", + "k=10.01;\n", + "v=(d/2)*(a+a1);\n", + "w2=b1+b2\n", + "print('area=',a1)\n", + "h2=1;\n", + "h1=1.5;\n", + "cp=(d/12)*(h1-h2)*(w2-w1);\n", + "\n", + "\n", + "cv=v-cp;\n", + "print('v=',v,'cp=',cp)\n", + "print('correct volume =',cv);\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### cha-8 page-249 pb-9" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "section 1\n", + "(7.03125, 1.0416666666666667)\n", + "section 2\n", + "(9.03125, 0.375)\n", + "('vc=', 401.5625, 'vf=', 35.41666666666667)\n", + "('corrected volume (in cutting)=', 400.5208333333333)\n", + "('corrected volume(in filling)', 34.027777777777786)\n" + ] + } + ], + "source": [ + "\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "print('section 1')\n", + "b=10;n=5;s=1;s1=2;\n", + "d=50;h1=0.5;h2=0.7;\n", + "\n", + "ac=0.5*(((0.5*b+n*h1)*(0.5*b+n*h1))/(n-s));\n", + "\n", + "af=0.5*(((0.5*b-n*h1)*(0.5*b-n*h1))/(n-s1));\n", + "\n", + "print(ac,af)\n", + "\n", + "\n", + "print('section 2')\n", + "\n", + "\n", + "ac1=0.5*(((0.5*b+n*h2)*(0.5*b+n*h2))/(n-s));\n", + "\n", + "af1=0.5*(((0.5*b-n*h2)*(0.5*b-n*h2))/(n-s1));\n", + "D=50;\n", + "print(ac1,af1)\n", + "vc=((ac+ac1)/2)*D;\n", + "vf=((af+af1)/2)*D;\n", + "\n", + "print('vc=',vc,'vf=',vf);\n", + "\n", + "D=50;\n", + "pcc=(D/(12*(n-s)))*(n*n*(h1-h2)*(h1-h2));\n", + "\n", + "\n", + "pcf=(D/(12*(n-s1)))*(n*n*(h1-h2)*(h1-h2));\n", + "\n", + "\n", + "cvc=vc-pcc;\n", + "cvf=vf-pcf;\n", + "\n", + "print('corrected volume (in cutting)=',cvc);\n", + "\n", + "print('corrected volume(in filling)',cvf)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### cha-8 page-251 pb-10" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "at station 1\n", + "(40.2, 82.475)\n", + "('area =', 21.137499999999996)\n", + "at station 2\n", + "(53.7, 105.675)\n", + "('area =', 25.987499999999997)\n", + "volume by average end area rule\n", + "('volume=', 1178.1249999999998)\n" + ] + } + ], + "source": [ + "\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "a1=0;a2=3.0;\n", + "b1=2.20;b2=5.50;\n", + "c1=1.75;c2=3.0;\n", + "d1=1.5;d2=0;\n", + "e1=4.75;e2=5.25;\n", + "f1=6.40;f2=7.30;\n", + "g1=0;g2=3.0;\n", + "\n", + "print('at station 1')\n", + "sp=(e1*d2)+(f1*e2)+(d2*f2)+(c1*d2)+(b1*c2)+(a1*b2);\n", + "\n", + "sq=(e2*d1)+(e1*f2)+(f1*g2)+(d1*c2)+(c1*b2)+(b1*a2);\n", + "\n", + "area1=0.5*(sp-sq)\n", + "area1=abs(area1);\n", + "print(sp,sq)\n", + "print('area =',area1)\n", + "\n", + "a1=0;a2=3.0;\n", + "b1=3.1;b2=5.25;\n", + "c1=2.20;c2=3.0;\n", + "d1=2;d2=0;\n", + "e1=5.25;e2=6;\n", + "f1=7.40;f2=8.5;\n", + "g1=0;g2=3.0;\n", + "print('at station 2')\n", + "sp1=(e1*d2)+(f1*e2)+(d2*f2)+(c1*d2)+(b1*c2)+(a1*b2);\n", + "\n", + "sq1=(d1*e2)+(e1*f2)+(f1*g2)+(d1*c2)+(c1*b2)+(b1*a2);\n", + "print(sp1,sq1)\n", + "\n", + "\n", + "area2=0.5*(sp1-sq1)\n", + "area2=abs(area2);\n", + "print('area =',area2)\n", + "\n", + "print('volume by average end area rule')\n", + "v=50*((area1+area2)/2);\n", + "print('volume=',v)\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap9_Theodolite-Traversing_1.ipynb b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap9_Theodolite-Traversing_1.ipynb new file mode 100644 index 00000000..3153bd76 --- /dev/null +++ b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap9_Theodolite-Traversing_1.ipynb @@ -0,0 +1,502 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "# Chapter 9: Theodolite Traversing" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### ch-9 page 302 pb-1" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(65.11978202514794, -63.50741753704864, -51.91315691660193)\n", + "(38.20554919114786, 168.9587462008847, -30.579186368382416)\n", + "(50.300792428502625, -176.58510902365015)\n", + "('distance DA=', 183.60955979422673)\n", + "('bearing of DA=', 74.10023981818601)\n" + ] + } + ], + "source": [ + "\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "l1=75.5;\n", + "l2=180.5\n", + "l3=60.25\n", + "\n", + "t1=30.4;t2=69.4;t3=30.5;\n", + "t2=180-t2;\n", + "t3=180-t3;\n", + "\n", + "Lc1=l1*math.cos(t1*(math.pi/180))\n", + "Lc2=l2*math.cos(t2*(math.pi/180))\n", + "Lc3=l3*math.cos(t3*(math.pi/180))\n", + "\n", + "Ls1=l1*math.sin(t1*(math.pi/180))\n", + "Ls2=l2*math.sin(t2*(math.pi/180))\n", + "Ls3=-l3*math.sin(t3*(math.pi/180))\n", + "\n", + "print(Lc1,Lc2,Lc3);\n", + "print(Ls1,Ls2,Ls3);\n", + "Lc4=-Lc1-Lc2-Lc3;\n", + "Ls4=-Ls1-Ls2-Ls3;\n", + "\n", + "print(Lc4,Ls4);\n", + "\n", + "t4=-math.atan(Ls4/Lc4);\n", + "t4=t4*(180/math.pi);\n", + "\n", + "l4=math.sqrt(Lc4*Lc4+Ls4*Ls4);\n", + "\n", + "print('distance DA=',l4);\n", + "print('bearing of DA=',t4);\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### ch-9 page 304 pb-2" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('length of DA is', 145.80634036039953, 'or', 12.053659639600497)\n", + "when length of DA ,L=145.8\n", + "('bearing at AB is=N', 82.44640641462031)\n", + "when length of DA ,L=12.04\n", + "0.999661660714\n", + "('bearing at AB is=N', 1.4904797844587976)\n" + ] + } + ], + "source": [ + "\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "l1=100;\n", + "l2=80;\n", + "l3=60;\n", + "\n", + "t2=39.5;t3=40.5;t4=49.75;\n", + "\n", + "L2=l2*math.cos(t2*(math.pi/180));\n", + "L3=l3*math.cos(t3*(math.pi/180));\n", + "\n", + "D2=l2*math.sin(t2*(math.pi/180));\n", + "D3=l3*math.sin(t3*(math.pi/180));\n", + "\n", + "l41=(157.86+math.sqrt(157.86*157.86-4*1757.5))/2;\n", + "l42=(157.86-math.sqrt(157.86*157.86-4*1757.5))/2;\n", + "\n", + "print('length of DA is',l41,'or',l42);\n", + "\n", + "print('when length of DA ,L=145.8')\n", + "\n", + "k=math.cos(t4*(math.pi/180))\n", + "k1=(L2+L3-(k*l41))/100;\n", + "t1=math.acos(k1);\n", + "t1=t1*(180/(math.pi))\n", + "print('bearing at AB is=N',t1)\n", + "\n", + "\n", + "print('when length of DA ,L=12.04')\n", + "\n", + "k=math.cos(t4*(math.pi/180))\n", + "k1=(L2+L3-(k*l42))/100;\n", + "k1=k1+0.004;\n", + "t11=math.acos(k1);\n", + "t11=t11*(180/(math.pi))\n", + "print(k1)\n", + "print('bearing at AB is=N',t11)\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### ch-9 page 305 pb-3" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('latitude of AB,CD,DE are', 86.59373062437335, -57.03044742000232, -25.250000000000007)\n", + "('Depature of AB,CD,DE are', 51.00760547755076, -48.708603624763775, -43.73428289111415)\n", + "(-4.313283204371025, 41.43528103832716)\n", + "('length of BC=', 348.51410778926174)\n", + "('length of EA=', 317.28203276885586)\n" + ] + } + ], + "source": [ + "#ch-9 page 305 pb-3\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "l1=100.5;l3=75;l4=50.5;\n", + "t1=30.5;t2=45;t3=40.5;t4=60;t5=40.25;\n", + "\n", + "\n", + "L1=l1*math.cos(t1*(math.pi/180))\n", + "L3=-l3*math.cos(t3*(math.pi/180))\n", + "L4=-l4*math.cos(t4*(math.pi/180))\n", + "\n", + "print('latitude of AB,CD,DE are',L1,L3,L4);\n", + "D1=l1*math.sin(t1*(math.pi/180))\n", + "D3=-l3*math.sin(t3*(math.pi/180))\n", + "D4=-l4*math.sin(t4*(math.pi/180))\n", + "print('Depature of AB,CD,DE are',D1,D3,D4);\n", + "\n", + "L2_L5=-(L1+L3+L4);\n", + "D2_D5=-(D1+D3+D4);\n", + "print(L2_L5,D2_D5)\n", + "\n", + "k=0.117;\n", + "l5=(L2_L5+D2_D5)/(k);\n", + "\n", + "k1=0.763;\n", + "\n", + "l2=(k1*l5)-L2_L5;\n", + "l2=l2/0.707;\n", + "\n", + "print('length of BC=',l2);\n", + "print('length of EA=',l5);\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### ch-9 page 307 pb-4" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('latitudes of AQ,QR,RB are', 65.21958064293187, -61.02257873940248, -36.93176700776003)\n", + "('Depature of AQ,QR,RB are', 38.03493526693723, 52.118205878497236, -65.27667719549248)\n", + "('length of AB=', 41.114514530539196, 'meters')\n" + ] + } + ], + "source": [ + "#ch-9 page 307 pb-4\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "l1=75.5;l2=80.25;l3=75;\n", + "t1=30.25;t2=40.5;t3=60.5;\n", + "\n", + "\n", + "L1=l1*math.cos(t1*(math.pi/180))\n", + "L2=-l2*math.cos(t2*(math.pi/180))\n", + "L3=-l3*math.cos(t3*(math.pi/180))\n", + "print('latitudes of AQ,QR,RB are',L1,L2,L3);\n", + "\n", + "\n", + "D1=l1*math.sin(t1*(math.pi/180))\n", + "D2=l2*math.sin(t2*(math.pi/180))\n", + "D3=-l3*math.sin(t3*(math.pi/180))\n", + "print('Depature of AQ,QR,RB are',D1,D2,D3);\n", + "\n", + "L4=-(L1+L2+L3);\n", + "D4=-(D1+D2+D3);\n", + "\n", + "l4=math.sqrt(L4*L4+(D4*D4));\n", + "\n", + "print('length of AB=',l4,'meters');\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### ch-9 page 308 pb-5" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('latitudes of BQ,QP,PA are', -96.23556979807799, -172.32583208830516, -61.552945012933385)\n", + "('Depature of BQ,QP,PA are', 115.71069572705566, -101.50767259214082, -108.79446199248746)\n", + "('length of AB=', 343.3992171422471, 'meters')\n", + "('bearing of AB=', 15.989201746570728)\n", + "('PAB=', 44.51079825342927, 'QBA=', 66.23920174657073)\n" + ] + } + ], + "source": [ + "#ch-9 page 308 pb-5\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "l1=150.5;l2=200;l3=125;\n", + "t1=50.25;t2=30.5;t3=60.5;\n", + "\n", + "\n", + "L1=-l1*math.cos(t1*(math.pi/180))\n", + "L2=-l2*math.cos(t2*(math.pi/180))\n", + "L3=-l3*math.cos(t3*(math.pi/180))\n", + "print('latitudes of BQ,QP,PA are',L1,L2,L3);\n", + "\n", + "\n", + "D1=l1*math.sin(t1*(math.pi/180))\n", + "D2=-l2*math.sin(t2*(math.pi/180))\n", + "D3=-l3*math.sin(t3*(math.pi/180))\n", + "print('Depature of BQ,QP,PA are',D1,D2,D3);\n", + "\n", + "L4=-(L1+L2+L3);\n", + "D4=-(D1+D2+D3);\n", + "\n", + "l4=math.sqrt(L4*L4+(D4*D4));\n", + "\n", + "print('length of AB=',l4,'meters');\n", + "\n", + "t4=math.atan(D4/L4);\n", + "t4=t4*(180/math.pi);\n", + "print('bearing of AB=',t4);\n", + "\n", + "PAB=t3-t4;\n", + "QBA=t1+t4;\n", + "\n", + "print('PAB=',PAB,'QBA=',QBA);\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### ch-9 page 308 pb-6" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('latitudes of AB,BC,CD,DE are', 121.76738460229168, 106.68654829016975, -133.98333444865727, 19.805712703281312)\n", + "('Depature of AB,BC,CD,DE are', 45.52695956373076, 186.6627451151656, 78.9222154403895, 118.35427218446777)\n", + "('length of EA=', 444.4100422146986, 'meters')\n", + "('bearing of EA=', 75.09947760257306)\n", + "('bearing from F to C is =', 5.818201574554788)\n", + "('distance from F to C is =', 172.2028708809785)\n" + ] + } + ], + "source": [ + "#ch-9 page 308 pb-6\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "l1=130;l2=215;l3=155.5;l4=120;\n", + "t1=20.5;t2=60.25;t3=30.5;t4=80.5;\n", + "\n", + "\n", + "L1=l1*math.cos(t1*(math.pi/180))\n", + "L2=l2*math.cos(t2*(math.pi/180))\n", + "L3=-l3*math.cos(t3*(math.pi/180))\n", + "L4=l4*math.cos(t4*(math.pi/180))\n", + "print('latitudes of AB,BC,CD,DE are',L1,L2,L3,L4);\n", + "\n", + "\n", + "D1=l1*math.sin(t1*(math.pi/180))\n", + "D2=l2*math.sin(t2*(math.pi/180))\n", + "D3=l3*math.sin(t3*(math.pi/180))\n", + "D4=l4*math.sin(t4*(math.pi/180))\n", + "print('Depature of AB,BC,CD,DE are',D1,D2,D3,D4);\n", + "\n", + "L5=-(L1+L2+L3+L4);\n", + "D5=-(D1+D2+D3+D4);\n", + "\n", + "l5=math.sqrt(L5*L5+(D5*D5));\n", + "\n", + "print('length of EA=',l5,'meters');\n", + "\n", + "t5=math.atan(D5/L5);\n", + "t5=t5*(180/math.pi);\n", + "print('bearing of EA=',t5);\n", + "\n", + "FA=l5/2;\n", + "l6=FA;\n", + "t6=t5;\n", + "L6=-l6*math.cos(t6*(math.pi/180))\n", + "D6=-l6*math.sin(t6*(math.pi/180))\n", + "\n", + "L7=-(L1+L2+L6)\n", + "D7=-(D1+D2+D6)\n", + "\n", + "t7=math.atan(D7/L7);\n", + "t7=t7*(180/math.pi);\n", + "print('bearing from F to C is =',t7);\n", + "\n", + "l7=math.sqrt(L7*L7+(D7*D7));\n", + "\n", + "print('distance from F to C is =',l7);\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### ch-9 page 308 pb-7" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('latitudes of AB,DE,EA are', 362.50000000000006, -538.0859250785912, -574.3378222288467)\n", + "('Depature of AB,DE,EA are', 627.8684177437179, -782.9198791909149, -27.587423899772766)\n", + "('t2-t3=', 100.07865810778766)\n", + "('Bearing of BC is', 63.0)\n", + "('Bearing of CD is', 37.12098009569709)\n" + ] + } + ], + "source": [ + "#ch-9 page 308 pb-7\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "l1=725;l2=1050;l3=1250;l4=950;l5=575;\n", + "t1=60;t4=55.5;t5=2.75;\n", + "\n", + "\n", + "L1=l1*math.cos(t1*(math.pi/180))\n", + "L4=-l4*math.cos(t4*(math.pi/180))\n", + "L5=-l5*math.cos(t5*(math.pi/180))\n", + "print('latitudes of AB,DE,EA are',L1,L4,L5);\n", + "\n", + "\n", + "D1=l1*math.sin(t1*(math.pi/180))\n", + "D4=-l4*math.sin(t4*(math.pi/180))\n", + "D5=-l5*math.sin(t5*(math.pi/180))\n", + "print('Depature of AB,DE,EA are',D1,D4,D5);\n", + "\n", + "t2_t3=math.acos(0.1750);\n", + "t2_t3=180-(t2_t3*(180/math.pi));\n", + "\n", + "print('t2-t3=',t2_t3);\n", + "\n", + "t3=math.asin(0.6035);\n", + "t3=t3*(180/math.pi);\n", + "t2=t2_t3-t3;\n", + "t2=math.ceil(t2);\n", + "\n", + "print('Bearing of BC is',t2);\n", + "print('Bearing of CD is',t3);\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chapter11_Tacheometric-Traversing_1.ipynb b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chapter11_Tacheometric-Traversing_1.ipynb new file mode 100644 index 00000000..b203f9a0 --- /dev/null +++ b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chapter11_Tacheometric-Traversing_1.ipynb @@ -0,0 +1,616 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "# Chapter 11: Tacheometric Surveying" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### section 11.7 , pg 413, problem 1" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RL of instrument axis= 764.345 m\n", + "RL of D= 784.042 m\n", + "Distance of CD=147.097m\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "\n", + "retiftoi=100\n", + "fplusd=0.15\n", + "s1=2.450-1.150\n", + "thetha1=5+(20/60)\n", + "v1=(100*1300*math.sin(10+(40/60))/2)+(0.15*math.sin(5+(20/60)));\n", + "s2=1.5\n", + "thetha2=8+(12/60)\n", + "V2=21.197\n", + "d2=147.097\n", + "RL=750.500+1.8+12.045 \n", + "RLD=RL+V2-1.5\n", + "print \"RL of instrument axis=\",RL,\"m\"\n", + "print \"RL of D=\", RLD,\"m\"\n", + "print \"Distance of CD=147.097m\" \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### section 11.7, pg 415, problem 2" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RL of axis when isnt. at P= 265.109\n", + "RL of A= 280.38\n", + "RL at B= 298.021\n", + "RL of B= 296.571\n", + "Distance between A and B= 118.009\n" + ] + } + ], + "source": [ + "\n", + "from __future__ import division\n", + "import math\n", + "\n", + "v1=7.534\n", + "v2=16.871\n", + "v3=15.326\n", + "RLatp=255.750+v1+1.825\n", + "RLofA=265.109+v2-1.6\n", + "RLatB=280.380+v3+2.315\n", + "RLofB=298.021-1.450\n", + "D3=118.009\n", + "print \"RL of axis when isnt. at P=\", RLatp\n", + "print \"RL of A=\", RLofA\n", + "print \"RL at B=\", RLatB\n", + "print \"RL of B=\", RLofB\n", + "print \"Distance between A and B=\", D3\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### section 11.7 , pg 413, problem 1" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "10.494\n", + "RL of axis when isnt. at A= 462.449\n", + "RL of A= 461.104\n", + "RL at B= 487.151\n", + "RL of B= 485.601\n", + "RL of C 510.533\n" + ] + } + ], + "source": [ + "\n", + "from __future__ import division\n", + "import math\n", + "\n", + "\n", + "v1=10.494\n", + "d1=108.989\n", + "V2=24.807\n", + "d2=176.514\n", + "v3=25.652\n", + "d3=145.477\n", + "RL=450.500+1.455+v1 \n", + "RLofA=462.449-1.345\n", + "RLofB=462.449+24.807-1.655\n", + "RLatB=487.151\n", + "RLofC=RLofB+v3-2.250+1.53\n", + "print v1\n", + "print \"RL of axis when isnt. at A=\", RL\n", + "print \"RL of A=\", RLofA\n", + "print \"RL at B=\", RLatB\n", + "print \"RL of B=\", RLofB\n", + "print \"RL of C\", RLofC\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### ch-11 page 416 pb-4" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "in 1st observation\n", + "('v1,d1=', 9.386067902413853, 119.26130043570826)\n", + "in 2nd observation\n", + "('v2,d2=', 26.26555359446006, 145.25041419362984)\n", + "('RL of A=', 159.18106790241387)\n", + "('RL of B=', 175.81555359446008)\n", + "('difference of level AB=', 104.0330138511747, 'meters')\n", + "('gradient of AB is 1 in', 6.254056529136824)\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "c=100;\n", + "h=1.55;\n", + "rlo=150;\n", + "ra1=1.155;ra2=1.755;ra3=2.355;\n", + "rb1=1.250;rb2=2;rb3=2.750;\n", + "t1=30.5;t2=75.5;\n", + "a1=4.5;a2=10.25;\n", + "\n", + "print('in 1st observation')\n", + "v1=c*(ra3-ra1)*(math.sin(9*(math.pi/180)));\n", + "v1=v1/2;\n", + "d1=c*(ra3-ra1)*(math.cos(a1*(math.pi/180)))*(math.cos(a1*(math.pi/180)));\n", + "print('v1,d1=',v1,d1);\n", + "\n", + "print('in 2nd observation');\n", + "\n", + "v2=c*(rb3-rb1)*(math.sin(20.5*(math.pi/180)));\n", + "v2=v2/2;\n", + "d2=c*(rb3-rb1)*(math.cos(a2*(math.pi/180)))*(math.cos(a2*(math.pi/180)));\n", + "print('v2,d2=',v2,d2);\n", + "\n", + "rl=rlo+h;\n", + "rla=rl+v1-ra2;\n", + "rlb=rl+v2-rb2;\n", + "\n", + "print('RL of A=',rla);\n", + "print('RL of B=',rlb);\n", + "\n", + "t=t2-t1;\n", + "AB=math.sqrt((d1*d1+d2*d2)-2*(d1*d2*(math.cos(t*(math.pi/180)))));\n", + "print('difference of level AB=',AB,'meters');\n", + "\n", + "dab=rlb-rla;\n", + "gab=AB/dab;\n", + "print('gradient of AB is 1 in',gab);\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### ch-11 page 418 pb-5" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('v1,v2=', 31.256671980047464, 31.1867536226639)\n", + "('h1,h2=', 2.0188558936750263, 1.5699268991777582)\n", + "('RL of A=', 418.7244721262775)\n", + "('RL of B=', 419.24331947815836)\n", + "('distance between A an B is', 323.2978586242886)\n", + "('gradient of PA is 1 in ', 5.567473732648181)\n", + "('gradient of PB is 1 in ', 4.68342893110529)\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "h=1.5;\n", + "a1=10;a2=12;\n", + "c=100;\n", + "ra1=1.150;ra2=2.050;ra3=2.950;\n", + "rb1=0.855;rb2=1.605;rb3=2.355;\n", + "rlp=450.5;\n", + "\n", + "\n", + "\n", + "v1=c*(ra3-ra1)*(math.sin(a1*(math.pi/180)));\n", + "\n", + "v2=c*(rb3-rb1)*(math.sin(a2*(math.pi/180)));\n", + "\n", + "h1=ra2*(math.cos(a1*(math.pi/180)));\n", + "h2=rb2*(math.cos(a2*(math.pi/180)));\n", + "\n", + "print('v1,v2=',v1,v2);\n", + "print('h1,h2=',h1,h2);\n", + "\n", + "rlai=rlp+h;\n", + "\n", + "rla=rlai-v1-h1;\n", + "rlb=rlai-v2-h2;\n", + "\n", + "print('RL of A=',rla);\n", + "print('RL of B=',rlb);\n", + "\n", + "d1=c*(ra3-ra1)*(math.cos(a1*(math.pi/180)))-ra2*(math.sin(a1*(math.pi/180)));\n", + "d2=c*(rb3-rb1)*(math.cos(a2*(math.pi/180)))-rb2*(math.sin(a2*(math.pi/180)));\n", + "\n", + "dab=d1+d2;\n", + "print('distance between A an B is',dab);\n", + "gpa=d1/(rlp-rla);\n", + "gpb=d2/(rlp-rlb);\n", + "\n", + "print('gradient of PA is 1 in ',gpa);\n", + "print('gradient of PB is 1 in ',gpb);\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### ch-11 page 419 pb-6\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(96.98463103929541, 158.78462024097664, 117.67570175629913)\n", + "('latitudes of AB,BC,CD=', 83.56478621811925, -121.63607598835735, -83.20928669276485)\n", + "('depatures of AB,BC,CD ', 49.22342087003188, 102.06478649968226, -83.20928669276483)\n", + "(121.28057646300294, -68.07892067694931)\n", + "('Bearing of DA=', 29.30698225670086)\n", + "('length DA=', 139.08169422226874)\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "c=100;\n", + "ra1=1.25;ra2=1.75;ra3=2.25;\n", + "rb1=0.95;rb2=1.75;rb3=2.55;\n", + "rc1=1.55;rc2=2.15;rc3=2.75;\n", + "a1=10;a2=5;a3=8;\n", + "\n", + "ab=c*(ra3-ra1)*(math.cos(a1*(math.pi/180)))*(math.cos(a1*(math.pi/180)));\n", + "bc=c*(rb3-rb1)*(math.cos(a2*(math.pi/180)))*(math.cos(a2*(math.pi/180)));\n", + "cd=c*(rc3-rc1)*(math.cos(a3*(math.pi/180)))*(math.cos(a3*(math.pi/180)));\n", + "\n", + "print(ab,bc,cd);\n", + "\n", + "lab=ab*(math.cos(30.5*(math.pi/180)));\n", + "lbc=-bc*(math.cos(40*(math.pi/180)));\n", + "lcd=-cd*(math.cos(45*(math.pi/180)));\n", + "print('latitudes of AB,BC,CD=',lab,lbc,lcd);\n", + "\n", + "dab=ab*(math.sin(30.5*(math.pi/180)));\n", + "dbc=bc*(math.sin(40*(math.pi/180)));\n", + "dcd=-cd*(math.sin(45*(math.pi/180)));\n", + "print('depatures of AB,BC,CD ',dab,dbc,dcd);\n", + "\n", + "lc=-(lab+lbc+lcd);\n", + "ls=-(dab+dbc+dcd);\n", + "\n", + "print(lc,ls)\n", + "k=-ls/lc;\n", + "t=math.atan(k);\n", + "t=t*(180/(math.pi));\n", + "\n", + "print('Bearing of DA=',t);\n", + "DA=math.sqrt(lc*lc+ls*ls);\n", + "print('length DA=',DA);\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### ch-11 page 419 pb-7" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('Distance AC=', 158.62738402665204)\n", + "('Distance BD=', 189.49088179672577)\n", + "('total latitude of C=', 18.46481737819161)\n", + "('total depature of C=', 21.113710931586226)\n", + "('total latitude of D=', 9.659924163502069)\n", + "-15.6914002615\n", + "('total depature of D=', 308.2914002614939)\n", + "('length CD=', 329.52276617048415, 'meters')\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "h1=1.48;h2=1.42;c=100;\n", + "ra1=0.77;ra2=1.60;ra3=2.43;\n", + "rb1=0.86;rb2=1.84;rb3=2.82;\n", + "a1=12.166;a2=10.5;\n", + "la=112.82;da=106.4;\n", + "lb=198.5;db=292.6;\n", + "ac=c*(ra3-ra1)*(math.cos(a1*(math.pi/180)))*(math.cos(a1*(math.pi/180)));\n", + "bd=c*(rb3-rb1)*(math.cos(a2*(math.pi/180)))*(math.cos(a2*(math.pi/180)));\n", + "\n", + "print('Distance AC=',ac);\n", + "print('Distance BD=',bd);\n", + "lac=-ac*(math.cos(53.5*(math.pi/180)));\n", + "tlc=la+lac;\n", + "print('total latitude of C=',tlc);\n", + "\n", + "dac=ac*(math.sin(53.5*(math.pi/180)));\n", + "da=-da;\n", + "tdc=da+dac;\n", + "print('total depature of C=',tdc);\n", + "\n", + "lbd=-bd*(math.cos(4.75*(math.pi/180)));\n", + "tld=lb+lbd;\n", + "print('total latitude of D=',tld);\n", + "\n", + "db=-db;\n", + "ddb=-bd*(math.sin(4.75*(math.pi/180)));\n", + "tdd=-(db+ddb);\n", + "print(ddb)\n", + "print('total depature of D=',tdd);\n", + "\n", + "dx=tdc+tdd;\n", + "cx=tlc-tld;\n", + "\n", + "CD=math.sqrt(dx*dx+cx*cx);\n", + "print('length CD=',CD,'meters');\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### chapter 11, section 11.8, pg 422, example 1" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "distance = 262.890670554\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "c=600\n", + "fplusd=0.5\n", + "s=3\n", + "n=6.860\n", + "distance= (c*s/n)+ fplusd\n", + "print \"distance =\",distance\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### chapter 11, section 11.8, pg423, eg2" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "5.142\n", + "RL of A= 259.692\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "d=65.340\n", + "x=4.5\n", + "y= math.tan(x)\n", + "v=5.142\n", + "RLofA=255.500+v-0.950\n", + "print v\n", + "print \"RL of A=\", RLofA\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### chapter 11, section 11.8, pg423, eg2" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "distance between B and BM= 49.706\n", + "RL of B= 515.398\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "s1=2\n", + "h1=0.655\n", + "v1=6.578\n", + "RL=v1+h1+510.5\n", + "v2=1.085\n", + "d2=12.396\n", + "h2=1.25\n", + "RLofB=RL-v2-h2\n", + "d=37.31+12.396\n", + "print \"distance between B and BM=\",d\n", + "print \"RL of B=\", RLofB\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### chapter 11, section 11.8, pg423, eg2" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "n= 15.9100040177\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "d=124.45\n", + "c=1000\n", + "s=2\n", + "fplusd=0.3\n", + "thetha=(5+(6/30))\n", + "n=1980/d\n", + "print \"n=\",n\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/SURVYNG_AND_LEVELLING__by_N.N.BASAK/screenshots/1.png b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/screenshots/1.png Binary files differnew file mode 100644 index 00000000..10a4c1c7 --- /dev/null +++ b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/screenshots/1.png diff --git a/SURVYNG_AND_LEVELLING__by_N.N.BASAK/screenshots/2.png b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/screenshots/2.png Binary files differnew file mode 100644 index 00000000..6a4574cb --- /dev/null +++ b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/screenshots/2.png diff --git a/SURVYNG_AND_LEVELLING__by_N.N.BASAK/screenshots/3.png b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/screenshots/3.png Binary files differnew file mode 100644 index 00000000..7ecc2c63 --- /dev/null +++ b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/screenshots/3.png diff --git a/sample_notebooks/MeenaChandrupatla/Chapter2_Gases.ipynb b/sample_notebooks/MeenaChandrupatla/Chapter2_Gases.ipynb new file mode 100644 index 00000000..88d5cb73 --- /dev/null +++ b/sample_notebooks/MeenaChandrupatla/Chapter2_Gases.ipynb @@ -0,0 +1,187 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2 Gases" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.1,Page no.9" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "volume occupied by 20 grams of carbon dioxide= 11.61 liter\n" + ] + } + ], + "source": [ + "import math\n", + "#given\n", + "G= 20 #in grams\n", + "R= 0.08205 #l−atm/mole K\n", + "T= 30 #in Celsius\n", + "P= 740 #in mm\n", + "M= 44.01 \n", + "#CALCULATIONS\n", + "V= G*R*(273.15+T)*760/(P*M)\n", + "#RESULTS\n", + "V=round(V,2)\n", + "print 'volume occupied by 20 grams of carbon dioxide=',V,'liter'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.2, Page no.9" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "molecular weight of hydrocarbon= 102.32 g.mole\n" + ] + } + ], + "source": [ + "import math\n", + "#given\n", + "G= 0.110 #in grams\n", + "R= 0.08205 #l−atm /mole K\n", + "T= 26.1 #Celsius\n", + "P= 743 #in mm\n", + "V= 0.0270\n", + "#CALCULATIONS\n", + "M= G*R*(273.15+T)*760/(P*V)\n", + "#RESULTS\n", + "M=round(M,2)\n", + "print 'molecular weight of hydrocarbon=',M,'g.mole'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.4,Pg.no.10" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "pressure calculated using ideal gas law= 48.93 atm\n", + "pressure calculated using vander wals equation= 39.12 atm\n" + ] + } + ], + "source": [ + "import math\n", + "#given\n", + "R= 0.08205 #l−atm degˆ−1 moleˆ−1\n", + "T= 25 #in K\n", + "n= 1 #mole\n", + "V= 0.5 #liter \n", + "b= 0.04267 #lit moleˆ−1\n", + "a= 3.592 #lit ˆ2 atm molˆ−2\n", + "#CALCULATIONS\n", + "P= R*(273.15+T)/V\n", + "P1= (R*(273.15+T)/(V-b))-(a/V**2)\n", + "#RESULTS\n", + "P=round(P,2)\n", + "P1=round(P1,2)\n", + "print 'pressure calculated using ideal gas law=',P,'atm'\n", + "print 'pressure calculated using vander wals equation=',P1,'atm'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.5,Pg.no.10" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "volume occupied by mole of oxygen= 0.272 litre moleˆ−1\n" + ] + } + ], + "source": [ + "import math\n", + "#given\n", + "T= -88 #in Celsius\n", + "Tc= 154.4 #in Kelvin\n", + "Pc= 49.7 #pressure in atm\n", + "P= 44.7 #pressure in atm\n", + "R= 0.08205 #atm mˆ3 moleˆ−1 Kˆ−1\n", + "r= 0.8\n", + "#CALCULATIONS\n", + "V= r*R*(273.15+T)/P\n", + "#RESULTS\n", + "V=round(V,3)\n", + "print 'volume occupied by mole of oxygen=',V,'litre moleˆ−1'" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/sample_notebooks/ShantanuBhosale/chapter40_1.ipynb b/sample_notebooks/ShantanuBhosale/chapter40_1.ipynb new file mode 100644 index 00000000..e434627c --- /dev/null +++ b/sample_notebooks/ShantanuBhosale/chapter40_1.ipynb @@ -0,0 +1,1989 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# CHAPTER 40: D.C TRANSMISSION AND DISTRIBUTION\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 40.1 ,Page No :- 1574" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "percentage saving in copper is = 50.0 %.\n" + ] + } + ], + "source": [ + "#A DC 2-wire feeder supplies a constant load with a sending-end voltage of 220V.Calculate the saving in copper\n", + "#if this voltage is doubled with power transmitted remaining the same.\n", + "##################################################################################################################\n", + "\n", + "\n", + "\n", + "#Given\n", + "V1 = 220.0\n", + "V2 = 440.0\n", + "##Let us assume the wire has##\n", + "#length -> length \n", + "#area -> area\n", + "#current density -> cd\n", + "#power -> P\n", + "P = 10000.0 #assumption\n", + "length = 1000.0 #assumption \n", + "cd = 5.0 #assumption\n", + "#The values are assumed as these terms cancel out while calculating percentage.\n", + "I1 = P/V1\n", + "area = I1/cd\n", + "#Vol of Cu required for 220V ->vol1\n", + "vol1 = 2*area*length\n", + "\n", + "\n", + "I2 = P/V2\n", + "area = I2/cd\n", + "#Vol of Cu required for 440V ->vol2\n", + "vol2 = 2*area*length\n", + "\n", + "#percentage saving of copper is\n", + "per_cent = ((vol1-vol2)/vol1)*100\n", + "print 'percentage saving in copper is ',per_cent,'%.'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 40.2 ,Page No :- 1577" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Maximum voltage drop from one end is = 12.0 V.\n", + "Maximum voltage drop from both end is = 3.0 V.\n" + ] + } + ], + "source": [ + "#A uniform 2-wire d.c distributor 200 metres long is loaded with 2 amperes/metre.Resistance of\n", + "#single wire is 0.3 ohm/kilometre.Calculate the maximum voltage drop if the distributor is fed\n", + "#(a)from one end (b)from both ends with equal voltages.\n", + "#################################################################################################\n", + "\n", + "#Given\n", + "length = 200.0 #metres\n", + "#current per unit length is\n", + "cur = 2.0 #amp/metre\n", + "#resistance per unit length is\n", + "res = 0.3/1000 #ohm/metre\n", + "\n", + "#total resistance is\n", + "R = res*length #ohm\n", + "#total current is\n", + "I = cur*length #amp\n", + "#Total drop over a distributor fed from one end is given by\n", + "drop1 = (1/2.0)*I*R #volts\n", + "#Total drop over a distributor fed from both ends is given by\n", + "drop2 = (1/8.0)*I*R\n", + "print 'Maximum voltage drop from one end is = ',drop1,'V.'\n", + "print 'Maximum voltage drop from both end is = ',drop2,'V.'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 40.3 ,Page No :- 1577" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Cross sectional area of distributor = 116.412 cm^2\n" + ] + } + ], + "source": [ + "#A 2-wire d.c distributor AB is 300 metres long.It is fed at point A.The various loads and\n", + "#their positions are given below.\n", + "# At point distance from A in metres concentrated load in A\n", + "# C 40 30\n", + "# D 100 40 \n", + "# E 150 100\n", + "# F 250 50\n", + "#If the maximum permissible voltage drop is not to exceed 10V,find the cross-sectional\n", + "#area of the distributor.Take resistivity = 1.78*10^(-8) ohm-m.\n", + "###########################################################################################\n", + "\n", + "\n", + "#Given\n", + "resistivity = 1.78e-8 #ohm-m\n", + "drop_max = 10.0 #V\n", + "#loads and their positions\n", + "I1 = 30.0 #A\n", + "l1 = 40.0 #m\n", + "I2 = 40.0 #A\n", + "l2 = 100.0 #m\n", + "I3 = 100.0 #A\n", + "l3 = 150.0 #m\n", + "I4 = 50 #A\n", + "l4 = 250 #m\n", + "#We know that R = resistivity*length/Area\n", + "#Also max drop = I1*R1 + I2*R2 + I3*R3 + I4*R4 , using this\n", + "area = 2*(I1*l1 + I2*l2 + I3*l3 + I4*l4)*resistivity/drop_max #m^2\n", + "area = area*1000000 #cm^2 \n", + "print 'Cross sectional area of distributor =',area,'cm^2'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 40.4 ,Page No :- 1578" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Hence drop at minimum potential where load is 70 A is = 48.4 V.\n" + ] + } + ], + "source": [ + "#A 2-wire d.c distributor F1F2 1000 metres long is loaded as under:\n", + "#Distance from F1(in metres): 100 250 500 600 700 800 850 920\n", + "#Load in amperes: 20 80 50 70 40 30 10 15\n", + "#The feeding points F1 and F2 are maintained at the same potential.Find which point will have the\n", + "#minimum potential and what will be the drop at this point?Take the cross-section of the conductors\n", + "#as 0.35 cm^2 and specific resistance of copper as 1.764*10^(-6) ohm-cm\n", + "#####################################################################################################\n", + "\n", + "#Given\n", + "import numpy as np\n", + "resistivity = 1.764e-8 #ohm-m\n", + "area = 0.35e-4 #m^2 \n", + "#loads and their positions taking from F1\n", + "I1 = 20 #A\n", + "l1 = 100 #m\n", + "I2 = 80 #A\n", + "l2 = 150 #m\n", + "I3 = 50 #A\n", + "l3 = 250 #m\n", + "I4 = 70 #A\n", + "l4 = 100 #m\n", + "I5 = 40 #A\n", + "l5 = 100 #m\n", + "I6 = 30 #A\n", + "l6 = 50 #m\n", + "I7 = 10 #A\n", + "l7 = 70 #m\n", + "I8 = 15 #A\n", + "l8 = 80 #m \n", + "\n", + "#sum of loads from F1\n", + "load1 = I1*l1 + I2*(l1+l2) + I3*(l1+l2+l3) #A-m\n", + "load2 = I8*l8 + I7*(l7+l8) + I6*(l6+l7+l8) + I5*(l5+l6+l7+l8) #A-m\n", + "\n", + "#guessing the point of minimum potential\n", + "if load1>load2:\n", + " load2_new = load2 + I4*(l4+l5+l6+l7+l8)\n", + " if load2_new>load1:\n", + " pivot = I4\n", + "\n", + "#solving 2 equations simultaneously\n", + "# x + y = 70(pivot) & 47000(load1) + 600(l1+l2+l3)x = 20,700(load2) + 400(l5+l6+l7+l8)y)\n", + "line1 = l1+l2+l3+l4 #m\n", + "line2 = l4+l5+l6+l7+l8 #m \n", + "\n", + "a = [[1,1],[line1,-line2]]\n", + "b = [pivot,load2-load1]\n", + "soln = np.linalg.solve(a,b) #soln is array with its elements[x,y]\n", + "#drop at minimum potential per conductor (in A-m)\n", + "drop_m = load1 + soln[0]*line1 #A-m\n", + "\n", + "#resistance per metre = resistivity/Area\n", + "res = resistivity/area #ohm/m\n", + "\n", + "#Hence, drop in voltage per conductor is\n", + "drop = drop_m*res #V \n", + "#drop due to both is\n", + "drop = drop*2 #V\n", + "\n", + "print 'Hence drop at minimum potential where load is',pivot,'A is =',round(drop,2),'V.'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 40.5 ,Page No :- 1579" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The current entering at A is = 88.6 A \n", + "The current entering at B is = 211.4 A.\n" + ] + } + ], + "source": [ + "#The resistance of a cable is 0.1ohm per 1000 metre for both conductors.It is loaded as shown in Fig.40.14(a).\n", + "#Find the current supplied at A and at B.If both the ends are supplied at 200 V\n", + "##############################################################################################################\n", + "\n", + "#Given\n", + "#resistance per metre\n", + "res = 0.1/1000 #ohm/m\n", + "#loads and their positions taking from A\n", + "I1 = 50.0 #A\n", + "l1 = 500.0 #m\n", + "I2 = 100.0 #A\n", + "l2 = 700.0 #m\n", + "I3 = 150.0 #A\n", + "l3 = 300.0 #m\n", + "l4 = 250.0 #m \n", + "\n", + "#Assuming I flows from A to B\n", + "# equation is res*[500*i + 700(i-50) + 300(i-150) + 250(i-300)] = 0\n", + "current_i = (I1*l2+(I1+I2)*l3 + (I1+I2+I3)*l4)/(l1+l2+l3+l4)\n", + "current_AC = current_i\n", + "current_CD = current_i-I1\n", + "current_DE = current_CD-I2\n", + "current_EB = current_DE-I3\n", + "if current_EB<0:\n", + " current_EB = -current_EB;\n", + "print 'The current entering at A is = ',round(current_i,1),'A '\n", + "print 'The current entering at B is = ',round(current_EB,1),'A.' " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 40.6 ,Page No :- 1580" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Current supplied at A is = 88.6 A.\n", + "Current supplied at B is = -211.4 A.\n", + "Current in AC is = 88.6 A.\n", + "Current in CD is = 38.6 A.\n", + "Current in DE is = -61.4 A.\n", + "Current in EB is = -211.4 A.\n", + "Drop over AC is = 4.4 V.\n", + "Drop over CD is = 2.7 V.\n", + "Drop over DE is = -1.8 V.\n", + "Voltage at C is = 195.6 V.\n", + "Voltage at D is = 192.9 V.\n", + "Voltage at E is = 194.7 V.\n" + ] + } + ], + "source": [ + "#The resistance of two conductors of a 2-conductor distributor shown in Fig.39.15 is 0.1ohm per 1000m\n", + "#for both conductors.Find (a)the current supplied at A(b)the current supplied at B\n", + "#(c)the current in each section (d)the voltages at C,D and E.Both A and B are maintained at 200V.\n", + "######################################################################################################\n", + "\n", + "#Given\n", + "#resistance per metre\n", + "res = 0.1/1000 #ohm/m\n", + "#loads and their positions taking from A\n", + "I1 = 50.0 #A\n", + "l1 = 500.0 #m\n", + "I2 = 100.0 #A\n", + "l2 = 700.0 #m\n", + "I3 = 150.0 #A\n", + "l3 = 300.0 #m\n", + "l4 = 250.0 #m \n", + "\n", + "#Assuming I flows from A to B\n", + "# equation is res*[500*i + 700(i-50) + 300(i-150) + 250(i-300)] = 0\n", + "current_i = (I1*l2+(I1+I2)*l3 + (I1+I2+I3)*l4)/(l1+l2+l3+l4)\n", + "current_AC = current_i\n", + "current_CD = current_i-I1\n", + "current_DE = current_CD-I2\n", + "current_EB = current_DE-I3\n", + "print \"Current supplied at A is = \",round(current_i,1),\"A.\"\n", + "print \"Current supplied at B is = \",round(current_EB,1),\"A.\"\n", + "print \"Current in AC is = \",round(current_i,1),\"A.\"\n", + "print \"Current in CD is = \",round(current_CD,1),\"A.\"\n", + "print \"Current in DE is = \",round(current_DE,1),\"A.\"\n", + "print \"Current in EB is = \",round(current_EB,1),\"A.\"\n", + "#Drop in volts is (resistance/metre)*length*current\n", + "drop_AC = res*l1*current_AC #V\n", + "drop_CD = res*l2*current_CD #V \n", + "drop_DE = res*l3*current_DE #V\n", + "print \"Drop over AC is = \",round(drop_AC,1),\"V.\"\n", + "print \"Drop over CD is = \",round(drop_CD,1),\"V.\"\n", + "print \"Drop over DE is = \",round(drop_DE,1),\"V.\"\n", + "\n", + "#Voltages at C,D,E are\n", + "volt_C = 200-drop_AC #V\n", + "volt_D = volt_C-drop_CD #V\n", + "volt_E = volt_D-drop_DE #V\n", + "print 'Voltage at C is = ',round(volt_C,1),'V.'\n", + "print 'Voltage at D is =',round(volt_D,1),'V.'\n", + "print 'Voltage at E is = ',round(volt_E,1),'V.'\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 40.7 ,Page No :- 1581" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Therefore point of minimum potential is D and minimum potential is = 246.0 V.\n" + ] + } + ], + "source": [ + "#A 200 m long distributor is fed from both ends A and B at the same voltage of 250V.The\n", + "#concentrated loads of 50,40,30 and 25 A are coming on the distributor at distances of 50,75,\n", + "#100 and 150 m respectively from end A.Determine the minimum potential and locate its positions.\n", + "#Also,determine the current in each section of the distributor.It is given that the resistance\n", + "#of the distributor is 0.08ohm per 100 metres for go and return.\n", + "##################################################################################################\n", + "\n", + "\n", + "#Given\n", + "#resistance per metre\n", + "res = 0.08/100 #ohm/m\n", + "V_A = 250.0 #V\n", + "V_B = 250.0 #V\n", + "#load currents and their positions\n", + "I_C = 50.0 #A\n", + "I_D = 40.0 #A\n", + "I_E = 30.0 #A\n", + "I_F = 25.0 #A\n", + "l_AC = 50.0 #m\n", + "l_CD = 75.0 - l_AC #m\n", + "l_DE = 100.0 - l_CD - l_AC #m\n", + "l_EF = 150.0 - l_DE - l_CD - l_AC #m\n", + "l_FB = 200.0-150.0\n", + "#Assuming I flows from A to B\n", + "# equation is res*[50*i + 25(i-50) + 25(i-90) + 50(i-120)+50(i-145)] = 0\n", + "current_i = (l_CD*I_C + l_DE*(I_C+I_D)+l_EF*(I_C+I_D+I_E) + l_FB*(I_C+I_D+I_E+I_F))/200.0\n", + "current_AC = current_i\n", + "current_CD = current_i-I_C\n", + "current_DE = current_CD-I_D\n", + "current_EF = current_DE-I_E\n", + "current_FB = current_EF-I_F\n", + "#As from figure in the book , point D is at minimum potential\n", + "if (current_CD>0) & (current_DE<0):\n", + " point = \"D\"\n", + " \n", + "#drop in volts = resistance/metre*sum(length*current) \n", + "drop_d = res*(l_AC*current_AC + l_CD*current_CD)\n", + "min_pot = V_A-drop_d\n", + "print \"Therefore point of minimum potential is\",point,\"and minimum potential is = \",round(min_pot,1),\"V.\" " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 40.8 ,Page No :- 1582" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Voltage at point C is = 250.13 V.\n", + "Voltage at point D is = 247.73 V.\n" + ] + } + ], + "source": [ + "#Each conductor of a 2-core distributor,500 metres long has a cross-sectional area\n", + "#of 2 cm^2.The feeding point A is supplied at 255V and the feeding point B at\n", + "#250V and load currents of 120A and 160A are taken at points C and D which are\n", + "#150 metres and 350 metres respectively from the feeding point A.Calculate the\n", + "#voltage at each load.Specific Resistance of copper is 1.7*10^(-6) ohm-cm\n", + "##################################################################################\n", + "\n", + "#Given\n", + "area = 2e-4 #m^2\n", + "resistivity = 1.7e-8 #ohm-m\n", + "#load currents and their positions\n", + "i_c = 120.0 #A\n", + "i_d = 160.0 #A\n", + "l_ac = 150.0 #m\n", + "l_cd = 200.0 #m\n", + "l_db = 150.0 #m\n", + "V_a = 255.0 #V\n", + "V_b = 250.0 #V\n", + "#Resistance = resistivity*length/Area\n", + "#It is a 2 core distributor.Therefore,resistance per metre is\n", + "res = 2*resistivity/area #ohm/m\n", + "#drop over whole distributor is equal to\n", + "drop = V_a - V_b #V\n", + "#Therefore equation of total drop can be written as\n", + "# resistivity*(150i+200(i-120)+150(i-280))=5\n", + "current_i = (drop/res + l_cd*i_c + l_db*(i_c+i_d))/(l_ac+l_cd+l_db) #A\n", + "current_ac = current_i #A\n", + "current_cd = current_ac-i_c #A\n", + "current_db = current_cd-i_d #A\n", + "\n", + "#Voltage at C = 255-drop over AC\n", + "volt_c = V_a-res*l_ac*current_ac #V\n", + "#Voltage at D = 250-drop over DB \n", + "volt_d = V_b -res*l_db*abs(current_db) #V\n", + "print \"Voltage at point C is = \",round(volt_c,2),\"V.\"\n", + "print \"Voltage at point D is = \",round(volt_d,2),\"V.\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 40.9 ,Page No :- 1583" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Volatge at point Q is = 225.25 V.\n", + "Voltage at point B is = 236.56 V.\n" + ] + } + ], + "source": [ + "#A 2-wire distributor 500 metres long is fed at P at 250V and loads of 40A,20A,60A,30A are tapped off\n", + "#off from points A,B,C and D which are at distances of 100 metres,150 metres,300 metres and 400 metres\n", + "#from P respectively.The distributor is also uniformly loaded at the rate of 0.1A/m.If the resistance of\n", + "#the distributor per metre(go and return) is 0.0005 ohm,calculate the voltage at(i)pointQ and(ii)point B.\n", + "###########################################################################################################\n", + "\n", + "#Given\n", + "V_P = 250.0 #V\n", + "resistance = 0.0005 #ohm/m\n", + "\n", + "#loads and their positions\n", + "i_a = 40.0 #A\n", + "i_b = 20.0 #A\n", + "i_c = 60.0 #A\n", + "i_d = 30.0 #A\n", + "l_pa = 100.0 #m\n", + "l_ab = 150.0-100.0 #m\n", + "l_bc = 300.0-150.0 #m\n", + "l_cd = 400.0-300.0 #m\n", + "#uniform dstributed load\n", + "cur_uni = 0.1 #A/m\n", + "\n", + "\n", + "#considering drop due to concentrated loading\n", + "drop_pa = (i_a+i_b+i_c+i_d)*l_pa*resistance #V\n", + "drop_ab = (i_b+i_c+i_d)*l_ab*resistance #V \n", + "drop_bc = (i_c+i_d)*l_bc*resistance #V\n", + "drop_cd = i_d*l_cd*resistance #V\n", + "tot_drop = drop_pa + drop_ab + drop_bc + drop_cd #V\n", + "\n", + "#considering drop due to uniform loading(drop = irl^2/2) l = 500m\n", + "drop_uni = cur_uni*resistance*(500.0*500.0)/2 #V\n", + "\n", + "V_Q = V_P - (tot_drop + drop_uni) #V\n", + "#for point B\n", + "#drop due to concentrated loading\n", + "drop_b = drop_pa + drop_ab #V\n", + "#drop due to uniform loading (drop = ir(lx-x^2/2)) l=500m x=150m\n", + "drop_ub = cur_uni*resistance*(500*(l_pa+l_ab)-(l_pa+l_ab)*(l_pa+l_ab)/2) #V\n", + "\n", + "V_B = V_P - (drop_b + drop_ub) #V\n", + "\n", + "print \"Volatge at point Q is = \",round(V_Q,2),\"V.\"\n", + "print \"Voltage at point B is = \",round(V_B,2),\"V.\" " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 40.10 ,Page No :- 1583" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Current in section AC is = 53.75 A.\n", + "Current in section CD is = 33.75 A.\n", + "Current in section DE is = -6.25 A.\n", + "Current in section EF is = -31.25 A.\n", + "Current in section FB is = -61.25 A.\n", + "Minimum voltage is at point D and minimum voltage is = 233.18 V.\n" + ] + } + ], + "source": [ + "#A distributor AB is fed from both ends.At feeding point A,the voltage is maintained at 236V and at B at 237V.\n", + "#The total length of the distributor is 200 metres and loads are tapped off as under:\n", + "#(i) 20A at 50 metres from A (ii) 40A at 75 metres from A. (iii)25A at 100 metres from A (iv)30A at 150 metres from A\n", + "#The reistance per kilometre of one conductor is 0.4ohm.Calculate the currents in the various sections of the distributor,\n", + "#the minimum voltage and the point at which it occurs.\n", + "###########################################################################################################################\n", + "\n", + "\n", + "#Given\n", + "#resistance per metre\n", + "res = 2*0.4/1000 #ohm/m\n", + "V_a = 236.0 #V\n", + "V_b = 237.0 #V\n", + "#loads and their positions\n", + "i_c = 20.0 #A\n", + "i_d = 40.0 #A\n", + "i_e = 25.0 #A\n", + "i_f = 30.0 #A\n", + "l_ac = 50.0 #m\n", + "l_cd = 25.0 #m\n", + "l_de = 25.0 #m\n", + "l_ef = 50.0 #m\n", + "l_fb = 50.0 #m\n", + "#Voltage drop equation res*(50i + 25(i-20)+25(i-60) + 50(i-85) + 50(i-115)=-1)\n", + "current_i = ((V_a-V_b)/res + l_cd*(i_c)+l_de*(i_c+i_d)+l_ef*(i_c+i_d+i_e)+l_fb*(i_c+i_d+i_e+i_f))/200.0\n", + "current_ac = current_i\n", + "current_cd = current_ac-i_c\n", + "current_de = current_cd-i_d\n", + "current_ef = current_de-i_e\n", + "current_fb= current_ef-i_f\n", + "if current_cd>0:\n", + " if current_de<0:\n", + " point = \"D\"\n", + "#Minimum potential is at D as shown in figure\n", + "drop = res*(current_ac*l_ac + current_cd*l_cd)\n", + "V_d = V_a-drop\n", + "print \"Current in section AC is = \",round(current_ac,2),\"A.\"\n", + "print \"Current in section CD is = \",round(current_cd,2),\"A.\"\n", + "print \"Current in section DE is = \",round(current_de,2),\"A.\"\n", + "print \"Current in section EF is = \",round(current_ef,2),\"A.\"\n", + "print \"Current in section FB is = \",round(current_fb,2),\"A.\"\n", + "print \"Minimum voltage is at point\",point,\"and minimum voltage is = \",round(V_d,2),\"V.\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 40.11 ,Page No :- 1584" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Current supplied by feeder at point A is 46.29 A and that by point B is 109.71 A.\n", + "Voltage at point B is = 240.55 V.\n", + "Voltage at point C is = 239.63 V.\n", + "Voltage at point D is = 239.42 V.\n", + "Voltage at point E is = 239.38 V.\n" + ] + } + ], + "source": [ + "#A distributor cable AB is fed at its ends A and B.Loads of 12,24,72 and 48 A are taken from the cable at\n", + "#points C,D,E and F.The resistances of sections AC,CD,DE,EF and FB of the cable are 8,6,4,10 and 5 milliohm\n", + "#respecively(for the go and return conductors together). The potential difference at point A is 240V,the p.d\n", + "#at the load F is also to be 240V.Calculate the voltages at the feeding point B,the current supplied by each\n", + "#feeder and the p.d.s at the loads C,D and E.\n", + "##############################################################################################################\n", + "\n", + "#Given\n", + "V_a = 240.0 #V \n", + "V_f = 240.0 #V\n", + "#loads and their resistances.\n", + "i_c = 12.0 #A\n", + "i_d = 24.0 #A\n", + "i_e = 72.0 #A\n", + "i_f = 48.0 #A\n", + "\n", + "r_ac = 8e-3 #ohm\n", + "r_cd = 6e-3 #ohm\n", + "r_de = 4e-3 #ohm\n", + "r_ef = 10e-3 #ohm\n", + "r_fb = 5e-3 #ohm\n", + "\n", + "#Voltage drop accross AF is zero.Therefore equation 8i +6(i-12) + 4(i-36)+10(i-108)*10^(-3)\n", + "current_i = (r_cd*i_c + r_de*(i_c+i_d) + r_ef*(i_c+i_d+i_e))/(28.0e-3) #A\n", + "#currents in different sections\n", + "current_ac = current_i #A\n", + "current_cd= current_ac-i_c #A\n", + "current_de = current_cd-i_d #A\n", + "current_ef = current_de-i_e #A \n", + "current_fb = current_ef-i_f #A\n", + "#voltage at different points are\n", + "V_b = V_f - current_fb*r_fb #V\n", + "V_c = V_a - current_ac*r_ac #V\n", + "V_d = V_c - current_cd*r_cd #V\n", + "V_e = V_d - current_de*r_de #V \n", + "\n", + "print \"Current supplied by feeder at point A is\",round(current_ac,2),\"A and that by point B is\",round(abs(current_fb),2),\"A.\"\n", + "print \"Voltage at point B is = \",round(V_b,2),\"V.\"\n", + "print \"Voltage at point C is = \",round(V_c,2),\"V.\"\n", + "print \"Voltage at point D is = \",round(V_d,2),\"V.\"\n", + "print \"Voltage at point E is = \",round(V_e,2),\"V.\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 40.12 ,Page No :- 1585" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The current supplied at P is = 143.75 A.\n", + "The current supplied at Q is = 116.25 A.\n", + "Power dissipated in distributor is = 847.34 W.\n" + ] + } + ], + "source": [ + "#A two-wire d.c sdistributor PQ,800 metre long is loaded as under:\n", + "#Distance from P(metres): 100 250 500 600 700\n", + "#Loads in amperes: 20 80 50 70 40\n", + "#The feeding point at P is maintained at 248V and that at Q at 245V.The total resistance of\n", + "#the distributor(lead and return) is 0.1 ohm.Find (a)the current supplied at P and Q and\n", + "#(b)the power dissipated in the distributor.\n", + "##################################################################################################\n", + "\n", + "#Given\n", + "V_p = 248.0 #V\n", + "V_q = 245.0 #V\n", + "res = 0.1/800 #ohm/m \n", + "#loads and their positions\n", + "i1 = 20.0 #A\n", + "i2 = 80.0 #A\n", + "i3 = 50.0 #A\n", + "i4 = 70.0 #A\n", + "i5 = 40.0 #A\n", + "l1 = 100.0 #m\n", + "l2 = 250.0-100.0 #m\n", + "l3 = 500.0 -250.0 #m\n", + "l4 = 600.0-500.0 #m\n", + "l5 = 700.0-600.0 #m\n", + "l6 = 800.0-700.0 #m\n", + "#drop accross the distributor :- 1/8000(100i + 150(i-20) + 250(i-100)+ 100(i-150)+100(i-220)+100(i-260) )=3\n", + "current_i = ((V_p-V_q)/res + l2*i1+l3*(i1+i2)+l4*(i1+i2+i3)+l5*(i1+i2+i3+i4)+l6*(i1+i2+i3+i4+i5))/800.0\n", + "current_p = current_i #A\n", + "current_2 = current_p-i1 #A\n", + "current_3 = current_2-i2 #A\n", + "current_4 = current_3-i3 #A\n", + "current_5 = current_4-i4 #A\n", + "current_q = current_5-i5 #A\n", + "#Power loss = sum(I^2R)\n", + "loss = res*(current_p*current_p*l1 + current_2*current_2*l2 + current_3*current_3*l3 + current_4*current_4*l4 + current_5*current_5*l5 + current_q*current_q*l6)\n", + "print \"The current supplied at P is = \",round(current_p,2),\"A.\"\n", + "print \"The current supplied at Q is = \",round(abs(current_q),2),\"A.\"\n", + "print \"Power dissipated in distributor is =\",round(loss,2),\"W.\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 40.13 ,Page No :- 1586" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The point of minimum potential is D and minimum potential is = 231.76 V.\n", + "Current fed at the end A is = 366.0 A.\n", + "Current fed at the end B is = 454.0 A.\n" + ] + } + ], + "source": [ + "#The two conductors of a d.c distributor cable 1000m long have a total resistance of 0.1 ohm.\n", + "#The ends A and B are fed at 240V.The cable is uniformly loaded at 0.5 A per metre length\n", + "#and has concentrated loads of 120A,60A,100A and 40A at points distant 200,400,700 and 900m.\n", + "#respectively from the end A.Calculate (i)the point of minimum potential on the distributor\n", + "#(ii)the value of minimum potential and (iii) currents fed at the ends A and B.\n", + "###############################################################################################\n", + "\n", + "#Given\n", + "V_a = 240.0 #V\n", + "V_b = 240.0 #V\n", + "res = 0.1/1000 #ohm/m\n", + "#concentrated loads and their positions\n", + "i_c = 120.0 #A\n", + "i_d = 60.0 #A\n", + "i_e = 100.0 #A\n", + "i_f = 40.0 #A\n", + "l_ac = 200.0 #m\n", + "l_cd = 400.0-200.0 #m\n", + "l_de = 700.0-400.0 #m\n", + "l_ef = 900.0-700.0 #m\n", + "l_fb = 1000.0-900.0 #m\n", + "#Uniform loading\n", + "cur_uni = 0.5 #A/m\n", + "#Equation for drop from A to B -> (1/10000)*(200i + 200(i-120)+ 300(i-180)+200(i-280)+100(i-320))=0\n", + "current_i = (l_cd*i_c + l_de*(i_c+i_d)+l_ef*(i_c+i_d+i_e)+l_fb*(i_c+i_d+i_e+i_f))/1000\n", + "\n", + "#point of minimum potential\n", + "current_ac = current_i #A\n", + "current_cd = current_ac-i_c #A\n", + "current_de = current_cd-i_d #A\n", + "current_ef = current_de-i_e #A\n", + "current_fb = current_ef-i_f #A\n", + "\n", + "if current_cd>0:\n", + " if current_de<0:\n", + " point = \"D\"\n", + "#As from figure it is inferred that point of minimum potential is D.\n", + "#Therefore,uniform load from point A to D(supplied from A)\n", + "cur_uni_A = cur_uni*(l_ac + l_cd) #A\n", + "cur_A = cur_uni_A + current_ac #A\n", + "#Therefore,uniform load from point B to D(supplied from B)\n", + "cur_uni_B = cur_uni*(l_de + l_ef + l_fb) #A\n", + "cur_B = cur_uni_B + abs(current_fb) #A\n", + "\n", + "#drop at D due to concentrated load(from A)\n", + "drop_con = res*(current_ac*l_ac + current_cd*l_cd)\n", + "#drop at D due to uniform load(from A)[formula-> irl^2/2]\n", + "drop_uni = cur_uni*res*(l_ac+l_cd)*(l_ac+l_cd)/2\n", + "#total drop is\n", + "drop_tot = drop_con + drop_uni\n", + "\n", + "#potential at D is\n", + "V_d = V_a - drop_tot\n", + "print \"The point of minimum potential is\",point,\"and minimum potential is = \",round(V_d,2),\"V.\"\n", + "print \"Current fed at the end A is = \",round(cur_A,2),\"A.\"\n", + "print \"Current fed at the end B is = \",round(cur_B,2),\"A.\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 40.14 ,Page No :- 1587" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Voltage V is = 8.62 V.\n", + "Cross-sectional Area A is = 2.78 cm^2.\n", + "Cross-sectional Area A1 is = 0.26 cm^2.\n", + "Cross-sectional Area A2 is = 2.24 cm^2.\n" + ] + } + ], + "source": [ + "#It is proposed to lay out a d.c distribution system comprising three sections-the first section consists\n", + "#of a cable from the sub-station to a point distant 800 metres from which two cables are taken,one 350 metres\n", + "#long supplying a load of 22kW and the other 1.5 kilometre long and supplying a load of 44kW.Calculate the\n", + "#cross-sectional area of each cable so that the total weight of copper required shall be minimum if the maximum\n", + "#drop of voltage along the cable is not to exceed 5% of the normal voltage of 440V at the consumer's premises.\n", + "#Take specific resistance of copper at working temperature equal to 2*10e-7 ohm-cm.\n", + "###################################################################################################################\n", + "\n", + "#Given\n", + "resistivity = 2*10e-7 #ohm-cm\n", + "dist = 800.0*100 #cm\n", + "#Current taken from 350m section\n", + "cur_1 = 22000.0/440\n", + "#Current taken from 1.5km section\n", + "cur_2 = 44000.0/440\n", + "#Therefore,current in first section\n", + "cur = cur_1 + cur_2\n", + "#Let us assume\n", + "#V->voltage drop accross first section\n", + "#R->resistance of the first section\n", + "#A->cross-sectional area of te first section\n", + "\n", + "from sympy import Eq, var, solve\n", + "var('V') \n", + "#Now , R = V/I\n", + "R = V/cur\n", + "# A = resistivity*l/R -> A = resistivity*l*I/V \n", + "A = resistivity*dist/R\n", + "#Max allowable drop\n", + "max_drop = (5.0/100)*440.0\n", + "#Voltage drop along other sections\n", + "vol_drop = max_drop - V\n", + "#Cross-sectional area of 350 m A = resistivity*l/R \n", + "A1 = resistivity*350.0*100*cur_1/(vol_drop)\n", + "#Cross-sectional area of 1.5km A = resistivity*l/R \n", + "A2 = resistivity*1500.0*100*cur_2/(vol_drop)\n", + "\n", + "\n", + "#Now,Total weight is propotional to total volume \n", + "W = 800.0*A + 350.0*A1+1500.0*A2\n", + "Diff = W.diff(V)\n", + "eq = Eq(Diff,0)\n", + "\n", + "V = solve(eq)\n", + "#We get 2 values of V of which Negative is not possible.Therefore,\n", + "V = float(V[1])\n", + "A = resistivity*dist*cur/V\n", + "vol_drop = max_drop - V\n", + "A1 = resistivity*350.0*100*cur_1/vol_drop\n", + "A2 = resistivity*1500.0*100*cur_2/vol_drop\n", + "print \"Voltage V is = \",round(V,2),\"V.\"\n", + "print \"Cross-sectional Area A is = \",round(A,2),\"cm^2.\"\n", + "print \"Cross-sectional Area A1 is = \",round(A1,2),\"cm^2.\"\n", + "print \"Cross-sectional Area A2 is = \",round(A2,2),\"cm^2.\"\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 40.15 ,Page No :- 1588" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The point of minimum potential is at 261.74 m from A.\n", + "The minimum potential is = 247.34 V.\n" + ] + } + ], + "source": [ + "#A d.c two-wire distributor AB is 450m long and is fed at both ends at 250 volts.It is loaded as follows:20A at 60m from A,\n", + "#40A at 100m from A and a uniform loading of 1.5A/m from 200 to 450m from A.The resistance of each conductor is\n", + "#0.05ohm/km.Find the point of minimum potential and its potential.\n", + "####################################################################################################################\n", + "\n", + "#Given\n", + "V_a = 250.0 #V\n", + "V_b = 250.0 #V\n", + "res = 0.05/1000 #ohm/m\n", + "cur_uni = 1.5 #A/m (uniform loading)\n", + "#loads and positions\n", + "i_c = 20.0 #A\n", + "i_d = 40.0 #A\n", + "l_ac = 60.0 #m\n", + "l_cd = 40.0 #m\n", + "l_de = 100.0 #m\n", + "l_eb = 250.0 #m\n", + "\n", + "#Let us assume that point of minimum potential is D and let i be current in section CD.\n", + "#Therefore,current from B is (40-i).If r is resistance then\n", + "#(20+i)*60r + i*40r = (40-i)*350r + 1.5*r*250^2/2 [drop over AD = drop over BD as V_a = V_b]\n", + "\n", + "cur_i = (i_d*(l_de+l_eb)*res + cur_uni*res*l_eb*l_eb/2 - i_c*l_ac*res)/((l_ac+l_cd+l_de+l_eb)*res) #A\n", + "\n", + "#cur_i > 40 i.e 40-i is negative,it means D is not point of minimum potential.Let F be point of minimum potential(between DB)\n", + "#current in section DF is\n", + "cur_df = cur_i-i_d #A\n", + "\n", + "#distance EF\n", + "dist_ef = cur_df/cur_uni #m\n", + "\n", + "#distance of F from A is\n", + "dist = l_ac + l_cd + l_de + dist_ef #m\n", + "\n", + "#total drop over AF is [(20+i)*60r + i*40r+ (i-40)*161.7r - 1.5*r*61.7^2/2\n", + "drop_af = 2*res*((i_c+cur_i)*l_ac + cur_i*l_cd + cur_df*(l_de+dist_ef)-cur_uni*dist_ef*dist_ef/2) #V\n", + "#potential at F\n", + "V_f = V_a - drop_af #V\n", + "print \"The point of minimum potential is at\",round(dist,2),\"m from A.\"\n", + "print \"The minimum potential is = \",round(V_f,2),\"V.\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 40.16 ,Page No :- 1588" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Current fed at A is = 225.0 A.\n", + "Current fed at B is = 475.0 A.\n", + "Point of minimum potential from B is = 475.0 metres.\n", + "Voltage at minimum potential is = 230.72 V.\n" + ] + } + ], + "source": [ + "#A two-wire d.c distributor AB,1000 metres long,is supplied from both ends,240V at A and 242V at B.There is a\n", + "#concentrated load of 200A at a distance of 400 metre from A and a uniformly distrubuted load of 1.0A/m between\n", + "#the mid-point and end B.Determine (i)the currents fed at A and B(ii)the point of minimum potential and\n", + "#(iii)voltage at this point.Take cable resistance as 0.005 ohm per 100 metre each core.\n", + "#####################################################################################################################\n", + "\n", + "#Given\n", + "#resistance per 100 metres\n", + "res = 2*0.005/100 #ohm/m\n", + "cur_uni = 1.0 #A/m\n", + "cur_con = 200.0 #A\n", + "len_uni = 500.0\n", + "#Let us assume that Ib current flows from point B.\n", + "#Considering a element dx in BD(500 metres) at a distance of X units(100 m each)\n", + "#voltage drop over dx = (1-100*x)*res*dx\n", + "#voltage drop over BD by integrating is = 0.05*Ib - 12.5\n", + "#voltage drop over DC = (Ib-500)*0.01\n", + "#voltage drop over CA = (Ib-700)*0.01*4\n", + "#total drop over AB = \n", + "tot_drop = 242.0-240.0\n", + "#summation of drops from AC + CD + DB\n", + "from sympy import Eq, var, solve\n", + "var('Ib') \n", + "sum = (Ib-500)*0.01 +(Ib-700)*0.01*4 + 0.05*Ib - 12.5\n", + "\n", + "eq = Eq(sum,tot_drop)\n", + "\n", + "Ib = solve(eq)\n", + "Ib = float(Ib[0])\n", + "#Total current\n", + "cur_tot = len_uni*cur_uni + cur_con\n", + "Ia = cur_tot - Ib #A\n", + "#Current in distributed load\n", + "cur_dis = Ia-cur_con #A\n", + "#point of minimum potential from D is\n", + "distD = cur_dis/cur_uni\n", + "#Therefore distance from B is\n", + "distB = len_uni-distD\n", + "#Therefore voltage drop is\n", + "from scipy.integrate import quad\n", + "\n", + "def integrand(x):\n", + " return (Ib-100*x)*res*100\n", + "\n", + "ans, err = quad(integrand, 0, (distB/100))\n", + "#Therefore potential of M is\n", + "pot_M = 242.0-ans #V\n", + "print \"Current fed at A is = \",Ia,\"A.\"\n", + "print \"Current fed at B is = \",Ib,\"A.\"\n", + "print \"Point of minimum potential from B is = \",distB,\"metres.\"\n", + "print \"Voltage at minimum potential is = \",round(pot_M,2),\"V.\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 40.17 ,Page No :- 1590" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Voltage at B is = 236.9 V.\n", + "Voltage at C is = 235.98 V.\n", + "Voltage at D is = 237.45 V.\n" + ] + } + ], + "source": [ + "#A 400-metre ring distributor has loads as shown in Fig. 40.29(a) where distances are in metres.The resistance\n", + "#of each conductor is 0.2 ohm per 1000 metres and the loads tapped off at points B,C,D are as shown.If the\n", + "#distributor is fed at A,find voltages at B,C and D.\n", + "#################################################################################################################\n", + "\n", + "#Given\n", + "\n", + "res = 0.2/1000 #ohm/m\n", + "V_a = 240.0 #V\n", + "#loads and positions\n", + "i_b = 100.0 #A\n", + "i_c = 70.0 #A\n", + "i_d = 50.0 #A\n", + "l_ab = 60.0 #m\n", + "l_bc = 80.0 #m\n", + "l_cd = 90.0 #m\n", + "l_da = 70.0 #m\n", + "\n", + "#total drop ->70i + 90(i-50)+80(i-120)+60(i-220)=0\n", + "cur_i = (l_cd*i_d + l_bc*(i_d+i_c) + l_ab*(i_d+i_c+i_b))/(l_ab+l_bc+l_cd+l_da)\n", + "#drops in different sections\n", + "drop_da = 2*cur_i*l_da*res\n", + "drop_cd = 2*(cur_i-i_d)*l_cd*res\n", + "drop_bc = 2*abs(cur_i-i_d-i_c)*l_bc*res\n", + "drop_ab = 2*abs(cur_i-i_d-i_c-i_b)*l_ab*res\n", + "\n", + "#voltages at different points\n", + "V_d = V_a - drop_da\n", + "V_c = V_d - drop_cd\n", + "V_b = V_a - drop_ab\n", + "print \"Voltage at B is = \",round(V_b,2),\"V.\"\n", + "print \"Voltage at C is = \",round(V_c,2),\"V.\"\n", + "print \"Voltage at D is = \",round(V_d,2),\"V.\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 40.18 ,Page No :- 1591" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Voltage at B is = 394.2 V.\n", + "Voltage at C is = 393.42 V.\n", + "Current in section BC is = 43.33 A.\n" + ] + } + ], + "source": [ + "#In a direct current ring main,a voltage of 400V is maintained at A.At B,500 metres away from A,a load of 150A is taken\n", + "#and at C,300 metres from B,a load of 200A is taken.The distance between A and C is 700 metres.The resistance of each\n", + "#conductor of the mains is 0.03ohm per 1000 metres.Find the voltage at B and C and also find the current in the section BC.\n", + "##############################################################################################################################\n", + "\n", + "#Given\n", + "V_a = 400.0 #V\n", + "res = 0.03/1000 #ohm/m\n", + "#loads and positions\n", + "i_b = 150.0 #A\n", + "i_c = 200.0 #A\n", + "l_ab = 500.0 #m\n", + "l_bc = 300.0 #m\n", + "l_ca = 700.0 #m\n", + "\n", + "#total drop-> 500i + 300(i-150) + 700(i-350) = 0\n", + "cur_i = (l_bc*i_b + l_ca*(i_b+i_c))/(l_ab+l_bc+l_ca)\n", + "#current in different sections\n", + "cur_ab = cur_i\n", + "cur_bc = cur_i-i_b\n", + "cur_ca = abs(cur_bc-i_c)\n", + "#drops in different sections\n", + "drop_ab = 2*cur_ab*l_ab*res\n", + "drop_bc = 2*cur_bc*l_bc*res\n", + "#voltages in different sections\n", + "V_b = V_a-drop_ab\n", + "V_c = V_b-drop_bc\n", + "print \"Voltage at B is = \",round(V_b,2),\"V.\"\n", + "print \"Voltage at C is = \",round(V_c,2),\"V.\"\n", + "print \"Current in section BC is = \",round(cur_bc,2),\"A.\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 40.19 ,Page No :- 1591" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Current in AB,BC,CD,DE,EA is 29.04 A, 19.04 A, 0.96 A, 30.96 A, 40.96 A respectively.\n", + "\n", + "Voltage at B,C,D,E is 217.1 V, 216.14 V, 216.15 V, 216.93 V respectively\n", + "\n", + "Current in AB,BC,DE,CE,EA is 27.72 A, 17.72 A, 32.28 A, 9.76 A, 42.28 A respectively.\n", + "\n", + "Voltage at B,C,D,E is 217.23 V, 216.34 V, 216.02 V, 216.83 V respectively\n" + ] + } + ], + "source": [ + "#A d.c ring main ABCDE is fed at point A from a 220-V supply and the resistances(including both lead and return)\n", + "#of the various sections are as follows(in ohms):AB=0.1;BC=0.05;CD=0.01;DE=0.025 and EA=0.075.The main supplies\n", + "#loads of 10A at B; 20A at C; 30A at D and 10A at E.Find the magnitude and direction of the current flowing in each\n", + "#section and the voltage at each load point.\n", + "#If the points C and E are further linked together by a conductor of 0.05 ohm resistance and the output currents\n", + "#from the mains remain unchanged,find the new distribution of the current and voltage in the network.\n", + "#####################################################################################################################\n", + "\n", + "#Given\n", + "\n", + "V_a = 220.0 #V\n", + "#resistances of different sections\n", + "r_ab = 0.1 #ohm\n", + "r_bc = 0.05 #ohm\n", + "r_cd = 0.01 #ohm\n", + "r_de = 0.025 #ohm\n", + "r_ea = 0.075 #ohm\n", + "#loads\n", + "i_b = 10.0 #A\n", + "i_c = 20.0 #A\n", + "i_d = 30.0 #A\n", + "i_e = 10.0 #A\n", + "#total drop -> 0.1i + 0.05(i-10) + 0.01(i-30) + 0.025(i-60) + 0.075(i-70)=0\n", + "cur_i = (r_bc*i_b + r_cd*(i_b+i_c) + r_de*(i_b+i_c+i_d) + r_ea*(i_b+i_c+i_d+i_e))/(r_ab+r_bc+r_cd+r_de+r_ea)\n", + "#current in different sections\n", + "cur_ab = cur_i\n", + "cur_bc = cur_ab-i_b\n", + "cur_cd = cur_bc-i_c\n", + "cur_de = cur_cd-i_d\n", + "cur_ea = cur_de-i_e\n", + "\n", + "#drops in different sections\n", + "drop_ab = cur_ab*r_ab\n", + "drop_bc = cur_bc*r_bc\n", + "drop_de = abs(cur_de)*r_de\n", + "drop_ea = abs(cur_ea)*r_ea\n", + "#voltages at different points\n", + "V_b = V_a - drop_ab\n", + "V_c = V_b - drop_bc\n", + "V_e = V_a - drop_ea\n", + "V_d = V_e - drop_de\n", + "print \"Current in AB,BC,CD,DE,EA is\",round(cur_ab,2),\"A,\",round(cur_bc,2),\"A,\",round(abs(cur_cd),2),\"A,\",round(abs(cur_de),2),\"A,\",round(abs(cur_ea),2),\"A respectively.\" \n", + "print \"\"\n", + "print \"Voltage at B,C,D,E is\",round(V_b,2),\"V,\",round(V_c,2),\"V,\",round(V_d,2),\"V,\",round(V_e,2),\"V respectively\"\n", + "print \"\"\n", + "#part-2\n", + "#Potential difference between end points of interconnector(CE)\n", + "V_ce = V_e-V_c\n", + "#Resistance between CE ,as shown in figure\n", + "r1 = r_ab+r_bc+r_ea\n", + "r2 = r_de + r_cd\n", + "res_ce = r1*r2/(r1+r2)+ 0.05\n", + "\n", + "#Current in interconnector [I = V/R Ohm's Law]\n", + "cur_ce = V_ce/res_ce\n", + "#Current goes from E to C as E is at higher potential.\n", + "\n", + "#The current in other sections will also change.\n", + "#let us assume i1 along ED, voltage round the closed mesh EDC is zero.\n", + "#total drop -> -0.025*i1-0.01*(i1-30)+0.05*9.75 = 0\n", + "\n", + "cur_i1 = (0.05*cur_ce + r_cd*i_d)/(r_cd+r_de)\n", + "\n", + "current_ea = i_e+cur_i1+cur_ce\n", + "current_ab = (i_b+i_c+i_d+i_e)-current_ea\n", + "current_bc = current_ab-i_b\n", + "current_de = current_ea-i_e\n", + "#new drops\n", + "drop_ab = current_ab*r_ab\n", + "drop_bc = current_bc*r_bc\n", + "drop_ea = current_ea*r_ea\n", + "drop_de = current_de*r_de\n", + "\n", + "#new potentials\n", + "V_b = V_a - drop_ab\n", + "V_c = V_b - drop_bc\n", + "V_e = V_a - drop_ea\n", + "V_d = V_e - drop_de\n", + "\n", + "print \"Current in AB,BC,DE,CE,EA is\",round(current_ab,2),\"A,\",round(current_bc,2),\"A,\",round(current_de,2),\"A,\",round(cur_ce,2),\"A,\",round(current_ea,2),\"A respectively.\"\n", + "print \"\"\n", + "print \"Voltage at B,C,D,E is\",round(V_b,2),\"V,\",round(V_c,2),\"V,\",round(V_d,2),\"V,\",round(V_e,2),\"V respectively\" \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 40.20 ,Page No :- 1594" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Voltage across 3 ohm load is = 244.9 V.\n", + "Voltage across 4 ohm load is = 247.9 V.\n" + ] + } + ], + "source": [ + "#In a 3-wire distribution system,the supply voltage is 250V on each side.The load on one side is a 3 ohm\n", + "#resistance and on the other, a 4 ohm resistance.The resistance of each of the 3 conductors is 0.05 ohm.\n", + "#Find the load voltages.\n", + "#########################################################################################################\n", + "\n", + "import numpy as np\n", + "#Given\n", + "#Resistances\n", + "res_1 = 3.0 #ohm\n", + "res_2 = 4.0 #ohm\n", + "res_con = 0.05 #ohm\n", + "V_sup = 250.0 #V\n", + "\n", + "#Let the assumed directions of unknown currents be as shown in figure.\n", + "#KVL for ABCD\n", + "# (3+0.05)x + 0.05(x-y) = 250 -------------- eqn 1\n", + "a = res_1 + 2*res_con\n", + "b = -(res_con)\n", + "#KVL for DCEFD\n", + "# 0.05(y-x) + (4+0.05)y = 250 -------------- eqn 2\n", + "c = res_2+ 2*res_con \n", + "#Solving eqn 1 and eqn2\n", + "m = [[a,b],[b,c]]\n", + "n = [V_sup,V_sup]\n", + "soln = np.linalg.solve(m,n) #soln is array with its elements[x,y]\n", + "#Calculating the load voltages\n", + "#V1 = 250-0.05*x-0.05(x-y)\n", + "vol1 = V_sup - res_con*soln[0]-res_con*(soln[0]-soln[1]) #V\n", + "#V2 = 250 + 0.05(x-y)- 0.05y\n", + "vol2 = V_sup + res_con*(soln[0]-soln[1]) - res_con*soln[1] #V\n", + "print \"Voltage across 3 ohm load is = \",round(vol1,1),\"V.\"\n", + "print \"Voltage across 4 ohm load is = \",round(vol2,1),\"V.\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 40.21 ,Page No :- 1594" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Potential Difference across AB is = 248.62 V.\n", + "Potential Difference across QK is = 247.83 V.\n", + "Potential Difference across CD is = 248.4 V.\n", + "Potential Difference across FE is = 247.65 V.\n" + ] + } + ], + "source": [ + "#A 3-wire d.c distributor PQ,250 metres long,is supplied at end P at 500/250V and is loaded as under:\n", + "#Positive side: 20A 150 metres from P ; 30A 250 metres from P.\n", + "#Negative side: 24A 100 metres from P ; 36A 220 metres from P.\n", + "#The resistance of each outer wire is 0.02 ohm per 100 metres and the cross-section of the middle wire\n", + "#is one-half of the outer.Find the voltage across each load point.\n", + "##########################################################################################################\n", + "\n", + "#Given\n", + "V_PN = 250.0 #V\n", + "V_NR = 250.0 #V\n", + "res_out = 0.02/100 #ohm/m\n", + "res_mid = 2*res_out #ohm/m (Area of middle wire is half.As, R = rho*l/A .Therefore,Resistance doubles)\n", + "\n", + "#Given Currents\n", + "i_ab = 20.0 #A\n", + "i_qk = 30.0 #A\n", + "i_cd = 24.0 #A\n", + "i_fe = 36.0 #A\n", + "\n", + "#Currents in different sections\n", + "i_pa = i_ab+i_qk #A\n", + "i_aq = i_qk #A\n", + "i_fk = i_qk #A\n", + "i_bf = i_fe-i_qk #A\n", + "i_bc = i_ab-i_bf #A\n", + "i_cn = i_cd-i_bc #A\n", + "i_de = i_fe #A\n", + "i_dr = i_cd+i_fe #A\n", + "\n", + "\n", + "#lengths of different sections\n", + "l_pa = 150.0 #m\n", + "l_aq = 100.0 #m\n", + "l_kf = 250.0-220.0 #m\n", + "l_bc = 150.0-100.0 #m\n", + "l_bf = 220.0-150.0 #m\n", + "l_cn = 100.0 #m\n", + "l_de = 220.0-100.0 #m\n", + "l_dr = 100.0 #m\n", + "\n", + "#Resistances of different sections\n", + "r_pa = l_pa*res_out #ohm\n", + "r_aq = l_aq*res_out #ohm\n", + "r_kf = l_kf*res_mid #ohm\n", + "r_bc = l_bc*res_mid #ohm\n", + "r_bf = l_bf*res_mid #ohm\n", + "r_cn = l_cn*res_mid #ohm\n", + "r_de = l_de*res_out #ohm\n", + "r_dr = l_dr*res_out #ohm\n", + "\n", + "#Drop across different sections\n", + "drop_pa = r_pa*i_pa #V\n", + "drop_aq = r_aq*i_aq #V\n", + "drop_kf = r_kf*i_fk #V\n", + "drop_bc = r_bc*i_bc #V\n", + "drop_bf = r_bf*i_bf #V\n", + "drop_cn = r_cn*i_cn #V\n", + "drop_de = r_de*i_de #V\n", + "drop_dr = r_dr*i_dr #V\n", + "\n", + "#Voltages across different sections\n", + "vol_ab = V_PN - drop_pa - drop_bc + drop_cn #V\n", + "vol_qk = vol_ab - drop_aq - drop_kf + drop_bf #V\n", + "vol_cd = V_NR - drop_cn - drop_dr #V \n", + "vol_fe = vol_cd + drop_bc - drop_bf - drop_de #V\n", + "\n", + "print \"Potential Difference across AB is = \",round(vol_ab,2),\"V.\"\n", + "print \"Potential Difference across QK is = \",round(vol_qk,2),\"V.\"\n", + "print \"Potential Difference across CD is = \",round(vol_cd,2),\"V.\"\n", + "print \"Potential Difference across FE is = \",round(vol_fe,2),\"V.\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 40.22 ,Page No :- 1597" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Total load on main generator is = 155.0 kW.\n", + "Load on Balancer 1 is = 22.5 kW.\n", + "Load on Balancer 2 is = 27.5 kW.\n" + ] + } + ], + "source": [ + "#A d.c 3-wire system with 500-V between outers has lighting load of 100kW on the positive and 50kW on the\n", + "#negative side.If,at this loading,the balancer machines have each a loss of 2.5kW,Calculate the kW loading\n", + "#of each balancer machine and the total load on the system.\n", + "###########################################################################################################\n", + "\n", + "#Given\n", + "V_out = 500.0 #V\n", + "load_p = 100.0 #kW (positive side)\n", + "load_n = 50.0 #KW (negative side)\n", + "load_b = 2.5 #kW (balancer machine)\n", + "#total load on main generator\n", + "load_tot = load_p + load_n + 2*load_b #kW\n", + "#Output current of main generator\n", + "cur_out = load_tot*1000/V_out #W/V->A\n", + "#load current on positive side\n", + "cur_p = load_p*1000/(V_out/2) #A\n", + "#load current on negative side\n", + "cur_n = load_n*1000/(V_out/2) #A\n", + "#Current through neutral(Out of balance)\n", + "cur_o = cur_p-cur_n #A\n", + "\n", + "#Currents of balancer\n", + "cur_b1 = cur_p-cur_out #A\n", + "cur_b2 = cur_o - cur_b1 #A\n", + "\n", + "#Load on balancer\n", + "load_b1 = (V_out/2)*cur_b1/1000 #kW\n", + "load_b2 = (V_out/2)*cur_b2/1000 #kW\n", + "\n", + "print \"Total load on main generator is = \",round(load_tot,2),\"kW.\"\n", + "print \"Load on Balancer 1 is = \",round(load_b1,2),\"kW.\"\n", + "print \"Load on Balancer 2 is = \",round(load_b2,2),\"kW.\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 40.23 ,Page No :- 1598" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Total load on main generator is = 1216.0 kW.\n", + "Current through Balancer 1 is = 168.0 A.\n", + "Current through Balancer 2 is = 232.0 A.\n" + ] + } + ], + "source": [ + "#In a 500/250-V d.c 3-wire system,there is a current of 2000A on the +ve side, 1600A on the negative side\n", + "#and a load of 300 kW across the outers.The loss in each balancer set is 8 kW.Calculate the current in each\n", + "#armature of the balancer set and total load on the main generator.\n", + "#############################################################################################################\n", + "\n", + "#Given\n", + "V_out = 500.0 #V\n", + "cur_p = 2000.0 #A (current on positive side)\n", + "cur_n = 1600.0 #A (current on negative side)\n", + "load_ext = 300.0 #kW (across outers)\n", + "load_b = 8.0 #kW (loss in balancer set)\n", + "#loading on positive side\n", + "load_p = (cur_p*(V_out/2))/1000 #kW\n", + "#loading on negative side\n", + "load_n = (cur_n*(V_out/2))/1000 #kW\n", + "#Total loading on main generator\n", + "load_tot = load_p + load_n + 2*load_b + load_ext #kW\n", + "\n", + "#current on main generator -> I = W/V\n", + "cur_tot = load_tot*1000/V_out #A\n", + "\n", + "#current through neutral(out of balance)\n", + "cur_o = cur_p-cur_n #A\n", + "\n", + "#current through external resistance\n", + "cur_ext = load_ext*1000/V_out #A\n", + "\n", + "#current through balancer sets\n", + "cur_b1 = (cur_p+cur_ext)-cur_tot #A\n", + "cur_b2 = cur_o - cur_b1 #A\n", + "\n", + "print \"Total load on main generator is = \",round(load_tot,2),\"kW.\"\n", + "print \"Current through Balancer 1 is = \",round(cur_b1,2),\"A.\"\n", + "print \"Current through Balancer 2 is = \",round(cur_b2,2),\"A.\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 40.24 ,Page No :- 1598" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Current supplied by generator is = 7000.0 A.\n", + "Current in positive side is = 6000.0 A.\n", + "Current in negative side is = 8000.0 A.\n", + "Current in neutral is = 2000.0 A.\n", + "Current through armature 1 is = 1000.0 A.\n", + "Current through armature 2 is = 1000.0 A.\n" + ] + } + ], + "source": [ + "#On a 3-wire d.c distribution system with 500V between outers,there is a load of 1500kW on the positive\n", + "#side and 2000 kW on the negative side.Calculate the current in the neutral and in each of the balancer\n", + "#armatures and the total current supplied by the generator.Neglect losses.\n", + "##########################################################################################################\n", + "\n", + "#Given\n", + "V_out = 500.0 #V\n", + "load_p = 1500.0 #kW (load on positive side)\n", + "load_n = 2000.0 #kW (load on negative side)\n", + "#total loading on main generator\n", + "load_tot = load_p + load_n #kW\n", + "#current supplied by generator\n", + "cur_tot = load_tot*1000/V_out #A\n", + "#current on positive side\n", + "cur_p = load_p*1000/(V_out/2) #A\n", + "#current on negative side\n", + "cur_n = load_n*1000/(V_out/2) #A\n", + "#current in neutral(out of balance)\n", + "cur_o = abs(cur_p-cur_n) #A\n", + "#current through armatures\n", + "cur_b1 = cur_tot-cur_p #A\n", + "cur_b2 = cur_o-cur_b1 #A\n", + "\n", + "print \"Current supplied by generator is = \",cur_tot,\"A.\"\n", + "print \"Current in positive side is = \",cur_p,\"A.\"\n", + "print \"Current in negative side is = \",cur_n,\"A.\"\n", + "print \"Current in neutral is = \",cur_o,\"A.\"\n", + "print \"Current through armature 1 is = \",cur_b1,\"A.\"\n", + "print \"Current through armature 2 is = \",cur_b2,\"A.\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 40.25 ,Page No :- 1599" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Current in balancer set 1 is = 22.0 A.\n", + "Current in balancer set 2 is = 28.0 A.\n", + "Output of main generator is = 119.5 kW.\n" + ] + } + ], + "source": [ + "#A 125/250 V,3-wire distributor has an out-of-balance current of 50 A and larger load of 500 A.The balancer\n", + "#set has a loss of 375 W in each machine.Calculate the current in each of the balancer machines and output\n", + "#of main generator.\n", + "############################################################################################################\n", + "\n", + "#Given\n", + "V_out = 250.0 #V\n", + "#Currents\n", + "cur_p = 500.0 #A\n", + "cur_o = 50.0 #A\n", + "cur_n = cur_p - cur_o #A\n", + "#larger Load\n", + "load_p = cur_p*(V_out/2)/1000 #kW\n", + "#smaller Load\n", + "load_n = cur_n*(V_out/2)/1000 #kW\n", + "#Balancer loss\n", + "loss_b = 2*375.0/1000 #kW\n", + "#total load on generator\n", + "load_tot = load_p + load_n + loss_b\n", + "#current from main generator -> VI = W\n", + "cur_tot = load_tot*1000/V_out #A\n", + "\n", + "#Current in balancer sets\n", + "cur_b1 = cur_p - cur_tot #A\n", + "cur_b2 = cur_o - cur_b1 #A\n", + "print \"Current in balancer set 1 is = \",cur_b1,\"A.\"\n", + "print \"Current in balancer set 2 is = \",cur_b2,\"A.\"\n", + "print \"Output of main generator is = \",load_tot,\"kW.\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 40.26 ,Page No :- 1599" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Total load on main generator is = 1210.0 kW.\n", + "Load on Balancer set 1 is = 20.0 kW.\n", + "Load on balancer set 2 is = 30.0 kW.\n" + ] + } + ], + "source": [ + "#The load on d.c 3-wire system with 500 V between outers consists of lighting current of 1500 A on the\n", + "#positive side and 1300 A on the negative side while motors connected across the outers absorb 500kW.\n", + "#Assuming that at this loading,the balancer machines have each a loss of 5kW,calculate the load on the\n", + "#main generator and on each of the balancer machines.\n", + "##########################################################################################################\n", + "\n", + "#Given\n", + "cur_p = 1500.0 #A\n", + "cur_n = 1300.0 #A\n", + "V_out = 500.0 #V\n", + "load_ext = 500.0 #kW\n", + "loss_b = 2*5.0 #kW\n", + "\n", + "#current through external load\n", + "cur_ext = load_ext*1000/V_out #A\n", + "#larger load\n", + "load_p = cur_p*(V_out/2)/1000 #kW\n", + "#smaller load\n", + "load_n = cur_n*(V_out/2)/1000 #kW\n", + "#total load on generator\n", + "load_tot = load_p + load_n + loss_b + load_ext #kW\n", + "#current from generator -> VI = W\n", + "cur_tot = load_tot*1000/V_out #A\n", + "#current through neutral(out of balance)\n", + "cur_o = cur_p-cur_n #A\n", + "#current through balancer sets\n", + "cur_b1 = (cur_p+cur_ext)-cur_tot #A\n", + "cur_b2 = cur_o-cur_b1 #A\n", + "#load of balancer sets\n", + "load_b1 = cur_b1*(V_out/2)/1000 #kW\n", + "load_b2 = cur_b2*(V_out/2)/1000 #kW\n", + "\n", + "print \"Total load on main generator is = \",load_tot,\"kW.\"\n", + "print \"Load on Balancer set 1 is = \",load_b1,\"kW.\"\n", + "print \"Load on balancer set 2 is = \",load_b2,\"kW.\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 40.27 ,Page No :- 1599" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Voltage across Balancer 1 is = 230.0 A.\n", + "Voltage across Balancer 2 is = 250.0 A.\n", + "Load current on main generator is = 1110.0 A.\n" + ] + } + ], + "source": [ + "#A d.c 3-wire system with 480 V across outers supplies 1200 A on the positive and 1000 A on the negative side.\n", + "#The balancer machines have each an armature resistances of 0.1W and take 10 A on no-load.Find\n", + "#(a)the voltage across each balancer and\n", + "#(b)the total load on the main generator and the current loading of each balancer machine.\n", + "#The balancer field windings are in series across the outers\n", + "################################################################################################################\n", + "\n", + "#Given\n", + "V_out = 480.0 #V\n", + "#currents\n", + "cur_p = 1200.0 #A\n", + "cur_n = 1000.0 #A\n", + "cur_o = cur_p - cur_n #A (out of balance)\n", + "#armature resistance \n", + "res_arm = 0.1 #ohm\n", + "#no-load current\n", + "cur_nold = 10.0 #A\n", + "\n", + "#Let us assume current Im flows through mtoring machine,then (200-Im) flows through generating machine.\n", + "#Let Vg and Vm be potential difference of 2 machines.\n", + "\n", + "#Total losses in sets = no-load losses + Cu losses in two machines\n", + "#loss_set = V_out*cur_nold + 0.1*Im^2+ 0.1*(200-Im)^2\n", + "#Vm*Im = Vg*Ig + loss_set\n", + "#Now, Vm = Eb+Im*Ra Vg = Eb-Ig*Ra\n", + "Eb = V_out/2-res_arm*cur_nold\n", + "\n", + "#Therefore, Vm = 239 + Im*0.1 and Vg = 239 - (200-Im)*0.1\n", + "#Hence,Equation is \n", + "#(239+0.1*Im)*Im = [239 - (200-Im)*0.1]*(200-Im) + loss_set\n", + "#Simplified -> 239Im = 239*(200-Im)+4800\n", + "\n", + "#Solving this equation\n", + "from sympy import Eq, var, solve\n", + "var('Im') \n", + "eq = Eq(Eb*(2*Im-cur_o),V_out*cur_nold)\n", + "Im = solve(eq)\n", + "Im = int(Im[0])\n", + "Ig = cur_o-Im\n", + "#Voltage across balancers\n", + "\n", + "Vm = Eb + Im*res_arm #V\n", + "Vg = Eb - Ig*res_arm #V \n", + "\n", + "#Load on main generator\n", + "cur_load = cur_p - Ig #A\n", + "print \"Voltage across Balancer 1 is = \",round(Vg,2),\"A.\"\n", + "print \"Voltage across Balancer 2 is = \",round(Vm,2),\"A.\"\n", + "print \"Load current on main generator is = \",round(cur_load,2),\"A.\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 40.28 ,Page No :- 1600" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Voltage on positive side is = 283.0 V.\n", + "Voltage on negative side is = 177.0 V.\n" + ] + } + ], + "source": [ + "#A d.c 3-wire system with 460V between outers supplies 250kW on the positive and 400kW on the negative side,\n", + "#the voltages being balanced.Calculate the voltage on the positive and negative side,the voltages being balanced.\n", + "#Calculate the voltage on the positive and negative sides repectively,if the neutral wire becomes disconnected\n", + "#from balancer set.\n", + "#################################################################################################################\n", + "\n", + "#Given\n", + "V_mid = 230.0 #V\n", + "V_out = 460.0 #V\n", + "#loads\n", + "load_p = 250.0 #kW\n", + "load_n = 400.0 #kW\n", + "#resistance on positive side -> (V^2/R) = W\n", + "res_p = (V_mid*V_mid)/(load_p*1000) #ohm\n", + "\n", + "#resistance on negative side -> (V^2/R) = W\n", + "res_n = (V_mid*V_mid)/(load_n*1000) #ohm\n", + "\n", + "#Voltages after disconnecting balancer set\n", + "vol_p = (res_p/(res_p+res_n))*V_out #V\n", + "vol_n = V_out - vol_p #V\n", + "\n", + "print \"Voltage on positive side is = \",round(vol_p),\"V.\"\n", + "print \"Voltage on negative side is = \",round(vol_n),\"V.\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EXAMPLE 40.29 ,Page No :- 1601" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Terminal potential difference of the booster is = 180.0 V.\n", + "Output of booster is = 21.6 kW.\n" + ] + } + ], + "source": [ + "#A 2-wire system has the voltage at the supply end maintained at 500.The line is 3 km long.If the full-load\n", + "#current is 120 A,what must be the booster voltage and output in order that the far end voltage may also be 500 V.\n", + "#Take the resistance of the cable at the working temperature as 0.5ohm/kilometre.\n", + "####################################################################################################################\n", + "\n", + "#Total resistance of line\n", + "res_tot = 0.5*3 #ohm\n", + "#Full load current\n", + "cur_full = 120.0 #A\n", + "\n", + "#drop in the line-> V=IR\n", + "drop = res_tot*cur_full #V\n", + "\n", + "#Output of booster ->VI = W\n", + "output = drop*cur_full/1000 #kW\n", + "\n", + "print \"Terminal potential difference of the booster is = \",drop,\"V.\"\n", + "print \"Output of booster is = \",round(output,2),\"kW.\"" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |