summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorTrupti Kini2016-06-13 23:30:27 +0600
committerTrupti Kini2016-06-13 23:30:27 +0600
commit200c141d0c5797a4033c448aaf9c73b81e2b819c (patch)
treedf88ac2ce6febb537f4aa4e1f55b726d960c9162
parent6803fb66aaaaea61e0fffbddf6656dff22d5fe10 (diff)
downloadPython-Textbook-Companions-200c141d0c5797a4033c448aaf9c73b81e2b819c.tar.gz
Python-Textbook-Companions-200c141d0c5797a4033c448aaf9c73b81e2b819c.tar.bz2
Python-Textbook-Companions-200c141d0c5797a4033c448aaf9c73b81e2b819c.zip
Added(A)/Deleted(D) following books
A Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_10_Tabulated_properties_Steam_Tables.ipynb A Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_11_Properties_of_Gases.ipynb A Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_16_Fluid_Flow_Nozzles_and_Turbines.ipynb A Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_17_Gas_compression.ipynb A Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_18_Refrigeration.ipynb A Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_19_Heat_Transmission.ipynb A Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_2_Work.ipynb A Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_3_Temperature_and_Heat.ipynb A Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_5_First_Law_of_Thermodynamics.ipynb A Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_6_Flow_Procesess_First_law_analysis.ipynb A Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_8_Basic_applications_of_the_second_law.ipynb A Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Combustion_Processes_First_law_analysis.ipynb A Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Gas_cycles.ipynb A Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Properties_of_Gaseous_Mixtures.ipynb A Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/README.txt A Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Vapor_cycles.ipynb A Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/screenshots/2.png A Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/screenshots/3.png A Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/screenshots/6.png R Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter1.ipynb -> Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter1.ipynb R Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter1_1.ipynb -> Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter1_1.ipynb R Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter2.ipynb -> Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter2.ipynb R Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter2_1.ipynb -> Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter2_1.ipynb R Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter3.ipynb -> Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter3.ipynb R Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter3_1.ipynb -> Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter3_1.ipynb R Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter4.ipynb -> Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter4.ipynb R Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter4_1.ipynb -> Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter4_1.ipynb R Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter5.ipynb -> Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter5.ipynb R Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter5_1.ipynb -> Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter5_1.ipynb R Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter6.ipynb -> Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter6.ipynb R Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter6_1.ipynb -> Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter6_1.ipynb R Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter7.ipynb -> Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter7.ipynb R Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter7_1.ipynb -> Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter7_1.ipynb R Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter8.ipynb -> Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter8.ipynb R Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter8_1.ipynb -> Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter8_1.ipynb R Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter9.ipynb -> Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter9.ipynb R Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter9_1.ipynb -> Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter9_1.ipynb R Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/README.txt -> Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/README.txt R Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/screenshots/1.png -> Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/screenshots/1.png R Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/screenshots/1_1.png -> Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/screenshots/1_1.png R Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/screenshots/1_2.png -> Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/screenshots/1_2.png R Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/screenshots/2.png -> Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/screenshots/2.png R Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/screenshots/2_1.png -> Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/screenshots/2_1.png R Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/screenshots/3.png -> Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/screenshots/3.png A sample_notebooks/nishumittal/chapter1.ipynb
-rw-r--r--Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_10_Tabulated_properties_Steam_Tables.ipynb463
-rw-r--r--Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_11_Properties_of_Gases.ipynb289
-rw-r--r--Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_16_Fluid_Flow_Nozzles_and_Turbines.ipynb238
-rw-r--r--Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_17_Gas_compression.ipynb263
-rw-r--r--Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_18_Refrigeration.ipynb92
-rw-r--r--Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_19_Heat_Transmission.ipynb467
-rw-r--r--Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_2_Work.ipynb168
-rw-r--r--Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_3_Temperature_and_Heat.ipynb263
-rw-r--r--Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_5_First_Law_of_Thermodynamics.ipynb263
-rw-r--r--Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_6_Flow_Procesess_First_law_analysis.ipynb208
-rw-r--r--Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_8_Basic_applications_of_the_second_law.ipynb341
-rw-r--r--Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Combustion_Processes_First_law_analysis.ipynb404
-rw-r--r--Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Gas_cycles.ipynb219
-rw-r--r--Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Properties_of_Gaseous_Mixtures.ipynb330
-rw-r--r--Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/README.txt10
-rw-r--r--Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Vapor_cycles.ipynb303
-rw-r--r--Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/screenshots/2.pngbin0 -> 58718 bytes
-rw-r--r--Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/screenshots/3.pngbin0 -> 60411 bytes
-rw-r--r--Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/screenshots/6.pngbin0 -> 99665 bytes
-rw-r--r--Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter1.ipynb (renamed from Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter1.ipynb)0
-rw-r--r--Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter1_1.ipynb (renamed from Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter1_1.ipynb)0
-rw-r--r--Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter2.ipynb (renamed from Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter2.ipynb)0
-rw-r--r--Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter2_1.ipynb (renamed from Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter2_1.ipynb)0
-rw-r--r--Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter3.ipynb (renamed from Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter3.ipynb)0
-rw-r--r--Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter3_1.ipynb (renamed from Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter3_1.ipynb)0
-rw-r--r--Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter4.ipynb (renamed from Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter4.ipynb)0
-rw-r--r--Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter4_1.ipynb (renamed from Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter4_1.ipynb)0
-rw-r--r--Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter5.ipynb (renamed from Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter5.ipynb)0
-rw-r--r--Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter5_1.ipynb (renamed from Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter5_1.ipynb)0
-rw-r--r--Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter6.ipynb (renamed from Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter6.ipynb)0
-rw-r--r--Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter6_1.ipynb (renamed from Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter6_1.ipynb)0
-rw-r--r--Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter7.ipynb (renamed from Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter7.ipynb)0
-rw-r--r--Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter7_1.ipynb (renamed from Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter7_1.ipynb)0
-rw-r--r--Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter8.ipynb (renamed from Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter8.ipynb)0
-rw-r--r--Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter8_1.ipynb (renamed from Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter8_1.ipynb)0
-rw-r--r--Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter9.ipynb (renamed from Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter9.ipynb)0
-rw-r--r--Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter9_1.ipynb (renamed from Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter9_1.ipynb)0
-rw-r--r--Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/README.txt (renamed from Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/README.txt)0
-rw-r--r--Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/screenshots/1.png (renamed from Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/screenshots/1.png)bin15157 -> 15157 bytes
-rw-r--r--Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/screenshots/1_1.png (renamed from Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/screenshots/1_1.png)bin15157 -> 15157 bytes
-rw-r--r--Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/screenshots/1_2.png (renamed from Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/screenshots/1_2.png)bin15157 -> 15157 bytes
-rw-r--r--Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/screenshots/2.png (renamed from Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/screenshots/2.png)bin11087 -> 11087 bytes
-rw-r--r--Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/screenshots/2_1.png (renamed from Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/screenshots/2_1.png)bin11087 -> 11087 bytes
-rw-r--r--Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/screenshots/3.png (renamed from Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/screenshots/3.png)bin8235 -> 8235 bytes
-rw-r--r--sample_notebooks/nishumittal/chapter1.ipynb165
45 files changed, 4486 insertions, 0 deletions
diff --git a/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_10_Tabulated_properties_Steam_Tables.ipynb b/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_10_Tabulated_properties_Steam_Tables.ipynb
new file mode 100644
index 00000000..716ec20d
--- /dev/null
+++ b/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_10_Tabulated_properties_Steam_Tables.ipynb
@@ -0,0 +1,463 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Chapter 10: Tabulated properties Steam Tables"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 10.1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Heat of vaporisation (Btu/lb) = 889.11\n",
+ "press enter key to exit\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "''"
+ ]
+ },
+ "execution_count": 1,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#What is the heat of vaporization of water at 100 psia?\n",
+ "#initialisation of variables\n",
+ "p= 100\t\t\t\t\t\t\t\t\t#psia\n",
+ "vg= 4.432 \t\t\t\t\t\t\t\t#cu ft/lb\n",
+ "vf= 0.01744 \t\t\t\t\t\t\t#cu ft/lb\n",
+ "T= 327.8 \t\t\t\t\t\t\t\t#F\n",
+ "sfg= 1.1286 \t\t\t\t\t\t\t#Bu/lb R\n",
+ "#CALCULATIONS\n",
+ "Q=(T+460)*sfg\t\t\t\t\t\t\t#Heat of vaporisation\n",
+ "#RESULTS\n",
+ "print '%s %.2f' %('Heat of vaporisation (Btu/lb) = ',Q)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 10.2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "All the values are obtained from the steam tables\n",
+ "Pressure (Psia) = 70.00\n",
+ " \n",
+ " Temperature (F) = 302.92\n",
+ " \n",
+ " Enthalpy (Btu/lb) = 1180.60\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Saturated Steam has entropy of 1.6315 Btu/lb R; What are its pressure,\n",
+ "#temperature and enthalpy?\n",
+ "#initialisation of variables\n",
+ "S= 1.6315 \t\t\t\t\t\t#Btu/lb R\n",
+ "#CALCULATIONS\n",
+ "print '%s' %('All the values are obtained from the steam tables')\n",
+ "P= 70 \t\t\t\t\t\t\t#psia\n",
+ "t= 302.92 \t\t\t\t\t\t#F\n",
+ "h= 1180.6 \t\t\t\t\t\t#Btu/lb\n",
+ "#RESULTS\n",
+ "print '%s %.2f' %('Pressure (Psia) = ',P)\n",
+ "print '%s %.2f' % (' \\n Temperature (F) = ',t)\n",
+ "print '%s %.2f' % (' \\n Enthalpy (Btu/lb) = ',h)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 10.3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Internal energy (Btu/lb) = 1087.70\n",
+ "press enter key to exit\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "''"
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#What is the internal energy of saturated water vapor at 250F?\n",
+ "#initialisation of variables\n",
+ "T= 250 \t\t\t\t\t\t#F\n",
+ "hg= 1164.0 \t\t\t\t\t#Btu/lb\n",
+ "P= 29.825 \t\t\t\t\t#Psia\n",
+ "Vg= 13.821 \t\t\t\t\t#cu ft/lb\n",
+ "#CALCULATIONS\n",
+ "ug= hg-(P*Vg*144./778.) #Internal energy\n",
+ "#RESULTS\n",
+ "print '%s %.2f' %('Internal energy (Btu/lb) = ',ug)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 10.4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Volume (cu ft/lb) = 2.67\n",
+ " \n",
+ " Entropy (Btu/lb R) = 1.15\n",
+ " \n",
+ " Enthalpy (Btu/lb) = 831.68\n",
+ "press enter key to exit\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "''"
+ ]
+ },
+ "execution_count": 1,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#Find the properties of a mixture of steam and liquid water at 100 psia, containing 40 percent liquid.\n",
+ "#initialisation of variables\n",
+ "P= 100 \t\t\t\t\t\t\t#psia\n",
+ "n= 40\n",
+ "vf= 0.01774 \t\t\t\t\t#cu ft/lb\n",
+ "vg= 4.432 \t\t\t\t\t\t#cu ft/lb\n",
+ "hf= 298.4 \t\t\t\t\t\t#Btu/lb\n",
+ "hfg= 888.8 \t\t\t\t\t\t#Btu/lb\n",
+ "sg= 1.6026 \t\t\t\t\t\t#Btu/lb R\n",
+ "sfg= 1.1286 \t\t\t\t\t#Btu/lb R\n",
+ "#CALCULATIONS\n",
+ "vx= (n/100.)*vf+(1-(n/100.))*vg \t#Volume of mixture\n",
+ "hx= hf+(1-(n/100.))*hfg\t\t\t#Enthalpy of mixture\n",
+ "sx= sg-(n/100.)*sfg\t\t\t\t#Entropy of mixture\n",
+ "#RESULTS\n",
+ "print '%s %.2f' %('Volume (cu ft/lb) = ',vx)\n",
+ "print '%s %.2f' %(' \\n Entropy (Btu/lb R) = ',sx)\n",
+ "print '%s %.2f' %(' \\n Enthalpy (Btu/lb) = ',hx)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 10.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Enthalpy (Btu/lb) = 1160.54\n",
+ " \n",
+ " Precise Enthalpy (Btu/lb) = 1160.54\n",
+ "press enter key to exit\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "''"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#Find the enthalpy of wet steam, 0.97 quality, at 100 psia.\n",
+ "#initialisation of variables\n",
+ "P= 100 \t\t\t\t\t#psia\n",
+ "n= 0.97\n",
+ "hf= 298.4 \t\t\t\t#Btu/lb\n",
+ "hfg= 888.8 \t\t\t\t#Btu/lb\n",
+ "hg= 1187.2 \t\t\t\t#Btu/lb\n",
+ "#CALCULATIONS\n",
+ "hx= hf+n*hfg\t\t\t#Enthalpy\n",
+ "hx1= hg-(1-n)*hfg\t\t#Precise Enthalpy\n",
+ "#RESULTS\n",
+ "print '%s %.2f' % ('Enthalpy (Btu/lb) = ',hx)\n",
+ "print '%s %.2f' % (' \\n Precise Enthalpy (Btu/lb) = ',hx1)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 10.6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Volume (cu ft/lb) = 25.38\n",
+ " \n",
+ " Entropy (Btu/lb R) = 1.71\n",
+ " \n",
+ " Enthalpy (Btu/lb) = 1117.23\n",
+ "press enter key to exit\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "''"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#Water at 15 psia has entropy of 1.7050 Btu/lb R. Find its enthalpy and volume.\n",
+ "#initialisation of variables\n",
+ "P= 15 \t\t\t\t\t#psia\n",
+ "S= 1.7050 \t\t\t\t#Btu/lb R\n",
+ "sg= 1.7549 \t\t\t\t#btu/lb R\n",
+ "sfg= 1.4415 \t\t\t#Bru/lb R\n",
+ "hg= 1150.8 \t\t\t\t#btu/lb\n",
+ "hfg= 969.7 \t\t\t\t#Btu/lb\n",
+ "vg= 26.29 \t\t\t\t#cu ft/lb\n",
+ "vfg= 26.27 \t\t\t\t#cu ft/lb\n",
+ "#CALCULATIONS\n",
+ "n= (sg-S)/sfg \t\t\t#moisture fraction\n",
+ "sx= sg-n*sfg\t\t\t#Entropy\n",
+ "hx= hg-n*hfg\t\t\t#Enthalpy\n",
+ "vx= vg-n*vfg\t\t\t#Volume\n",
+ "#RESULTS\n",
+ "print '%s %.2f' % ('Volume (cu ft/lb) = ',vx)\n",
+ "print '%s %.2f' % (' \\n Entropy (Btu/lb R) = ',sx)\n",
+ "print '%s %.2f' % (' \\n Enthalpy (Btu/lb) = ',hx)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 10.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "All the values are obtained from the steam tables\n",
+ "Volume (cu ft/lb) = 0.01608\n",
+ " \n",
+ " Enthalpy (Btu/lb) = 70.67\n",
+ "press enter key to exit\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "''"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#Find the volume and enthalpy of liquid water at 100 F and 1000 psia.\n",
+ "#initialisation of variables\n",
+ "T= 100 \t\t\t\t\t\t#F\n",
+ "P= 1000 \t\t\t\t\t#psia\n",
+ "dv= -5.1/100000. \t\t\t#cu ft/lb\n",
+ "dh= 2.70 \t\t\t\t\t#Btu/lb\n",
+ "vf= 0.01613 \t\t\t\t#cu ft/lb\n",
+ "hf= 67.97 \t\t\t\t\t#Btu/lb\n",
+ "#CALCULATIONS\n",
+ "print '%s' %(\"All the values are obtained from the steam tables\")\n",
+ "h= dh+hf\t\t\t\t\t#Enthalpy\n",
+ "v= dv+vf\t\t\t\t\t#Volume\n",
+ "#RESULTS\n",
+ "print '%s %.5f' %('Volume (cu ft/lb) = ',v)\n",
+ "print '%s %.2f' %(' \\n Enthalpy (Btu/lb) = ',h)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 10.11"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "quality= 0.982\n",
+ "press enter key to exit\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "''"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#A sample of steam at 200 psia flows to a throttling calorimeter in which the \n",
+ "#pressure is 15 psia and the temperature 280 F. Find the quality of the sample. \n",
+ "#At 15 psia and 280 F the enthalpy is found in table 3 to be 1183.2 btu/lb. \t\n",
+ "#initialisation of variables\n",
+ "h1= 1183.2 \t\t\t\t#Btu/lb\n",
+ "hg= 1198.4 \t\t\t\t#Btu/lb\n",
+ "hfg= 843.0 \t\t\t\t#Btu/lb\n",
+ "#CALCULATIONS\n",
+ "n= 1-((hg-h1)/hfg)\t\t#Quality\n",
+ "#RESULTS\n",
+ "print '%s %.3f' %('quality= ',n)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_11_Properties_of_Gases.ipynb b/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_11_Properties_of_Gases.ipynb
new file mode 100644
index 00000000..e62ea4c5
--- /dev/null
+++ b/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_11_Properties_of_Gases.ipynb
@@ -0,0 +1,289 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Chapter 11: Properties of Gases"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 11.1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Volume of the apparatus (cu ft) = 60.64\n"
+ ]
+ }
+ ],
+ "source": [
+ "#A certain piece of apparatus of constant volume is filled with nitrogen \n",
+ "#at 15 psia, 80 F. from a nitrogen bottle on a weighing scale exactly 3 lb \n",
+ "#of nitrogen is added to the apparatus. The final pressure and temperature \n",
+ "#are 25 psia, 75 F. Find the volume of the apparatus.\n",
+ "import math\n",
+ "#initialisation of variables\n",
+ "P= 15. \t\t\t\t\t\t\t\t#psia\n",
+ "T= 80. \t\t\t\t\t\t\t\t#F\n",
+ "m= 3. \t\t\t\t\t\t\t\t#lb\n",
+ "P1= 25.\t\t\t\t\t\t\t\t#psia\n",
+ "T1= 75.\t\t\t\t\t\t\t\t#F\n",
+ "#CALCULATIONS\n",
+ "r= (P*(460+T1))/(P1*(T+460))\t\t#ratio\n",
+ "m2= m/(1-r) \t\t\t\t\t\t#Mass 2\n",
+ "V2= (m2*55.16*(460+T1))/(P1*144.) \t#Volume 2\n",
+ "#RESULTS\n",
+ "print '%s %.2f' %('Volume of the apparatus (cu ft) = ',V2)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 11.2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "#Specific heat at constant pressure (Btu/lb R) = 0.217\n",
+ " \n",
+ "Specific heat at constant volume (Btu/lb R) = 0.155\n",
+ " \n",
+ "Specific heat at constant pressure 2 (Btu/lb R) = 0.235\n",
+ " \n",
+ "Specific heat at constant volume 2 (Btu/lb R) = 0.160\n",
+ " \n",
+ "Specific heat at constant pressure 3 (Btu/lb R) = 0.262\n",
+ " \n",
+ "Specific heat at constant volume 3 (Btu/lb R) = 0.200\n",
+ "press enter key to exit\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "''"
+ ]
+ },
+ "execution_count": 1,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#Given that O2 has a gas constant of 48.3 and is a diatomic gas, compare its\n",
+ "#actual Cp at 100, 500, 1500 F with the values computed from the simple KTG\n",
+ "#initialisation of variables\n",
+ "R= 48.3 \t\t\t\t\t#ft lb/lb R\n",
+ "T= 100 \t\t\t\t\t\t#F\n",
+ "T1= 500 \t\t\t\t\t#F\n",
+ "T2= 1500 \t\t\t\t\t#F\n",
+ "k= 1.4\n",
+ "k1= 1.36\n",
+ "k2= 1.31\n",
+ "#CALCULATIONS\n",
+ "dc= R/778. \t\t\t\t\t#Cp-Cv \n",
+ "cp= (k/(k-1))*dc \t\t\t#Specific heat at constant pressure\n",
+ "cv= cp/k \t\t\t\t\t#Specific heat at constant volume\n",
+ "cp1= (k1/(k1-1))*dc \t\t#Specific heat at constant pressure 2\n",
+ "cv1= cp/k1 \t\t\t\t\t#Specific heat at constant volume 2 \n",
+ "cp2= (k2/(k2-1))*dc \t\t#Specific heat at constant pressure 3\n",
+ "cv2= cp2/k2 \t\t\t\t#Specific heat at constant volume 3\n",
+ "#RESULTS\n",
+ "print '%s %.3f' %('#Specific heat at constant pressure (Btu/lb R) = ',cp)\n",
+ "print '%s %.3f' %(' \\nSpecific heat at constant volume (Btu/lb R) = ',cv)\n",
+ "print '%s %.3f' %(' \\nSpecific heat at constant pressure 2 (Btu/lb R) = ',cp1)\n",
+ "print '%s %.3f' %(' \\nSpecific heat at constant volume 2 (Btu/lb R) = ',cv1)\n",
+ "print '%s %.3f' %(' \\nSpecific heat at constant pressure 3 (Btu/lb R) =',cp2)\n",
+ "print '%s %.3f' %(' \\nSpecific heat at constant volume 3 (Btu/lb R) = ',cv2)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 11.4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Enthalpy change (Btu/lb) = -71.79\n",
+ "press enter key to exit\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "''"
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#Nitrogen in a frictionless adiabatic process, expands from an initial state\n",
+ "#of 100 psia, 140 F to a final pressure of 10 psia. How much does the enthalpy\n",
+ "#change?\n",
+ "import math\n",
+ "#initialisation of variables\n",
+ "P= 10. \t\t\t\t\t\t#psia\n",
+ "P1= 100. \t\t\t\t\t#psia\n",
+ "T= 140. \t\t\t\t\t#F\n",
+ "k= 1.4\n",
+ "R= 55.16 \t\t\t\t\t#ft lb/lb R\n",
+ "#CALCULATIONS\n",
+ "dh= (k*R*(T+460)/(k-1))*(math.pow((P/P1),((k-1)/k))-1)*(72./56000.)\n",
+ "#RESULTS\n",
+ "print '%s %.2f' %('Enthalpy change (Btu/lb) = ',dh)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 11.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "case 1\n",
+ "\n",
+ " change in volume = 23.66\n",
+ "\n",
+ " case 2\n",
+ "\n",
+ " change in volume (cu ft/lb) = 28.70\n",
+ "At T1=2460 R, from table 1, case 3\n",
+ "\n",
+ " change in volume (cu ft/lb) = 28.79\n",
+ "press enter key to exit\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "''"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#Air initially at 100 psia, 2000 F, expands reversibly and adiabatically\n",
+ "#to 15 psia. Find the change of enthalpy and of V by perfect gas laws, and\n",
+ "#by variable specific heats using the gas tables\n",
+ "import math\n",
+ "#initialisation of variables\n",
+ "P= 100 \t\t\t\t\t\t\t\t\t\t\t#psia\n",
+ "P1= 15 \t\t\t\t\t\t\t\t\t\t\t#psia\n",
+ "T= 2000 \t\t\t\t\t\t\t\t\t\t#F\n",
+ "k= 1.4\n",
+ "R= 53.34 \t\t\t\t\t\t\t\t\t\t#ft lb/lb R\n",
+ "cp= 0.240 \t\t\t\t\t\t\t\t\t\t#Btu/lb R\n",
+ "#CALCULATIONS\n",
+ "v1= (R*(T+460)/(P*144))*math.pow((P/P1),(1/k))\t#Initial volume\n",
+ "T1= (T+460)*(P1*v1/(P*(R*(T+460)/(P*144)))) \t#Initial temperature\n",
+ "dh= cp*(T1-T) \t\t\t\t\t\t\t\t\t#Change in enthalpy\n",
+ "dv= v1-(R*(T+460)/(P*144)) \t\t\t\t\t\t#Change in volume\n",
+ "print('case 1')\n",
+ "print '%s %.2f' %('\\n change in volume =', dv)\t\n",
+ "print('\\n case 2')\n",
+ "T2=1500 \t\t\t\t\t\t\t\t\t\t#F\n",
+ "v2=R*(T+460)/(P*144)/0.241\t\t\t\t\t\t#Volume in case 2\n",
+ "T2=(T2+460)*(P1*v2/(P*(R*(T2+460)/(P*144)))) \t#Temperature in case 2\n",
+ "deltah=0.276*(T2-460-T) \t\t\t\t\t\t#Change in enthalpy\n",
+ "dv2=v2-(R*(T+460)/(P*144)) \t\t\t\t\t\t#Change in volume\n",
+ "print '%s %.2f' %('\\n change in volume (cu ft/lb) = ', dv2)\n",
+ "print('At T1=2460 R, from table 1, case 3')\n",
+ "h1=634.34\n",
+ "pr1=407.3\n",
+ "pr2=pr1*P1/P \t\t\t\t\t\t\t\t\t#pressure 2\n",
+ "T2=1075 \t\t\t\t\t\t\t\t\t\t#F\n",
+ "h2=378.44\n",
+ "deltah=h2-h1 \t\t\t\t\t\t\t\t\t#Change in enthalpy\n",
+ "v2=53.34*(T2+460)/(P1*144) \t\t\t\t\t\t#Final volume\n",
+ "dv3=v2-(R*(T+460)/(P*144)) \t\t\t\t\t\t#Change in volume\n",
+ "print '%s %.2f' %('\\n change in volume (cu ft/lb) = ',dv3)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_16_Fluid_Flow_Nozzles_and_Turbines.ipynb b/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_16_Fluid_Flow_Nozzles_and_Turbines.ipynb
new file mode 100644
index 00000000..37fd32ab
--- /dev/null
+++ b/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_16_Fluid_Flow_Nozzles_and_Turbines.ipynb
@@ -0,0 +1,238 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Chapter 16: Fluid Flow Nozzles and Turbines"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 16.1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Exit area (sq. ft) = 0.01190\n",
+ "\n",
+ " Exit area in case 2 (sq. ft) = 0.00521\n"
+ ]
+ }
+ ],
+ "source": [
+ "#(a)Find the exit area of a reversible nozzle to pass 1 lb/sec of steam if the\n",
+ "#inlet state of steam is 100 psia, 500F and 100 fps velocity and the exit pressure\n",
+ "#is 10 psia. (b) Will the nozzle be convering or divering and if the latter, what\n",
+ "#will be the throat area?\n",
+ "import math\n",
+ "#initialisation of variables\n",
+ "h1=1279.1 \t\t\t\t\t\t\t\t\t\t\t#Btu/lb\n",
+ "s1=1.7085 \t\t\t\t\t\t\t\t\t\t\t#Btu/lb R\n",
+ "p1= 100 \t\t\t\t\t\t\t\t\t\t\t#psia\n",
+ "p2=10 \t\t\t\t\t\t\t\t\t\t\t\t#psia\n",
+ "h2=1091.7 \t\t\t\t\t\t\t\t\t\t\t#Btu/lb\n",
+ "s2=s1\n",
+ "V1=100 \t\t\t\t\t\t\t\t\t\t\t\t#fps\n",
+ "v2=36.41 \t\t\t\t\t\t\t\t\t\t\t#cu ft/lb\n",
+ "w=1 \t\t\t\t\t\t\t\t\t\t\t\t#lb/sec\n",
+ "#Calculations\n",
+ "a2=w*v2/(math.sqrt(V1*V1 + 2*24956.243*(h1-h2)))\t#Exit area\n",
+ "print '%s %.5f' %('Exit area (sq. ft) = ',a2)\n",
+ "pt=0.55*p1 \t\t\t\t\t\t\t\t\t\t\t#Thorat pressure\n",
+ "ht=1221.5 \t\t\t\t\t\t\t\t\t\t\t#Btu/lb \n",
+ "vt=8.841 \t\t\t\t\t\t\t\t\t\t\t#cu ft/lb\n",
+ "at=w*vt/(math.sqrt(V1*V1 + 2*24956.243*(h1-ht))) \t#Exit area in case 2\n",
+ "print '%s %.5f' %('\\n Exit area in case 2 (sq. ft) = ',at)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 16.2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "from tables\n",
+ "Throat area (ft^2) = 0.00571\n",
+ "\n",
+ " Exit area (ft^2) = 0.17756\n",
+ "\n",
+ " Final throat area (ft^2)= 0.00582\n",
+ "press enter key to exit\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "''"
+ ]
+ },
+ "execution_count": 1,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#Find the throat and exit areas for a nozzle to pass 10000 of steam from an initial\n",
+ "#state of 250 psia, 500F to a final pressure 1 psia, vel coeff. 0.949 and the \n",
+ "#discharge coeff. is unity. Find the exit jet velocity\n",
+ "#initialisation of variables\n",
+ "import math\n",
+ "w=10000. \t\t\t\t\t\t\t\t\t#lb/hr\n",
+ "p0=250. \t\t\t\t\t\t\t\t\t#psia\n",
+ "T1=500. \t\t\t\t\t\t\t\t\t#F\n",
+ "Pf=1. \t\t\t\t\t\t\t\t\t\t#psia\n",
+ "vc=0.949\n",
+ "dc=1\n",
+ "h0=1263.4 \t\t\t\t\t\t\t\t\t#btu/lb\n",
+ "s0=1.5949 \t\t\t\t\t\t\t\t\t#btu/lb R\n",
+ "v2=276.\t\t\t\t\t\t\t\t\t\t#cu ft/lb\n",
+ "#Calculations\n",
+ "pt=0.55*p0\t\t\t\t\t\t\t\t\t#Throat pressure\n",
+ "print '%s' %('from tables')\n",
+ "hts=1208.2 \t\t\t\t\t\t\t\t\t#btu/lb\n",
+ "vts=3.415 \t\t\t\t\t\t\t\t\t#cu ft/lb\n",
+ "h2s=891. \t\t\t\t\t\t\t\t\t#btu/lb\n",
+ "Vts=math.sqrt(2*32.174*778*(h0-hts))\t\t#Throat velocity\n",
+ "w=w/3600. \t\t\t\t\t\t\t\t\t#lb/sec \n",
+ "cw=1\n",
+ "at=w*vts/(cw*Vts)\t\t\t\t\t\t\t#Throat area\n",
+ "print '%s %.5f' %('Throat area (ft^2) = ',at)\n",
+ "V2=math.sqrt(2*32.174*778*(h0-h2s)) \t\t#Exit velocity\n",
+ "eta=0.9\n",
+ "h2=h0-eta*(h0-h2s) \t\t\t\t\t\t\t#Enthalpy\n",
+ "a2s=w*v2/(cw*V2) \t\t\t\t\t\t\t#Exit area\n",
+ "print '%s %.5f' %('\\n Exit area (ft^2) = ',a2s)\n",
+ "at=at/0.98\n",
+ "print '%s %.5f' %('\\n Final throat area (ft^2)= ',at)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 16.3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Exit velocity case 1 (fps) = 1262.76\n",
+ "\n",
+ " Throat Area (ft^2) = 0.00246\n",
+ "\n",
+ " Exit velocity (fps) = 2029.48\n",
+ "\n",
+ " Exit area (ft^2) = 0.00562\n",
+ "press enter key to exit\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "''"
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#Find the exit velocity and the throat and exit areas for a nozzle to pass\n",
+ "#1 lb/sec of air from an inlet state of 150 psia, 340 F, negligible velocity, \n",
+ "#to an exhaust pressure of 15 psia if the nozzle efficiency is 88% and Cd=1?\n",
+ "import math\n",
+ "#initialisation of variables\n",
+ "k=1.4\n",
+ "ptbyp0=0.53\n",
+ "T0=800.\t\t\t\t\t\t\t\t\t\t#R\n",
+ "cp=778. \n",
+ "R=0.0425864\n",
+ "P0=150.\t\t\t\t\t\t\t\t\t\t#psia\n",
+ "Pt=15. \t\t\t\t\t\t\t\t\t\t#psia\n",
+ "w=1. \t\t\t\t\t\t\t\t\t\t#lb/sec\n",
+ "cw=1.0043782\n",
+ "#Calculations\n",
+ "Pt2=ptbyp0*Pt \t\t\t\t\t\t\t\t#Pressure\n",
+ "Tts=T0*math.pow((ptbyp0),((k-1)/k)) \t\t#Temperature\n",
+ "Vts=math.sqrt(2*32.174*cp*0.24*(T0-Tts)) \t#exit velocity\n",
+ "print '%s %.2f' %('Exit velocity case 1 (fps) = ',Vts)\n",
+ "vts=3.12 \t\t\t\t\t\t\t\t\t#cu ft/lb\n",
+ "at=w*vts/(cw*Vts)\t\t\t\t\t\t\t#Throat area\n",
+ "print '%s %.5f' %('\\n Throat Area (ft^2) = ', at)\n",
+ "T2s=T0*math.pow((Pt/P0),((k-1)/k)) \t\t\t#Final temperature\n",
+ "eta=0.88 \n",
+ "T2=T0-eta*(T0-T2s) \t\t\t\t\t\t\t#Temperature\n",
+ "V2=math.sqrt(2*32.5*cp*0.24*(T0-T2)) \t\t#Exit velocity\n",
+ "print '%s %.2f' %('\\n Exit velocity (fps) = ', V2)\n",
+ "v2=11.4 \t\t\t\t\t\t\t\t\t#cu ft/lb \n",
+ "a2=w*v2/V2\n",
+ "print '%s %.5f' %('\\n Exit area (ft^2) = ',a2)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_17_Gas_compression.ipynb b/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_17_Gas_compression.ipynb
new file mode 100644
index 00000000..530b79bf
--- /dev/null
+++ b/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_17_Gas_compression.ipynb
@@ -0,0 +1,263 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Chapter 17: Gas compression"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 17.1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Heat transfered from the airin each case (Btu/lb) = -16.01\n"
+ ]
+ }
+ ],
+ "source": [
+ "#tests on a reciproacating air compressers with water-cooled cylinders show\n",
+ "#that it is practical to cool the air sufficently during compression to \n",
+ "#correspond to a polytropic exponenent n in the vicinity of 1.3. Compare\n",
+ "#the work per pound of air compressed from 15 psia, 80 F to 90 psia, according\n",
+ "#to three processes: reversible adiabatic, reversible isothermal, and reversible\n",
+ "#pv^1.3=c. Find the heat transferred from the air in each case\n",
+ "import math\n",
+ "#initialisation of variables\n",
+ "R= 53.31\n",
+ "T= 80 \t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t#F\n",
+ "P2= 90. \t\t\t\t\t\t\t\t\t\t\t\t\t\t\t#psia\n",
+ "P1= 15. \t\t\t\t\t\t\t\t\t\t\t\t\t\t\t#psia\n",
+ "n= 1.4\n",
+ "n1= 1.3\n",
+ "cv= 0.171\n",
+ "#CALCULATIONS\n",
+ "Wk= (n/(n-1))*R*(T+460)*(math.pow((P2/P1),((n-1)/n))-1)\t\t\t\t#Work in 1\n",
+ "Wn= (n1/(n1-1))*R*(T+460)*(math.pow((P2/P1),((n1-1)/n1))-1) \t\t#Work in 2 \n",
+ "Wt= R*(T+460)*math.log(P2/P1)\t\t\t\t\t\t\t\t\t\t#Work in 3\n",
+ "Q= cv*0.778*((n-n1)/(1-n1))*(T+460)*(math.pow((P2/P1),((n-1)/n))-1) #Heat \n",
+ "#RESULTS\n",
+ "print '%s %.2f' %('Heat transfered from the airin each case (Btu/lb) = ',Q)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 17.2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Thermal effeciency = 0.81\n",
+ " \n",
+ " Isothermal effeciency= 1.05\n",
+ "press enter key to exit\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "''"
+ ]
+ },
+ "execution_count": 1,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#For the conditions of example 1 find the adiabatic efficiency and the isothermal\n",
+ "#efficiency of the reversible polytropic compressor\n",
+ "import math\n",
+ "#initialisation of variables\n",
+ "R= 53.31\n",
+ "T= 80 \t\t\t\t\t\t\t\t\t\t\t\t\t\t\t#F\n",
+ "P2= 90. \t\t\t\t\t\t\t\t\t\t\t\t\t\t#psia\n",
+ "P1= 15. \t\t\t\t\t\t\t\t\t\t\t\t\t\t#psia\n",
+ "n= 1.4\n",
+ "n1= 1.3\n",
+ "cv= 0.171\n",
+ "#CALCULATIONS\n",
+ "Wk= (n/(n-1))*R*(T+460)*(math.pow((P2/P1),((n-1)/n))-1)\t\t\t#Work in 1\n",
+ "Wn= (n1/(n1-1))*R*(T+460)*(math.pow((P2/P1),((n1-1)/n1))-1)\t\t#Work in 2 \n",
+ "Wt= R*(T+460)*math.log(P2/P1) \t\t\t\t\t\t\t\t\t#Work in 3\n",
+ "nc= Wt/Wn \t\t\t\t\t\t\t\t\t\t\t\t\t\t#Thermal efficiency\n",
+ "nc1=Wk/Wn \t\t\t\t\t\t\t\t\t\t\t\t\t\t#Isothermal effeciency\n",
+ "##RESULTS\n",
+ "print '%s %.2f' %('Thermal effeciency = ',nc)\n",
+ "print '%s %.2f' %(' \\n Isothermal effeciency= ',nc1)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 17.3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Heat transferred (Btu/lb) = -24.77\n",
+ "press enter key to exit\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "''"
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#For the same initial state and final pressure as in ex.1, a real compressor\n",
+ "#has an efficiency of 95% on the adiabatic basis. The initial and final states\n",
+ "#correspond to a polytropic compression with n=1.3. Find the heat transferred\n",
+ "#per pound of air\n",
+ "import math\n",
+ "#initialisation of variables\n",
+ "R= 53.31\n",
+ "T= 80 \t\t\t\t\t\t\t\t\t\t\t\t\t\t\t#F\n",
+ "P2= 90. \t\t\t\t\t\t\t\t\t\t\t\t\t\t#psia\n",
+ "P1= 15. \t\t\t\t\t\t\t\t\t\t\t\t\t\t#psia\n",
+ "n= 1.4\n",
+ "cp= 0.240\n",
+ "nc= 0.95\n",
+ "n1= 1.3\n",
+ "#CALCULATIONS\n",
+ "Wk= (n/(n-1))*(R)*(T+460)*(math.pow((P2/P1),((n-1)/n))-1)\t\t#Work in 1\n",
+ "Wx= -Wk/nc \t\t\t\t\t\t\t\t\t\t\t\t\t\t#Work in 2\n",
+ "dh= cp*(T+460)*(math.pow((P2/P1),((n1-1)/n1))-1) \t\t\t\t#Enthalpy transferred \n",
+ "Q= dh+(Wx/778.) \t\t\t\t\t\t\t\t\t\t\t\t#Heat\n",
+ "#RESULTS\n",
+ "print '%s %.2f' %('Heat transferred (Btu/lb) = ',Q)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 17.4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "single-stage compression = 0.745\n",
+ " \n",
+ " two-stage compression = 0.937\n",
+ "press enter key to exit\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "''"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#A gas is to be compressed from 5 psia to 83.5 psia. It is known that cooling\n",
+ "#correspondin to the polytropic exponent of 1.25 is practical and the clearance \n",
+ "#of the available compressors is 3%. Compare the volumetric efficencies to be \n",
+ "#anticipated for (a) single-stage compression, and (b)two-stage compression,with\n",
+ "#equal pressure ratios in the stages.\n",
+ "import math\n",
+ "#initialisation of variables\n",
+ "P1= 83.5\t\t\t\t\t\t\t\t\t\t\t\t#psia\n",
+ "P2= 5. \t\t\t\t\t\t\t\t\t\t\t\t\t#psia\n",
+ "n= 3. \t\t\t\t\t\t\t\t\t\t\t\t\t#percent\n",
+ "n1= 1.25\n",
+ "#CALCULATIONS\n",
+ "nv= 1-(n/100.)*(math.pow((P1/P2),(1/n1))-1)\t\t\t\t#Efficiency of single stage\n",
+ "nv1= 1-(n/100.)*(math.sqrt(math.pow((P1/P2),(1/n1)))-1) #efficiency of two-stage\n",
+ "#RESULTS\n",
+ "print '%s %.3f' %('single-stage compression = ',nv)\n",
+ "print '%s %.3f' %(' \\n two-stage compression = ',nv1)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_18_Refrigeration.ipynb b/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_18_Refrigeration.ipynb
new file mode 100644
index 00000000..1370106c
--- /dev/null
+++ b/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_18_Refrigeration.ipynb
@@ -0,0 +1,92 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Chapter 18: Refrigeration"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 18.1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "coefficient of performance of carnot = 6.05\n",
+ " \n",
+ " coefficient of performance = 5.23\n",
+ " \n",
+ " Piston displacement (cu ft/min) = 4.48\n"
+ ]
+ }
+ ],
+ "source": [
+ "#A refrigiration plant is to operate with an evaporator saturation temp. is 0 F\n",
+ "#while rempvin 10000 From a cold room. The condenser is to be cooled by water so \n",
+ "#that the saturation temp. can be kept at 76 F. the refrigirant is ammonia\n",
+ "#(a) Assuming the plant works on a cycle like that, find its coefficient of \n",
+ "#performance and ompare this with the one of a carnot engine\n",
+ "#(b) If the volumetric efficiency if the compressor is 70% how much piston\n",
+ "#displacement per min will be needed?\n",
+ "import math\n",
+ "#initialisation of variables\n",
+ "T2 = 0 \t\t\t\t\t#F\n",
+ "T1= 76. \t\t\t\t#F\n",
+ "h1= 611.8 \t\t\t\t#Btu/lb\n",
+ "h4= 127.4 \t\t\t\t#Btu/lb\n",
+ "h2= 704.4 \t\t\t\t#Btu/lb\n",
+ "x= 10000 \t\t\t\t#Btu/hr\n",
+ "v1= 9.116 \t\t\t\t#cu ft/lb\n",
+ "n=70.\n",
+ "#CALCULATIONS\n",
+ "CP= (T2+460)/(T1-T2) \t#Carnot efficiency\n",
+ "CP1= (h1-h4)/(h2-h1) \t#coefficient of performance\n",
+ "w= (x/60.)/(h1-h4) \t\t#Work done\n",
+ "PD=(w*v1)/(n/100.) \t\t#Piston displacement\n",
+ "#RESULTS\n",
+ "print '%s %.2f' %('coefficient of performance of carnot = ',CP)\n",
+ "print '%s %.2f' %(' \\n coefficient of performance = ',CP1)\n",
+ "print '%s %.2f' %(' \\n Piston displacement (cu ft/min) = ',PD)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_19_Heat_Transmission.ipynb b/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_19_Heat_Transmission.ipynb
new file mode 100644
index 00000000..0ec693cd
--- /dev/null
+++ b/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_19_Heat_Transmission.ipynb
@@ -0,0 +1,467 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Chapter 19: Heat Transmission"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 19.2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Rate of heat flow (Btu/hr) = 14.55\n",
+ " \n",
+ " Temperature at the interface (F) = 40.61\n"
+ ]
+ }
+ ],
+ "source": [
+ "#A large flat wall consists of two well bonded layers of material 8 in thick\n",
+ "#and 1 in thick. The 8 in thick layer is concrete having a k=0.50. and the 1- in \n",
+ "#k=0.02. The surface temp is -20 F. and the surface temp. of concrete is 60 F. \n",
+ "#Find the rate of heat flow per unit area, the temperature at the interface\n",
+ "#between the two layers and the resistances per unit area of the two layers\n",
+ "import math\n",
+ "#initialisation of variables\n",
+ "t= 8. \t\t\t\t\t\t\t#in\n",
+ "t1= 1. \t\t\t\t\t\t\t#in\n",
+ "k= 0.50 \t\t\t\t\t\t#Btu/hr ft F\n",
+ "k1= 0.02 \t\t\t\t\t\t#Btu/hr ft F\n",
+ "A= 1 \t\t\t\t\t\t\t#ft^2\n",
+ "T= 60 \t\t\t\t\t\t\t#F\n",
+ "T1= -20 \t\t\t\t\t\t#F\n",
+ "#CALCULATIONS\n",
+ "Rc= (t/12.)/(k*A)\t\t\t\t#Resistance 1\n",
+ "Rf= (t1/12.)/(k1*A)\t\t\t\t#Resistance 2\n",
+ "R= Rc+Rf \t\t\t\t\t\t#Total resistance\n",
+ "q= (T-T1)/R \t\t\t\t\t#Heat\n",
+ "T2= (T+(Rc/Rf)*T1)/(1+(Rc/Rf)) \t#temp of the interface\n",
+ "#RESULTS\n",
+ "print '%s %.2f' %('Rate of heat flow (Btu/hr) = ',q)\n",
+ "print '%s %.2f' %(' \\n Temperature at the interface (F) = ',T2)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 19.3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Temperature at the interface (F) = 133.055520\n",
+ "press enter key to exit\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "''"
+ ]
+ },
+ "execution_count": 1,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#A steel pipe of 10 in inside dia. and 0.375 in. wall thickness carries steam \n",
+ "#at 500 f. The pipe is covered by 2 in of insulation to reduce heat losses to\n",
+ "#surroundings at 80 F. It is known from tests that the convection coefficients\n",
+ "#for inside and outside are 2500 and 1.6. to protect personnel it is desired\n",
+ "#that the outside shouldn't exceed 140 f. If ksteel=26. and insulation is 0.045. \n",
+ "#will the 2 in thickness of insulation meet the requirement?\n",
+ "import math\n",
+ "#initialisation of variables\n",
+ "h1= 2500. \t\t\t\t\t\t\t#Btu/sq ft hr F\n",
+ "r= 10. \t\t\t\t\t\t\t\t#in\n",
+ "t= 0.375 \t\t\t\t\t\t\t#in\n",
+ "Ts= 500. \t\t\t\t\t\t\t#F\n",
+ "Ta= 80. \t\t\t\t\t\t\t#F\n",
+ "r2= 5.375 \t\t\t\t\t\t\t#in\n",
+ "r1= 5. \t\t\t\t\t\t\t\t#in\n",
+ "r3= 7.375 \t\t\t\t\t\t\t#in\n",
+ "kp= 26. \t\t\t\t\t\t\t#Btu ft/hr\n",
+ "ki= 0.045 \t\t\t\t\t\t\t#Btu ft/hr\n",
+ "h1= 2500. \t\t\t\t\t\t\t#Btu/sq ft hr F\n",
+ "h3= 1.6 \t\t\t\t\t\t\t#Btu/sq ft hr F\n",
+ "r4= 14.750\n",
+ "#CALCULATIONS\n",
+ "R1= 1/(h1*math.pi*(r/12.))\t\t\t#Resistance 1\n",
+ "Rp= math.log(r2/r1)/(2*math.pi*kp) \t#Resistance 2\n",
+ "Ri= math.log(r3/r2)/(2*math.pi*ki) \t#Resistance 3\n",
+ "R3= 1/(h3*math.pi*(r4/12.)) \t\t#Resistance 4\n",
+ "R0= R1+Rp+Ri+R3 \t\t\t\t\t#Total reistance\n",
+ "T3=Ta+ (Ts-Ta)*R3/R0 \t\t\t\t#Interface temp.\n",
+ "#RESULTS\n",
+ "print '%s %.6f' %('Temperature at the interface (F) = ',T3)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 19.4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "1000000.0\n",
+ "Water flow rate (lb/hr) = 25000.00\n",
+ " \n",
+ " Area of heat transfer surface (sq ft) = 337.89\n",
+ " \n",
+ " temperature of the oil (F) = 131.11\n",
+ " \n",
+ " flow rate (lb/hr) = 50000.00\n",
+ "press enter key to exit\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "''"
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#Lubricating oil is to be cooled from 170 F to 120 F by water ssupplied at 100F.\n",
+ "#Inorder to minimize the water requirement it is desired, if possible to have\n",
+ "#water rise to 140F, the highest permissible temp. The oil flow rate is 40000.\n",
+ "#the oil cp=0.5 and U=120. (b) Find the water flow rate for the counter flow\n",
+ "#operation. (c) Find the heat transfer surface required for the counter flow.\n",
+ "#(d) with the water flow rate found in (b), to what temp. could the oil be \n",
+ "#cooled in a parallel exchanger of unlimited area (e) In the exchanger of (d)\n",
+ "#how much water flow would be required to cool oil to 120F?\n",
+ "import math\n",
+ "#initialisation of variables\n",
+ "wh= 40000. \t\t\t\t\t\t\t\t\t#lb.hr\n",
+ "cph= 0.5 \t\t\t\t\t\t\t\t\t#Btu/lb F\n",
+ "th1= 170. \t\t\t\t\t\t\t\t\t#F\n",
+ "th2= 120. \t\t\t\t\t\t\t\t\t#F\n",
+ "cpc= 1 \t\t\t\t\t\t\t\t\t\t#Btu/lb F\n",
+ "tc2= 140. \t\t\t\t\t\t\t\t\t#F\n",
+ "tc1= 100. \t\t\t\t\t\t\t\t\t#F\n",
+ "t= 140 \t\t\t\t\t\t\t\t\t\t#F\n",
+ "U= 120 \t\t\t\t\t\t\t\t\t\t#Btu/sq ft hr F\n",
+ "#CALCULATIONS\n",
+ "dh= t-th2 \t\t\t\t\t\t\t\t\t#Change in temp. for hot\n",
+ "dc= tc2-tc1 \t\t\t\t\t\t\t\t#Change in temp. for cold\n",
+ "wc= (wh*cph*(th1-th2))/(cpc*dc) \t\t\t#weight of cold\n",
+ "dtm= (-(tc1-th2)-(th1-tc2))/math.log((-tc1+th2)/(th1-tc2)) #lmtd\n",
+ "q= wh*cph*(th1-th2) \t\t\t\t\t\t#heat\n",
+ "print(q)\n",
+ "A= q/(U*dtm) \t\t\t\t\t\t\t\t#area\n",
+ "th2= ((wh/wc)*(cph/cpc)*th1+tc1)/((wh/wc)*(cph/cpc)+1)#Hot final\n",
+ "wc1= (wh*cph*(th1-th2))/(cpc*(th2-tc1)) \t#weight of cold final\n",
+ "#RESULTS\n",
+ "print '%s %.2f' %('Water flow rate (lb/hr) = ',wc)\n",
+ "print '%s %.2f' %(' \\n Area of heat transfer surface (sq ft) = ',A)\n",
+ "print '%s %.2f' %(' \\n temperature of the oil (F) = ',th2)\n",
+ "print '%s %.2f' %(' \\n flow rate (lb/hr) = ',wc1*2)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 19.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Film coefficient (Btu/sq ft hr F) = 14.59\n",
+ "press enter key to exit\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "''"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#Find the film coefficient for airr flowing at 100 fps thru a tube of 1 in outside\n",
+ "#diameter and 18 gage thickness , if the avg. bulk air temp. is 600F, the pressure\n",
+ "#is 1 atm,a nd the tube wall is 200 F?\n",
+ "import math\n",
+ "#initialisation of variables\n",
+ "Tw= 200. \t\t\t#F\n",
+ "Ta= 600. \t\t\t#F\n",
+ "V= 100 \t\t\t\t#fps\n",
+ "Di= 0.902 \t\t\t#in\n",
+ "d= 0.0375 \t\t\t#lb/cu ft\n",
+ "u= 0.000020 \t\t#lbm/sec\n",
+ "cp= 0.25 \t\t\t#Btu/lb F\n",
+ "k= 0.027 \t\t\t#Btu/sq ft hr\n",
+ "#CALCULATIONS\n",
+ "NRe= (Di*V*d)/(u*12)#Reynolds number \n",
+ "Npr= 0.66 \t\t\t#prandtl number\n",
+ "h= k*0.023*math.pow(NRe,0.8)*math.pow(Npr,0.4)*12/Di \n",
+ "#RESULTS\n",
+ "print '%s %.2f' %('Film coefficient (Btu/sq ft hr F) = ',h)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 19.6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Film coefficient (Btu/sq ft hr F) = 14.38\n",
+ "press enter key to exit\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "''"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#Find the film coefficient for the conditions of example 5, using eq. 17\n",
+ "import math\n",
+ "#initialisation of variables\n",
+ "Tw= 200 \t\t\t\t\t#F\n",
+ "Ta= 600 \t\t\t\t\t#F\n",
+ "cpb= 0.25 \t\t\t\t\t# Btu/lb F\n",
+ "tf= 0.68\n",
+ "uf= 0.000017 \t\t\t\t#lbm/sec ft\n",
+ "D= 0.902 \t\t\t\t\t#in\n",
+ "V= 100. \t\t\t\t\t#fps\n",
+ "d= 0.0375 \t\t\t\t\t#lb/cu ft\n",
+ "#CALCULATIONS\n",
+ "Nre= (D/12.)*V*d/uf\t\t\t#reynolds number\n",
+ "Npr= 0.68 \t\t\t\t\t#prandtl number\n",
+ "h= cpb*V*3600*d*0.023/(math.pow(Nre,0.2)*math.pow(Npr,(2./3.)))\n",
+ "#RESULTS\n",
+ "print '%s %.2f' %('Film coefficient (Btu/sq ft hr F) = ',h)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 19.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Heat loss (Btu/hr) = 140.52\n",
+ " \n",
+ " hr (Btu/sq ft hr F) = 1.18\n",
+ " \n",
+ " hc (Btu/sq ft hr F) = 1.24\n",
+ "press enter key to exit\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "''"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#An uninsulated 3 in steam pipe passes through a room in which the air and all\n",
+ "#solid surfaces are at an average temp. of 70 F. If the surface temp. of the \n",
+ "#steam pipe is 200F, estimate the heat loss per foot of pipe by radiation and\n",
+ "# compare the relative magnitudes of losses by radiation and by free convection.\n",
+ "import math\n",
+ "#initialisation of variables\n",
+ "A1= 0.916 \t\t\t#ft^2\n",
+ "e1= 0.8\n",
+ "s= 0.173 \t\t\t#BTU s^-1 in^-2 R^-4\n",
+ "T= 200 \t\t\t\t#F\n",
+ "T1= 70 \t\t\t\t#F\n",
+ "D= 0.292\n",
+ "#CALCULATIONS\n",
+ "q= (A1/math.pow(10,6))*e1*s*((math.pow((T+460),4)/100.)-(math.pow((T1+460),4)/100.))\n",
+ "hr= q/(A1*(T-T1))\t#Coefficient of convection\n",
+ "hc= 0.27*math.pow(((T-T1)/D),0.25) #free convection coefficient\n",
+ "#RESULTS\n",
+ "print '%s %.2f' %('Heat loss (Btu/hr) = ',q)\n",
+ "print '%s %.2f' %(' \\n hr (Btu/sq ft hr F) = ',hr)\n",
+ "print '%s %.2f' %(' \\n hc (Btu/sq ft hr F) = ',hc)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 19.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Heat loss (Btu/hr) = 9683.74\n",
+ "press enter key to exit\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "''"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#A peep hole in the furnace wall of 13.5 in thickness is 8 in. square. the inside \n",
+ "#of the furnace is at uniform temp. of 1500 F and the external surroundings are at\n",
+ "#120 F. estimate the rate of heat loss by radiation through the open peep hole? \n",
+ "import math\n",
+ "#initialisation of variables\n",
+ "T= 120. \t\t\t\t\t#F\n",
+ "T1= 1500. \t\t\t\t\t#F\n",
+ "A= 64./144.\n",
+ "F= 0.86\n",
+ "Fe= 1\n",
+ "s= 0.173 \t\t\t\t\t#BTU s^-1 in^-2 R^-4\n",
+ "#CALCULATIONS\n",
+ "q= (A/math.pow(10,6))*F*Fe*s*((math.pow((T1+460),4)/100.)-(math.pow((T+460),4)/100.))\n",
+ "#RESULTS\n",
+ "print '%s %.2f' %('Heat loss (Btu/hr) = ',q)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_2_Work.ipynb b/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_2_Work.ipynb
new file mode 100644
index 00000000..14873eb2
--- /dev/null
+++ b/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_2_Work.ipynb
@@ -0,0 +1,168 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Chapter 2: Work"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "P dV work for this process (ft lb) = 39810.42\n"
+ ]
+ }
+ ],
+ "source": [
+ "#A stationary fluid system is subjected to a process in which the pressure and\n",
+ "#volume change according to the relation pv^1.4=C. The initial pressure and \n",
+ "#volume are respectively 100 psia and 3 cu ft, the final pressure is 20 psia\n",
+ "#Find the magnitude and direction of pdv work for this process\n",
+ "import math\n",
+ "#initialisation of variables\n",
+ "P= 100. \t\t\t\t\t\t#psia\n",
+ "V= 3. \t\t\t\t\t\t\t#cu ft\n",
+ "P1= 20. \t\t\t\t\t\t#psia\n",
+ "n= 1.4\n",
+ "#CALCULATIONS\n",
+ "V1= V*math.pow((P/P1),(1/n))\t#Final volume\n",
+ "W= (P1*V1*144-P*V*144)/(1-n) \t#work done\n",
+ "#144 is the conversion factor to convert in^2 to ft^2\n",
+ "#RESULTS\n",
+ "print '%s %.2f' %('P dV work for this process (ft lb) = ',W)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Total system work during the 1 minute period (ft lb) = -13012.80\n"
+ ]
+ }
+ ],
+ "source": [
+ "#In a stationary fluid system, a paddle wheel supplies work at the rate of\n",
+ "#1 hp. During a certain period of 1 min, the system expands in volume from \n",
+ "#1 cu.f t to 3 cu. ft. while the pressure remains constant at 69.4 psia.\n",
+ "#Find the total system work during the 1 min period.\n",
+ "#initialisation of variables\n",
+ "W= 1 \t\t\t\t\t\t#hp\n",
+ "P= 69.4 \t\t\t\t\t#psia\n",
+ "V2= 3 \t\t\t\t\t\t#cu\n",
+ "V1= 1 \t\t\t\t\t\t#cu\n",
+ "#CALCULATIONS\n",
+ "Wb= -W*33000 \t\t\t\t#Paddle wheel work\n",
+ "Wa= P*(V2-V1)*144 \t\t\t#Piston work\n",
+ "Q= Wa+Wb \t\t\t\t\t#Total work\n",
+ "#RESULTS\n",
+ "print '%s %.2f' %('Total system work during the 1 minute period (ft lb) = ',Q)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Net work done by the fluid in the cylinder (ft lb) = 6335.55\n"
+ ]
+ }
+ ],
+ "source": [
+ "#An engine has gone bore and stroke of 11 by 15 in. An indicator diagram \n",
+ "#taken from this engine has an area of 1.60 sq. in. and the length of 2.4 in.\n",
+ "#The k=80 psi per in. How much net work has been done by the fluid in the \n",
+ "#cylinder upon the engine piston during the engine cycle represented by\n",
+ "#the diagram.?\n",
+ "import math\n",
+ "#initialisation of variables\n",
+ "r= 11. \t\t\t\t\t#in\n",
+ "l= 15. \t\t\t\t\t#in\n",
+ "A= 1.6 \t\t\t\t\t#in\n",
+ "l1= 2.4 \t\t\t\t#in\n",
+ "\n",
+ "#CALCULATIONS\n",
+ "a= math.pi*r*r/4. \t\t#Piston area \t\t\n",
+ "L= l/12.\n",
+ "Pm= (A/l1)*80 \t\t\t#Mean effective pressure\n",
+ "W= a*L*Pm \t\t\t\t#Net work\n",
+ "#RESULTS\n",
+ "print '%s %.2f' %('Net work done by the fluid in the cylinder (ft lb) = ',W)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_3_Temperature_and_Heat.ipynb b/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_3_Temperature_and_Heat.ipynb
new file mode 100644
index 00000000..e79cb271
--- /dev/null
+++ b/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_3_Temperature_and_Heat.ipynb
@@ -0,0 +1,263 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Chapter 3: Temperature and Heat"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 3.1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Pounds of water needed per pound of iron (lb water/lb iron) = 1.92\n"
+ ]
+ }
+ ],
+ "source": [
+ "#It is desired to cool iron parts from 500 F to 100 F by dropping them into \n",
+ "#water intially at 75 F . The specific heat of the iron is 0.120 and the \n",
+ "#specific heat of water may be assumed to be 1. Assuming that all the heat from\n",
+ "#the iron goes to the water and tat none of the water evaporates and that none\n",
+ "#of the water are needed per pound of iron?\n",
+ "#initialisation of variables\n",
+ "T2w= 100. \t\t\t\t\t\t\t\t#F\n",
+ "T1w= 75. \t\t\t\t\t\t\t\t#F\n",
+ "cw= 1. \t\t\t\t\t\t\t\t\t#Btu/lb F\n",
+ "T2i= 100. \t\t\t\t\t\t\t\t#F\n",
+ "T1i= 500. \t\t\t\t\t\t\t\t#F\n",
+ "ci= 0.12 \t\t\t\t\t\t\t\t#Btu/lb F\n",
+ "mi= 1\n",
+ "#CALCULATIONS\n",
+ "Mw= -mi*ci*(T2i-T1i)/(cw*(T2w-T1w)) \t#Mass of water required\n",
+ "#RESULTS\n",
+ "print '%s %.2f' %('Pounds of water needed per pound of iron (lb water/lb iron) = ',Mw)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 3.2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Net heat transferred to the system (Btu) = -1292.27\n",
+ "press enter key to exit\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "''"
+ ]
+ },
+ "execution_count": 1,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#The specific heat of a certain gas is given by the function. How much heat is\n",
+ "#transferred from a system consisting of 5 lb of this gas to cool it at \n",
+ "#constant pressure from 1540 F to 540 F?\n",
+ "#initialisation of variables\n",
+ "import math\n",
+ "import scipy\n",
+ "from scipy import integrate\n",
+ "m=5. \t\t\t\t\t\t\t\t\t#lb\n",
+ "T1=1540. +460 \t\t\t\t\t\t\t#R\n",
+ "T2=540+460.\t\t\t\t\t\t\t\t#R\n",
+ "#CALCULATIONS\n",
+ "def cp(T):\n",
+ " cp=0.248+0.448*T*T/math.pow(10,8)\n",
+ " return cp;\n",
+ "\n",
+ "Qdot=scipy.integrate.quad(cp,T1,T2)\t\t#Heat\n",
+ "Q=m*Qdot[0]\n",
+ "#Results\n",
+ "print '%s %.2f' %('Net heat transferred to the system (Btu) = ',Q)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 3.3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Heat required (Btu) = 3057.95\n",
+ "press enter key to exit\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "''"
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#Ten pounds of solid sulfur at 70 C are to be heated at constant pressre until \n",
+ "#it is a vapor at 1 atm pressure. How much heat is required?\n",
+ "#initialisation of variables\n",
+ "m= 10 \t\t\t\t#lb\n",
+ "cp= 0.180 \t\t\t#Btu/lb F\n",
+ "cp1= 0.235 \t\t\t#Btu/lb F\n",
+ "L= 15.8 \t\t\t#btu/lb\n",
+ "L1= 120 \t\t\t#btu/lb\n",
+ "T1= 70 \t\t\t\t#F\n",
+ "T2= 235 \t\t\t#F\n",
+ "T3= 832 \t\t\t#F\n",
+ "#CALCULATIONS\n",
+ "Qa= m*cp*(T2-T1)\t#Heat to raise solid temperature\n",
+ "Qb= m*L \t\t\t#Heat to melt solid \n",
+ "Qc= m*cp1*(T3-T2)\t#Heat to raise liquid temperature\n",
+ "Qd= m*L1 \t\t\t#Heat to vaporize liquid\n",
+ "Q= Qa+Qb+Qc+Qd \t\t#Total Heat\n",
+ "#RESULTS\n",
+ "print '%s %.2f' %('Heat required (Btu) = ',Q)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 3.4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Ice weight (lb of ice) = 7.68\n",
+ " \n",
+ " Additional ice required (lb of ice) = 0.177\n",
+ "press enter key to exit\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "''"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#A piece of ice having aan intital temperature of 22 F is dropped into an \n",
+ "#insulated tank, which contains 40 lb of water at 70 F. If the temperature \n",
+ "#of water, after equilibrium is reached, is 40F, how many pounds did the ice\n",
+ "#weigh? Assume no heat transfer with other bodies hs occured?\n",
+ "#initialisation of variables\n",
+ "m= 40 \t\t\t\t#lb\n",
+ "m1= 10 \t\t\t\t#lb\n",
+ "cp= 1.00 \t\t\t#Btu/lb F\n",
+ "cp1= 0.501 \t\t\t#Btu/lb F\n",
+ "cp2= 0.092 \t\t\t#Btu/lb F\n",
+ "L= 143.3 \t\t\t#btu/lb\n",
+ "L1= 120 \t\t\t#btu/lb\n",
+ "T1= 22 \t\t\t\t#F\n",
+ "T2= 32 \t\t\t\t#F\n",
+ "T3= 40 \t\t\t\t#F\n",
+ "T4= 70 \t\t\t\t#F\n",
+ "#CALCULATIONS\n",
+ "Qa= cp1*(T2-T1)\t\t#Heat to raise solid temperature\n",
+ "Qb= L \t\t\t\t#Heat to melt solid\n",
+ "Qc= cp*(T3-T2) \t\t#Heat to raise liquid temperature\n",
+ "Qd= m*cp*(T3-T4) \t#Heat required to lower water from 70 to 40F\n",
+ "mi= -Qd/(Qa+Qb+Qc)\t#Mass\n",
+ "Qe= m1*cp2*(T3-T4) \t#Heat in case 2 due to copper\n",
+ "mi1= -Qe/(Qa+Qb+Qc) #Mass in case 2\n",
+ "#RESULTS\n",
+ "print '%s %.2f' %('Ice weight (lb of ice) = ',mi)\n",
+ "print '%s %.3f' %(' \\n Additional ice required (lb of ice) = ',mi1)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_5_First_Law_of_Thermodynamics.ipynb b/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_5_First_Law_of_Thermodynamics.ipynb
new file mode 100644
index 00000000..c5127493
--- /dev/null
+++ b/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_5_First_Law_of_Thermodynamics.ipynb
@@ -0,0 +1,263 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Chapter 5: First Law of Thermodynamics"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 5.1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Change in internal energy of the gas (Btu) = -20.82\n",
+ "press enter key to exit\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "''"
+ ]
+ },
+ "execution_count": 1,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#A stationary mass of gas is compressed without friction from an intial state\n",
+ "#of 10 cu ft abd 15 psia to a final state of 5 cu ft and 15 psia, the pressure\n",
+ "#remaining constant during the process. How much does the internal energy of \n",
+ "#the gs change?\n",
+ "#initialisation of variables\n",
+ "p= 15 \t\t\t\t\t\t\t\t#psia\n",
+ "V2= 5 \t\t\t\t\t\t\t\t#cu\n",
+ "V1= 10 \t\t\t\t\t\t\t\t#cu\n",
+ "E= 34.7 \t\t\t\t\t\t\t#Btu\n",
+ "#CALCULATIONS\n",
+ "dE= -E-((p*(V2-V1)*144.)/(778.))\t#Change in internal energy\n",
+ "#RESULTS\n",
+ "print '%s %.2f' %('Change in internal energy of the gas (Btu) = ',dE)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 5.2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Change in internal enenrgy (Btu) = -50.00\n"
+ ]
+ }
+ ],
+ "source": [
+ "#A stationary system of conctant volume experience a temperature rise of 35 F\n",
+ "#when a certain process occurs. The heat transferred in the proccess is 34 btu. \n",
+ "#The specific heat at constant volume for the pure substance in the system is\n",
+ "# 1.2, and the system contains 2 lb of substance. Determine the internal \n",
+ "#energy change and the work done?\n",
+ "#initialisation of variables\n",
+ "m= 2 \t\t\t#lb\n",
+ "T2= 35 \t\t\t#F\n",
+ "cv= 1.2 \t\t#Btu/lb F\n",
+ "Q= 34 \t\t\t#Btu\n",
+ "#CALCULATIONS\n",
+ "U= m*cv*T2\t\t#Internal energy\n",
+ "W= Q-U \t\t\t#Work done\n",
+ "#RESULTS\n",
+ "print '%s %.2f' %('Change in internal enenrgy (Btu) = ',W)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 5.3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "From keenan and keyes steam tables\n",
+ "The second method follows the same procedure hence the same calculations are used\n",
+ "Change in internal enenrgy (Btu) = 670.96\n",
+ "press enter key to exit\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "''"
+ ]
+ },
+ "execution_count": 1,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#In the steam tables,it is set forth that during the evaporation of 1 lb\n",
+ "#of water at 500 psia and 467.01 F the V increases from 0.0197 to 0.9278,\n",
+ "#while the enthalpy increases from 449.4 to 1204.4. How much work is done by\n",
+ "#a stationary system consisting of 1 lb of water when, because of an inflow \n",
+ "#heat, the system changes from liquid to vapor at 500 psia. How much does the\n",
+ "#internal energy change?\n",
+ "#initialisation of variables\n",
+ "print '%s' %('From keenan and keyes steam tables')\n",
+ "p= 500 \t\t\t\t#psia\n",
+ "V2= 0.9278 \t\t\t#cu ft/lb\n",
+ "V1= 0.0197 \t\t\t#cu ft/lb\n",
+ "h= 1204.4 \t\t\t#Btu/lb\n",
+ "h1= 449.4 \t\t\t#Btu/lb\n",
+ "#CALCULATIONS\n",
+ "W= p*144*(V2-V1)\t#Work done\n",
+ "U= h-h1-(W/778.) \t#Internal energy\n",
+ "#RESULTS\n",
+ "print '%s' %('The second method follows the same procedure hence the same calculations are used')\n",
+ "print '%s %.2f' %('Change in internal enenrgy (Btu) = ',U)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 5.4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Change in internal enenrgy (Btu) = -50.82\n",
+ " \n",
+ " Work done (Btu) = 529.37\n",
+ " \n",
+ " Heat generated (Btu) = 478.55\n",
+ " \n",
+ " Work done (Btu) = 80.82\n",
+ "The answers given in the textbook are wrong.please calculate them personally.\n",
+ "press enter key to exit\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "''"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#The internal energy of a certain susbtance is given by u= 0.48pv + 35.\n",
+ "#A system composed of 3 lb of this substance expands from an intial pressure\n",
+ "#of 75 psia and volume of 6 to a final pressure of 15 psia in a process in \n",
+ "#which pressure and volume are related by pv^1.2=c. \n",
+ "#(a)If the expression is frictionless, determine Q, U and W for the process.\n",
+ "#(b) In another proccess the same system again exmapns according to the same \n",
+ "#initial state to the same final state as in part a but the heat in this case\n",
+ "#is 30 btu. Find the work for this process\n",
+ "import math\n",
+ "#initialisation of variables\n",
+ "m= 3 \t\t\t\t\t\t\t\t\t\t#lb\n",
+ "V1= 6 \t\t\t\t\t\t\t\t\t\t#cu ft\n",
+ "p1= 75. \t\t\t\t\t\t\t\t\t#psia\n",
+ "p2= 15. \t\t\t\t\t\t\t\t\t#psia\n",
+ "n= 1.2\n",
+ "Q1= 30 \t\t\t\t\t\t\t\t\t\t#Btu\n",
+ "#CALCULATIONS\n",
+ "V2= V1*math.pow((p1/p2),(1/n)) \t\t\t\t#Final volume\n",
+ "U= (m/3)*(0.480*p2*V2+35-0.480*p1*V1-35) \t#Internal energy\n",
+ "W= (p2*V2-p1*V1)/(1-n) \t\t\t\t\t\t#Work done\n",
+ "Q= U+W \t\t\t\t\t\t\t\t\t\t#Enthalpy\n",
+ "W1= Q1-U \t\t\t\t\t\t\t\t\t#Work done in case 2\n",
+ "#RESULTS\n",
+ "print '%s %.2f' %('Change in internal enenrgy (Btu) = ',U)\n",
+ "print '%s %.2f' %(' \\n Work done (Btu) = ',W)\n",
+ "print '%s %.2f' %(' \\n Heat generated (Btu) = ',Q)\n",
+ "print '%s %.2f' %(' \\n Work done (Btu) = ',W1)\n",
+ "print '%s' %('The answers given in the textbook are wrong.please calculate them personally.')\n",
+ "raw_input('press enter key to exit')"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_6_Flow_Procesess_First_law_analysis.ipynb b/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_6_Flow_Procesess_First_law_analysis.ipynb
new file mode 100644
index 00000000..021d290f
--- /dev/null
+++ b/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_6_Flow_Procesess_First_law_analysis.ipynb
@@ -0,0 +1,208 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Chapter 6: Flow Procesess First law analysis"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 6.1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Poweroutput (hp) = 219.56\n",
+ "press enter key to exit\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "''"
+ ]
+ },
+ "execution_count": 1,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#A turbine operates under steady flow conditions, receiving steam at the \n",
+ "#following state: P=170 psia, T=368.4 F and Cv=2.675, U=1111.9, v=6000 and z=10\n",
+ "#Steam leaves at the following state: P=3 psia, T=141.5 F and Cv=100.9, \n",
+ "#U=914.6, v=300 and z=0. heat loss=1000. Rate of flow=2500.what is Power?\n",
+ "import math\n",
+ "#initialisation of variables\n",
+ "u1= 1111.9 \t\t\t#Btu/lb\n",
+ "p= 170\t\t\t \t#psia\n",
+ "v1= 2.675 \t\t\t#cu ft/lb\n",
+ "V1= 6000 \t\t\t#ft/min\n",
+ "g0= 32.2 \t\t\t#ft/sec^2\n",
+ "g= 32.2 \t\t\t#ft/sec^2\n",
+ "z= 10 \t\t\t\t#ft\n",
+ "Q= 1000\t\t\t\t#Btu/hr\n",
+ "u2= 914.6 \t\t\t#Btu/lb\n",
+ "p1= 3 \t\t\t\t#psia\n",
+ "v2= 100.9 \t\t\t#cu ft/lb\n",
+ "V2= 300 \t\t\t#ft/sec\n",
+ "g0= 32.2 \t\t\t#ft/sec^2\n",
+ "g= 32.2 \t\t\t#ft/sec^2\n",
+ "z1= 0 \t\t\t\t#ft\n",
+ "#CALCULATIONS\n",
+ "#The numbers used are conversion factors for different units\n",
+ "Wx= (u1+(p*v1*144./778.)+(math.pow((V1/60.),2)/(2*g*778))+(z/778.)-(Q/2500.)-u2-(p1*v2*144./778.)-((V2*V2)/(2*g*778.)))*2500.\n",
+ "#RESULTS\n",
+ "print '%s %.2f' %('Poweroutput (hp) = ',Wx*0.000393014779)\n",
+ "#It is the conversion factor from btu/hr to hp\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 6.2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Steam supplied to the heater (lb/hr) = 1456.70\n"
+ ]
+ }
+ ],
+ "source": [
+ "#A certain water heater operates under steady flow conditions receiving 500\n",
+ "#of water at t=165F and enthalpy=132.9. The water is heated by mixing with steam \n",
+ "#which is supplied to the heater at temp 215 F and enthalpy 1150. The mixture\n",
+ "#leaves the heater as liquid water at temp 212 F, enthalpy 180. How many pounds\n",
+ "#per hr of steam must be supplied to the heater? \n",
+ "#initialisation of variables\n",
+ "w1= 500 \t\t\t\t\t#lb/min\n",
+ "h1= 132.9 \t\t\t\t\t#Btu/lb\n",
+ "h2= 1150 \t\t\t\t\t#Btu/lb\n",
+ "h3= 180 \t\t\t\t\t#Btu/lb\n",
+ "#CALCULATIONS\n",
+ "w2= w1*(h3-h1)*60/(h2-h3)\t#Steam supplied\n",
+ "#RESULTS\n",
+ "print '%s %.2f' %('Steam supplied to the heater (lb/hr) = ',w2)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 6.3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Average velovity at section1 (fps) = 939.56\n",
+ " \n",
+ " Average velovity at section2 (fps) = 1033.51\n",
+ "\n",
+ " rate of flow (lb/sec) = 4.15\n",
+ "press enter key to exit\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "''"
+ ]
+ },
+ "execution_count": 1,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#Steam is flowing steadily through a pipe 2 in in dia in which there is a \n",
+ "#pressure drop due to friction. the pipe is thoroughly insulated so that \n",
+ "#heat loss is neligible. At a certain section in the pipe, steam pressure\n",
+ "#is 100 psia, the specific volume is 4.937 and enthalpy=1227.6. at another\n",
+ "# section, downstream first, the corresopnding parameters are 90, 5.434 \n",
+ "#and 1223.9. Find the average velocity at each of the sections mentioned, \n",
+ "#the rate of flow\n",
+ "import math\n",
+ "#initialisation of variables\n",
+ "h1= 1227.6 #Btu/lb\n",
+ "h2= 1223.9 #Btu/lb\n",
+ "g= 32.2 #ft/sec^2\n",
+ "v1= 4.937 #cu ft/lb\n",
+ "d= 2./12. #in\n",
+ "A1=math.pi*d*d /4.\n",
+ "#CALCULATIONS\n",
+ "V1= math.sqrt((2*g*(h1-h2)*778)/((1.1)*1.1-1))\n",
+ "V2= 1.1*V1\n",
+ "w=A1*V1/v1\n",
+ "#RESULTS\n",
+ "print '%s %.2f' %('Average velovity at section1 (fps) = ',V1)\n",
+ "print '%s %.2f' %(' \\n Average velovity at section2 (fps) = ',V2)\n",
+ "print '%s %.2f' %('\\n rate of flow (lb/sec) = ', w)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_8_Basic_applications_of_the_second_law.ipynb b/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_8_Basic_applications_of_the_second_law.ipynb
new file mode 100644
index 00000000..65257aa0
--- /dev/null
+++ b/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Chapter_8_Basic_applications_of_the_second_law.ipynb
@@ -0,0 +1,341 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Chapter 8: Basic applications of the second law"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 8.1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Maximum thermal efficiency (percent) = 6.42\n"
+ ]
+ }
+ ],
+ "source": [
+ "#It is proposed to obtain a power from the hot surface water of tropical seas\n",
+ "#using the cold water from the depths as a sink for heat rejection. The surface\n",
+ "#water is 85 F the deep water is at 50 F. In the light of the second law is such\n",
+ "#scheme possible? If so, what is the max. thermal efficiency possible under law?\n",
+ "#initialisation of variables\n",
+ "T1= 85. \t\t\t\t\t#F\n",
+ "T2= 50. \t\t\t\t\t#F\n",
+ "#CALCULATIONS\n",
+ "n= (T1-T2)/(T1+460)\t\t\t#Max. efficiency\n",
+ "n1= n*100 \t\t\t\t\t#percentage\n",
+ "#RESULTS\n",
+ "print '%s %.2f' %('Maximum thermal efficiency (percent) = ',n1)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 8.2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Maximum thermal efficiency (percent) = 63.58\n",
+ "press enter key to exit\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "''"
+ ]
+ },
+ "execution_count": 1,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#A proposed steam power plant will provide for supplying heat to steam at temp\n",
+ "#upto 1050F. The temperature of heat rejection is about 90 F. It is stated that\n",
+ "#the efficiency of the plant will approach 34%. Does this seem reasonable per law?\n",
+ "#initialisation of variables\n",
+ "T1= 1050. \t \t\t\t\t#F\n",
+ "T2= 90. \t\t\t\t\t#F\n",
+ "#CALCULATIONS\n",
+ "n= (T1-T2)/(T1+460)\t\t\t#Efficiency\n",
+ "n1= n*100 \t\t\t\t\t#Percentage\n",
+ "#RESULTS\n",
+ "print '%s %.2f' %('Maximum thermal efficiency (percent) = ',n1)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 8.3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Entropy change (Btu/Fabs) = 0.0430\n",
+ "press enter key to exit\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "''"
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#How much does te entropy of a pound if air change when the air is heated \n",
+ "#irreversibly from 1 atm pressure, 50 F to 1 atm, 150 F if the Cp=0.240?\n",
+ "import math\n",
+ "#initialisation of variables\n",
+ "m= 1 \t\t\t\t\t\t\t\t\t\t\t#lb\n",
+ "cp= 0.240 \t\t\t\t\t\t\t\t\t\t#btu/lb F\n",
+ "T2= 150 \t\t\t\t\t\t\t\t\t\t#F\n",
+ "T1= 50 \t\t\t\t\t\t\t\t\t\t\t#F\n",
+ "#CALCULATIONS\n",
+ "S= m*cp*(math.log(460.+T2)-math.log(460.+T1))\t#Entropy\n",
+ "#RESULTS\n",
+ "print '%s %.4f' %('Entropy change (Btu/Fabs) = ',S)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 8.4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Entropy change (Btu/Fabs) = 0.0430\n",
+ "press enter key to exit\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "''"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#If in the previous example, the process is adiabatic with work against friction\n",
+ "#How much the entropy change during this process\n",
+ "import math\n",
+ "#initialisation of variables\n",
+ "m= 1 \t\t\t\t\t\t\t\t\t\t\t#lb\n",
+ "cp= 0.240 \t\t\t\t\t\t\t\t\t\t#btu/lb F\n",
+ "T2= 150 \t\t\t\t\t\t\t\t\t\t#F\n",
+ "T1= 50 \t\t\t\t\t\t\t\t\t\t\t#F\n",
+ "#CALCULATIONS\n",
+ "S= m*cp*(math.log(460.+T2)-math.log(460.+T1))\t#Entropy\n",
+ "#RESULTS\n",
+ "print '%s %.4f' %('Entropy change (Btu/Fabs) = ',S)\n",
+ "#This result is same as the above since change in entropy does not depend on the process involved\n",
+ "# but only on the initial and final states\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 8.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Total Entropy change (Btu/R) = 0.530\n",
+ "press enter key to exit\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "''"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#In a steam boiler, hot gases from a fire transfer heat to water which evaporates\n",
+ "#at const. temp. In certain case the gases are cooled from 2000 F to 1000F while\n",
+ "#the water evaportates to 400 F. the Cp=0.24 and L=826. No wastage. How much does\n",
+ "#the entropy increase as a result of the irreversible heat transfer.?\n",
+ "import math\n",
+ "#initialisation of variables\n",
+ "Q= 826 \t\t\t\t\t\t\t\t\t\t\t#Btu/lb\n",
+ "T= 400.\t\t\t\t\t\t\t\t\t\t\t#F\n",
+ "T1= 1000. \t\t\t\t\t\t\t\t\t\t#F\n",
+ "T2= 2000. \t\t\t\t\t\t\t\t\t\t#F\n",
+ "#CALCULATIONS\n",
+ "Sw= Q/(T+460.)\t\t\t\t\t\t\t\t\t#Entropy change for water\n",
+ "Sg= (Q/T1)*(math.log(T1+460)-math.log(T2+460))\t#Entropy change for gas\n",
+ "S= Sw+Sg\t\t\t\t\t\t\t\t\t\t#Total entropy change\n",
+ "#RESULTS\n",
+ "print '%s %.3f' %('Total Entropy change (Btu/R) = ',S)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 8.6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Loss percent = 48\n",
+ "press enter key to exit\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "''"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#For the above example find the increase in unavailable energy due to the \n",
+ "#irreversible heat transfer. Assume the temperature of the surroundings is 80 F?\n",
+ "import math\n",
+ "#initialisation of variables\n",
+ "Q= 826.\t\t\t\t\t\t\t\t\t\t\t\t#Btu/lb\n",
+ "T= 400.\t\t\t\t\t\t\t\t\t\t\t\t#F\n",
+ "T1= 1000. \t\t\t\t\t\t\t\t\t\t\t#F\n",
+ "T2= 2000. \t\t\t\t\t\t\t\t\t\t\t#F\n",
+ "T3= 80.\t\t\t\t\t\t\t\t\t\t\t\t#F\n",
+ "#CALCULATIONS\n",
+ "Sw= Q/(T+460.)\t\t\t\t\t\t\t\t\t\t#Entropy change for water\n",
+ "Sg= (Q/T1)*(math.log(T1+460)-math.log(T2+460))\t\t#Entropy change for gas\n",
+ "S= Sw+Sg \t\t\t\t\t\t\t\t\t\t\t#Total entropy change\n",
+ "Q1= (T3+460.)*S \t\t\t\t\t\t\t\t\t#Heat generated\n",
+ "Q2= Q+(T3+460.)*Sg \t\t\t\t\t\t\t\t\t#Total heat\n",
+ "n= Q1/Q2 \t\t\t\t\t\t\t\t\t\t\t#Efficiency\n",
+ "n1= n*100 \t\t\t\t\t\t\t\t\t\t\t#Loss percent\n",
+ "#RESULTS\n",
+ "print '%s %d' %('Loss percent = ',n1)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Combustion_Processes_First_law_analysis.ipynb b/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Combustion_Processes_First_law_analysis.ipynb
new file mode 100644
index 00000000..4c71316d
--- /dev/null
+++ b/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Combustion_Processes_First_law_analysis.ipynb
@@ -0,0 +1,404 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Chapter 14: Combustion Processes First law analysis"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 14.1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Theoretical air for combustion (lb air per lb C8H18) = 15.06\n",
+ "press enter key to exit\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "''"
+ ]
+ },
+ "execution_count": 1,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#Find the theoretical air for combustion of octane to CO2 and H2O\n",
+ "#initialisation of variables\n",
+ "M= 114 \t\t\t\t\t\t\t\t#lb\n",
+ "Mo= 32 \t\t\t\t\t\t\t\t#lb\n",
+ "Mn= 28 \t\t\t\t\t\t\t\t#lb\n",
+ "Mc= 44 \t\t\t\t\t\t\t\t#lb\n",
+ "Mw= 18 \t\t\t\t\t\t\t\t#lb\n",
+ "#CALCULATIONS\n",
+ "Ma= (12.5*Mo+(12.5)*(79./21.)*Mn)/114. #theoretical air\n",
+ "#RESULTS\n",
+ "print '%s %.2f' %('Theoretical air for combustion (lb air per lb C8H18) = ',Ma)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 14.4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Part b\n",
+ "\n",
+ " From steam tables\n",
+ "\n",
+ " Partial pressure of water (psia) = 1.78\n",
+ "\n",
+ " Dew point at the pressure (F) = 121.60\n",
+ "\n",
+ " Part c\n",
+ "\n",
+ " Partial pressure of water (psia) = 0.95\n",
+ "\n",
+ " The liquid water formed per pound of the fuel is (lb) 0.55\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Fuel oil containing 86 percent of carbon and 14 percent hydrogen by mass is to\n",
+ "#be burned with 10% excess air. (b) If the pressure is 15 psia. What is the dew\n",
+ "# point of the products? (c)If the products are cooled to 100 F at 15 psia how\n",
+ "#much liquid water will condense per pound of fuel burned?\n",
+ "#Initialization of variables\n",
+ "MW=18. \t\t\t\t#gm/mol\n",
+ "MCO2=44. \t\t\t#gm/mol\n",
+ "MN2=28. \t\t\t#gm/mol\n",
+ "MO2=32. \t\t\t#gm/mol\n",
+ "P=15. \t\t\t\t#psia\n",
+ "#calculations\n",
+ "xw=(0.074/MW)/(0.184/MCO2 + 0.074/MW + 0.02/MO2 + 0.722/MN2)\n",
+ "Pw=xw*P\n",
+ "print '%s' %(\"Part b\")\n",
+ "print '%s' %(\"\\n From steam tables\")\n",
+ "T=121.6 \t\t\t#F\n",
+ "print '%s %.2f' %('\\n Partial pressure of water (psia) = ',Pw)\n",
+ "print '%s %.2f' %('\\n Dew point at the pressure (F) = ',T)\n",
+ "print '%s' %(\"\\n Part c\")\n",
+ "pw2=0.9492 \t\t\t#Pressure\n",
+ "xw2=pw2/P\n",
+ "y = MW*(0.0346*xw2/(1-xw2))\n",
+ "diff=0.074-y\n",
+ "lb=17.15 \t\t\t#lb/ lbm of products\n",
+ "w=lb*diff\n",
+ "print '%s %.2f' %('\\n Partial pressure of water (psia) = ',pw2)\n",
+ "print '%s %.2f' %('\\n The liquid water formed per pound of the fuel is (lb) ',w)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 14.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Heat Transfer from the system (Btu) = -13513.78\n"
+ ]
+ }
+ ],
+ "source": [
+ "#The internal energy of reaction for burning carbon to CO2 at 68F is -14087 . \n",
+ "#Find the heat trasnferred when a system composed of 1 lb of C and 4 lb of O2\n",
+ "#at 300 C burns at constant volume at a final temp of 1000 F . Cp=0.17\n",
+ "#initialisation of variables\n",
+ "mO2=1.33 \t\t\t\t\t\t\t\t\t\t#lb\n",
+ "mCO2=3.67 \t\t\t\t\t\t\t\t\t\t#lb\n",
+ "CvO2=0.155 \t\t\t\t\t\t\t\t\t\t#Btu/lb F\n",
+ "CvCO2=0.165 \t\t\t\t\t\t\t\t\t#Btu/lb F\n",
+ "Cc=0.170 \t\t\t\t\t\t\t\t\t\t#Btu/lb F\n",
+ "t2=1000. \t\t\t\t\t\t\t\t\t\t#F\n",
+ "tB=68. \t\t\t\t\t\t\t\t\t\t\t#F\n",
+ "t=300. \t\t\t\t\t\t\t\t\t\t\t#F\n",
+ "mC=1\n",
+ "mO=4\n",
+ "#Calculations\n",
+ "deltaE1=mO2*CvO2*(t2-tB) + mCO2*CvCO2*(t2-tB)\t#Energy change\n",
+ "deltaE2=mC*Cc*(tB-t) + mO*CvO2*(tB-t) \t\t\t#Energy change\n",
+ "E= -14087 \t\t\t\t\t\t\t\t\t\t#Btu \n",
+ "Q=deltaE1+E+deltaE2\t\t\t\t\t\t\t\t#Heat transfer\n",
+ "#Results\n",
+ "print '%s %.2f' %('Heat Transfer from the system (Btu) =',Q)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 14.6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Constant pressure heating value (Btu/lb formula wt) = -242211.42\n",
+ "press enter key to exit\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "''"
+ ]
+ },
+ "execution_count": 1,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#Given the reaction for burning of CO and the Cp=4344. Find the Cv?\n",
+ "#initialisation of variables\n",
+ "HV=4344 \t\t\t#Btu/lb\n",
+ "m=56 \t\t\t\t#lb\n",
+ "R=1.986 \t\t\t#Btu/lb mol R\n",
+ "Tb=530 \t\t\t\t#R\n",
+ "#Calculations\n",
+ "HR=m*HV \t\t\t#Heat of reaction\n",
+ "Eb=-HR-R*Tb*(2-3) \t#Heatin value\n",
+ "print '%s %.2f' %('Constant pressure heating value (Btu/lb formula wt) = ',Eb)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 14.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "In case 1,Final temp (F) = 4940.02\n",
+ "\n",
+ " In case 2, Final temp (F) = 3986.47\n",
+ "press enter key to exit\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "''"
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#Assume carbon burns with air in a steady flow process. If theoretical air\n",
+ "#is used, calculate the products temp. for adiabatic combustion, assuming\n",
+ "#the products have constant sp. heats of room temp. magnitude\n",
+ "#initialisation of variables\n",
+ "mC=1 \t\t\t\t\t\t\t\t\t#lb\n",
+ "mO2=2.67\t\t\t\t \t\t\t\t#lb\n",
+ "mN2=8.78 \t\t\t\t\t\t\t\t#lb\n",
+ "mCO2=3.67 \t\t\t\t\t\t\t\t#lb\n",
+ "mN2=8.78 \t\t\t\t\t\t\t\t#lb\n",
+ "tB=77\t\t \t\t\t\t\t\t\t#F\n",
+ "deltaH=14087 \t\t\t\t\t\t\t#Btu/lb\n",
+ "CpCO2=0.196 \t\t\t\t\t\t\t#Btu/lb F\n",
+ "CpCO2f=0.3 \t\t\t\t\t\t\t\t#Btu/lb F\n",
+ "CpN2=0.248 \t\t\t\t\t\t\t\t#Btu/lb F\n",
+ "CpN2f=0.285 \t\t\t\t\t\t\t#Btu/lb F\n",
+ "#Calculations\n",
+ "t2= tB+ deltaH/(mCO2*CpCO2 + mN2*CpN2)\t#Final temp in case 1\n",
+ "t2f=tB+ deltaH/(mCO2*CpCO2f + mN2*CpN2f) #Final temp in case 2\n",
+ "#Results\n",
+ "print '%s %.2f' %('In case 1,Final temp (F) = ',t2)\n",
+ "print '%s %.2f' %('\\n In case 2, Final temp (F) = ',t2f)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 14.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Efficiency = 0.914\n",
+ "press enter key to exit\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "''"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#Suppose 1 pound of carbon burns at Cp so that 0.9 goes into CO2, 0.05lb goes \n",
+ "#into CO and 0.05 emerges as unburned carbon; find the efficiency of the \n",
+ "#combustion process\n",
+ "#initialisation of variables\n",
+ "HR=14087 \t\t#Btu\n",
+ "HRC=3952 \t\t#Btu\n",
+ "x1=0.9\n",
+ "x2=0.05\n",
+ "#Calculations\n",
+ "HR1=x1*HR \t\t#Heat of reaction\n",
+ "HR2=x2*HRC \t#Heat of reaction\n",
+ "e=(HR2+HR1)/HR \t#Efficiency\n",
+ "#Results\n",
+ "print '%s %.3f' %('Efficiency = ',e)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 14.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "efficiency = 0.75\n"
+ ]
+ }
+ ],
+ "source": [
+ "#A steam generator produces 10000 lb/hr of steam at 150 psia, saturated vapor. \n",
+ "#In addition, there is drawn off from the boiler 500 lb/hr of saturated liquid\n",
+ "# at 150 psia as \"blow down\" The feed water is supplied to the boiler at 210 F.\n",
+ "#Oil fuel having a hv of 19500 is burned in the furnace at the rate of 700 lb/hr.\n",
+ "#Find the efficiency of the steam generator, as defined above.\n",
+ "#initialisation of variables\n",
+ "hvi=19500. \t\t\t\t\t#Btu/hr\n",
+ "Q=10240000.\t\t\t\t\t#Btu/hr\n",
+ "rate=700.\t\t\t\t\t#lb/hr\n",
+ "#calculations\n",
+ "Hv=rate*hvi\n",
+ "efficiency=Q/Hv\n",
+ "#results\n",
+ "print '%s %.2f' %('efficiency = ',efficiency)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Gas_cycles.ipynb b/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Gas_cycles.ipynb
new file mode 100644
index 00000000..8b184ea7
--- /dev/null
+++ b/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Gas_cycles.ipynb
@@ -0,0 +1,219 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Chapter 15: Gas cycles"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 15.1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Efficiency = 0.37\n",
+ "Efficiency in case 2= 0.357\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Find the efficiency, and the work per pound of fluid circulated, for a \n",
+ "#Baryton cycle working between pressures of 15 psia and 75 psia, if the \n",
+ "#minimum temp. in the cycle is 550 R and the max. temp is 1700R?\n",
+ "import math\n",
+ "#initialisation of variables\n",
+ "p= 15.\t\t\t\t\t\t\t\t\t#psia\n",
+ "p1= 75.\t\t\t\t\t\t\t\t\t#psia\n",
+ "T= 550. \t\t\t\t\t\t\t\t#R\n",
+ "T1= 1700. \t\t\t\t\t\t\t\t#R\n",
+ "k= 1.4\n",
+ "#CALCULATIONS\n",
+ "Ta= T*math.pow((p1/p),((k-1)/k))\t\t#Temperature at A\n",
+ "Tc= T1/(math.pow((p1/p),((k-1)/k))) \t#Temperature at C\n",
+ "cp= 0.24 \n",
+ "Q1= cp*(T1-Ta) \t\t\t\t\t\t\t#Heat in 1\n",
+ "Q2= cp*(Tc-T) \t\t\t\t\t\t\t#Heat in 2\n",
+ "Wnet= Q1-Q2 \t\t\t\t\t\t\t#Work done\n",
+ "n= Wnet/Q1 \t\t\t\t\t\t\t\t#efficiency\n",
+ "hb= 422.59 \t\t\t\t\t\t\t\t#Btu/lb\n",
+ "hc= 269.27 \t\t\t\t\t\t\t\t#Btu/lb\n",
+ "ha= 208.41\t \t\t\t\t\t\t\t#Btu/lb\n",
+ "hd= 131.46 \t\t\t\t\t\t\t\t#btu/lb\n",
+ "Q1i= hb-ha\t\t\t\t\t\t\t\t#Heat in 1 case 2\n",
+ "Q2i= hc-hd \t\t\t\t\t\t\t\t#Heat in 2 case 2\n",
+ "Wnet1= Q1i-Q2i \t\t\t\t\t\t\t#work in case 2\n",
+ "n1= Wnet1/Q1i \t\t\t\t\t\t\t#efficiency 2\n",
+ "#RESULTS\n",
+ "print '%s %.2f' %('Efficiency = ',n)\n",
+ "print '%s %.3f' %( 'Efficiency in case 2= ',n1)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 15.2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Efficiency = 0.45\n",
+ "press enter key to exit\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "''"
+ ]
+ },
+ "execution_count": 1,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#Repeat for example 1 for a cycle using a regenerator of 75% effectiveness\n",
+ "#initialisation of variables\n",
+ "import math\n",
+ "p= 15. \t\t\t\t\t\t\t\t#psia\n",
+ "p1= 75. \t\t\t\t\t\t\t#psia\n",
+ "T= 550 \t\t\t\t\t\t\t\t#R\n",
+ "T1= 1700 \t\t\t\t\t\t\t#R\n",
+ "k= 1.4\n",
+ "n= 75.\n",
+ "cp= 0.24\n",
+ "#CALCULATIONS\n",
+ "Ta= T*math.pow((p1/p),((k-1)/k))\t#Temperature at A\n",
+ "Tc= T1/(math.pow((p1/p),((k-1)/k)))\t#Temperature at C\n",
+ "Ta1= (n/100.)*(Tc-Ta)+Ta \t\t\t#Temperature at A in case 2\n",
+ "Tc1= Ta+Tc-Ta1 \t\t\t\t\t\t#Temperature at C in case 2\n",
+ "Q1= cp*(T1-Ta1) \t\t\t\t\t#Heat in 1\n",
+ "Q2= cp*(Tc1-T) \t\t\t\t\t\t#heat in 2\n",
+ "Wnet= Q1-Q2 \t\t\t\t\t\t#Net work done\n",
+ "n1= Wnet/Q1 \t\t\t\t\t\t#Efficiency\n",
+ "#CALCULATIONS\n",
+ "print '%s %.2f' %('Efficiency = ',n1)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 15.3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Efficiency = 0.181\n",
+ " \n",
+ " air rate (lb air/hphr) = 52.04\n",
+ " \n",
+ " back work ratio = 1.87\n",
+ "press enter key to exit\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "''"
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#Find the efficiency, air rate and back work ratio for a gas turbine plant\n",
+ "#of the following description. T=60 F, p1=15. p2/p1=6; macchine efficiences\n",
+ "#of compressor and turbine both 60%. LHV=18500. Turbine inlet temp=1450 F.\n",
+ "#initialisation of variables\n",
+ "h1= 124.27 \t\t\t#Btu/lb\n",
+ "Pr1= 1.2147 \t\t#psia\n",
+ "r= 6\n",
+ "p4= 15. \t\t\t#psia\n",
+ "p1= 15. \t\t\t#psia\n",
+ "h2s= 197.5 \t\t\t#Btu/lb\n",
+ "Wnet= 48.9 \t\t\t#Btu/lb air\n",
+ "hs= 18500 \t\t\t#Btu/lb\n",
+ "wfbywa= 0.0146 \t\t#lb fuel/lb sir\n",
+ "W= 2545 \t\t\t#Btu/lb air\n",
+ "dh=-91.5 \t\t\t#Btu/lb\n",
+ "Wc= 91.5 \t\t\t#Btu/lb air\n",
+ "#CALCULATIONS\n",
+ "n= Wnet/(wfbywa*hs)\t#Efficiency\n",
+ "n1= W/Wnet\t\t\t#Air rate\n",
+ "n2= Wc/Wnet \t\t#Back work ratio\n",
+ "#RESULTS\n",
+ "print '%s %.3f' %('Efficiency = ',n)\n",
+ "print '%s %.2f' %(' \\n air rate (lb air/hphr) = ',n1)\n",
+ "print '%s %.2f' %(' \\n back work ratio = ',n2)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Properties_of_Gaseous_Mixtures.ipynb b/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Properties_of_Gaseous_Mixtures.ipynb
new file mode 100644
index 00000000..2178e157
--- /dev/null
+++ b/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Properties_of_Gaseous_Mixtures.ipynb
@@ -0,0 +1,330 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Chapter 12: Properties of Gaseous Mixtures"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 12.1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "relative humidity= 0.59\n",
+ " \n",
+ " specific humidity (lb vapour/lb air) = 0.0090\n"
+ ]
+ }
+ ],
+ "source": [
+ "#In a dew point apparatus a metal beaer is cooled by gradually adding ice water\n",
+ "#to the water initally in the beaker at room temp. The moisture from the room\n",
+ "#circulating around the beaker beins to condense on the beaker when its temp\n",
+ "#is 70 F and the pressure is 15 psia, find (1) the partial pressure of water\n",
+ "#vapor in the room air and (2) the parts by mass of the same.\n",
+ "#initialisation of variables\n",
+ "P= 15.0 \t\t\t\t#psia\n",
+ "T= 55 \t\t\t\t\t#F\n",
+ "P1= 0.2141 \t\t\t\t#psia\n",
+ "ma= 29. \t\t\t\t#lb\n",
+ "mb= 18. \t\t\t\t#lb\n",
+ "P2= 0.2141 \t\t\t\t#psia\n",
+ "P3= 0.3631 \t\t\t\t#psia\n",
+ "#CALCULATIONS\n",
+ "dp= P-P1 \t\t\t\t#Change in pressure\n",
+ "r= (dp*ma)/(P1*mb) \t\t#parts by mass\n",
+ "r1= r/(r+1) \t\t\t#ratio\n",
+ "r2= 1/(r+1) \t\t\t#ratio\n",
+ "r4= r2/r1 \t\t\t\t#specific humidity\n",
+ "P= P2/P3 \t\t\t\t#relative humidity\n",
+ "#RESULTS\n",
+ "print '%s %.2f' %('relative humidity= ',P)\n",
+ "print '%s %.4f' %(' \\n specific humidity (lb vapour/lb air) = ',r4)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 12.2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Pounds of water vapour enter the furnance per pound of dry air (lb vapour/lb air) = 0.0163\n",
+ "press enter key to exit\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "''"
+ ]
+ },
+ "execution_count": 1,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#Air supplied to a furnacce has RH 75%, T=80 F and P=10 in of water. The\n",
+ "#barometer reads 29.5 in of mercury. How many pounds of water vapor enter\n",
+ "#the furnace per pound of dry air?\n",
+ "#initialisation of variables\n",
+ "h= 29.5 \t\t\t\t#in\n",
+ "n= 75.\n",
+ "T= 80 \t\t\t\t\t#F\n",
+ "h1= 10 \t\t\t\t\t#in\n",
+ "mw= 0.380*18\n",
+ "ma= 14.47*29\n",
+ "d= 13.6 \t\t\t\t#kg/m^3\n",
+ "P= 0.5069 \t\t\t\t#psi\n",
+ "#CALCULATIONS\n",
+ "Pw= (n/100.)*P \t\t\t#partial pressure\n",
+ "P= (h+(h1/d))*(0.491) \t#Total pressure\n",
+ "pa= P-Pw \t\t\t\t#partial pressure of air\n",
+ "r= mw/ma \t\t\t\t# pounds of water\n",
+ "#RESULTS\n",
+ "print '%s %.4f' %('Pounds of water vapour enter the furnance per pound of dry air (lb vapour/lb air) = ',r)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 12.3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "relative humidity (lb water/lb dry air) = 0.00923\n"
+ ]
+ }
+ ],
+ "source": [
+ "#A mixture of air and water vapor at 75 F and 14.7 psia has RH 0.5; find its\n",
+ "#specific humidity and its dew-point temp.?\n",
+ "#initialisation of variables\n",
+ "n= 0.5\n",
+ "T= 75 \t\t\t#F\n",
+ "P= 14.7 \t\t#psia\n",
+ "pg= 0.4298 \t\t#psia\n",
+ "pw= 0.2149 \t\t#psia\n",
+ "#CALCULATIONS\n",
+ "pw1= n*pg \t\t#partial pressure of water\n",
+ "pa= P-pw1 \t\t#partial pressure of air\n",
+ "r= 0.622*pw/pa \t#RH\n",
+ "#RESULTS\n",
+ "print '%s %.5f' %('relative humidity (lb water/lb dry air) = ',r)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 12.4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Method 1\n",
+ "\n",
+ " In method 1, Enthalpy (Btu/lb of dry air) = 12.37\n",
+ "\n",
+ " Method 2\n",
+ "In method 2, Enthalpy (btu/lb of dry air) = 12.38\n",
+ "press enter key to exit\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "''"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#In the process shown, the air is received at 1 atm, 40 F and Rh 60% and it is\n",
+ "#desired to discharge it at 70 F, RH 50%. How much water at 45F must be supplied\n",
+ "#per pound of dry air passing through the apparatus?\n",
+ "#initialisation of variables\n",
+ "r2= 0.0078 \t\t\t\t\t\t#lb water /lb dry air\n",
+ "r1= 0.0032 \t\t\t\t\t\t#lb water /lb dry air\n",
+ "h2= 25.33 \t\t\t\t\t\t#Btu/lb\n",
+ "h1= 12.9 \t\t\t\t\t\t#Btu/lb\n",
+ "pg= 0.1217 \t\t\t\t\t\t#psia\n",
+ "p= 14.7 \t\t\t\t\t\t#psia\n",
+ "h3= 13 \t\t\t\t\t\t\t#Btu/lb\n",
+ "n= 60.\n",
+ "t2=70.\n",
+ "t1=40.\n",
+ "cpa=0.240\n",
+ "R2= 0.00788 \t\t\t\t\t#lb/lb of dry air\n",
+ "w1= 0.00477 \t\t\t\t\t#lb/lb of dry air\n",
+ "#CALCULATIONS\n",
+ "print '%s' %('Method 1')\n",
+ "w= r2-r1 \t\t\t\t\t\t#water to be supplied\n",
+ "q= h2-h1-w*h3 \t\t\t\t\t#energy supplied\n",
+ "print '%s %.2f' %('\\n In method 1, Enthalpy (Btu/lb of dry air) = ',q)\n",
+ "print('\\n Method 2')\n",
+ "R1= 0.622*(n/100.)*(pg/(p-pg))\t#Gamma 1 \n",
+ "R2=0.00788\t\t\t\t\t\t#Gamma 2\n",
+ "w2=R2-R1 \t\t\t\t\t\t#weight 2\n",
+ "#All constants are obtained from steam tables\n",
+ "Q=cpa*(t2-t1)+R2*(1092.6)-R1*(1079.6) -w2*h3\n",
+ "print '%s %.2f' %('In method 2, Enthalpy (btu/lb of dry air) = ',Q)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 12.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The mixture must be cooled to the dew point temperature (F) = 55.30\n",
+ "Heat removed by the cooling coil (Btu/lb dry air)= -8.87\n",
+ "Heat supplied by the heating coil (Btu/lb dry air)= 3.63\n",
+ "Fraction of heat removed in the coil = 0.46\n",
+ "press enter key to exit\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "''"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#Air at 1 am,75F,70% relative humidity is to be brought to 70 F and 60 % RH\n",
+ "#. To what temp. must the mixture be cooled?How much heat must be removed by \n",
+ "#the cooling coil and how much be supplied by the heatin coil per pound of dry\n",
+ "#air?what fraction of the heat removed in the cooling coil is required to cool\n",
+ "#and condense the water removed?\n",
+ "#initialisation of variables\n",
+ "P= 1. \t\t\t \t#atm\n",
+ "n= 70.\n",
+ "T= 75 \t\t\t\t#F\n",
+ "T1= 70 \t\t\t\t#F\n",
+ "Td=55.3 \t\t\t#F\n",
+ "r1= 0.0131 \t\t\t#lb water/lb dry air\n",
+ "r2= 0.0093 \t\t\t#lb water/lb dry air\n",
+ "h1= 32.36 \t\t\t#Btu/lb dry air\n",
+ "h2= 27.03 \t\t\t#Btu/lb dry air\n",
+ "hd2= 23.40 \t\t\t#Btu/lb dry air\n",
+ "hf= 23.4 \t\t\t#Btu/lb dry liquid\n",
+ "hg= 1094.5 \t\t\t#Btu/lb dry liquid\n",
+ "#CALCULATIONS\n",
+ "R1= r1-r2\t\t\t#Gamma 1 \n",
+ "Qc= hd2-h1+R1*hf \t#Cooling\n",
+ "Qh= h2-hd2 \t\t\t#Heating\n",
+ "x= R1*(hg-hf) \t\t#Mole fraction\n",
+ "y= x/(-Qc) \t\t\t#fraction of heat removed\n",
+ "#RESULTS\n",
+ "print '%s %.2f' %('The mixture must be cooled to the dew point temperature (F) = ',Td)\n",
+ "print '%s %.2f' %('Heat removed by the cooling coil (Btu/lb dry air)= ',Qc)\n",
+ "print '%s %.2f' %('Heat supplied by the heating coil (Btu/lb dry air)= ',Qh)\n",
+ "print '%s %.2f' %('Fraction of heat removed in the coil = ',y)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/README.txt b/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/README.txt
new file mode 100644
index 00000000..5d8205be
--- /dev/null
+++ b/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/README.txt
@@ -0,0 +1,10 @@
+Contributed By: Chaitanya Potti
+Course: btech
+College/Institute/Organization: IITB
+Department/Designation: Chemical engineering
+Book Title: Introduction To Thermodynamics And Heat Transfer
+Author: D. A. Mooney
+Publisher: Longmans Green And Co., London
+Year of publication: 1957
+Isbn: 8886332655
+Edition: 1 \ No newline at end of file
diff --git a/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Vapor_cycles.ipynb b/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Vapor_cycles.ipynb
new file mode 100644
index 00000000..308a1861
--- /dev/null
+++ b/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/Vapor_cycles.ipynb
@@ -0,0 +1,303 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Chapter 13: Vapor cycles"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 13.1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "cycle efficency = 0.318\n",
+ " \n",
+ " steam rate (lb steam per hphr) = 6.01\n",
+ "press enter key to exit\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "''"
+ ]
+ },
+ "execution_count": 1,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#A rankine cycle operates with steam conditions 200 psia,750 F and exhaust\n",
+ "#pressure 1 psia. Find the heat supplied, the turbine work, and the pump work\n",
+ "#per pound of steam. Find the cycle efficiency and steam rate?\n",
+ "#initialisation of variables\n",
+ "P= 1 \t\t\t\t\t\t#psia\n",
+ "P1= 200 \t\t\t\t\t#psia\n",
+ "T= 750 \t\t\t\t\t\t#F\n",
+ "v3= 0.01614 \t\t\t\t#cu ft/lb\n",
+ "h1= 1399.2 \t\t\t\t\t#Bu/lb\n",
+ "h2= 976 \t\t\t\t\t#Btu/lb\n",
+ "h3= 69.7 \t\t\t\t\t#Btu/lb\n",
+ "#CALCULATIONS\n",
+ "dh= v3*(144./778.)*(P1-P)\t#Change in enthalpy\n",
+ "h4= h3+dh \t\t\t\t\t#Enthalpy 4 \n",
+ "Q1= h1-h4\t\t\t\t\t#Heat\n",
+ "Wt= h1-h2 \t\t\t\t\t#Work\n",
+ "Wp= h4-h3 \t\t\t\t\t#Work\n",
+ "n= (Wt-Wp)/Q1 \t\t\t\t#Efficiency\n",
+ "w= 2545./Wt \t\t\t\t#Steam rate\n",
+ "#RESULTS\n",
+ "print '%s %.3f' %('cycle efficency = ',n)\n",
+ "print '%s %.2f' %(' \\n steam rate (lb steam per hphr) = ',w)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 13.2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Engine efficency = 0.752\n",
+ " \n",
+ " state of the exhaust steam (Btu/lb) = 1081.075\n"
+ ]
+ }
+ ],
+ "source": [
+ "#A turbine operating under the same steam conditions as given for the cycle\n",
+ "#of example 1 has a measured steam rate 8. Find the engine efficiency of the\n",
+ "#tuebine and the state of the exhaust steam.\n",
+ "#initialisation of variables\n",
+ "wt= 8. \t\t\t\t#lb/hphr\n",
+ "h1= 1399.2 \t\t\t#Btu/lb\n",
+ "h2s= 976. \t\t\t#Btu/lb\n",
+ "h2= 976. \t\t\t#Btu/lb\n",
+ "#CACLAULATIONS\n",
+ "Wt= 2545./wt \t\t#Work per piund\n",
+ "nt= Wt/(h1-h2s) \t#Efficiency\n",
+ "h21= h1-Wt \t\t\t#State of echaust steam\n",
+ "#RESULTS\n",
+ "print '%s %.3f' %('Engine efficency = ',nt)\n",
+ "print '%s %.3f' %(' \\n state of the exhaust steam (Btu/lb) = ',h21)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 13.3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "All the values have been obtained from steam tables and mollier chart\n",
+ "h2 (Btu/lb) = 1307.05\n",
+ "\n",
+ " h4 (Btu/lb) = 1034.16\n",
+ "\n",
+ " For the first rankine cycle\n",
+ "\n",
+ " h7 (Btu/lb) = 935.18\n",
+ "\n",
+ " For the second rankine cycle\n",
+ "\n",
+ " h9 (Btu/lb) = 960.08\n",
+ "\n",
+ " Percentage Efficiency of reheat cycle compared to Rankine cycle for the first case = 6.93\n",
+ "\n",
+ " Percentage Efficiency of reheat cycle compared to Rankine cycle for the second case = 9.56\n",
+ "press enter key to exit\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "''"
+ ]
+ },
+ "execution_count": 1,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#A reheat cycle is to operate with turbines of 85% efficiency, but otherwise\n",
+ "#with idealized processes. the initial pressure is 2000 psia, and exhaust pressure\n",
+ "#is 0.5 psia, reheat=400 psia. Max. temp=1000 F. find efficiency and steam rate\n",
+ "#of this cycle. also of a rankine cycle working between 2000, 1000 and 0.5; also \n",
+ "#of a rankine cycle between 1400,1000,0.5. this being taken as cycle of max.\n",
+ "#permissible pressure without reheat. Use turbines oof 85% efficiecy in the rankine cycles\n",
+ "import math\n",
+ "print '%s' %('All the values have been obtained from steam tables and mollier chart')\n",
+ "#initialisation of variables\n",
+ "h1=1474.5 \t\t\t\t\t\t\t\t\t#btu/lb\n",
+ "s1=1.5603 \t\t\t\t\t\t\t\t\t#btu/lb R\n",
+ "h2s=1277.5 \t\t\t\t\t\t\t\t\t#btu/lb\n",
+ "#Calculations and printfing\n",
+ "h2=h1-0.85*(h1-h2s)\n",
+ "print '%s %.2f' %('h2 (Btu/lb) = ',h2)\n",
+ "h3=1522.4 \t\t\t\t\t\t\t\t\t#btu/lb\n",
+ "s3=1.7623 \t\t\t\t\t\t\t\t\t#btu/lb R\n",
+ "h4s=948 #btu/lb\n",
+ "h4=h3- 0.85*(h3-h4s)\n",
+ "print '%s %.2f' %('\\n h4 (Btu/lb) = ',h4)\n",
+ "h5=47.6 \t\t\t\t\t\t\t\t\t#btu/lb\n",
+ "h6=53.5 \t\t\t\t\t\t\t\t\t#btu/lb\n",
+ "print ('\\n For the first rankine cycle')\n",
+ "h7s=840 \t\t\t\t\t\t\t\t\t#btu/lb\n",
+ "h7=h1-0.85*(h1-h7s)\n",
+ "print '%s %.2f' %('\\n h7 (Btu/lb) = ',h7)\n",
+ "print ('\\n For the second rankine cycle')\n",
+ "h8=1493.2 \t\t\t\t\t\t\t\t\t#btu/lb\n",
+ "s8=1.6903 \t\t\t\t\t\t\t\t\t#btu/lb R\n",
+ "h9s=866 \t\t\t\t\t\t\t\t\t#btu/lb\n",
+ "h9=h8-0.85*(h8-h9s)\n",
+ "print '%s %.2f' %('\\n h9 (Btu/lb) = ',h9)\n",
+ "h11=51.5 \t\t\t\t\t\t\t\t\t#btu/lb\n",
+ "n1=0.401\n",
+ "n2=0.375\n",
+ "n3=0.366\n",
+ "e1=(n1-n2)/n2 \t\t\t\t\t\t\t\t#Efficiency\n",
+ "print '%s %.2f' %('\\n Percentage Efficiency of reheat cycle compared to Rankine cycle for the first case =',e1*100)\n",
+ "e2=(n1-n3)/n3 \t\t\t\t\t\t\t\t#Efficiency\n",
+ "print '%s %.2f' %('\\n Percentage Efficiency of reheat cycle compared to Rankine cycle for the second case =',e2*100)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 13.4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "All the values have been obtained from steam tables and mollier chart\n",
+ "Fraction of energy supplied = 0.91\n",
+ " \n",
+ " Fraction of energy supplied which appears as useful energy= 0.64\n",
+ "press enter key to exit\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "''"
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#A steam plant operates with initial pressure 250 psia and temp 700 F and exhausts\n",
+ "#to a heating system at 25 psia. the condensate from the heating system is \n",
+ "#returned to the boiler plant at 150F, and the heating system utilizes for its\n",
+ "#intended purpose 90% of the energy transferred from the steam it receives\n",
+ "#(a) what fraction of energy supplied to the steam plant serves a useful purpose?\n",
+ "#(b) If two separate steam plants had been setup to produce the same useful energy,\n",
+ "#one to generate power through a cycle working between 250 psia, 700 F and 1 psia, \n",
+ "#what fraction of energy supplied would have served a useful purpose?\n",
+ "#initialisation of variables\n",
+ "h1= 1371 \t\t#Btu/lb\n",
+ "h2s= 1149 \t\t#Btu/lb\n",
+ "h3= 118 \t\t#Btu/lb\n",
+ "Q1= 1253 \t\t#Btu/lb\n",
+ "W= 156. \t\t#Btu/lb\n",
+ "Qw= 680. \t\t#Btu/lb\n",
+ "#CALCULATIONS\n",
+ "print '%s' %('All the values have been obtained from steam tables and mollier chart')\n",
+ "Qh= h1-W-h3 \t#Heat\n",
+ "y= W+0.9*Qh \t#useful energy\n",
+ "r= y/Q1 \t\t#fraction \n",
+ "x= Qh+Qw \t\t#total input\n",
+ "z= y/x \t\t\t#fraction\n",
+ "#RESULTS\n",
+ "print '%s %.2f' %('Fraction of energy supplied = ',r)\n",
+ "print '%s %.2f' %(' \\n Fraction of energy supplied which appears as useful energy= ',z)\n",
+ "raw_input('press enter key to exit')"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/screenshots/2.png b/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/screenshots/2.png
new file mode 100644
index 00000000..315ef3df
--- /dev/null
+++ b/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/screenshots/2.png
Binary files differ
diff --git a/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/screenshots/3.png b/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/screenshots/3.png
new file mode 100644
index 00000000..bbd506d6
--- /dev/null
+++ b/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/screenshots/3.png
Binary files differ
diff --git a/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/screenshots/6.png b/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/screenshots/6.png
new file mode 100644
index 00000000..e70d7fd0
--- /dev/null
+++ b/Introduction_To_Thermodynamics_And_Heat_Transfer_by_D._A._Mooney/screenshots/6.png
Binary files differ
diff --git a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter1.ipynb b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter1.ipynb
index be2e4451..be2e4451 100644
--- a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter1.ipynb
+++ b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter1.ipynb
diff --git a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter1_1.ipynb b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter1_1.ipynb
index be2e4451..be2e4451 100644
--- a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter1_1.ipynb
+++ b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter1_1.ipynb
diff --git a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter2.ipynb b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter2.ipynb
index 9d88fe28..9d88fe28 100644
--- a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter2.ipynb
+++ b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter2.ipynb
diff --git a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter2_1.ipynb b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter2_1.ipynb
index 9d88fe28..9d88fe28 100644
--- a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter2_1.ipynb
+++ b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter2_1.ipynb
diff --git a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter3.ipynb b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter3.ipynb
index 4129f088..4129f088 100644
--- a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter3.ipynb
+++ b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter3.ipynb
diff --git a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter3_1.ipynb b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter3_1.ipynb
index 4129f088..4129f088 100644
--- a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter3_1.ipynb
+++ b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter3_1.ipynb
diff --git a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter4.ipynb b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter4.ipynb
index 6bbf650f..6bbf650f 100644
--- a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter4.ipynb
+++ b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter4.ipynb
diff --git a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter4_1.ipynb b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter4_1.ipynb
index 6bbf650f..6bbf650f 100644
--- a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter4_1.ipynb
+++ b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter4_1.ipynb
diff --git a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter5.ipynb b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter5.ipynb
index 38414570..38414570 100644
--- a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter5.ipynb
+++ b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter5.ipynb
diff --git a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter5_1.ipynb b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter5_1.ipynb
index 38414570..38414570 100644
--- a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter5_1.ipynb
+++ b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter5_1.ipynb
diff --git a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter6.ipynb b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter6.ipynb
index d5b6622f..d5b6622f 100644
--- a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter6.ipynb
+++ b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter6.ipynb
diff --git a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter6_1.ipynb b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter6_1.ipynb
index d5b6622f..d5b6622f 100644
--- a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter6_1.ipynb
+++ b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter6_1.ipynb
diff --git a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter7.ipynb b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter7.ipynb
index 45af7d98..45af7d98 100644
--- a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter7.ipynb
+++ b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter7.ipynb
diff --git a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter7_1.ipynb b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter7_1.ipynb
index 45af7d98..45af7d98 100644
--- a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter7_1.ipynb
+++ b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter7_1.ipynb
diff --git a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter8.ipynb b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter8.ipynb
index 7cf6b405..7cf6b405 100644
--- a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter8.ipynb
+++ b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter8.ipynb
diff --git a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter8_1.ipynb b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter8_1.ipynb
index 7cf6b405..7cf6b405 100644
--- a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter8_1.ipynb
+++ b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter8_1.ipynb
diff --git a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter9.ipynb b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter9.ipynb
index d50d131a..d50d131a 100644
--- a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter9.ipynb
+++ b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter9.ipynb
diff --git a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter9_1.ipynb b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter9_1.ipynb
index d50d131a..d50d131a 100644
--- a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/Chapter9_1.ipynb
+++ b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/Chapter9_1.ipynb
diff --git a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/README.txt b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/README.txt
index 34ec8e1d..34ec8e1d 100644
--- a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/README.txt
+++ b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/README.txt
diff --git a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/screenshots/1.png b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/screenshots/1.png
index 5199042e..5199042e 100644
--- a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/screenshots/1.png
+++ b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/screenshots/1.png
Binary files differ
diff --git a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/screenshots/1_1.png b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/screenshots/1_1.png
index 5199042e..5199042e 100644
--- a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/screenshots/1_1.png
+++ b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/screenshots/1_1.png
Binary files differ
diff --git a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/screenshots/1_2.png b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/screenshots/1_2.png
index 5199042e..5199042e 100644
--- a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/screenshots/1_2.png
+++ b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/screenshots/1_2.png
Binary files differ
diff --git a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/screenshots/2.png b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/screenshots/2.png
index 76933e63..76933e63 100644
--- a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/screenshots/2.png
+++ b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/screenshots/2.png
Binary files differ
diff --git a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/screenshots/2_1.png b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/screenshots/2_1.png
index 76933e63..76933e63 100644
--- a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/screenshots/2_1.png
+++ b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/screenshots/2_1.png
Binary files differ
diff --git a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/screenshots/3.png b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/screenshots/3.png
index 607dd0a1..607dd0a1 100644
--- a/Power_Electronics:_Principles_&_Applications_by_J._M._Jacob_/screenshots/3.png
+++ b/Power_Electronics:_Principles_&_Applications_by_J_M_Jacob_/screenshots/3.png
Binary files differ
diff --git a/sample_notebooks/nishumittal/chapter1.ipynb b/sample_notebooks/nishumittal/chapter1.ipynb
new file mode 100644
index 00000000..56991b68
--- /dev/null
+++ b/sample_notebooks/nishumittal/chapter1.ipynb
@@ -0,0 +1,165 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:b803a1650997e1a91a43f6f6211bc977cbde8d0a8e079033f5645dae7b99d4ba"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 1 Introduction "
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.1 Page no 9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "Rs=50 #ohm\n",
+ "\n",
+ "#Calculation\n",
+ "Rl=100*Rs\n",
+ "\n",
+ "#Result\n",
+ "print\"Load resistance is\",Rl*10**-3,\"ohm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Load resistance is 5.0 ohm\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.2 Page no 12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "Rs=10*10**3 #Kohm\n",
+ "\n",
+ "#Calculation\n",
+ "Rl=0.01*Rs\n",
+ "\n",
+ "#Result\n",
+ "print\"Value of load resistance is\",Rl,\"Kohm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Value of load resistance is 100.0 Kohm\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.4 Page no 14"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "R1=3 #ohm\n",
+ "R2=6\n",
+ "R3=4\n",
+ "\n",
+ "#Calculation\n",
+ "Vth=24\n",
+ "Rth=R3+((R1*R2)/(R1+R2))\n",
+ "\n",
+ "#Result\n",
+ "print\"Thevenin Voltage is\",Vth,\"V\"\n",
+ "print\"Thevenin resistance is\",Rth,\"Kohm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Thevenin Voltage is 24 V\n",
+ "Thevenin resistance is 6 Kohm\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.6 Page no 19"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "V=10 #V\n",
+ "R=2.0 #Kohm\n",
+ "\n",
+ "#Calculation\n",
+ "I=V/R\n",
+ "\n",
+ "#Result\n",
+ "print\"Nortan current is\", I,\"mA\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Nortan current is 5.0 mA\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file