1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
|
import sys, math, argparse, time
from sympy import *
start_time = time.time()
# using argparse to get command line arguments
parser = argparse.ArgumentParser()
parser.add_argument("-f", "--function", help = "Define a function")
parser.add_argument("-s", "--starting", help = "Starting point value", type = float, default = 0.0)
parser.add_argument("-p", "--precision", help = "Convergence precision", type = float, default = 5*10**(-6))
args = parser.parse_args()
sym_x = Symbol('x')
# convert the given function to a symbolic expression
try:
fx = S(args.function)
except:
sys.exit('Unable to convert function to symbolic expression.')
# calculate the differential of the function
try:
dfdx = diff(fx, Symbol('x'))
except:
sys.exit('Unable to differentiate function.')
# e is the relative error between 2 consecutive estimations of the root
e = 1
x0 = args.starting
iterations = 0
while ( e > args.precision ):
# new root estimation
try:
r = x0 - fx.subs({sym_x : x0})/dfdx.subs({sym_x : x0})
except ZeroDivisionError:
print "Function derivative is zero. Division by zero, program will terminate."
sys.exit()
# relative error
e = abs((r - x0)/r)
iterations += 1
x0 = r
total_time = time.time() - start_time
print 'Function:'
pprint(fx)
print 'Derivative:'
pprint(dfdx)
print 'Root %10.6f calculated after %d iterations'%(r, iterations)
print 'Function value at root %10.6f'%(fx.subs({sym_x : r}),)
print 'Finished in %10.6f seconds'%(total_time,)
|