diff options
Diffstat (limited to 'tbc/static/uploads/Jayaram')
-rw-r--r-- | tbc/static/uploads/Jayaram/Engineering Thermodynamics/Chapter5.ipynb | 427 | ||||
-rw-r--r-- | tbc/static/uploads/Jayaram/Engineering Thermodynamics/Chapter6.ipynb | 603 | ||||
-rw-r--r-- | tbc/static/uploads/Jayaram/Engineering Thermodynamics/Chapter7.ipynb | 727 | ||||
-rw-r--r-- | tbc/static/uploads/Jayaram/Engineering Thermodynamics/screenshots/Chapter7.png | bin | 0 -> 14314 bytes | |||
-rw-r--r-- | tbc/static/uploads/Jayaram/Engineering Thermodynamics/screenshots/nb.png | bin | 0 -> 89584 bytes | |||
-rw-r--r-- | tbc/static/uploads/Jayaram/Engineering Thermodynamics/screenshots/try.png | bin | 0 -> 63444 bytes |
6 files changed, 1757 insertions, 0 deletions
diff --git a/tbc/static/uploads/Jayaram/Engineering Thermodynamics/Chapter5.ipynb b/tbc/static/uploads/Jayaram/Engineering Thermodynamics/Chapter5.ipynb new file mode 100644 index 0000000..1b45662 --- /dev/null +++ b/tbc/static/uploads/Jayaram/Engineering Thermodynamics/Chapter5.ipynb @@ -0,0 +1,427 @@ +{ + "metadata": { + "name": "Chapter_5" + }, + "nbformat": 2, + "worksheets": [ + { + "cells": [ + { + "cell_type": "markdown", + "source": [ + "<h1>Chapter 5: Transistor Bias Circuits<h1>" + ] + }, + { + "cell_type": "markdown", + "source": [ + "<h3>Example 5.1, Page Number: 146<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%pylab inline" + ], + "language": "python", + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "", + "Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].", + "For more information, type 'help(pylab)'." + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "''' Peak base current'''", + "", + "# variable declaration", + "V_BB=10.0; #voltage in volt", + "V_CC=20.0; #voltage in volt", + "B_DC=200.0; #B_DC value", + "R_B=47.0*10**3; #resistance in ohm", + "R_C=330.0; #resistance in ohm", + "V_BE=0.7; #voltage in volt", + "", + "#current", + "I_B=(V_BB-V_BE)/R_B; #base current", + "I_C=B_DC*I_B; #Q POINT", + "V_CE=V_CC-I_C*R_C; #Q POINT", + "I_C_sat=V_CC/R_C; #saturation current", + "I_c_peak=I_C_sat-I_C; #peak current ", + "I_b_peak=I_c_peak/B_DC; #peak current in ampere", + "", + "#result", + "print \"Q point of I_C = %.3f amperes\" %I_C", + "print \"Q point of V_CE = %.2f volts\" %V_CE", + "print \"peak base current = %.4f amperes\" %I_b_peak" + ], + "language": "python", + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Q point of I_C = 0.040 amperes", + "Q point of V_CE = 6.94 volts", + "peak base current = 0.0001 amperes" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "markdown", + "source": [ + "<h3>Example 5.2, Page Number: 149<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "''' DC input resistance'''", + "", + "# variable declaration", + "B_DC=125.0; #DC value", + "R_E=10.0**3; #resistance in ohm", + "", + "#calculation", + "R_IN_base=B_DC*R_E; #base resistance", + "", + "#Result", + "print \"DC input resistance, looking at base of transistor = %d ohm\" %R_IN_base" + ], + "language": "python", + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "DC input resistance, looking at base of transistor = 125000 ohm" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "markdown", + "source": [ + "<h3>Example 5.3, Page Number: 151<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "''' Transistor saturation condition'''", + "", + "# variable declaration", + "B_DC=100; #DC value", + "R1=10*10**3; #resistance in ohm", + "R2=5.6*10**3; #resistance in ohm", + "R_C=1*10**3; #resistance in ohm", + "R_E=560; #resistance in ohm", + "V_CC=10; #voltage in volt", + "V_BE=0.7 #voltage in volt", + "", + "#calculation", + "R_IN_base=B_DC*R_E; #calculate base resistance", + "#We can neglect R_IN_base as it is equal to 10*R2", + "print \"input resistance seen from base = %d ohm\" %R_IN_base", + "print \"which can be neglected as it is 10 times R2\"", + "", + "V_B=(R2/(R1+R2))*V_CC; #base voltage", + "V_E=V_B-V_BE; #emitter voltage", + "I_E=V_E/R_E; #emitter current", + "I_C=I_E; #currents are equal", + "V_CE=V_CC-I_C*(R_C+R_E); #voltage in volt", + "", + "#result", + "print \"V_CE = %.2f volts\" %V_CE", + "print \"I_C = %.3f amperes\" %I_C", + "print \"Since V_CE>0V, transistor is not in saturation\"" + ], + "language": "python", + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "input resistance seen from base = 56000 ohm", + "which can be neglected as it is 10 times R2", + "V_CE = 1.95 volts", + "I_C = 0.005 amperes", + "Since V_CE>0V, transistor is not in saturation" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "markdown", + "source": [ + "<h3>Example 5.4, Page Number: 154<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "''' Emitter-Collector Voltage'''", + "", + "# variable declaration", + "V_EE=10.0; #voltage in volt", + "V_BE=0.7; #voltage in volt", + "B_DC=150.0; #DC value ", + "R1=22.0*10**3; #resistance in ohm", + "R2=10.0*10**3; #resistance in ohm", + "R_C=2.2*10**3; #resistance in ohm", + "R_E=1.0*10**3; #resistance in ohm", + "", + "#calculation", + "R_IN_base=B_DC*R_E; #R_IN_base>10*R2,so it can be neglected", + "print \"input resistance as seen from base = %d ohm\" %R_IN_base", + "print \"it can be neglected as it is greater than 10 times R2\"", + "V_B=(R1/(R1+R2))*V_EE; #base voltage", + "V_E=V_B+V_BE; #emitter voltage", + "I_E=(V_EE-V_E)/R_E; #emitter current", + "I_C=I_E; #currents are equal", + "V_C=I_C*R_C; #collector voltage", + "V_EC=V_E-V_C; #emitter-collector voltage", + "", + "#result", + "print \"I_C collector current = %.4f amperes\" %I_C", + "print \"V_EC emitter-collector voltage = %.2f Volts\" %V_EC" + ], + "language": "python", + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "input resistance as seen from base = 150000 ohm", + "it can be neglected as it is greater than 10 times R2", + "I_C collector current = 0.0024 amperes", + "V_EC emitter-collector voltage = 2.24 Volts" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "markdown", + "source": [ + "<h3>Example 5.5, PAge Number: 154<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "''' Collector-Emitter Voltage'''", + "", + "# variable declaration", + "R1=68.0*10**3; #resistance in ohm", + "R2=47.0*10**3; #resistance in ohm", + "R_C=1.8*10**3; #resistance in ohm", + "R_E=2.2*10**3; #resistance in ohm", + "V_CC=-6.0; #voltage in volt", + "V_BE=0.7; #voltage in volt", + "B_DC=75.0; #DC value", + "", + "#calculation", + "R_IN_base=B_DC*R_E;", + "print \"input resistance as seen from base\"", + "print \"is not greater than 10 times R2 so it should be taken into account\"", + "#R_IN_base in parallel with R2", + "V_B=((R2*R_IN_base)/(R2+R_IN_base)/(R1+(R2*R_IN_base)/(R2+R_IN_base)))*V_CC;", + "V_E=V_B+V_BE; #emitter voltage", + "I_E=V_E/R_E; #emitter current", + "I_C=I_E; #currents are equal", + "V_C=V_CC-I_C*R_C; #collector voltage", + "V_CE=V_C-V_E; #collector-emitter voltage", + "", + "#result", + "print \"collector current = %.4f amperes\" %I_C", + "print \"collector emitter voltage = %.2f volts\" %V_CE" + ], + "language": "python", + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "input resistance as seen from base", + "is not greater than 10 times R2 so it should be taken into account", + "collector current = -0.0006 amperes", + "collector emitter voltage = -3.46 volts" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "markdown", + "source": [ + "<h3>Example 5.6, Page Number: 156<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "''' change in collector emitter voltage'''", + "", + "# variable declaration", + "V_CC=12.0; #voltage in volt", + "R_B=100.0*10**3; #resistance in ohm", + "R_C=560.0; #resistance in ohm", + "#FOR B_DC=85 AND V_BE=0.7V", + "B_DC=85.0; #DC value", + "V_BE=0.7; #base-emitter voltage", + "", + "#calculation", + "I_C_1=B_DC*(V_CC-V_BE)/R_B; #collector current", + "V_CE_1=V_CC-I_C_1*R_C; #collector-emittor voltage", + "#FOR B_DC=100 AND V_BE=0.6V", + "B_DC=100.0; #DC value ", + "V_BE=0.6; #base emitter voltage", + "I_C_2=B_DC*(V_CC-V_BE)/R_B; #collector current", + "V_CE_2=V_CC-I_C_2*R_C; #voltage in volt", + "p_del_I_C=((I_C_2-I_C_1)/I_C_1)*100; #percent change in collector current ", + "p_del_V_CE=((V_CE_2-V_CE_1)/V_CE_1)*100; #percent change in C-E voltage", + "", + "#result", + "print \"percent change in collector current = %.2f\" %p_del_I_C", + "print \"percent change in collector emitter voltage = %.2f\" %p_del_V_CE" + ], + "language": "python", + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "percent change in collector current = 18.69", + "percent change in collector emitter voltage = -15.18" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "markdown", + "source": [ + "<h3>Example 5.7, Page Number: 159<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "''' percent change in collector emitter voltage'''", + "", + "# variable declaration", + "V_CC=20.0; #voltage in volt", + "R_C=4.7*10**3; #resistance in ohm", + "R_E=10.0*10**3; #resistance in ohm", + "V_EE=-20.0; #voltage in volt", + "R_B=100*10**3; #resistance in ohm", + "#FOR B_DC=85 AND V_BE=0.7V", + "B_DC=85; #DC value", + "V_BE=0.7; #base-emitter voltage", + "I_C_1=(-V_EE-V_BE)/(R_E+(R_B/B_DC));", + "V_C=V_CC-I_C_1*R_C; #colector voltage", + "I_E=I_C_1; #emittor current", + "V_E=V_EE+I_E*R_E; #emittor voltage", + "V_CE_1=V_C-V_E; #CE voltage", + "print \"I_C_1 = %.3f\" %I_C_1", + "print \"V_CE_1 = %.2f\" %V_CE_1", + "#FOR B_DC=100 AND V_BE=0.6V", + "B_DC=100; #DC value ", + "V_BE=0.6; #base-emitter voltage", + "I_C_2=(-V_EE-V_BE)/(R_E+(R_B/B_DC));", + "V_C=V_CC-I_C_2*R_C;#colector voltage", + "I_E=I_C_2; #emittor current", + "V_E=V_EE+I_E*R_E; #emittor voltage", + "V_CE_2=V_C-V_E; #CE voltage", + "print \"I_C_2 = %.3f\" %I_C_2", + "print \"V_CE_2 = %.2f\" %V_CE_2", + "", + "p_del_I_C=((I_C_2-I_C_1)/I_C_1)*100;", + "p_del_V_CE=((V_CE_2-V_CE_1)/V_CE_1)*100;", + "print \"percent change in collector currrent = %.2f\" %p_del_I_C", + "print \"percent change in collector emitter voltage = %.2f\" %p_del_V_CE", + "print \"answers in book are approximated\"" + ], + "language": "python", + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "I_C_1 = 0.002", + "V_CE_1 = 14.61", + "I_C_2 = 0.002", + "V_CE_2 = 14.07", + "percent change in collector currrent = 2.13", + "percent change in collector emitter voltage = -3.69", + "answers in book are approximated" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "markdown", + "source": [ + "<h3>Example 5.8, Page Number: 161<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "''' Q point current and voltage'''", + "", + "# variable declaratio", + "V_CC=10.0; #voltage in volt", + "B_DC=100.0; #Dc value", + "R_C=10.0*10**3; #resistance in ohm", + "R_B=100.0*10**3; #resistance in ohm", + "V_BE=0.7; #base-emittor voltage", + "", + "#calculation", + "I_C=(V_CC-V_BE)/(R_C+(R_B/B_DC)); #collector current", + "V_CE=V_CC-I_C*R_C; #CE voltage", + "", + "#result", + "print \"Q point of collector current %.4f amperes\" %I_C", + "print \"Q point of collector-emitter voltage %.3f volts\" %V_CE" + ], + "language": "python", + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Q point of collector current 0.0008 amperes", + "Q point of collector-emitter voltage 1.545 volts" + ] + } + ], + "prompt_number": 9 + } + ] + } + ] +}
\ No newline at end of file diff --git a/tbc/static/uploads/Jayaram/Engineering Thermodynamics/Chapter6.ipynb b/tbc/static/uploads/Jayaram/Engineering Thermodynamics/Chapter6.ipynb new file mode 100644 index 0000000..b4e7e58 --- /dev/null +++ b/tbc/static/uploads/Jayaram/Engineering Thermodynamics/Chapter6.ipynb @@ -0,0 +1,603 @@ +{ + "metadata": { + "name": "Chapter_6" + }, + "nbformat": 2, + "worksheets": [ + { + "cells": [ + { + "cell_type": "markdown", + "source": [ + "<h1>Chapter 6: BJT Amplifiers<h1>" + ] + }, + { + "cell_type": "markdown", + "source": [ + "<h3>Example 6.1, Page Number: 171<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%pylab inline" + ], + "language": "python", + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "", + "Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].", + "For more information, type 'help(pylab)'." + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "'''Q point'''", + "# result", + "", + "print \"theoretical example\"" + ], + "language": "python", + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "theoretical example" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "markdown", + "source": [ + "<h3>Example 6.2, Page Number: 174<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "''' AC Emitter resistance'''", + "", + "# variable declaration", + "I_E=2.0*10**-3; #emittor current", + "", + "#calculation", + "r_e=25.0*10**-3/I_E; #ac emitter resistance", + "", + "#result", + "print \"ac emitter resistance = %.2f ohms\" %r_e " + ], + "language": "python", + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "ac emitter resistance = 12.50 ohms" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "markdown", + "source": [ + "<h3>Example 6.3, Page Number: 178<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "''' voltage at base of transistor'''", + "", + "# variable declaration", + "I_E=3.8*10**-3; #emittor current", + "B_ac=160.0; #AC value", + "R1=22*10**3; #resistance in ohm", + "R2=6.8*10**3; #resistance in ohm", + "R_s=300.0; #resistance in ohm", + "V_s=10.0*10**-3; #voltage in volt", + "r_e=25.0*10**-3/I_E; ", + "", + "#calculation", + "R_in_base=B_ac*r_e; #base resistance", + "R_in_tot=(R1*R2*R_in_base)/(R_in_base*R1+R_in_base*R2+R1*R2);", + "V_b=(R_in_tot/(R_in_tot+R_s))*V_s; #base voltage", + "", + "#result", + "print \"voltage at the base of the transistor = %.3f volts\" %V_b" + ], + "language": "python", + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "voltage at the base of the transistor = 0.007 volts" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "markdown", + "source": [ + "<h3>Example 6.4, Page Number: 180<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "''' bypass capacitor'''", + "", + "import math", + "# variable declaration", + "R_E=560.0; #resistance in ohm", + "f=2*10**3; #minimum value of frequency in hertz", + "X_C=R_E/10.0; #minimum value of capacitive reactance", + "", + "#calculation", + "C2=1.0/(2.0*math.pi*X_C*f); #capacitor ", + "", + "#result", + "print \"value of bypass capacitor = %.7f farads\" %C2" + ], + "language": "python", + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "value of bypass capacitor = 0.0000014 farads" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "markdown", + "source": [ + "<h3>Example 6.5, Page Number: 181<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "''' bypass capacitor'''", + "", + "import math", + "# variable declaration", + "r_e=6.58; #from ex6.3", + "R_C=1.0*10**3; #collector resistance", + "R_E=560; #emittor resistance", + "", + "#calculation", + "A_v=R_C/(R_E+r_e); #gain without bypass capacitor", + "A_v1=R_C/r_e; #gain with bypass capacitor", + "print \"gain without bypass capacitor = %.2f\" %A_v", + "print \"gain in the presence of bypass capacitor = %.2f\" %A_v1" + ], + "language": "python", + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "gain without bypass capacitor = 1.76", + "gain in the presence of bypass capacitor = 151.98" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "markdown", + "source": [ + "<h3>Example 6.6, Page Number: 182<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "''' Gain with load'''", + "", + "# variable declaration", + "R_C=10.0**3; #resistance in ohm", + "R_L=5.0*10**3; #inductor resistance", + "r_e=6.58; #r_e value", + "", + "#calculation", + "R_c=(R_C*R_L)/(R_C+R_L); #collector resistor", + "A_v=R_c/r_e; #gain with load", + "", + "#result", + "print \"ac collector resistor = %.2f ohms\" %R_c", + "print \"gain with load = %.2f\" %A_v" + ], + "language": "python", + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "ac collector resistor = 833.33 ohms", + "gain with load = 126.65" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "markdown", + "source": [ + "<h3>Example 6.7, Page Number: 184<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "''' Voltage gain with bypass'''", + "", + "# variable declaration", + "R_C=3.3*10**3; #resistance in ohm", + "R_E1=330.0; #emitter resistance", + "", + "#calculation", + "A_v=R_C/R_E1; #voltage gain", + "", + "#result", + "print \"approximate voltage gain as R_E2 is bypassed by C2 = %.2f\" %A_v" + ], + "language": "python", + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "approximate voltage gain as R_E2 is bypassed by C2 = 10.00" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "markdown", + "source": [ + "<h3>Example 6.8, Page Number: 184<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "'''Common emitter amplifier'''", + "", + "import math", + "B_DC=150.0;", + "B_ac=175.0;", + "V_CC=10.0;", + "V_s=10.0*10**-3;", + "R_s=600.0;", + "R1=47.0*10**3;", + "R2=10.0*10**3;", + "R_E1=470.0;", + "R_E2=470.0;", + "R_C=4.7*10**3;", + "R_L=47.00*10**3;", + "R_IN_base=B_DC*(R_E1+R_E2);", + "#since R_IN_base is ten times more than R2,it can be neglected in DC voltage calculation", + "V_B=(R2/(R2+R1))*V_CC;", + "V_E=V_B-0.7;", + "I_E=V_E/(R_E1+R_E2);", + "I_C=I_E;", + "V_C=V_CC-I_C*R_C;", + "print('dc collector voltage = %.3f volts'%V_C)", + "r_e=25.0*10**-3/I_E;", + "#base resistance", + "R_in_base=B_ac*(r_e+R_E1);", + "#total input resistance", + "R_in_tot=(R1*R2*R_in_base)/(R1*R2+R_in_base*R1+R_in_base*R2);", + "attenuation=R_in_tot/(R_s+R_in_tot);", + "#ac collector resistance", + "R_c=R_C*R_L/(R_C+R_L);", + "#voltage gain from base to collector", + "A_v=R_c/R_E1;", + "#overall voltage gain A_V", + "A_V=A_v*attenuation;", + "#rms voltage at collector V_c", + "V_c=A_V*V_s;", + "V_out_p=math.sqrt(2)*V_c;", + "print('V_out peak = %d mV'%(V_out_p*1000))", + "", + "################Waveform plotting##############################", + "", + "import pylab", + "import numpy ", + "", + "t = arange(0.0, 4.0, 0.0005)", + "", + "", + "subplot(121)", + "plot(t, V_C+V_c*sin(2*pi*t))", + "ylim( (4.63,4.82) )", + "title('Collector Voltage')", + "", + "subplot(122)", + "plot(t, -V_s*sin(2*pi*t))", + "plot(t, V_out_p*sin(2*pi*t))", + "ylim( (-0.15,0.15) )", + "title('Source and output AC voltage')" + ], + "language": "python", + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "dc collector voltage = 4.728 volts", + "V_out peak = 119 mV" + ] + }, + { + "output_type": "pyout", + "prompt_number": 9, + "text": [ + "<matplotlib.text.Text at 0xad2caac>" + ] + }, + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEICAYAAABfz4NwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXl8VNX5/z+TzCSZrDPZdxJ2AgipuOBXJahIUcGtKtiy\n1GrBpS4t35/W6he01g33Ulv61SqogEstm4CKGKUuIF8RFSigJJCNrJNlkklme35/HGayTWbunbud\nhPt+vXhp7tx75zPnzjzPOc95znMMRETQ0dHR0TntidBagI6Ojo4OH+gOQUdHR0cHgO4QdHR0dHRO\noTsEHR0dHR0AukPQ0dHR0TmF7hB0dHR0dADoDkEQpaWlyMvL8/9dUFCAjz76SENF8lJeXo6IiAh4\nvV6tpehwyqJFi/Dggw9qLWNI0deu8MBp5RDWrl2LKVOmICEhAdnZ2bjsssvw2Wefib6PwWCAwWCQ\npEXuH9iSJUuwcOHCfsf379+PmJgYNDc3C75XSUkJXn75Zdm0DQX+/e9/47zzzoPFYkFKSgrOP/98\n7N27V2tZqiHHdz4Qy5cvx/z58zW5X0lJCZKTk+F0Ovu9JpetEENBQQF27typ6HuE4rRxCM888wzu\nuecePPDAA6irq0NFRQVuv/12bNq0SWtpYdG3N79o0SK8++676Ojo6HX8tddew+zZs2GxWATfW4kf\n/mCmtbUVV1xxBe666y7YbDZUVVVh2bJliI6Olv29PB6P7PeUi6G0hrW8vBx79uxBenp6Pxugla0w\nGAzatzGdBjQ3N1N8fDy98847A57T2dlJd911F2VnZ1N2djbdfffd1NXVRUREH3/8MeXm5vrPLSgo\noI8++oiIiLxeLz322GM0YsQISklJoeuvv56ampr85+7atYumTp1KFouF8vLy6NVXX6W///3vZDKZ\nKCoqiuLj42nOnDlERHTw4EGaNm0aWSwWGj9+PG3atMl/n4ULF9KSJUto1qxZFBcX53//nowZM4bW\nrFnj/9vtdlN2djZt2rSJvF4v/fGPf6Rhw4ZReno6LViwgFpaWoiIqKysjAwGA7ndbrr//vspMjKS\nYmJiKD4+nn7zm98QEdGdd95JeXl5lJiYSGeeeSbt2rXL/z4dHR20YMECslqtNG7cOHriiSd6tVdV\nVRVdc801lJaWRoWFhfTCCy8IeGr88NVXX5HFYhnw9WBt2/e7Q0Q0bNgw//NbtmwZXXvttfSLX/yC\nEhMT6eWXX6bGxkZatGgRZWdnk9Vqpauuusp/7ebNm2nSpElksVjovPPOo2+//XZAXcGe2bJly+i6\n666jBQsWUEJCAo0fP5727t3rf/3rr7+m4uJiSkhIoBtuuIHmzp1LDzzwgGyff8eOHbRt2zaKiooi\nk8lE8fHxNHnyZCIimjZtGt1333109tlnU2JiIl155ZX+31Q49wvEQw89RLNnz6ZHHnmErrjiCv9x\nIbaiJ19++SVlZmaS1+v1H3v33XfpjDPOICLhduUXv/gFRUREkNlspvj4eFqxYgUREf3sZz+jzMxM\nSkpKogsvvJAOHDjgf5+Ghga64oorKDExkc466yz6wx/+QOeff77/9UOHDtEll1xCycnJNGbMGHrr\nrbdCfp7TwiFs27aNjEYjeTyeAc958MEHaerUqVRfX0/19fV03nnn0YMPPkhEwR3Cc889R1OnTqWq\nqipyOp20ePFimjdvHhERlZeXU0JCAq1fv57cbjc1NjbSN998Q0REixYt8t+fiMjpdNKIESPoscce\nI5fLRTt37qSEhAQ6fPgwETGHkJSURJ9//jkRsS9aX/70pz/RJZdc4v97+/btlJaWRm63m15++WUa\nOXIklZWVkd1up2uuuYbmz59PRN0Owdc+JSUl9PLLL/e69+uvv05NTU3k8Xjo6aefpszMTP8X+957\n76WSkhJqbm6myspKmjhxIuXl5RERkcfjoZ/85Cf0xz/+kVwuFx07doyGDx9O77//fvCHxhGtra2U\nkpJCCxcupG3btvVy+EQUtG0DGbCe359ly5aRyWSijRs3EhGRw+Ggyy67jObOnUvNzc3kcrno008/\nJSJmpNPT02nPnj3k9Xpp9erVVFBQ4H8OfQn2zJYtW0YxMTG0bds28nq99Pvf/57OPfdcIiLq6uqi\n/Px8eu6558jtdtM777xDJpOp1/dVrs+/fPly/7k+pk2bRjk5OXTgwAFqb2/3O8xw7xeIESNG0Ouv\nv05Hjhwhk8lEdXV1RCTMVgS614cffuj/+2c/+xk98cQTRBS+XfHxyiuvkN1uJ6fTSXfffXcvJ3fD\nDTfQvHnzyOFw0MGDBykvL48uuOACIiKy2+2Um5tLr776Knk8Htq3bx+lpqbSwYMHg36W08IhvP76\n65SZmRn0nBEjRtC2bdv8f7///vtUUFBARMEf3Lhx43o9xOrqajKZTOR2u+nRRx+la665JuD7LVq0\nqFeP69NPP+2ncd68ebR8+XIiYg5h4cKFQT/D8ePHyWQyUVVVFRER3XjjjXT33XcTEdFFF11Ef/3r\nX/3nHj58mEwmE3k8noAO4aWXXgr6Xlar1d87HT58OH3wwQf+11566SV/e3355ZeUn5/f69pHH32U\nfvnLXwa9P28cOnSIFi1aRLm5uWQ0GmnOnDlUW1tLRMHbVohDmDZtmv+16upqioiIoObm5n4alixZ\n0s8ojxkzhj755BNBn6HnM1u2bBnNmDHD/9qBAwfIbDYTEdEnn3xC2dnZva7tacj6IvXz+4y9j5KS\nEvr973/v//vgwYMUFRVFXq83rPv1ZdeuXRQTE0Otra1ERDRp0iR69tlniUiYrejLAw88QDfddBMR\nsc5DXFwcnThxgojCtyuBsNlsZDAYqLW1ldxuN5lMJjpy5EgvHb4Rwvr16/3Owcevf/1reuihh4J+\nltNiDiElJQUNDQ1Bs2iqq6sxbNgw/9/5+fmorq4Oee/y8nJcffXVsFqtsFqtKCoqgtFoRG1tLSor\nKzF8+HBBGqurq/tlHAwbNsyvwWAwhMxIyM/Px4UXXojXXnsNdrsdGzduxIIFCwAANTU1/T6f2+1G\nbW1twHv1nUd46qmnUFRUBIvFAqvVipaWFjQ0NATUnpub6///48ePo7q62t8+VqsVjz32GOrq6kI1\nCVeMHTsWr7zyCioqKvD999+juroad999NwDxbduXnu1VUVGB5ORkJCUl9Tvv+PHjePrpp3u1ZWVl\nJWpqagLeN9gzA4CMjAz//8fGxqKzsxNerxfV1dXIycnpda9hw4YNGN+W+vkD0fP7lJ+fD5fL1Uu7\nFFavXo1LL70UCQkJAIDrrrsOq1evBiDMVvTlxhtvxLvvvgun04l3330XZ555pl9/uHYFYPOE9913\nH0aOHImkpCQUFhbCYDCgoaEB9fX1cLvdQX93u3fv7vVdWbt2bchnclo4hKlTpyI6Ohr/+te/Bjwn\nOzsb5eXl/r9PnDiB7OzskPfOz8/H9u3bYbPZ/P86OjqQnZ2NvLw8/PjjjwGv62tws7OzUVFR0etH\nd/z48X4/zFAsXLgQr732Gv75z3+isLAQxcXFA34+o9HYyygMpG3Xrl1YsWIF3n77bTQ3N8NmsyEp\nKcmvNSsrCxUVFf7ze/5/Xl4eCgsLe7VPa2srtmzZIupz8cSYMWOwcOFCfP/99wCCt21cXFyviX6P\nx4P6+vpe9+vZ3nl5eWhqakJLS0u/983Pz8cf/vCHXm1pt9txww039Ds31DMLRlZWFqqqqnodO378\n+IDJBlI+/0D3PHHiRK//N5lMSE1NDft+PhwOB9566y3s3LkTWVlZyMrKwtNPP439+/fj22+/FWQr\n+jJu3DgMGzYM27Ztw9q1a3HjjTf6XxNjV/pqf+ONN7Bp0yZ89NFHaGlpQVlZGYhFdZCWlgaj0Tjg\n7y4/Px/Tpk3r9V1pa2vDX/7yl6Cf5bRwCElJSXj44Ydx++23Y+PGjejo6IDL5cK2bdtw7733AgDm\nzZuHRx55BA0NDWhoaMDDDz8sKH1tyZIluP/++/1f4Pr6en82ws9//nPs2LEDb7/9NtxuNxobG7F/\n/34ArHd27Ngx/33OPfdcxMbG4sknn4TL5UJpaSm2bNmCuXPnAhCe4XHttdfixIkTWL58ORYtWuQ/\nPm/ePDz77LMoLy+H3W7H/fffj7lz5yIiov9XICMjo5cja2trg9FoRGpqKpxOJx5++GG0trb6X7/+\n+uvx2GOPobm5GVVVVVi5cqX/y3322WcjISEBTz75JBwOBzweD77//vtBlbJ5+PBhPPPMM34jWVFR\ngXXr1mHq1KkAgrft6NGj0dnZia1bt8LlcuGRRx5BV1fXgO+VlZWFWbNm4bbbbkNzczNcLhc+/fRT\nAMAtt9yCv/3tb9izZw+ICO3t7Xjvvfdgt9v73SfUMwvG1KlTYTQa8cILL8DlcuHdd9/FV199NeD5\nUj5/ZmYmysvLe32/iQivv/46Dh06hI6ODvzP//wPrrvuOhgMhrDu15MNGzbAaDTi0KFD2L9/P/bv\n349Dhw7hggsuwJo1awTZikDceOONeO6557Br1y5cd911vdpGqF3p+7uz2+2Ijo5GcnIy2tvbcf/9\n9/tfi4yMxDXXXIPly5fD4XDgP//5D1577TX/7+7yyy/HkSNH8Prrr8PlcsHlcuGrr77Cf/7znwE/\ng6/xTxveeOMNmjJlCsXFxVFmZiZdccUV9MUXXxARm6S98847KSsri7Kysuiuu+7qlQ3gmyQl6p9l\n9Mwzz9CYMWMoISGBRowYQX/4wx/85+7atYvOOeccSkxMpLy8PH8W0NGjR2ny5MlksVjo6quvJiIW\nx502bRolJSXR+PHjacOGDf779J2EDsaiRYvIZDJRTU2N/5jX66WHH36Y8vLyKC0tjebPn++PU5eV\nlVFERIR/DuGLL76g0aNHk9Vqpbvuuos8Hg/ddNNNlJiYSFlZWfTkk09SYWGhvw3a29tp/vz5ZLFY\nqKioiB555BEaMWKE/72rq6tp3rx5lJmZSVarlaZOnRo0VsobVVVVdP3111NOTg7FxcVRTk4OLVmy\nhNra2ogoeNsSEb366quUlZVF6enp9NRTT/Vqu0CToE1NTbRw4ULKyMggq9VK1157rf+17du301ln\nnUUWi4WysrLo+uuv9+voSahn1vd9+34H9u7d2y/LaKDvn5TP39jYSOeffz5ZrVY688wziah7DsGX\nZTRnzhxqbGwM+349+elPf0pLly7td/ytt96irKws/+cPZisCceLECYqIiOiVsUQkzq5s3LiR8vPz\nyWKx0NNPP012u52uvPJKSkhIoIKCAlqzZg1FRETQjz/+SERE9fX1dPnll1NiYiKdffbZdO+999LF\nF1/sv9/hw4fp8ssvp7S0NEpJSaGLL76Y9u/fP+BnICIyEGmd+Koz1PjrX/+Kt956Cx9//LHWUnQG\nIdOnT8f8+fNx0003aS1lUHHvvfeirq4Or7zyStj3OC1CRjrKcvLkSXz22Wfwer3+8MrVV1+ttSyd\nQYzeTw3N4cOH8e2334KIsGfPHvzjH/+Q/LszyqRN5zTG6XRiyZIlKCsrg8Viwbx583DbbbdpLUtn\nEKOvlg9NW1sb5s2bh+rqamRkZGDp0qWYM2eOpHvqISMdHR0dHQAajxD0XoCOGmjR59G/2zpKo8T3\nWvM5BDqVVyv137Jly/R7DRFtct5L/27r9xqK91IKzR2Cjo6Ojg4f6A5BR0dHRwfAEHIIJSUl+r00\nvB+v9xoK8Nq2+r20u5dSaJplxMWGEDpDGq2+Y/p3W0dJlPp+DZkRgo6Ojo6ONHSHoKOjo6MDQHcI\nOjo6Ojqn4N4huFzA/PnAsmVaK+mNxwPcfDPw3/8N8BQqJgLuuAP4zW/407V0KfDrX7O209HR4Q/u\nHcI//gEcO8b+y1MJ/fXrgW++Af71L+BUuXou2LQJ+OQT4KOPgK1btVbTzUcfMW179wLvvKO1Gh0d\nnUBwn2V0wQXAvfcCX38N2GzAs8+qJC4Es2YBCxcC1dXAoUPA//6v1ooY110HzJzJeuGffAKsXau1\nIsaiRUBxMZCaCrz5JnMOaqBnGekMRZT6fnHtEJqbgbw8oKGBGd3rrweOHFFR4AB0dgIpKcDJk0Bt\nLXDhhUBVFaB1+RqPB7Ba2YjK6QTGjwcaG4EAm6KpChGQns5GB4mJQH4+e6bR0cq/t+4QdIYip2Xa\n6Z49wE9+wgzHxInM+Mq0z7Ykvv4aGDsWSEgARowAvF6gxxawmnHgAJCVxXrh2dlAcjIQasc8NTh2\njD3DYcOYwxo+HDi1k6iOjg5HcO0Qdu8GzjmH/X9kJDBlCnMSWtNTl8HA/n/3bm01Ab11AbouHR0d\ncXDtEPbuBc4+u/vvKVOA//s/7fT40HWJg1ddOjo6veHaIRw6BBQVdf9dVMRHCETXJQ5edeno6PSG\nW4fgdLK4/IgR3cfGjWPGRUuI2MT2mDHdx3jQBQCHDw8uXfqcq44OX3DrEI4dA3Jze2eijBnDjIvX\nq52uqiogPh5ISuo+NnIkc15dXdrpam4GOjrYZLKPvDx2vLVVO12dnSw1t7Cw+1hKChAVxbK0dHR0\n+IFbh9C3VwkwI2yxABUV2mgCAuuKimIZND/8oI0mgOkaPbp36mtEBNOqZXjmhx+AggLAZOp9nJfR\ni46OTjeCHILH40FxcTFmz57d77WGhgb89Kc/xeTJkzFhwgS8+uqr/te2b9+OsWPHYtSoUXjiiSdE\nCQtkeAGWslhWJupWssKzrrFj+x8fMUJ7XTy2l46OTn8EOYTnn38eRUVFATcOX7lyJYqLi/HNN9+g\ntLQUv/vd7+B2u+HxeHDHHXdg+/btOHjwINatW4dDIrqEZWXMaPRl2DDg+HHBt5EdXZc4eNWlo6PT\nn5AOobKyElu3bsXNN98ccGVcVlYWWk8FqVtbW5GSkgKj0Yg9e/Zg5MiRKCgogMlkwty5c7Fx40bB\nwk6cYCta+1JQAJSXC76N7Oi6xMGrLh0dnf6EdAj33HMPVqxYgYgB6h/ccsstOHDgALKzszFp0iQ8\n//zzAICqqirk5eX5z8vNzUVVVVW/65cvX+7/V1pa6j9eUcEmRfuidc9S1yUOtXWVlpb2+k7xzM6y\nnZj0t0nYepSjKoQAPq/4HJP+Ngn/PPhPraX04uuar1G8qhivf/u61lJ6cbD+IH6y6if43//jpKCZ\nBIzBXtyyZQvS09NRXFzcy1j35NFHH8XkyZNRWlqKH3/8ETNmzMB+EXUJBvrRVlQM3LNct07w7WUn\nmC4te7wDGV4edKnZXiUlJb32rn3ooYfkfxMZ8JIXv978a9ww4QYs3rIYx+48BlOkKfSFCkNEuPW9\nW3H5qMtx+9bbMWvULMSaYrWWBQD4zbbf4NIRl+Lu7Xdj9ujZSIpJCn2RCty9/W5cVHgR7t1xL64a\nexXS4tK0lhQ2QUcIn3/+OTZt2oTCwkLMmzcPO3fuxIIFC/qdc9111wEARowYgcLCQhw+fBi5ubmo\n6JEOVFFRgdzcXEGi7HaWwpmc3P81LXu8bjerp9QztdOHlrqIWGgmWE9cq5z/gXTl5gI1NaxNT0d2\nHd8Fs8mMR6Y/guyEbJSWl2otCQDrhduddjxy0SMYnz4e7//wvtaSAACHGw6jzFaGP130J/xX/n9h\n85HNWksCAJxoOYGva77GIxc9gp+O/Cn+eYivUZVYgjqERx99FBUVFSgrK8P69etx0UUXYc2aNb3O\nGTt2LHbs2AEAqK2txeHDhzF8+HBMmTIFR48eRXl5OZxOJ958803MmTNHkChfbzdQ9dD8fPa6FmsR\nqquBtLT+KZQAkJnJcv4dDvV12WxMU2Ji/9cSE9lrTU3q6+rsBFpagIyM/q9FRbEKqAGiiKcF23/c\njmvGXQODwYCrx16NTUdUqgcegu0/bMdVY69ChCGCO12zx8yGMcKIq8ZchY2Hhc9HKskHP36AmSNn\nIsYYw9rrMB/tFS6i1iH4soxWrVqFVatWAQDuv/9+7N27F5MmTcIll1yCJ598EsnJyTAajVi5ciVm\nzpyJoqIi3HDDDRg3bpyg9xloIhIAYmJYldHGRjHK5WGg8AfAcv4zMrRZbDVQuMhHVhbrjatNZSWQ\nkzNw+W2tdPHAp8c/xYX5FwIASgpK8NmJzzRWxPj0xKeYNmwaAL50fXL8k366eCgv/unx7vaaVjAN\nX1R+AS9puHJWIkHnEHoybdo0TJvGPvjixYv9x1NTU7F5c+Dh26xZszBr1izRooQauDSVQ3UDhT98\nZGczXT1X5aqBUF0TJqinCRCu63TD4XLgm5Pf4NzccwEAxZnFONJ4BHanHfFR8Zrp8ng9+KLiC6y7\nlk3SFaUVoa69DvXt9ZrGxYkIu07swguzXgAAFFgKQCCcaDmBYZZhmukCgF0nduH+C+4HAKTHpSM1\nNhWH6g9hfPp4TXWFC5crlSsr+e3xDlZd1dXq6fHBa3tpzcH6gxhhHYG4qDgAQLQxGhPSJ2BfzT5N\ndR2zHUNqbCqSzWzyLsIQgSnZU7C3Wtu9a2vsNTDAgNxENgdpMBhwds7Z+Kr6K011tXS2oL69HqNT\nRvuP8aBLClw6hJoaZiwGQqueZShdWhk4Xdfg4kD9AUxI7z1cm5A+AQfqD2ikiPFd3Xdc6vq+7vvA\nuuq011WUVoQIQ7cZnZCmfXtJgUuHUFsbeCLSh1Y93sGsSwvDy2t7ac2B+gMYn9Y7pDA+bbzmhiSQ\n4dV1DUxAXenjNXdUUhi0DoFHA6fVyEXXNbjg1ZB8X/c9JqZP7HWMW108OIR6PnVJgUuHcPIkn4Zk\nsDoqfeTCFwfrD/abdCxKK8LB+oMaKWIcrD+IorSiXsd8urTM6Amka0zqGPzY9CPcXu0WsgTSVWgt\nRH17PexOu0aqpMGdQyDi15CcPMnWGwyErqs3vOryEaoa73/+8x9MnToVMTExePrpp0VdOxBOjxPV\nbdUosBT0Op6dkI2Wrha0O9vD+ixSISKUNZdhuLV3JUJLjAUxxhjUd9Rrogtgk919dcUYY5ARn4GK\nFu1q4QfSFWGIQKG1EGW2wVnKlzuHYLezBWnxQbLvtDAkbjdbeJaaOvA5WugS40DV7uSF0pWeztaT\naLFaWUg13pSUFPz5z3/G0qVLRV87ECdaTiA7IRvGiN4Z3xGGCBRYClDWrI0hqWuvg9loRkJ0Qr/X\nCq2FOGY7poEqwO60w+60IzO+f8+i0KKdLrfXjeq26oBpr1rqkgp3DiGUEQG0MXD19ayURmTkwOek\npbFVwy6XerqEOND4eKZbzZ3ThDhQo5HtnlZXp54uH0Kq8aalpWHKlCkw9VmaLqWSb3lzOQotgReq\nDLcO16xnecx2DIVW/nSV2cpQYCkIWHp/uHW4Zg60oqUCGXEZiIqM6vealrqkInhhmlqEmj8AgNhY\ntvq1vT24IZQTIY4qMhKwWlmZiFDnqqkLYM6qoaH31p9KIsSB+nTV1weuD6Ukgarx7t69W9ZrexZu\n9BXdK7OVBTW8WvUsy5rLBnRUWvZ4y5o5bi8VdZWWlg5YYFROuHMItbXB484+fIaEJ4cAdOvi0SHU\n17Md1NRArC61CdTjlPvaQJV8y5rLUJBUEPD8QkshjjVrZOBs/ecPfAy3Dseeqj0qK2KU2YI7Kq2K\n3IXStePYDlnfT60qvoMyZASwUISahoRXA6frCo+cnJywq/FKuba8uZzfHi+nI4RgjkrXJS+D1iFo\nYeDEjFzUQtcVHmKq8fZNuZRSyTeY4R2WNAwnWk6I+yAyESwEMsyisa6B2ktDXcdsx0Lq4qH4nli4\nDBmdcUbo89Q2JKFSKH2oPXIRMucC6Lr60rMar8fjwa9+9SuMGzfOX8V38eLFOHnyJM466yy0trYi\nIiICzz//PA4ePIj4+PiA1wqhvLl8wIJsOYk5qGrVph74iZYTyE8KXMo3JyEHVW1VICJJobZwdeUl\nBS6IlRGXgSZHE1wel+qbC1W0VgzYXonRiTAYDGjtauVmEx+hcOcQTp4EZswIfZ4WPd5Jk0Kfp4Uu\noQ5UzWweMSOE775TXk8gAlXj7VnJNzMzs1doKNS1oXB73WjsaAyYQgkAqbGpaHO2odPdiRhjjKh7\nS4GIUN1WjZyEnICvx0XFIToyGrZOm7/wnVoE0xUZEYn0uHTU2GsGNM6K6koMrAvodqKDzSFwFzJq\naAiequhDbcOr6xIHr7q0pNZei9TY1H5rEHxEGCKQFZ+F6jZ1l5W3drUiwhARcA2Cj5zEHFS2Vqqo\nCnB5XLA5bEiPSx/wHC1GVT4HmhU/cOVGLUd7UuDOITQ2stz0UKhtSHRd4uBVl5ZUt1UjOyF4fq0W\nhkSQrgT1dZ20n0R6XDoiIwbOXfb1xNWkubMZ0ZHR/vLlgdBClxzoDkEgui5x8KpLSwQbXpUNiRBd\nuYm5/Ori0YHqIwTpELGVvjwaEl4NXGMjn6EZXttLS6rbqpGVEGSDCHA8QuBVlwYOtKqtiktdcsCV\nQ2hpAcxmtgF7KNTMTnG52KpoIat81TRwRPwaXqG6UlJYiQuPR3lNWlNjr0F2fGhDUtmmbqyeV8Mr\n1FGpPbchtL3U1iUHXDkEoUYEUNfANTWxkhQDbRbfk9RUdr5XhX22OzqYJrM59Lnx8czodnQor8vj\nYc7dag19rtHIHG1jo/K6tIbXWH21vVqQo1LdIdgHt6PSRwgSEeMQkpKAri6gs1NZTYDwsAwAmEzM\n+NpsymoCxLWXwaCeE21uBhITmbEXwukSNuLVkIRKoQQ47olrFMoaKBXWhxaOXQ4GrUMwGNQLG4nR\nBahn4HRdgwshBi4jLgN17eqWf61qDR0T13V1I+Q5pselo9HRCC+pECqQkUHrEAB2Lm89cUDXxasu\nrREyqZwRn4Fae61KihhCDVxDR4OqBk6IrsToRDg9TjhcDpVUCZtUNkWakBidiMaOwRULHdQOITmZ\nxeuVpqFB1yUGXnVpidPjhK3ThrTYtKDnJUUnocvTpZqBIyLU2GuCLrICtDFwoRZ/AazybEZ8Bmrb\n1XOiQhw7wEYvauqSA90hCEDXJQ5edWlJXXsd0mLTgi6yApiBS49LVy0M0tLVgujIaJhNoTMT1NTl\n8rjQ5mz0u8hvAAAgAElEQVRDSmzoL5KauogIde11yIgLXahLTV1ywZ1DEDp5C+gGTm+vwUNde13Q\nEgw9UbNnWd9ez6Wuho4GpJhTEGEIbaIy4tQLs7U52xAVGSXIgWoR/pMKdw6BR0Oi6xIHr7q0pL69\nHmlxwcNFPtQ0JHXtdYNeV3pcumqOyjfSE4IeMpIIr4ZE1yUOXnVpSX2HuJ64WqGGIaErXkVdIkdU\neshIAmINiW//YqXRdYmDV11aIqZnyWuPl1ddavbEeR25yMWgdgine49X1zV4qO+o59LA8TqHIEZX\nely6aqEssSMXfQ5BArymK/Jq4HRdgwdRhlfFEEhdh4ieOK+6VAzNiB256CGjMOnsZEXk4uOFX6OG\nISFi78GjgePV8PKqS0tEhxrU6vHy2hMXq0utkYuIEYIeMpKAz4iI2bJVDUPS0gLExAirwOpDDV0u\nF2C3C6vA6sMXq1dy728i8SO9xETA4QCcTuV0aQ2vISNRWUa86lI7+0nEiKrWXgtS8gcnM9w5BDGo\nYXjD0WWxMEeiZMVTMRVYfZjNQGSkshVP29uZpthY4dcYDOyzDOXyFbyGjMT2eOva61QxcGJ0pZhT\n0NLVArfXrbAqcc8x1hQLU6QJbc42hVXJBzcOwWZjBl4MCQks1NTVpYwmIDxdRiMLfbW0KKMJCE8X\noLwT5VWX1ojp8aaYU2Bz2ODxKr9JhJgeb1xUHCIMEbA77QqrEqcrMiIS1hgrGjoaFFYl7jkCQFps\n2qCaR+DGITQ3C6uf3xODgRkSJXuWzc2sxy8WpQ2crmvw0OXuQqe7E0nRwuJ7kRGRSIpJgq1T2SGT\nl7xo6GgQZeBSY1PR6FC+npGYnjhwSpcKdZbEjFwA9XTJBVcOgUdDEo6jAnRdYhnKDqG+g61SNoiY\nIEuNTVW8x9vc2Yw4UxyiIoVPkKWYUxQ3cF3uLrS72mGJEW4Q1GgvImIrzgWOXAAgJTZFlZGLXHDj\nEGw2fh2Crks4vOrSEjHhDx9qGF6xvXBAHcPb0NGAtFhxDjQlNkXxkUtLVwvMJjOijdGCr1FrRCUX\n3DgEXg0Jr46KV128Pkct4dXwio2HA7ousY5dDV1ywpVD4DHUIEWXkvsE82p4bTY+n6OW+EJGYlCj\nxys2Hg5wrIvTEVWKWfn2khOuHAKPBo5nXTwaXl7bS0t47VmGpcvMqa7YVDQ4Ts+Ri5xw4xCkhEB4\n7YnruoSjtC4tCafHq4bhbexoRGqsiA01oM4IIRxdahjeRkcY7WXWJ5XDItwer9XKrlWKcB3V6aor\nXIegtK5AbN++HWPHjsWoUaPwxBNPBDznzjvvxKhRozBp0iTs27fPf7ygoABnnHEGiouLcfbZZwd9\nn4aOBj4Nr6MRKWZxqy7VMrxidakRMmrsCK+9BlPaqVFrAT54NSS8Oipe2yvcOQS1HYLH48Edd9yB\nHTt2ICcnB2eddRbmzJmDcePG+c/ZunUrfvjhBxw9ehS7d+/Grbfeii+//BIA2+qytLQUyQJW4TU5\nmrg0vE2OJkxMnyjqGjUMb5OjCWNSxoi6RpX26mxCslncqks97TRMwu3xWix8Gl41dIVjeE/X9urL\nnj17MHLkSBQUFMBkMmHu3LnYuHFjr3M2bdqEhQsXAgDOOeccNDc3o7a2u2aO0BIOTQ7xhkS1nriA\nPYt7clrrCnOEMJgcwqAfIZyuBk7XJY2qqirk5eX5/87NzcXu3btDnlNVVYWMjAwYDAZccskliIyM\nxOLFi3HLLbf0e4/ly5cDAA7uPYhjCccwvXC6YH1q9cR5dFTh6FIjxBaWLnMKmhxNICJR6yr6Ulpa\nitLS0rCvFwoXDsHtZgXXEhLEX6u0IeF15MKrrsHiEIT+OAcaBfz73/9GdnY26uvrMWPGDIwdOxYX\nXHBBr3N8DuGlZ17CpRdfKkqfWoZXdKz+lOGVauCCEU5P3BJjQVtXG9xeN4wRypi1JkeT6JFLtDEa\n0cZotHa1IilGRGniPpSUlKCkpMT/90MPPRT2vYLBRciopYWVQBZTudOHkoaksxPweMRV7vShpC6i\n8A1vUhJrb6UKVoY7hxATwzR1dsqvKRA5OTmoqKjw/11RUYHc3Nyg51RWViInJwcAkJ2dDQBIS0vD\n1VdfjT179gz4XuH0LK1mK5o7mxUtcNfY0ShaV6wpFgYY0OFSrmRuOO0VYYiA1WxFk0O53OVGh/j2\nAgbXamUuHEK4xg1Q1vC2tLD7h9MRSkxk+xV4FPg9d3Sw/RnE7NHgw2QCoqNZmWq58XqBtjb22cVi\nMKg7SpgyZQqOHj2K8vJyOJ1OvPnmm5gzZ06vc+bMmYM1a9YAAL788ktYLBZkZGSgo6MDbW2spHF7\nezs++OADTJwYeHLW4XLAS17EmsT1KowRRiRGJ6K5U5kGISLYOm2wmsV7b6XDM+E4BED5UVW4ugZT\n6ikXIaNwJ0gBIC6ObazidIZnIEPpCtdRRUSwEFhra/ifTQldQLfhFbM7nRBaW9k9IyOl6crMlFdX\nIIxGI1auXImZM2fC4/HgV7/6FcaNG4dVq1YBABYvXozLLrsMW7duxciRIxEXF4dXXnkFAHDy5Elc\nc801AAC3242f//znuPTSwCEhW6cNyebksMIrPgMnNkwhhNauVpiNZlGF7frqyk/Kl12X2+uG3WkP\nK7yipEMgorBCWcDgmlgW5BA8Hg+mTJmC3NxcbN68uddrTz31FN544w0A7Mdx6NAhNDQ0wGKxoKCg\nAImJiYiMjITJZBpwWB1uPBzo3bNMF7f2JyRSdAHs2nBDKMGQS1efCIlk5HBUam6SM2vWLMyaNavX\nscWLF/f6e+XKlf2uGz58OL755htB7xFOWMaHkj3xcHu7gLIT3jaHDZYYCyIM4oMXSupyuB0wGAww\nm8yir02JVT5BQC4EOYTnn38eRUVF/mFyT5YuXYqlS5cCALZs2YLnnnsOllNWQWiutlw9XrkdgpSR\nC6BcCESu9pIbqc5P7YllNZBieJXsWYYzQepDSV3hpJz6ULy9whgdAINrhBDSDVdWVmLr1q24+eab\nQ+Zdr127FvPmzet1TEiuNq8GTqoupRZb6boGD1IdglI9y3AnSAHlDa+k9lJoRCVlpJdqHjyTyiFH\nCPfccw9WrFiB1tbWoOd1dHTg/fffx4svvug/JjRX+/PP2QRsaWnv1Cqh8OoQlNTFY0+ch/ZSK19b\nKFJ64inmFNR31MusiCEpZBSbolghOUkhNnMKTraflFkRQ2p77a/dL7MiZQjqELZs2YL09HQUFxeH\n/JFt3rwZ559/vj9cBACfffYZsrKyQuZq/+EPbAP4MHwBAGVDIFobuEDwqosHh6BWvrZQpMbqlUqj\nDHeCFGC6jjYdlVkRQ0poJiU2BQcbDsqsiCEllKXkc5SboCGjzz//HJs2bUJhYSHmzZuHnTt3YsGC\nBQHPXb9+fb9wUVZWFoDQudo8GJJA6D1xcfDaXlrS1NmE5JjwHEKyOVmxfZWlOKpkczJsDl2XUJTU\nJTdBHcKjjz6KiooKlJWVYf369bjooov8edk9aWlpwaeffoorr7zSf0xMrjavhoRnw8ujLl5HLloi\nJQSi5EKrps7we+LWGOV0hVPp1IeSuqSMXJLNyUNjhNAXXy71qlWr/PnaALBhwwbMnDkTZnN3SlZt\nbS0uuOACTJ48Geeccw6uuOKKgXO1JRoSXidJT7eeOK/tpSVSe5ZKhox41MVte0mYhFd6BbWcCF6Y\nNm3aNEybNg1A/1zthQsX+qtC+igsLBScqy2HIamsDP/6geC1x8urLt0h9IdXA8erLimGV+n2EluS\n28eQHSEoBa+GRO+Ji4PX9tISKVlGSsaepUySKj23waMuKZPwidGJ6HB1wOVxyaxKfrhwCHIsaFJi\nhSuvK2951SXXCuqhBK89cSm6rGYrbA4bvOSVWZW0UJZvFbHD5ZBTEgBp7RVhiIAlxqJYXSo54cIh\n8Nzj5XVuQ4oD5XXOZSguTJMSAkmISlCsZyllktQYYUSsKRZtXf0rF0hFii5AuYllKSMXYPDMI2ju\nEHwlps3iS4T4UcIhEPEbq+dVl1SHkJTE7qFUaW616XR3wuVxIc4UF9b1BoOB9cZlDoN4yQubI7xK\npz6UGr1I6YkDyumS4tiBwTOPoLlD8PV2pey1oYSB6+joLhUdLkro8npZVdFwSkz7SExk9/DKPOKX\nOnKJiWGVUh3yj/g1weYIv9KpDyXmEVq7WhEXFSdpIxklDJzT44TD7UBidPhfbiXmEYhIFkel1PyG\nnHDhEKT0KgFlDK8cuuLjmWNxu+XRBLD9BuLiAKOEwuVGI9v0x26XT5fLxQy51JLaQ2liWWqYAVDG\n8EqZIPWhhIGzOWywxlglO1C526vd1Q5jhBExxpiw76GPEAQih+E1m1lvV87dtqSGZQC2J4JvhzK5\nkKucttyGt6WFfVapuyoONYcgpVcJKBMTl0WXAjFxqWEZQBldcrSX7hAEIodD8O2JIKfhlUMXIL+B\n03UNHng1JLyOXLjWJXFEpeQqajnR3CHw2uOVGg/3cboYXl7bS0vk6PEqEZqRS5cSoSzJumIUaC85\ndOlzCMLg2cDpuoQjR4gNGFoOgecRAo+Gd0i3lx4yEoacBk7ORU1yGji5dcnVE5dTF6/PUUt4DTXI\nMamsVKyeR11SVnX70B2CQPSQkTh4HSHw2l5awmvPsqmTT128hrJ4fY5KoLlD4NnAyaFL7tW3uq7B\ng1yGRInQjBxppzyOEJRYtyHXSG8w7IkwZBwCrwaOV0elzyEoD689XrkmSU+XEQKvupRAc4fAqyHR\ndYmDV0elJbzm+8u1PkKJnvhQXrdh67SBOK/LorlD4DX2rOsSB6+6tITX2DOvk6SNHdJ1JcUkwe60\nw+P1yKRKnkn4qMgoxBhj0OaUvyCgnEgogCAPvPYsdV3i4FWXlsgVe27ubAYRBSzp4HIB//oX8P77\nQHU1kJYGXHIJcP31rDbUQLqsMdK8d6wpFh7ywOFy+MtO98TtBjZvBrZuZZtXpaQAF10EzJ3LyqYo\npSvCEIGkmCQ0dzYHdC4eD7BtG9N24gTrxJSUADfeOHDZlSZHk6RCgD58o6pAtZq8XuCDD4BNm4Cy\nMrbq/8ILgV/8QlrdMrFoPkLgNb2T1zRKXdfgodPdifgoacWdTJEmmI3mgD3L0lJg/HjgL38BpkwB\nfvMb4IILgHXrgFGjmNHri5e8aOlskWzgDAbDgBPen38OnHEGsGIFMGkScMcdwPTpwIYNwMiRwNtv\nB76nrdMmeYQADDx62bsXOPNM4KGHgKIipuvSS4Ht24ERI4DXXw9cadfWaZPs2IPp+vZb4Nxzgfvu\nY+1z++3AZZcBn3zCdL30kooVgElDAFBkJFFXl/R7ffEF0dlnS7+PD4uFqKFB+n2+/ZaoqEj6fXzk\n5hKVl0u/z7FjRMOGSb+Pj7FjiQ4ckH6f2lqilBTp9/Gh1VccAKWvSJflXvnP5lOZrcz/t9dL9Mwz\nRFlZRJs2Bb7m44+JCgqIHniAyOPpPm5z2CjpsSRZdI1bOY6+q/2u17G//Y0oI4PonXeYzr58/jnR\nqFFEv/0tkdvdfbzL3UXGh43kDXSRSM76+1n0ZcWXvY6tXk2Ulkb0+uuBde3dy36nS5YQuVzdx71e\nL0X9MYocLodkXdNfnU47ftzR69jbbxOlphK99FJgXfv3E02eTLRgAVFnZ/dxpb7Xmo8QoqOBqCjp\n95Ezy8hXYjopSfq9lMh+kiNWz6suX8iI87k3QUidP+h5n549y+XLgZdfBr74Apg9O/A1JSXA7t3A\njh3Arbd2t6dc4Q+frp4TyytWAE8/Dfz738C11wYudDh1KtP19dfAwoUshAPIU+m0p66e7fXii8Cy\nZWxE9fOfB9Z15pmsPcvLgRtu6K5Q3OHqQKQhUlKl04F0vfoqcM89LFT0q18F1nXGGaw9W1uBq64C\nurokywiK5g5BjjCD7z5yGTg5Skz7kFOX283KaUstMQ2wuKTdLt+eCHKFjKKiWCehvV36vUKxfft2\njB07FqNGjcITTzwR8Jw777wTo0aNwqRJk7Bv3z5R18rpEHyG99VXgddeA3buBIYNC35dejozNt9+\nywwPkTwT3T11+Qzc228DL7zAdI0cGfw6q5XNLVRXA0uWdOuS1VGdCmW99x7wyCPARx+xMFEwEhNZ\nWMvhYM7K65W/vXy6du4E7r2XPZ/i4uDXxcWx9o2L6+2slEBzh9DjNyYJOXfbksu4AewhdnUBTqf0\ne/lKTEfI8NQiIphjaW2Vfq/OTvbjGWgSUyxyOdFg3wWPx4M77rgD27dvx8GDB7Fu3TocOnSo1zlb\nt27FDz/8gKNHj+Lvf/87br31VsHXApAl7gx0G16fEXnvPWbshZCQwCZRd+4EnntOGYfwxRfAbbex\nOYvcXGHXms1sAnX/fuBPf2Jxerl17dsHLFoEvPsuMHy4sGujo4F//pNNhN9/v7y6fCnEBw+yyfU3\n3wTGjRN2rdEIrF3LnNXdd8siJ/D7KHdrYQj9YociJoYZOYdj4CwGocg10Q10l+Zubpb+WeXUBXRP\n4Eq9p8+ByjDa76VLqHEZiGAbAO3ZswcjR45EQUEBAGDu3LnYuHEjxvX4hW7atAkLFy4EAJxzzjlo\nbm7GyZMnUVZWFvJaQL4RgjXGigNlTXjxJnFGxIfFwoz11KnA/FR5DdzRyibc/2tg9Wpg8mRx18fH\nAxs3AuecA9iz5XNUVrMV5bVNeOI24K9/ZRO2YjCbmRM55xwABTI60JhknGhoxOXzWXitpETc9VFR\nwFtvseeoFJo7BDnxGV6pDkHOEQLQHa+X6hCU0iUVnnUNRFVVFfLy8vx/5+bmYvfu3SHPqaqqQnV1\ndchrAWD/G4ex/JvlAICSkhKUiLUAp4j2JuOFl5vw7AqWrRMOw4axnu+M+5tw2S/lCc2YKRmr1tjw\nxwdZVkw4ZGUxp3Dhb5pwwSJ5DG+sIRl/e+s4/t+dwM9+Ft49UlKYEz33l02YNF+e9oqPTMZbm4/i\ntgUsJCWG0tJSlJaWAgBmzAACDEhlYUg5BJ8hyc6Wdh+5Jkh9yBUC0XWJI9g9hE5ekoQY5MmWO3Dn\nnT9HsgQ719EBbFyfjHE/aRBtRPoydSpw2bVNeH9DMk5eCmRmhn+vri7g7TXJyBt9ALfdJk1XcTFw\nw6ImrH/fioqZQA9fKxq3G1j3cjKSs7/B0qXSdI0bB/zqjib8dUsyfpgZem4kGB4PsObvyTCn2rB8\nufjr+3YoXnjhofDFBEHzOQQ5kdOQyB2a0XUJRw2HkJOTg4qKCv/fFRUVyO0To+p7TmVlJXJzcwVd\nCwA/P+PnuOaa8OePvF5g/nwgJzkZ434iz6rgvNFNOHdSMq68koVXw4EIuPlmwBKTjDGT5dGVM9KG\n//pJMmbPZkkd4eq64w7A5E7GqDOaZAlhZhXacMGZybjiCmnrY/7f/wM6m5JRWCSPLqUYcg5BjkVN\nShg4XZdw5NQ1EFOmTMHRo0dRXl4Op9OJN998E3PmzOl1zpw5c7BmzRoAwJdffgmLxYKMjAxB1wLA\nE0+wz/LrX4tPdiBimUGNjcBdi+Wrz2Nz2HD97GSMHNmdSSOWBx4AjhwBHvidFbZOeXQ1OZpw2fRk\nnH02MG9edzqqGB5/HPjyS+DR/7HC1iWTrs4mTD83GZddxlJpw3Huzz/PEgFeeNKKZpl0KcWQcwg8\n9nhPh1g9r7oGwmg0YuXKlZg5cyaKiopwww03YNy4cVi1ahVWrVoFALjsssswfPhwjBw5EosXL8aL\nL74Y9Nq+REYCb7zB0j7/+Edx2p96imUGbdgAZCTIVzeIZRlZ8fLLLO3zvvvEOasXX2QpkFu2AFkW\neXWlxCbjL39hWWt33SVO1+rVwN//ztJZ81Ll1WU1W7FiBZsEX7xYnBN9+202gfz++0BhJv8VT4fk\nHIJUmptD53iLgVdHxbOuqirp9wn12WbNmoVZs2b1OrZ48eJef69cuVLwtYGIi2O9w+nTmYH7n/8J\nnY315JPA3/4GfPopa4vkTvn2RPClncbEMGdz8cXs+BNPhNb1l7+w80pLWc2klib5dZlMwDvvsJIS\nd9wB/PnPodOs//EPNmr56CM2fxhhl29PBJ+uyEiW9nnZZWwR2UsvMYcfjDffBO68kzmDYcMAu1P+\nvRrkRh8hBIBnw8vr5C2v7cUDWVmsLs0777Dw0UCx+64uZgRfeQXYtas77VbOyqI91yGkpgIff8z+\nzZ8/cJquywX8938DzzzDPocvp19OXb6VygB7/jt2sDUK11/P1t8EwuNhDnb5cvYZfIM0XwlsKQkB\nPXX52is+nq3pqKgA5sxh4bxAeL3AY48Bv/0t+xy+dNw4UxycHie63AovN5bAkHMIcsSelcj3l8M4\nKbUOQSo86+KFjAxW9M1uZwZi3bpux9DZyZxFcTFQU8NKKOTkdF8r554IfRemJSczIx8VxcokrFnT\nvUrc6WQpoWedBRw8yEpOFBZ23yspOgmtXa2ylJruqysxkRnTjAxg4kRWqsM32exysdDQuecCn30G\n7NkDjBnTfa9oYzRMkSa0u6Qvd++rKy6Ovfe4cay9/vrXbofldgMffsgKDL73HmuviRO772UwGPz7\nIvDKkHMIPPbErVY+J2/lDLHJ3V5DaYTgIyGBhR1eeAH43/9lue45Ocwo//nPLFT0zjv9n3GcKQ4u\nj0uWnqWt09avRERsLAu7vPwyq/iZns50WSxM04MPsjmD1NTe94qMiERidCKaO6U3dKAV1DExLEy1\nbh1bKJaZyXQlJbGKpffcwwxwoPRZuUYvgUpyR0WxOZ4NG1il1Jycbl2//z0bBX7ySeCFlbzvnKbP\nIQSA5xCIrks4vDkEgMXpZ85k/zo6gIYGZmiDLab0lZpucjQhKyEr7Pd2uBwgIpiN/fcvANg8x/Tp\nbORSX88cVlxc8Hv6dEkpW+0lL5o7mwesZfRf/8V63J2dQF0dc6Ch6nn5dOUn5YetCwhe6uOss9gI\nqquL6bJYmNMXootXhpRD4DmNklfDy2t7KZ12ygOxsUC+QHslh0PwGbdQi/LMZvG6pNDW1YZYUyyM\nEcHNUUyMurpcHhccbkfADW16Eh0tfDEd7w5BDxkF4HRyCENd11AhJTYFjY4BZjEFImdhOx8pZo51\ndUjT1dzZDEuMRZaS3D7k0OVwhbmiUAC6Q+iDx8Mm/uTctu50mEOQU1dSEptAlFqaeyg5BDl6lkoY\nXl2XOOTQpeSk9JByCHIYuNZWFgeUo8S0Dzk2fXE62b9QMV0x+Epzu1zh34OIfTY5NhPyERkpT2nu\noeQQUswpshgSufYc8JESK12XIiMEmXRJ3eO5LynmFDRJXN2tZMhpSDmEpCSWAialZyl3bxdgsU+D\ngU2KhUtLi7wlpgF2L98+EuHS2cmcp1x7IfiQOo/g2/VuqJBsTpYcalCqx8tjyCg5hlNdMj1HpRhS\nDsFoZBNiwergh0IJhwBID2fpusRht0svg84TyeZkWXqWSsTqeRy5yBWa4TFkpDsEEUg1JHIvsvIh\ndR5BSV28thePurRCjsnIJkcTkmP47PEqETLicYQgly6lGHIOQaohkXuRlY+h2hM/3dpLK+Tq8fLY\nE1fKUckyh8BpeynFkHMIUmPPPBtepXTx2l486tIKbidvZQgZ8Zp2qoSjkivEphRD0iHwanh1XcLh\nVZdWcDt5K4MuXmP1SunSJ5VVhFdDInUOQUldvLYXj7q0gte8etnSOxUKzUipeKpEe8VHxUuueKo7\nBBHw6hD0WL04eNWlFXKFQOTOq0+KTkJbVxvcXnfY91DC8EYboxEVGQW7M/yUQyUcVc+6VOGiOwQR\n8NoT59XA8Rqr51WXVsSaYuEhj6SyBT1r+8tFZEQkkmKSJFU8VcIhANJHVTzrUooh5xB4Nby8hkB0\nXYMDg8GAFHNK2BOKbq8bdqcdSTEyLik/hVQDp4SjAqSneCqpS3cIKsGrQ+C1x8tze/GoS0ukTEg2\ndzYjKSYJEQb5f/JSdDlcDnjIM2BJbilIcVRExNJ0ZQ6xAdIn4nWHIAJeF6bpusQhhy4l5ly0RIqB\nU2L+wIeUVEpfJo+cFUV9SHFUbc42xBhjYIo0yaxK2nN0e91od0rfCW4ghpxD0OcQxMHzyIVHXVoi\nJQSiVPgDkNbjVSpOD0hzVErrkjrSUwpBDsHj8aC4uBizZ8/u99pTTz2F4uJiFBcXY+LEiTAajWg+\nZfm2b9+OsWPHYtSoUXjiiSfkVT4AvGbz8BoT53VlN6/tpSVSRwiKGTgJMXFeHZXSusKtS6XkcwQE\nOoTnn38eRUVFAYd1S5cuxb59+7Bv3z489thjKCkpgcVigcfjwR133IHt27fj4MGDWLduHQ4dOiT7\nB+iLFIfgdrNtDUNtzxcOPI8QeNQVH88qqYZbmnsoOgRee7zJMZw6Kk7bi1ddgACHUFlZia1bt+Lm\nm28Ouchj7dq1mDdvHgBgz549GDlyJAoKCmAymTB37lxs3LhRHtVBkGLgWlpYOWg590Lw4SszHc46\nmc5OVs7ZLP+8m79sdTiluZXYC8GHrzR3S0t41w9FhyA1NCN3Tr0PKaEsJec2eJ1zkTK3oaQuQMCe\nyvfccw9WrFiB1hDF5Ts6OvD+++/jxRdfBABUVVUhr8dGo7m5udi9e3e/65YvX+7//5KSEpSUlAiU\nHpjERFb62ONhG62IQUkjYjIx42u3h96Iuy9K7IXQE1+8Pkvkdr0dHUBUFPunpK7UVOHXlJaW4uOP\nS9HaCjz3nDK6tCLZnIwfbT+Gda2iIwROQ1m8zm3w2l5ACIewZcsWpKeno7i4GKWlpUFvtHnzZpx/\n/vmwnLKoQrMGejoEOYiIYE6hpQVIFtluSvcqfXFxsQ5BLV1iHYJausRQUlKCyZNL8NxzwEMPAQ8/\n/JAy4jRAymRkg6MBI60jZVbEkNLjbXA0IDVWhMcXgZS5jYYOZXWF66iU1AWECBl9/vnn2LRpEwoL\nC9WYCAsAABxvSURBVDFv3jzs3LkTCxYsCHju+vXr/eEiAMjJyUFFRYX/74qKCuTm5sokOzjhho2U\nNnC6LnHwqksrpPQsGzsakRKbIrMihpSYeGNHI1LMyuiS4qgaHcrqCru9FNQFhHAIjz76KCoqKlBW\nVob169fjoosuwpo1a/qd19LSgk8//RRXXnml/9iUKVNw9OhRlJeXw+l04s0338ScOXPk/wQB4NWQ\nhJtKeboaXl51aQWvPV4pBk7RnrgER3U66gJErkPwhYFWrVqFVatW+Y9v2LABM2fOhLnHrKfRaMTK\nlSsxc+ZMFBUV4YYbbsC4ceNkkh2ccNcinK4GjmdHpYSupqYmzJgxA6NHj8all17qT5Puy0Bp08uX\nL0dubq4/3Xr79u3iRYaBlJh4o6ORyxBIo0O5kYvVbA274qmS7RVrioXb60anW3wmR2OHcroAEQ5h\n2rRp2LRpEwBg8eLFWLx4sf+1hQsXYu3atf2umTVrFg4fPowffvgBv//972WQK4xwDa/S2y6Gm1uv\n6xJHKF2PP/44ZsyYgSNHjuDiiy/G448/3u+cYGnTBoMBv/3tb/3p1j/96U/FiwwDqT1xpUINidGJ\naHe2w+URnyOsZI83KjIKZpMZrV3BE2IC0dDRoJijklLxVEldwBBcqQyE7xCamoAU5dpa1yUSpXRt\n2rQJCxcuBMA6Mxs2bOh3Tqi0aSl19sMl1hQLAOhwdYi+VsmeZYQhAlazNazCe0rOIQDhh2eUDs2E\nmyCg5MgFEJB2OhgJN9TQ1AT0yJSVHSm6MjPl1+PDYgHq68Vf19QkPpNLDBYLUFkp/rpQumpra5GR\nkQEAyMjIQG1tbb9zQqVN//nPf8aaNWswZcoUPP300/7sup7InVINdI8SfM5BCA6XA06PE/FRCqy4\n7KMrPS5d8DVEpGjIyKer0dGIQmuhqOuUdlRiRwilpaUoLS1F2RdlWHO8/zyuXOgjhB6oYeB0XcKR\nomvDhhmYOHEiAGDixIn+f76wpw+DwRAwRTpY2vStt96KsrIyfPPNN8jKysLvfve7gOctX77c/08O\nZwCE1+P19SqVKCDnI5wQSEtXC2JNsYiKVGghC8KbiHd5XGh3tStaM0isrpKSEixbtgxdF3ThkYcf\nUUzXkBwhWK3A4cPir1PawFmtwHffib9ODV08OgQpupYu/RBLljDD/l2fRs/IyMDJkyeRmZmJmpoa\npKf379UGS5vuef7NN98csMaXUoSTSqn0RCQQXghE6V44EGZ7ORqRbE5WpFS4j3ASBNpd7TBGGEWN\nDsWijxB6wHOPV9clnFC65syZg9WrVwMAVq9ejauuuqrfOcHSpmtqavzn/etf//KPRNQgnJ640hOR\nQPi6lHZU4ehSy1GF9RwV1jVkHUK4sXqlDZyuSzhK6brvvvvw4YcfYvTo0di5cyfuu+8+AEB1dTUu\nv/xyAMHTpu+9916cccYZmDRpEj755BM8++yz4kWGSTgpnkpPRALh61LaUaWYxetSw1GFo0uNkd6Q\nDBmdbj1eqZxuupKTk7Fjx45+x7Ozs/Hee+/5/541axZmzZrV77xAizPVgteeZTgVT9UaIZxoOSHq\nGjUcVTh1qdQY6Q3JEUI4C9NcLlasLTFRGU1AeLqImIFTcvevcBfyqTGHYLOJrxCrtC4t4bVnGdYI\nQYXQDNcjhDDmNpTWNSQdQkoK0Cgyxde35aKCiRhh6XI4WME+JUpf+7BaWTFAj0f4NV6v8iuVzWZW\nsbZd5I6BQ9khpMWmob5dXI6wkgXkfHCrKy4MXSo4hLS4NNR38KdryDqEpiZxPUs1jEh8POB0Al1d\nwq9RQ1dkJBsZiQnPtLayz2NUOOgo1ok6nWxvB7EVZQcL6XHpqGuvE3WNGiGjcHUpbeDC0aV0ATmA\n3+c4JB1CVBTbeyDEFg69UMPwGgziDZxavd2hokuNkZ6WpMWliTdwKoSMwtWltIFLi+WzJ54WG0Z7\n6SGj8BkqBk7XxacurUiPS+fSwPGqy+eoxJQaUcOBWs1W2J12OD1OwdfoISMJ8GpIUlKAhgbh5+u6\n+HyOWuHrWYoycCplzbR0togqcKeGrlhTLEwRJrQ52wRfo0poxhCBFHMKGjqE/+jUGFHpDuEUp7uB\n03UNDuKi4hBhiEC7S/hMuyo9S0OE6EwjNXQB4uP1auoSM+GtjxAkwKsh0XWJg1ddWiIm/tzp7kSX\nuwsJUcrPsovRRUSq9HgB8ZlGauT7A+LnXfR1CBJITeUzBJKayqeB41mX2OeoZEluHhDTs6xrr0N6\nXLqihe18iNFl67Qh1hSLaGO0wqrEjRA63Z3ocHXAGqPgwp9TiJl3ISL/s1SSIesQeO1Z6rrEwasu\nLRHTs6y11yIjPkNhRQxudYnINKpvr1fNgYoZUfkcaIwxRlFNukM4xelu4HRdgwcxPcu69jpkxKlj\neHnWJdhRtavnqES3lwq6dIdwitPdwOm6Bg9iepa17bWKhxl88KxLqOGttXPaXirp0h3CKZSuF+RD\n1yUOXnVpiZiepZqhGZ51CTW8qo+oBM651LbXqqJLdwinqK9nE5hKIzbfX9fF53PUEjE9y7oO9Qwc\nt7pEZBmpGTISM+eih4wkIsaQdHWxSqdKFmrzIUYXETPSaWnKagK6dQld71Rfr46upCRW3M4lcL2T\nWrq0RFTPUsUQCNe6RMTq02P501XbXquKLt0hgBndlBRWVVRpxFQWbW3trsukNGIqi7pcTJsasfqI\nCNZmTQJK7ROdHg5BVDaPSqEGgGNdIuc21Mx+4i0ra8g6hIQE4ZVF1TQiRiPTJqSyqNrGTagTbWxk\nzkANBwoI12W3M6cWq9yWs1zAY3YKwK8uX8hISLmPWrt6jsoSY4HD5UCXO7SRUmtuY8g6BDGVRdU2\nvEIXgem6GLzq0gox9YzUDM1YYiyCC7apqSvGGIMYYwxaulpCnqvG4i8fBoMBqbGpgpyoWllZQ9Yh\nAPw6BF2XOHjVpRVmkxlmoxm2zuDb3Lm9btg6barU5QFYPaOMuAzU2mtDnqtmyAgAshKyUNNWE/I8\nNUNGgAhdeshIOrwaEl2XOHjVpSXZCdmobqsOek5DRwOsMVYYI9TbOj07IRtVbVVBz7E77SAixEfF\nq6RKWHt5vB40OZpUc6CAMF2AnnYqC0Lr4GgRAtF1CYdXXVoixJCoGf7wIUaXGuUhfAjR1ehohCXG\noroDDaWr3dkOL3lVcaBD2iGkpwO1oUevqhsSXZc4eNWlJUIMSXVbNbITslVSxOBVV05CDpe6suOz\nUW0XpksNBzqkHUJGBp+GRNclDl51aYkQw1vVWoWcxByVFDG41hXC8Fa1ViEngcP2alNPl+4QoN7i\nLx+6LnHwqktLhPR41TQkPnjVJdjwquyochIFtJeKDlR3CNB7vD50XYMHIZO3la2VXBperXRVtfLZ\nXjzpGtIOITMTOHky9HlqGxKedfFoeHltLy3htcc76HVx6ED1kJFMCOlZejxs1bCau2yJ6fGqWajN\npyvUeie1daWmsmfkdgc/73QobOdDcKyeRwPXWoXcxFyVFDGyE7JRY68JuphPi7mN1NhUtHa1Bl2t\nrKYDPS0cQjADV1fHnEFkpHq6hBi4tjb233j1UrURF8fKUdjtA5/jdrO6Qmr2xCMjWamM+iALOonY\nKCIzUz1dWpIZn4laey285B3wHC164snmZHS4OuBwOQY8R4ueeIwxBvFR8Wh0DLygRQtdEYYIZMZn\nosY+8OI0NR37kHYI8fGshEUwA1dTA2RlqacJEGbgfLpUTNUGwJxosPCMz4Ea1UvVBhB6VNXaytpV\nTQeqJdHGaCTFJA1YXbTL3YWWzhbV1yEYDAa2+nYAA0dEqGmrUT29Ewg9etFihAAI0KWPEOQjlCHR\nwiEAwnRlq/+bCamruppPXWKeY1NTE2bMmIHRo0fj0ksvRfMAlQZvuukmZGRkYOLEiWFdrzQ5CTmo\naK0I+Fp1WzUy4zMRYVD/J56TkIOKlsC6GjoaEBcVB7PJrLKq4LocLgc6XB1IMasYOz5FTuLAujxe\nD2rttao50NPCIQTr8VZXa+cQeNXFqwOVq70ef/xxzJgxA0eOHMHFF1+Mxx9/POB5v/zlL7F9+/aw\nr1eaQmshypvLA75W0Vqhepzex2DVlZOYo+rqaR+FloF1nbSfhNVsRVRklCpahrxDCJU5o1VPXIgu\nLQzvYNYl9Dlu2rQJCxcuBAAsXLgQGzZsCHjeBRdcAGuA/TiFXq80hZZClNnKAr5WZivDcOtwlRUx\nCi2FKGvWdQklqK5mdXWpHAlWHyE93gkT1NPjg+eeeKiQEY8jBDHtVVtbi4yMjFP3zUCtkJSvMK5f\nvny5//9LSkpQUlIi6n1CUWgpxKGGQwFfO9Z8DIXWQlnfTyiFlkJ8XP5xwNeO2Y6h0KKdri8rvwz4\nmqa6rIXYdGRTwNd8ukpLS1FaWqq4liHvEELlsNfUADNmqKfHR2YmM64DUVMDnHGGenp8ZGYC+/YN\n/HpNDTB5snp6fGRmAt98M/DrfR3CjBkzcPLUg+85B/CnP/2p13UGg0FSmCDY9T0dghIUWgux9Yet\nAV8rs5VhesF0Rd9/IAqthfjHN/8I+FpZcxmK0opUVsQotPLTE++JkJFe3w7FQw89pIiWIR8yys0F\nKgLP1wDQrsc7WHVpNXIR214ffvghvvvuOwDAd9995/83Z84cZGRk+J1FTU0N0tPFZeJIvV4ughmS\nY7ZjXBo4rUcIPLZXgaUAJ1pOBEwhPtasrq4h7xDy8vg0cINVl1aOSs72mjNnDlavXg0AWL16Na66\n6ipRWqReLxeF1kIcbzke0JCUNZdpFjLKTcxFQ0dDwMVWWhreZHMyCASbo//GQlo6KrPJjGRzcsDU\n0zJbmaq6hrxDyM8f2JB4vSxersVipmC6AH4dgpYjhOpqtrI8EGJ03Xffffjwww8xevRo7Ny5E/fd\ndx8AoLq6Gpdffrn/vHnz5uG8887DkSNHkJeXh1deeSXo9WoTa4pFUnRSvx23Ot2daOhoUH2RlY/I\niEjkJub2y5zxeD040XICBZYCTXQZDAYUWgpxzHas13Ei0tSBAsy599UFnHJUKuoa8nMIPgNH1H+R\n18mTgNUKxMSorysriy1MczqBqD4ZZS0tbEVwgAQXxbFaAZeLLfRKTOz9mtPJNGuRlRUTA1gszIH3\nfX8i9ozz84XdKzk5GTt27Oh3PDs7G++9957/73Xr1om6XgtGp4zG4cbDvRYuHW44jJHJIxEZoeLy\n+wF0jUkd4z9W1lyGjPgMTdYg9NV1ZvaZ/mO17bWINERqsgahl66Gw7hw2IX+Y21dbbB12pCfJPCL\nLQNDfoQQHw9ERwfegrG8HCgoUFsRw2hkmTOBJpaPH2e6NEiJhsEw8OilspIZY7VXKfsYaPRSVwfE\nxp4+q5R7MiF9Ar6v+77XsQP1BzA+bbxGihgBddVxrCt9vCZrEHxMSJuA7+t76zpYfxBjU8equrhw\nyDsEYGADd/w4MGyY+np88KprIMNbXq63F29MTJ+I7+q+63WMB4cwMX1iYEeVzqFD4KG9Mibiu1rt\nn+Np4RAGMnBaGxJdlzh41aUlwXq8WsKr4dV1Bee0cQgnTvQ/rmXICBh8unyhLK3gtb20xGdIPN7u\n2fZ9J/dhUsYkDVUBY1PH4oemH3plGu2r0V7XCOsI1LbXorWr1X9sX80+TMrUVldWfBY85MFJe/ei\nKS10CXIIHo8HxcXFmD17dsDXS0tLUVxcjAkTJvRaPFFQUIAzzjgDxcXFOPvss2URHA6FhUBZgPRj\nrXuWui5x8KpLS6xmK3IScvxho8rWSnS4OjAyeaSmuswmM4rSirC3ei8AoMnRhIrWCkzMmBjiSmWJ\njIjElOwp+KLiCwBAh6sDB+oP4MysM0NcqSwGgwHn5p6Lz058BgBwe934qvornJt7rqo6BDmE559/\nHkVFRQEnXZqbm3H77bdj8+bN+P777/HOO+/4XzMYDCgtLcW+ffuwZ88e+VSLZPRo4PDh/sePHdO2\nZ6nrEgevurTmwmEX4pPyTwAAn1d8jqm5UzWdIPVx4bAL8clxpuvLyi9xVvZZMEZon9g4bdg0v66v\nqr7ChPQJmmY++bgwv7u99p/cj/ykfFhiLKpqCOkQKisrsXXrVtx8880Bdxtau3Ytrr32WuTmsgqG\nqX22rAq2Q5FajBnT35C4XKxnOWqUNpqAwLqIgCNHgLFjtdEEdOvq++j+8x9tdY0cyUYIfTcWOnxY\nW11aM71gOj489iEA4L2j72HmiJkaK2JML5iOD378AABfukoKSvhsr0L2HIlIM10h3fU999yDFStW\noLW1NeDrR48ehcvlwvTp09HW1oa77roL8+fPB8BGCJdccgkiIyOxePFi3HLLLf2uV7oAGACMGMEm\nI3vm/P/wA4tJR0fL/naCyclhO6P1zPmvrAQSEoCkJO10JSezdjl5snuxV1MT4HBoswbBh9nM9JSV\ndTtyhwOoqgKGn1r8qlYRMJ6YPWY2btt6Gw7VH8KWI1vw6EWPai0JAHDpiEtx06ab8N3/b+/uYpq6\n+ziAf4tlhhdDVAQfoPGNulKR9mDwyLQuKKggTJ1miBHIfInLEo3uZvNmiZkhMcYLjZnDPImLjxdc\nuAsZNsb4gohViII8zwYXy1Jny4vBqVFpkNr+n4tDQbTA/xyg56z9fa4snv74evqzv7bn9H+e/A+/\ntP+C21/eVjsSAOmdS9erLjzoeoCa32rwa9mvakcCAOSk5OCt/y0cLgcu/PcCft78c8gzjDkQ6urq\nkJSUBEEQRv1P5vV60dLSguvXr8Pj8SA3NxcrVqyA0WhEY2MjUlJS0Nvbi4KCAphMJthsthH3n+oF\nwABpCBgMwJ9/AhkZ0s/UfrULSJerNBqlV7g5OdrJBQy/SwgMhEAutT+JCOQKDIQ//pCGQXS0dDtU\ni4BpSfxH8fg652tkn81GeVa5Klf9Cma6fjq+WfENlv97OT7P+BzG2Sq+HX+HPkqPb1d+i1XnVmHd\nonWqH1AO0Ol0OLzqMPL/k4+VhpXITcsNeYYxB4LD4UBtbS3sdjv6+/vx8uVLVFRU4Pz580PbGAwG\nJCYmIiYmBjExMVi9ejXa2tpgNBqRMvhycs6cOdiyZQuam5s/GAih8vHHQEfH8EDo6NDOE29Hx/BA\n0Eouk0nKEnhu1UquwP4qLpZuayWX2n7I+wGfLf4M2f/KVjvKCN+t+g5rF65V/eyi9+1fvh+5abnI\nTFJh7fsx7BJ2wZJsgSnRpMpxoDGPIVRVVcHlcsHpdKKmpgZr1qwZMQwAYNOmTWhsbITP54PH40FT\nUxPMZjM8Hg9eDV4pvq+vD1evXv3gUoShtGwZcP/+8O0HDwBBUC3OEMolj1ZzqS1KFwUxTUT0tGi1\no4yg0+mwPHU5putV/Gw2CJ1Oh5zUHE0cTH7fspRliPsoTpXfLet7CIGJVV1djerqagCAyWTChg0b\nkJWVBVEUsXfvXpjNZvT09MBms8FqtUIURRQXF2PdunWT/y/gJIpAU9Pw7eZm6WdqC5ZLxTN0h/yT\n9pcWchESDnRMxdOAdDpdyM5C+vtv6Tz2Z8+klTGzs6U1cNT+TLyvD0hKkvL19UmnTz5/rt56QQFe\nr7TQXWcnMG2atO7S06fSgV01+f1AYiLw++/A7NnSn//6a/SFAEPZY1r4vSQyTFV/qX9ScIjMni2d\nx97QIB2UXL9e/WEAAHFx0vGDq1elVU7z89UfBoB0kPbTTwG7XTrj6JNP1B8GgHQgvqAAqKuTvoy2\nZIk6q8ISEo408NQTOqWlwI8/SksdfP+92mmGlZYCP/0EvH4NfPWV2mmGbd8OnD0rDYQvvlA7zbDS\nUuDYMem0XS3lIuSfLmI+MgKkJ9yVK6Unkro66dWmFvT3A6tXS0s4X7umjXcIgPSxUX4+8OYNUF+v\nznUjgvH5pLOMuruBxsaxl72mj4xIOJqq/oqogUAiDw0EEo6mqr808hqZEEKI2mggEEIIAUADgRBC\nyCAaCIQQQgDQQCCEEDKIBgIhhBAANBAIIYQMooFACCEEAA0EQgghg2ggEEIIARBGA2Eyr6MbCbUm\nu55Wa4UDre5bqqVeralCAyFCa012Pa3WCgda3bdUS71aUyVsBgIhhJCJoYFACCEEgAaWvyZkqqm1\n/DUhUynsrodACCFEO+gjI0IIIQBoIBBCCBlEA4EQQgiAEA6EK1euwGQywWg04tixY0G3OXDgAIxG\nIywWC1pbWxXXqq+vR0JCAgRBgCAIOHr0aNA6u3btQnJyMpYuXTrq7+LNNF4t3kwA4HK5kJeXhyVL\nliAzMxOnTp1SnI2nFm+2/v5+iKIIq9UKs9mMw4cPK87FU0vOPgMAn88HQRBQUlKiOJdc4d7XPPV4\nc1Ffy8sVENK+ZiHw9u1btmjRIuZ0OtnAwACzWCysvb19xDaXL19mhYWFjDHG7t27x0RRVFzr5s2b\nrKSkZNxcDQ0NrKWlhWVmZgb9e95MPLV4MzHGWHd3N2ttbWWMMfbq1Su2ePFixfuLp5acbH19fYwx\nxrxeLxNFkd2+fVtRLp5acnIxxtiJEyfYjh07gt5HTi5ekdDXPPV4c1Ffy8/FWGj7OiTvEJqbm5Ge\nno758+cjOjoa27dvx6VLl0ZsU1tbi8rKSgCAKIp48eIFnjx5oqgWwHdKls1mw8yZM0f9e95MPLV4\nMwHA3LlzYbVaAQDx8fHIyMhAV1eXomw8teRki42NBQAMDAzA5/Nh1qxZinLx1JKTy+12w263Y8+e\nPUHvIycXr0joa556vLmor+XnCnVfh2QgdHZ2wmAwDN1OS0tDZ2fnuNu43W5FtXQ6HRwOBywWC4qK\nitDe3j5puYNl4qE006NHj9Da2gpRFCecbbRacrL5/X5YrVYkJycjLy8PZrNZca7xasnJdejQIRw/\nfhxRUcFbejIfy7FqRlpfK81Ffa3Nvg7JQOD9ks77EzDY/XhqZWdnw+Vyoa2tDfv378fmzZv5girM\nxENJptevX2Pbtm04efIk4uPjJ5RtrFpyskVFReHhw4dwu91oaGgIuj4Lb67xavHmqqurQ1JSEgRB\nGPOV12Q9lnLvH859rSQX9bV2+zokAyE1NRUul2votsvlQlpa2pjbuN1upKamKqo1Y8aMobdthYWF\n8Hq9ePbs2YRzj5aJh9xMXq8XW7duxc6dO4M2jJxs49VSsr8SEhKwceNG3L9/X3Gu8Wrx5nI4HKit\nrcWCBQtQVlaGGzduoKKiYsK5xkN9LT8X9bXG+3pCRyA4eb1etnDhQuZ0OtmbN2/GPfh29+7dUQ+O\n8NTq6elhfr+fMcZYU1MTmzdv3qjZnE4n18G3sTLx1JKTye/3s/Lycnbw4MFRt+HNxlOLN1tvby97\n/vw5Y4wxj8fDbDYbu3btmqJcPLXk7LOA+vp6Vlxc/MHP5T6WPCKlr8erx5uL+lperneFqq/1ykcJ\nP71ej9OnT2P9+vXw+XzYvXs3MjIyUF1dDQDYt28fioqKYLfbkZ6ejri4OJw7d05xrYsXL+LMmTPQ\n6/WIjY1FTU1N0FplZWW4desWnj59CoPBgCNHjsDr9crOxFOLNxMA3LlzBxcuXEBWVhYEQQAAVFVV\n4fHjx7Kz8dTizdbd3Y3Kykr4/X74/X6Ul5dj7dq1ih5Hnlpy9tm7Am+ZleSSIxL6mqceby7qa+33\nNa1lRAghBAB9U5kQQsggGgiEEEIA0EAghBAyiAYCIYQQADQQCCGEDKKBQAghBADwfwJyXZ807NQ0\nAAAAAElFTkSuQmCC\n" + } + ], + "prompt_number": 9 + }, + { + "cell_type": "markdown", + "source": [ + "<h3>Example 6.9,Page Number: 190<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "''' Power gain delievered to load'''", + "", + "# variable declaration", + "R_E=10.0**3; #emitter resistance", + "R_L=10.0**3; #resistance in ohm", + "R1=18.0*10**3; #R1 in ohm", + "R2=18.0*10**3; #R2 in ohm", + "B_ac=175.0; #AC value", + "V_CC=10.0; #voltage in volt", + "V_BE=0.7; #base-emitter voltage", + "V_in=1.0; #input voltage in volt", + "", + "#calculation", + "", + "R_e=(R_E*R_L)/(R_E+R_L); #ac emitter resistance R_e", + "R_in_base=B_ac*R_e; #resistance from base R_in_base", + "", + "#total input resiatance R_in_tot", + "R_in_tot=(R1*R2*R_in_base)/(R1*R2+R1*R_in_base+R2*R_in_base);", + "print \"total input resistance = %.2f ohms\" %R_in_tot", + "V_E=((R2/(R1+R2))*V_CC)-V_BE; #emitter voltage", + "I_E=V_E/R_E; #emitter current", + "r_e=25.0*10**-3/I_E; #emitter resistance", + "A_v=R_e/(r_e+R_e);", + "print \"voltage gain = %.2f\" %A_v", + "#ac emitter current I_e", + "#V_e=A_v*V_b=1V", + "V_e=1.0; #V_evoltage", + "I_e=V_e/R_e; #emitter current", + "I_in=V_in/R_in_tot; #input current in ampere", + "A_i=I_e/I_in; #current gain", + "print \"current gain = %.2f\" %A_i", + "A_p=A_i; #power gain", + "#since R_L=R_E, one half of the total power is disspated to R_L", + "A_p_load=A_p/2.0; #power load", + "print \"power gain delivered to load = %.2f\" %A_p_load" + ], + "language": "python", + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "total input resistance = 8160.62 ohms", + "voltage gain = 0.99", + "current gain = 16.32", + "power gain delivered to load = 8.16" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "markdown", + "source": [ + "<h3>Example 6.10, Page Number: 193<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "''' Overall voltage gain'''", + "", + "# variable declaration", + "V_CC=12.0; #source voltage in volt", + "V_BE=0.7; #base-emitter volatge", + "R_C=1.0*10**3; #resistance in ohm", + "r_e_ce=5.0; #for common emitter amplifier", + "R1=10.0*10**3; #resistance in ohm", + "R2=22.0*10**3; #resistance in ohm ", + "R_E=22.0; #emitter resistance in ohm", + "R_L=8.0; #load resistance in ohm", + "B_DC=100.0; #dc value", + "B_ac=100.0; #ac value", + "", + "#calculation", + "pt=R2+B_DC**2*R_E #temp variable", + "V_B=((R2*B_DC**2*R_E/(pt))/(R1+(R2*B_DC**2*R_E/(pt))))*V_CC;", + "V_E=V_B-2.0*V_BE; #emitter voltage", + "I_E=V_E/R_E; #emitter current", + "r_e=25.0*10**-3/I_E; #for darlington emitter-follower", + "P_R_E=I_E**2*R_E; #power dissipated by R_E", + "P_Q2=(V_CC-V_E)*I_E #power dissipated by transistor Q2", + "R_e=R_E*R_L/(R_E+R_L); #ac emitter resi. of darlington emitter follower", + "#total input resistance of darlington", + "kt=R_e+r_e #temp varaible", + "R_in_tot=R1*R2*B_ac**2*(kt)/(R1*R2+R1*B_ac**2*(kt)+R2*B_ac**2*(kt)); ", + "R_c=R_C*R_in_tot/(R_C+R_in_tot); #effective ac resistance", + "A_v_CE=R_c/r_e_ce; #voltage gain of common emitter", + "A_v_EF=R_e/(r_e+R_e); #voltage gain of common emitter amplifier", + "A_v=A_v_CE*A_v_EF; #overall voltage gain", + "", + "#result", + "print \"voltage gain of common emitter amplifier= %.2f\" %A_v_CE", + "print \"voltage gain of common emitter amplifier= %.2f\" %A_v_EF", + "print \"overall voltage gain = %.2f\" %A_v" + ], + "language": "python", + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "voltage gain of common emitter amplifier= 172.08", + "voltage gain of common emitter amplifier= 0.99", + "overall voltage gain = 169.67" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "markdown", + "source": [ + "<h3>Example 6.11, Page Number: 196<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "''' voltage,current and power gain'''", + "", + "# variable declaration", + "B_DC=250.0; #dc value", + "R_C=2.2*10**3; #resistance in ohm", + "R_E=1.0*10**3; #emitter resistance", + "R_L=10.0*10**3;#load resistance", + "R1=56.0*10**3; #resistance in ohm", + "R2=12.0*10**3; #resistance in ohm", + "V_BE=0.7; #base-emitter voltage in volt", + "V_CC=10.0; #source voltage in volt", + "", + "#calculation", + "#since B_DC*R_E>>R2", + "V_B=(R2/(R1+R2))*V_CC;", + "V_E=V_B-V_BE; #emiiter voltage", + "I_E=V_E/R_E; #emitter current", + "r_e=25.0*10**-3/I_E; #r_e value", + "R_in=r_e; #input resistance", + "R_c=R_C*R_L/(R_C+R_L); #ac collector resistance", + "A_v=R_c/r_e; #current gain", + "#current gain is almost 1", + "#power gain is approximately equal to voltage gain", + "A_p=A_v; #power gain", + "A_i=1; #current gain", + "", + "#result", + "print \"input resistance = %.2f ohms\" %R_in", + "print \"voltage gain = %.2f\" %A_v", + "print \"current gain = %.2f\" %A_i", + "print \"power gain = %.2f\" %A_p" + ], + "language": "python", + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "input resistance = 23.48 ohms", + "voltage gain = 76.80", + "current gain = 1.00", + "power gain = 76.80" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "markdown", + "source": [ + "<h3>Example 6.12, Page Number: 197<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "''' total voltage gain in decibel'''", + "", + "import math", + "# variable declaration", + "A_v1=10.0;", + "A_v2=15.0;", + "A_v3=20.0;", + "", + "#calcultion", + "A_v=A_v1*A_v2*A_v3; #overall voltage gain", + "A_v1_dB=20.0*math.log10(A_v1); #gain in decibel", + "A_v2_dB=20.0*math.log10(A_v2); #gain in decibel", + "A_v3_dB=20.0*math.log10(A_v3); #gain in decibel", + "A_v_dB=A_v1_dB+A_v2_dB+A_v3_dB; #total gain in decibel", + "", + "#result", + "print \"overall voltage gain = %.1f\" %A_v", + "print \"Av1 = %.1f dB\" %A_v1_dB", + "print \"Av2 = %.1f dB\" %A_v2_dB", + "print \"Av3 = %.1f dB\" %A_v3_dB", + "print \"total voltage gain =%.1f dB\" %A_v_dB" + ], + "language": "python", + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "overall voltage gain = 3000.0", + "Av1 = 20.0 dB", + "Av2 = 23.5 dB", + "Av3 = 26.0 dB", + "total voltage gain =69.5 dB" + ] + } + ], + "prompt_number": 13 + } + ] + } + ] +}
\ No newline at end of file diff --git a/tbc/static/uploads/Jayaram/Engineering Thermodynamics/Chapter7.ipynb b/tbc/static/uploads/Jayaram/Engineering Thermodynamics/Chapter7.ipynb new file mode 100644 index 0000000..204325b --- /dev/null +++ b/tbc/static/uploads/Jayaram/Engineering Thermodynamics/Chapter7.ipynb @@ -0,0 +1,727 @@ +{ + "metadata": { + "name": "Chapter_7" + }, + "nbformat": 2, + "worksheets": [ + { + "cells": [ + { + "cell_type": "markdown", + "source": [ + "<h1>Chapter 7: Field-effect Transistors (FETs)<h1>" + ] + }, + { + "cell_type": "markdown", + "source": [ + "<h3>Example 7.1, Page Number: 217<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%pylab inline" + ], + "language": "python", + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "", + "Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].", + "For more information, type 'help(pylab)'." + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "''' Constant current area of operation of JFET'''", + "", + "# variable declaration", + "V_GS_off=-4; # voltage in volt", + "I_DSS=12*10**-3; # current in ampere", + "R_D=560; # resistance in ohm", + "", + "#calculation", + "V_P=-1*V_GS_off; # volt ", + "V_DS=V_P; # Vds in volt", + "I_D=I_DSS; # current accross resistor", + "V_R_D=I_D*R_D; #voltage across resistor", + "V_DD=V_DS+V_R_D; # Vdd in volt", + "", + "# result", + "print \"The value of V_DD required to put the device in the constant\"", + "print \" current area of operation of JFET = %.2f volt\" %V_DD" + ], + "language": "python", + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of V_DD required to put the device in the constant", + " current area of operation of JFET = 10.72 volt" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "markdown", + "source": [ + "<h3>Example 7.2, Page Number: 218<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "'''Drain current'''", + "", + "print('The p-channel JFET requires a positive gate to source voltage.')", + "print('The more positive the voltage, the lesser the drain current.')", + "print('Any further increase in V_GS keeps the JFET cut off, so I_D remains 0')" + ], + "language": "python", + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The p-channel JFET requires a positive gate to source voltage.", + "The more positive the voltage, the lesser the drain current.", + "Any further increase in V_GS keeps the JFET cut off, so I_D remains 0" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "markdown", + "source": [ + "<h3>Example 7.3, Page number: 219<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "'''JFET current voltage'''", + "", + "I_DSS=9.0*10**-3;", + "V_GS_off=-8.0;", + "V_GS=0.0;", + "I_D=9.0*10**-3", + "I_D=I_DSS*(1-(V_GS/V_GS_off))**2;", + "print('Value of I_D for V_GS=0V is %f A '%I_D)", + "V_GS=-1.0", + "I_D=I_DSS*(1-(V_GS/V_GS_off))**2;", + "print('Value of I_D for V_GS=-1V is %f A'%I_D)", + "V_GS= -4.0", + "I_D=I_DSS*(1-(V_GS/V_GS_off))**2;", + "print('Value of I_D for V_GS=-4V is %f A'%I_D)" + ], + "language": "python", + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Value of I_D for V_GS=0V is 0.009000 A ", + "Value of I_D for V_GS=-1V is 0.006891 A", + "Value of I_D for V_GS=-4V is 0.002250 A" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "markdown", + "source": [ + "<h3>Example 7.4, Page Number: 220<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "'''JFET transconductance'''", + "", + "#Variable Declaration", + "I_DSS=3.0*10**-3;", + "V_GS_off=-6.0;", + "y_fs_max=5000.0*10**-6;", + "V_GS=-4.0;", + "g_m0=y_fs_max;", + "", + "#Calculation", + "g_m=g_m0*(1-(V_GS/V_GS_off));", + "I_D=I_DSS*(1-(V_GS/V_GS_off))", + "", + "#Result", + "print('forward transconductance = %f Siemens'%g_m)", + "print('value of I D = %f A'%I_D)" + ], + "language": "python", + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "forward transconductance = 0.001667 Siemens", + "value of I D = 0.001000 A" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "markdown", + "source": [ + "<h3>Example 7.5, Page Number: 221<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "''' To find input resistance'''", + "", + "# variable declaration", + "V_GS=-20.0; # voltage in volt", + "I_GSS=-2*10**-9; # current in ampere", + "", + "#calculation", + "R_IN1=abs((-20/(2*10**-9))) # resistance in ohm", + "R_IN=R_IN1/(10**9)", + "", + "# result", + "print \"Input resistance = %d Giga ohm\" %R_IN" + ], + "language": "python", + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Input resistance = 10 Giga ohm" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "markdown", + "source": [ + "<h3>Example 7.6, Page Number: 223<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "''' To find gate to source voltage'''", + "", + "# variable declaration", + "V_DD=15; # voltage in volt", + "V_G=0; # voltage in volt", + "I_D=5*10**-3; # current in ampere", + "R_D=1*10**3; # resistance in ohm", + "R_G=10*10**6; # resistance in ohm", + "R_S=220; # resistance in ohm", + "", + "# calculation", + "V_S=I_D*R_S; # source voltage in volt", + "V_D=V_DD-I_D*R_D; # drain voltage in volt", + "V_DS=V_D-V_S; # drain to source voltage in volt", + "V_GS=V_G-V_S; # gate to source voltage in volt", + "", + "# result", + "print \"Drain to source voltage = %.2f volts\" %V_DS", + "print \"Gate to source voltage = %.2f volts\" %V_GS" + ], + "language": "python", + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Drain to source voltage = 8.90 volts", + "Gate to source voltage = -1.10 volts" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "markdown", + "source": [ + "<h3>Example 7.7, Page Number: 224<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "''' To find Gate resistance'''", + "", + "# variable declaration", + "V_GS=-5.0; # voltage in volt", + "I_D=6.25*10**-3; # current in ampere", + "", + "#calculation", + "R_G=abs((V_GS/I_D)) # resistance in ohm", + "", + "# result", + "print \"Gate resistance = %d ohm\" %R_G" + ], + "language": "python", + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Gate resistance = 800 ohm" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "markdown", + "source": [ + "<h3>Example 7.8, Page Number: 224<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "'''Self bias Q point'''", + "", + "I_DSS=25.0*10**-3;", + "V_GS_off=15.0;", + "V_GS=5.0;", + "I_D=I_DSS*(1-(V_GS/V_GS_off))**2", + "R_S=abs((V_GS/I_D))", + "print('Drain current = %f Amperes'%I_D)", + "print('Source resistance = %.0f Ohms'%R_S)" + ], + "language": "python", + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Drain current = 0.011111 Amperes", + "Source resistance = 450 Ohms" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "markdown", + "source": [ + "<h3>Example 7.9, Page Number: 225<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "''' To find Drain resistance'''", + "", + "# variable declaration", + "V_D=6; # drain voltage in volt", + "V_GS_off=-3; # off voltage in volt", + "V_DD=12; # voltage in volt", + "I_DSS=12*10**-3; # current in ampere", + "", + "#calculation", + "I_D=I_DSS/2; #MIDPOINT BIAS", + "V_GS=V_GS_off/3.4; #MIDPOINT BIAS", + "R_S=abs((V_GS/I_D)) #resistance i voltage", + "R_D=(V_DD-V_D)/I_D #resistance in voltage ", + "", + "# result", + "print \"Source resistance = %.2f ohm\" %R_S", + "print \"Drain resistance = %d ohm\" %R_D" + ], + "language": "python", + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Source resistance = 147.06 ohm", + "Drain resistance = 1000 ohm" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "markdown", + "source": [ + "<h3>Example 7.10, Page Number: 227<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "''' To find transfer characteristic'''", + "", + "import pylab", + "import numpy", + "", + "# variable declaration", + "R_S=680.0; # resistance in ohm", + "I_D=0; # current in ampere", + "", + "#calculation", + "V_GS=I_D*R_S; #FOR I_D=0A", + "", + "I_DSS=4*10**-3; # current in ampere", + "I_D=I_DSS; # currents are equal", + "V_GS1=-1*I_D*R_S; #FOR I_D=4mA", + "", + "# result", + "print \"V_GS at I_D=0amp is %d volt\" %V_GS", + "print \"V_GS at I_D=4mA is %.2f volt\" %V_GS1", + "print \"Plotting load line using the values of V_GS at I_D=0 and 4mA,\"", + "print \" we find the intersection of load line with transfer characteristic\"", + "print \" to get Q-point values of V_GS=-1.5V and I_D=2.25mA\"", + "", + "#########PLOT######################", + "idss=4", + "vgsoff=-6", + "vgs=arange(-6.0,0.0,0.0005)", + "idk=arange(0.0,4.0,0.0005)", + "ids=arange(0.0,2.25,0.0005)", + "vgsk=-idk*0.68", + "i_d=idss*(1-(vgs/vgsoff))**2", + "", + "plot(vgs,i_d)", + "plot(vgsk,idk)", + "#ax1.plot(ids)", + "plot(-1.5,2.25,'*')", + "ylim( (0,5) )", + "title('Transfer characteristic curve')", + "xlabel('* shows the Q point ie (Id=2.25mA,vgs=-1.5V) Vgs')", + "ylabel('Idss')" + ], + "language": "python", + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "V_GS at I_D=0amp is 0 volt", + "V_GS at I_D=4mA is -2.72 volt", + "Plotting load line using the values of V_GS at I_D=0 and 4mA,", + " we find the intersection of load line with transfer characteristic", + " to get Q-point values of V_GS=-1.5V and I_D=2.25mA" + ] + }, + { + "output_type": "pyout", + "prompt_number": 11, + "text": [ + "<matplotlib.text.Text at 0xa3b07ec>" + ] + }, + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEXCAYAAABSwdSZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVOX3B/APIIgFIqKissiaoqwqGq6DiLgLiguaiqKW\nWan5zaVMMXPJJcsylzLUDBG3UFQ0F9yXcMmFAkJxAxFwQQQCZs7vj/vjBgoKOMOdGc779eIlzNzl\nzB05PPPc53mODhERGGOMaQVdqQNgjDGmPJzUGWNMi3BSZ4wxLcJJnTHGtAgndcYY0yKc1BljTItw\nUmevJT09HV26dEHdunXxySefqPRcMpkM69evV+k5qsuiRYswfvz4Ku1rbGyMlJQU5QbEtEYtqQNg\nVWdkZAQdHR0AwLNnz2BoaAg9PT0AwLp16xAUFKTyGNatW4dGjRohOztb5efS0dERX6+UgoODYWVl\nhfnz51f5GLNmzarQdjKZDCNHjkRISIj42NOnT6t8Xqb9OKlrsJycHPF7W1tbrF+/Ht26dXthu6Ki\nItSqpZq3+tatW3BycqrSvqqM61UUCgV0daX5oCqXy8U/vq+iDn/ESpLyPWMVw90vWig2NhaWlpZY\nsmQJmjRpgpCQEDx+/Bh9+/ZFo0aNUL9+ffTr1w/37t0T95HJZJgzZw46deqEunXrws/PD1lZWQCA\n/Px8vPPOO2jQoAFMTU3Rrl07PHjwAMHBwdi0aROWLFkCY2NjHDlyBESExYsXw8HBAQ0aNMDQoUPx\n6NEjAEBKSgp0dXXx888/o1mzZujevXuZ8UdFRcHd3R0mJiZwcHDAwYMHxedSUlLKjBEABg8ejCZN\nmqBevXro2rUr4uPjxeeCg4MxceJE9O7dG0ZGRoiNjcXevXvh4eEBExMTWFtbY968eaXiOHnyJDp0\n6ABTU1NYW1tj48aN+PHHHxEeHi6+5gEDBgAAUlNTMWjQIDRq1Ah2dnb47rvvxOOEhoYiMDAQI0eO\nhImJCTZs2IDQ0FCMHDnypdf3s88+w4kTJ/DBBx/A2NgYH330EQBAV1cXN27cAADk5eVh2rRpsLGx\nQb169dC5c2fk5+dX6rra2Njg8OHDpeItju3598zHxwe9e/fGqlWrSh3bzc0Nv/32GwDg77//hq+v\nL8zMzNCiRQts27atzHiYihDTCjY2NnT48GEiIjp69CjVqlWLZs6cSQUFBZSXl0dZWVm0c+dOysvL\no6dPn9LgwYPJ399f3L9r167k4OBASUlJlJeXRzKZjGbOnElERGvWrKF+/fpRXl4eKRQKunjxImVn\nZxMRUXBwMH3++eficb755hvy8vKie/fuUUFBAb377rsUFBREREQ3b94kHR0dGj16NOXm5lJ+fv4L\nr+PcuXNkYmJChw4dIiKie/fu0d9//y3GaG9vX2aMRERhYWGUk5NDBQUFNGXKFHJ3dxefGz16NJmY\nmNDp06eJiCg/P59iY2Pp2rVrRER05coVMjc3p99++42IiFJSUsjY2JgiIiKoqKiIsrKy6PLly2W+\nZrlcTq1bt6b58+dTYWEh3bhxg+zs7OjAgQNERDR37lzS19enqKgoIiLKy8uj0NBQGjly5Cuvr0wm\no/Xr15e6Rjo6OpScnExERO+//z55e3tTamoqyeVyOnPmDP3777+Vuq4l/+8QEYWGhtI777xT5nuW\nl5dHmzZtoo4dO4rbX79+nerVq0cFBQWUk5NDlpaWtGHDBpLL5XTp0iVq0KABxcfHvxATUw1uqWsp\nXV1dzJs3D/r6+jA0NET9+vUREBAAQ0NDGBkZ4dNPP8WxY8fE7XV0dDBmzBg4ODjA0NAQQ4YMweXL\nlwEABgYGyMrKQlJSEnR0dODh4QFjY2NxXyqxfNDatWvx5ZdfomnTptDX18fcuXOxfft2KBQKcZvQ\n0FDUqVMHtWvXfiHu9evXIyQkBD4+PgCApk2bonnz5mKMY8eOLTNGQGiNv/nmm+J5//zzz1L9z/7+\n/vDy8gIA1K5dG127dkWrVq0AAC4uLhg2bJh4TcLDw+Hr64uhQ4dCT08P9evXh5ubW5mv+Y8//kBm\nZiZmz56NWrVqwdbWFuPGjUNERIS4TYcOHdC/f38AgKGhIYhIPEZlrm9JCoUCYWFh+Pbbb9GkSRPo\n6uri7bffhoGBQaWu6/PKOl/xe2ZoaAh/f39cvnwZd+7cAQD8+uuvGDRoEPT19REdHQ1bW1uMHj0a\nurq6cHd3x8CBA7m1Xo04qWuphg0blvrlzs3NxbvvvgsbGxuYmJiga9euePLkSalf4MaNG4vf16lT\nR+yzHzlyJPz8/DBs2DBYWFhgxowZKCoqKvO8KSkpCAgIgKmpKUxNTdGyZUvUqlUL6enp4jZWVlbl\nxn337l3Y29uX+3x5McrlcsycORMODg4wMTGBra0tACAzMxOA8Afh+fOeO3cO3t7eaNSoEerVq4e1\na9eK3Tl37tyBnZ1duXGUdOvWLaSmpoqv2dTUFIsWLcKDBw/EbSwtLcvd/1XXt7x+9czMTOTn57/0\nehV71XV9lZLXztjYGH369MGWLVsAABERERgxYgQA4VqcO3eu1LUIDw8v9f4z1eKkrqWeTwTLly9H\nYmIizp8/jydPnuDYsWOlWosvU6tWLcyZMwfXr1/H6dOnER0djU2bNpW5rbW1NWJiYvDo0SPxKzc3\nF02aNCk3tpKsrKzwzz//VPBV/ic8PBy7d+/G4cOH8eTJE9y8eRNA+a1cABg+fDj8/f1x9+5dPH78\nGO+99564vbW1NZKTk8vc7/n4ra2tYWtrW+o1Z2dnIzo6Wtz++X1K/vyy6/uya9WgQQMYGhpW6Hq9\n7Lq++eabePbsmfjz/fv3X9jm+TiCgoKwZcsWnDlzBvn5+fD29gYgXIuuXbuWuhZPnz59oQ+eqQ4n\n9RoiJycHderUgYmJCR4+fPjCTUGg/AR49OhRXL16FXK5HMbGxtDX1xdHbzy/z3vvvYdPP/0Ut2/f\nBgBkZGRg9+7dFY4zJCQEYWFhOHLkCBQKBe7du4eEhIRXxpiTk4PatWujfv36ePbsGT799NNXvrac\nnByYmprCwMAA58+fR3h4uPjc8OHDcejQIWzbtg1FRUXIysrCn3/+CQAwNzcXb1QCQLt27WBsbIwl\nS5YgLy8Pcrkc165dQ1xcXLnnLvlYbGxsudfX3Ny83D8uurq6GDt2LD7++GOkpaVBLpfjzJkzKCgo\neGHbl11Xd3d3REREoKioCHFxcdixY8crR9307t0bt27dwty5czFs2DDx8b59+yIxMRGbN29GYWEh\nCgsL8ccff+Dvv/9+6fGY8nBS11LP/1JOmTIFeXl5aNCgATp06IBevXq9tPVYsnWZnp6OwYMHw8TE\nBC1bthTHTj+/HQBMnjwZ/fv3R48ePVC3bl14eXnh/Pnz5cb1PE9PT4SFhWHq1KmoV68eZDKZ+Afi\nZTGOGjUKzZo1g4WFBZydneHl5VXutsV++OEHzJkzB3Xr1sX8+fMxdOhQ8Tlra2vs27cPy5cvh5mZ\nGTw8PHDlyhUAQoKMj4+HqakpBg4cCF1dXURHR+Py5cuws7NDw4YNMWHCBHHsfnkt9eLH7t+/X+71\nnTx5MrZv34769etjypQpL1yvZcuWwcXFBZ6enjAzM8OsWbNK3b+oyHWdP38+kpOTYWpqitDQULEr\npaxrXszAwAADBw7E4cOHMXz4cPFxIyMjHDx4EBEREbCwsECTJk0wa9asMv/QMNXQoYp8/maMMaYR\nVDKLwMbGBnXr1oWenh709fVLtdQYY4ypjkqSuo6ODmJjY1G/fn1VHJ4xxlg5VNanzr06jDFW/VTS\np25nZwcTExPo6enh3XffLbUanbqtZcEYY5qiQulaFdNUU1NTiYjowYMH5ObmRsePHxefU9Ep1cbc\nuXOlDkGl+PVpNm1+fdr82ogqnjtV0v1SPNGkYcOGCAgI4BuljDFWTZSe1HNzc8X1Np49e4aDBw/C\nxcVF2adhjDFWBqWPfklPT0dAQAAAYe3lESNGoEePHso+jdqSyWRSh6BS/Po0mza/Pm1+bZVR7ZOP\ndHR0eGQMY4xVUkVzJy8TwBhjWoSTOmOMaRFO6owxpkU4qTPGmBbhpM4YY1qEkzpjjGkRTuqMMaZF\nOKkzxpgW4aTOGGNahJM6Y4xpEU7qjDGmRTipM8aYFuGkzhhjWoSTOmOMaRFO6owxpkU4qTPGmBbh\npM4YY1qEkzpjjGkRTuqMMaZFOKkzxpgW4aTOGGNahJM6Y4xpEU7qjDGmRTipM8aYFuGkzhhjWoST\nOmOMaRFO6owxpkU4qTPGmBbhpM4YY1qEkzpjjGkRTuqMMaZFOKkzxpgW4aTOGGNahJM6Y4xpEU7q\njDGmRVSW1OVyOTw8PNCvXz9VnYIxxthzVJbUv/32W7Rs2RI6OjqqOgVjjLHnqCSp3717F/v27cO4\nceNARKo4BWOMsTLUUsVBp06diqVLlyI7O7vM50NDQ8XvZTIZZDKZKsJgrNpdSL2ANk3bSB0G0wKx\nsbGIjY2t9H46pOSmdHR0NPbv349Vq1YhNjYWy5cvx549e/47oY4Ot96ZVvq36F+4rnHFNK9pmNBm\ngtThMC2iUAB6ehXLnUpvqZ8+fRq7d+/Gvn37kJ+fj+zsbIwaNQqbNm1S9qkYUyu1a9VGdFA0Ood1\nhp2pHbrbdZc6JKYFiIAPP6z49kpvqZd07NgxLFu2jFvqrEY5fus4AiMDcSz4GJwaOkkdDtNwn34K\nHDwIXLhQsdyp8nHqPPqF1TRdmnXBUt+l6LulLzKeZUgdDtNgixcDUVFATEzF91FpS73ME3JLndUQ\nnx35DLEpsTg86jAMaxlKHQ7TMKtWAStWAMePA02bVjx3clJnTEUUpMCw7cNQS7cWfh34K39qZRW2\nfj3wxRfAsWOAjY3wWEVzJy8TwJiK6OroYqP/Rtx4dANfHPtC6nCYhvj1V2DuXODQof8SemVwUmdM\nhero10HUsCiEXQ5D+NVwqcNham7HDuB//xNujDo6Vu0YnNQZUzFzI3PsCdqDKTFTcOr2KanDYWoq\nOhp4/31g/36gZcuqH4eTOmPVwMXcBZsCNiFwWyBuPLohdThMzfz+OzB2LLBnD+Du/nrH4qTOWDXp\n6dATszvPRp/wPnic/1jqcJiaOH4cGD4c2LkTaNfu9Y/Ho18Yq2aTYyYjPiMe+4bvg76evtThMAmd\nPQv07w9s2QL4+Lx8Wx79wpia+rrH1zDQM8AH+z/gBk4NdvEiMGAAsHHjqxN6ZXBSZ6ya6enqIWJQ\nBM7cOYMVZ1dIHQ6TwLVrQO/ewJo1QK9eyj02J3XGJGBc2xjRw6Ox/MxyRP0dJXU4rBolJAB+fsJs\n0YAA5R+fkzpjErE2scZvQ3/DuD3jcDHtotThsGqQkCB0tSxYAAQFqeYcnNQZk5CnhSfW9FmDARED\ncC/7ntThMBVKTBQS+vz5QHCw6s7DSZ0xiQ1qOQiTPCeh35Z+yCnIkTocpgJJSUJC/+ILYMwY1Z6L\nhzQypgaICCG7Q5CVl4WdQ3ZCT1dP6pCYkvzzD+DtLaznMm5c1Y/DQxoZ0yA6OjpY03cNsv/NxoxD\nM6QOhylJcjLQrRswZ87rJfTK4KTOmJow0DPAjiE7sDthN9ZdWCd1OOw13bghJPTZs4Hx46vvvEqv\nUcoYq7r6depj7/C9XOdUw924IXS5zJoFTKjmGuTcUmdMzTiaOSJycCSG7xiOvzL+kjocVkk3bwot\n9Jkzgffeq/7zc1JnTA1xnVPNlJIiJPRPPgEmTpQmBk7qjKmp0e6jMcx5GPy3+iO/KF/qcNgrpKQI\nXS7TpgGTJkkXBw9pZEyNcZ1TzZCcLIxDnzYN+PBD1ZyDhzQypgW4zqn6S0gAZDLhpqiqEnplcFJn\nTM1xnVP1FR8v9KF/8QXw7rtSRyPgpM6YBuA6p+rnyhWhy+Wrr1Q/9b8yOKkzpiG4zqn6uHgR6NED\n+PZb4J13pI6mNE7qjGmQ4jqnfcP7cp1TiZw7B/TsCaxeDQwZInU0L+LRL4xpIK5zKo1Tp4TCFj//\nDPTtW73n5tEvjGkxrnNa/WJjhYS+eXP1J/TK4KTOmAbiOqfV69AhYPBgICJC6EtXZ5zUGdNQXOe0\nekRHC6Xndu4Uhi+qO07qjGkwrnOqWhERQEgIsHcv0Lmz1NFUDCd1xjQc1zlVjXXrhGn/hw4B7dpJ\nHU3FcVJnTAtwnVPlWr4cWLhQuDnq4iJ1NJXDQxoZ0xJc5/T1EQGhoUK3y6FDgJWV1BH9h4c0MlbD\ncJ3T16NQAFOnAlFRwIkT6pXQK4OTOmNapLjO6Z7EPVzntBLkcqGO6PnzwNGjQKNGUkdUdUqvUZqf\nn4+uXbvi33//RUFBAQYMGIBFixYp+zSMsXLUr1Mf0UHRXOe0ggoKhPVbHj4EDh4EjIykjuj1qKRP\nPTc3F2+88QaKiorQqVMnLFu2DJ06dRJOyH3qjFWL47eOIzAyEMeCj8GpoZPU4ail3FwgMBAwMBD6\n0Q0NpY6ofJL2qb/xxhsAgIKCAsjlctSvX18Vp2GMvQTXOX25J0+AXr2A+vWBbdvUO6FXhtK7XwBA\noVCgdevWSE5OxsSJE9GyZctSz4eGhorfy2QyyGQyVYTBWI032n00kh4mwX+rPw6POgzDWlqSuV5T\nWpqQ0Dt3FpbP1VXDu4uxsbGIjY2t9H4qHdL45MkT+Pn5YfHixWLi5u4XxqpXcZ1TfT19bA7YXOPr\nnCYnC+u3jBkDfPYZoCmXQy2GNJqYmKBPnz6Ii4tT5WkYYy9RXOc0+WFyja9zeumS0DqfPh2YPVtz\nEnplKD2pZ2Zm4vFjYfH+vLw8/P777/Dw8FD2aRhjlcB1ToWhin5+wPffq089UVVQep96WloaRo8e\nDYVCAYVCgZEjR8LHx0fZp2GMVVJxnVOfTT5oZtIMHa07Sh1StdmxA5g4Edi6FfD2ljoa1eJlAhir\nYWL+icGYqDE4NfYU7EztpA5H5dauBebNE1Za1OROg4rmTk7qjNVAq86vwqo/VuF0yGnUM6wndTgq\nQQR8+SWwYQNw4ADg4CB1RK+Hkzpj7KW0uc6pQgF89BFw8iSwfz/QpInUEb0+TuqMsZeSK+ToH9Ef\nlnUtsabPGq0Z6pifD4weDdy/D+zeDZiYSB2RcqjFkEbGmPrSxjqnDx8KY9CJhC4XbUnolcFJnbEa\nTJvqnN66BXTqBHh6qv86LqrESZ2xGk4b6pxeugR07AhMmCBULVLHaf/VpQa/dMZYMU2uc3rggNDl\n8u23wJQpUkcjPU7qjDEAmlnnNCxMuCn622/AoEFSR6MeKjX65eHDh7h79y5cXV2rfkIe/cKY2tKU\nOqdEwPz5whj0ffuAFi2kjkj1lDb6pWvXrsjOzsbDhw/Rpk0bjBs3DlOnTlVKkIwx9aIJdU4LC4XS\nc7t3A6dP14yEXhmvTOpPnjxB3bp1sXPnTowaNQrnz5/HoUOHqiM2xpgE1LnO6dOnwIABQGoqEBsL\nNG4sdUTq55VJXS6XIy0tDZGRkejTpw8AaM0kBcZY2YrrnM45OgeHbqhHI+7OHWHIoqWl0ErX9Fqi\nqvLKpD5nzhz4+fnB3t4e7dq1Q3JyMhwdHasjNsaYhBzNHBE5OBLDdwzHXxl/SRpLXBzg5QWMGiUs\n0FVLJTXbtAMvE8AYe6mNlzfii+Nf4GzIWTR8s2G1n3/nTmH98x9/BPz9q/30akNpN0qnT5+O7Oxs\nFBYWwsfHBw0aNMAvv/yilCAZY+pvtPtoBDkHwX+rP/KL8qvtvETAkiXA5MnCWPSanNAr45VJ/cCB\nA6hbty6io6NhY2OD5ORkLF26tDpiY4ypiS+8v4CFsQVCdodUyyftggJhhMuWLcCZM0Dr1io/pdZ4\nZVIvKioCAERHRyMwMBAmJiZ8o5SxGqY665w+egT07Ak8eACcOCHcGGUV98qk3q9fP7Ro0QIXLlyA\nj48PHjx4AMOaulIOYzVYddQ5TU4Wboi6uwO7dvEIl6qo0I3SrKws1KtXD3p6enj27BmePn2KxlUc\nIMo3ShnTbFfTr8Jnkw92Dd2l1DqnJ08CgwcDc+cC772ntMNqjdcukrFjx46XdrMMHDhQpYExxtSX\nsuucrl8PfPop8MsvwuJc7EWvndSDg4Oho6ODBw8e4PTp0+jWrRsA4OjRo+jQoQOio6NVGhhjTL0p\no85pUREwbRoQEyNMKGreXMlBahGllbPz9fXFpk2b0OT/i/ylpaVh9OjROHjwoEoDY4ypv9epc/rw\nITB0KKCnJ4xyMTVVUZBaQmnj1O/cuVOq/9zc3By3b99+vegYY1rh6x5fw0DPAB/s/6BSjbX4eKB9\ne8DVFYiO5oSuTK9M6t27d4efnx82bNiAsLAw9O7dG76+vtURG2NMzVWlzml0NCCTAZ99JlQp4in/\nyvXK7hciwq5du3D8+HHo6OigS5cuCAgIqPoJufuFMa1z+8lteK33wg+9f8CAFgMACLlj6aef4pOF\nC///916YIbpyJbB9uzB0kVWc0vrUlY2TOmPa6Y97f6B3eG8ceOcAWjdpjZjt23Fg7Fj0DAtDl96D\nMG4ckJAgVCniCUWV99pJ3cjIqNwhjTo6OsjOzlZpYIwxzbMjfgc+Ch0H56uN0FZO+DIpCTNtHbEn\nTR8NnSdj/7EJeOMNqaPUTBXNneX2ZuXkaEaNQsaY+hjUchASP0zEr7+sg0dMEXQApN3KR6ehC7Fm\n8yDoclVkleNLzBhTqpmdZsLW1AZZD9LQR88JdQ0fY9AgHejq8ppR1YHvOzPGlCovTwfPDvhgl3cG\n/Mf4oZ9eB9xJSpI6rBqDW+qMMaW5cUMY1WLpOhuXNx/HiQfRuGWThXEzZ0odWo3BSZ0xphT79wsJ\nffx4YONGwNJM/eqc1gQ8pJEx9loUCmDhQmD1amDrVqE4dEnHbx1HYGQgjgUfg1NDJ2mC1AI8Tp0x\npnJPngCjRwMZGcC2bUDTpmVvJ3WdU22gtLVfGGOsLH/+CXh6Con86NHyEzogXZ3Tmohb6oyxSvv5\nZ2DGDOCbb4ARIyq2j4IUGLZ9GPT19LE5YDOXxawkyVrqd+7cgbe3N1q1agVnZ2esXLlS2adgjEkk\nNxcYM0ZYiOv48YondKB665zWZEpP6vr6+lixYgWuX7+Os2fPYtWqVfjrr7+UfRrGWDVLSBCWyy0q\nAs6fB5yqcM+zOuqc1nRKT+qNGzeGu7s7AGH9GCcnJ6Smpir7NIyxalQ8quWjj4BNm4A336z6scyN\nzLEnaA+mxEzBqdunlBckA6DiGaUpKSm4dOkS2rdvX+rx0NBQ8XuZTAaZTKbKMBhjVfTvv8DHHwMH\nDgAHDwIeHso5rou5CzYFbELgtkCl1TnVNrGxsYiNja30fiq7UZqTkwOZTIbZs2fD39//vxPyjVLG\nNMLNm8CQIYCVFRAWBpiYKP8cyqhzWlNIOqSxsLAQgwYNwjvvvFMqoTPGNMOOHUL/+fDhwveqSOgA\nMKndJPja+2LwtsEolBeq5iQ1jNJb6kSE0aNHw8zMDCtWvFjeilvqjKmvvDxg6lTg99+FYtDt2qn+\nnHKFHP0j+sOyriXW9FnDQx3LIVlL/dSpU9i8eTOOHj0KDw8PeHh4ICYmRtmnYYwp2fXrQhLPzgYu\nXaqehA5Urc4pKx9PPmKshiMCfvxRKAS9ZAkQHAxI0Vguq84p+89rVz5ijGm/x4+BCROEMegnTgAt\nWkgXi7WJNX4b+ht6h/eGlYkVWjdpLV0wGozXfmGshjpzRhiiaG4OnDsnbUIv5mnhiTV91mBAxADc\ny74ndTgaibtfGKth5HKhm+Wbb4B164ABatjTsfjkYkRej8TxMcdhZGAkdThqgZfeZYy94NYtYalc\nImDzZmEMujoiIoTsDkFWXhZ2DtkJPV09qUOSHC+9yxgTEQG//gq0bQv06gUcOaK+CR0QEtiavmuQ\n/W82ZhyaIXU4GoVvlDKm5R49AiZOBK5cUe5Uf1Uz0DPAjiE74LXeC2+ZvYUJbSZIHZJG4JY6Y1rs\nyBHAzQ1o1Ai4cEFzEnqx+nW4zmllcZ86Y1ooP18Ydx4RIRS08POTOqLXw3VOuU+dsRrr6lVhNmhK\nitDloukJHQC6NOuCpb5L0XdLX2Q8y5A6HLXGSZ0xLSGXA0uXAt26Ccvlbt8OmJlJHZXycJ3TiuHu\nF8a0QGKiML2/dm2hu8XWVuqIVKMm1znl7hfGagCFQphE1KGDsEzu4cPam9ABrnNaETykkTENlZws\nFIFWKICzZwEHB6kjqh7FdU7b/9QejmaOGO4yXOqQ1Aq31BnTMAoFsGqVUMQiIAA4dqzmJPRiXOe0\nfNynzpgGSUkBxo4Vills2AA0by51RNKK+ScGY6LG1Ig6p9ynzpgWUSiA1auFaf49ewInT3JCB4Ce\nDj0xu/Ns9A3vi8f5j6UORy1wS50xNZeQAIwfDxQWAuvXAy1bSh2R+pkcMxnxGfHYN3wf9PX0pQ5H\nJbilzpiGKywEFi4EOnYEBg8WWuec0Mv2dY+vYaBngA/2f1DjG42c1BlTQ3FxQlfLiRPCmi0ffgjo\n8eqz5eI6p//hpM6YGsnNBf73P6BPH+CTT4B9+4BmzaSOSjMY1zZG9PBoLD+zHFF/R0kdjmQ4qTOm\nJg4fBlxcgLQ04No14J13pCkArcmK65yO2zMOF9MuSh2OJPhGKWMSy8gApk8Xkvrq1UIrnb2eHfE7\nMOXAFJwNOQuLuhZSh6MUfKOUMTWnUAA//QQ4OwP16gHXr3NCV5ZBLQdhkuck9NvSDzkFOVKHU624\npc6YBK5cEaoRyeXAmjWAu7vUEWkfbatzyi11xtRQTo5wI7R7d6EA9OnTnNBVpabWOeWkzlg1IAJ2\n7RLGmWdkCDdCJ0wAdPk3UKWK65zuSdyDdRfWSR1OteBVGhlTsZs3hXHmN24AmzYBMpnUEdUsxXVO\nO4d1hp2pHbrbdZc6JJXidgJjKpKbC8ydC3h6CrNCL1/mhC4VRzNHRA6OxPAdw/FXxl9Sh6NSnNQZ\nUzIiYNs2wMlJqEh06RIwaxZgYCB1ZDVbTalzyqNfGFOiq1eBjz4CHj4EvvsO6NJF6ojY82YfmY2j\nKUdxeNSK3GboAAAb7ElEQVRhGNYylDqcCuPRL4xVo4cPhX7z7t2BIUOE9Vo4oaunL7y/gIWxBUJ2\nh2hlA5OTOmOvQS4H1q4VuloUCiA+Xhh/XouHIKgtba9zyv/1GKuiQ4eEMecmJsDBg4Cbm9QRsYrS\n5jqn3KfOWCVdvy6soJiYCCxZItQJ5YW3NNPV9Kvw2eSDXUN3oaN1R6nDeSnuU2dMydLTgffeA7y9\ngR49hK6WgQM5oWsyF3MXbArYhMBtgbjx6IbU4SiFSpL62LFjYW5uDhcXF1UcnrFqlZsLLFgAtGoF\nvPEG8PffwJQpPERRW2hbnVOVJPUxY8YgJiZGFYdmrNooFMAvvwAtWggTh86dA77+GqhfX+rImLJN\najcJvva+GLxtMArlhVKH81pUktQ7d+4MU1NTVRyaMZUjAvbvB9q0AVatArZsESYT2dtLHRlTJW2p\ncyrJ6JfQ0FDxe5lMBhnPnWZq4tQpYfZnZqbQ5eLvz33mNUVxndOOP3fEirMr8LHXx5LGExsbi9jY\n2Ervp7LRLykpKejXrx+uXr1a+oQ8+oWpoStXgM8+E/6dNw8YOZILPddUt5/chtd6L/zQ+wcMaDFA\n6nBEPPqFsQq4cUOoBdqjhzAbNDERCA7mhF6TaXqdU07qrEZKTQUmTRJWUHzrLSApCZg8GahdW+rI\nmDrwtPDEmj5rMCBiAO5l35M6nEpRSVIPCgpChw4dkJiYCCsrK4SFhaniNIxVWmqqkLydnQFDQyAh\nAZgzBzA2ljoypm40tc4pzyhlNUJaGvDVV0KRiuBgYPp0oHFjqaNi6k6d6pxynzpjEJL51KnCxCEd\nHWGK/9dfc0JnFaOJdU45qTOtVDKZEwnJfMUKoEkTqSNjmkbT6pxyUmda5dYtYV3zVq2EGaHXrgHf\nfMPJnL2e4jqnc47OwaEbh6QO56U4qTOtEB8PjB4NtG4trM9y/Trw7bdA06ZSR8a0habUOeWkzjTa\n+fPC0rfe3sLQxH/+EW6IcsucqYIm1DnlpM40DpFQoMLHBwgMFBL6zZvCjFBecoip2mj30QhyDoL/\nVn/kF+VLHc4LeEgj0xhFRcCOHcDy5cDTp8CMGcDw4bwELqt+ClJg2PZh0NfTx+aAzdCphgWCKpo7\nOakztffkCfDTT8DKlYCNjTCqpX9/QJc/ZzIJ5RXmwXujN3o59MJc2VyVn4/HqTONd/OmkMBtbYGL\nF4VW+rFjwsqJnNCZ1IrrnIZdDkP41XCpwxHxrwZTO2fOAIMHC+uyGBgAf/4J/Por0Lat1JExVpq5\nkTn2BO3BlJgpOHX7lNThAODuF6Ym8vOByEihKEVmplAubswYwMhI6sgYe7WYf2IwJmoMTo09BTtT\nO5Wcg/vUmUZISQHWrAF+/lkYYz5pEtC7Ny99yzTPqvOrsOqPVTgdchr1DOsp/fjcp87UlkIBHDgg\n3Oxs2xYoKBAqDsXEAP36cUJnmkld6pxyS51Vm4cPgY0bgR9+ELpVJk0ShiS+8YbUkTGmHHKFHP0j\n+sOqrhVW91mt1KGO3FJnakGhAI4cEZK3nR1w4YKQ2C9eBMaN44TOtEtxndPTd05jxdkVksTALXWm\nEvfuARs2AOvXCwUoxo8HRozgGZ+sZlBFndOK5s5aSjkbYwAKC4F9+4SJQqdOAUOGCCNa2rQR1jJn\nrKYornPaO7w3rEys0LpJ62o7N7fU2WshAi5fBn75BdiyBXBwELpVAgOBN9+UOjrGpLUjfgemHJiC\nsyFnYVHX4rWOxS11plJ37ggTgn75BcjLA955R5jt+dZbUkfGmPoY1HIQkh4mod+Wfjg+5jiMDFQ/\n8YJb6qzCsrOFqfq//CLM8gwMBEaOBDp25O4VxsqjrDqnPPmIKUVurtBPHhkJHDwoLHP7zjtAnz6A\noaHU0TGmGQrkBfDb7Ic2TdpgWY9lVToGJ3VWZbm5wP79wLZtwoSgdu2Em54BAYCZmdTRMaaZHuY9\nhNd6L0zzmoYJbSZUen9O6qxS8vKEBB4ZKSR0T09hUa2AAKBhQ6mjY0w7JGUloXNYZ2weuBnd7bpX\nal9O6uyVHj4E9u4FoqKESkJt2vzXIm/USOroGNNOx28dR2BkII4FH4NTQ6cK78dJnZXp5k0hiUdF\nCbM7u3UDBgwQ+sg5kTNWPTZe3ogvjn+BsyFn0fDNin0U5qTOAAByuZC89+wREnl6OtC3r5DIu3fn\nafqMSWX2kdk4mnIUh0cdhmGtV4864KReg92/L4xUiYkR/m3cWGiJDxgAtG/PqyAypg4qW+eUk3oN\nUlgInD4tLGcbEyN0sXTvDvTsCfj5AZaWUkfIGCtLZeqcclLXYnK5MDX/6FHh69QpwNFRSOI9ewqt\n8Vo8V5gxjZCek472P7XHQp+FGO4yvNztOKlrEYUCuHZNWML26FHg+HGgSRNhIpC3N9C1Kw87ZEyT\nXU2/Cp9NPtg1dBc6WncscxtO6hosP19Yb/z0aeHrxAmgXj0hgXfrBshkQj85Y0x7vKrOKSd1DXL/\n/n8J/PRpYV0VJyegQwfhq1Mn7hdnrCZ4WZ1TTupq6tEjYYhh8dcffwBPnvyXwDt0EGZz8rK1jNVM\nk2MmIz4jHvuG74O+nr74OCd1NZCZKdzQLJnEMzIAd3eh4HKbNsLXW28BulxYkDGG8uucclKvRjk5\nQHy8cDPz6lXh32vXhIWx3Nz+S95t2wqjVHicOGPsZZ7++xQdf+6IYPdgfOz1MQBO6kpHBKSmAomJ\nwldSkvDv9etAWhrQogXg7AzUqRMLf38ZnJ2FfnBtW2c8NjYWMplM6jBUhl+f5tK21/Z8ndOK5k6V\nfOiPiYlBixYt4OjoiK+++koVp1CJ3FwgIUGYhfnjj8BnnwkrFbq7A0ZGQmt77lzg/HlhCGFwsLDW\neHa2MFpl0yagSZNY9OoFWFlpX0IHhF8cbcavT3Np22srrnM6bs84XEy7WOH9lD5FRS6X44MPPsCh\nQ4dgYWEBT09P9O/fH05OFV+NTNmIhBUJ09OFkSbFX3fvArduAbdvC/9mZwvJuFkz4cvGBhg0SOjz\ndnAA6taV7CUwxmogTwtPrOmzBgMiBlR4H6Un9fPnz8PBwQE2NjYAgGHDhiEqKuq1k7pCIYzffvZM\naFE/fSqMJHnZV3EST08XRpM0bix8mZsLX5aWwNtv/5fEGzXiG5aMMfUyqOUg/PPwH8zEzAptr/Q+\n9e3bt+PAgQP48ccfAQCbN2/GuXPn8N133wkn1MY+CcYYqwYVSddKb6m/Kmlr4k1SxhjTFErvbLCw\nsMCdO3fEn+/cuQNLng7JGGPVQulJvW3btkhKSkJKSgoKCgqwdetW9O/fX9mnYYwxVgald7/UqlUL\n33//Pfz8/CCXyxESEiLpyBfGGKtJVDLWo1evXkhISMA///yDWbNmlbnNd999BycnJzg7O2PGjBmq\nCEMyoaGhsLS0hIeHBzw8PBATEyN1SCqxfPly6Orq4uHDh1KHolSff/453Nzc4O7uDh8fn1Ldidrg\nk08+gZOTE9zc3DBw4EA8efJE6pCUatu2bWjVqhX09PRw8WLFx3ers0rN/SEJHDlyhLp3704FBQVE\nRPTgwQMpwlCZ0NBQWr58udRhqNTt27fJz8+PbGxsKCsrS+pwlCo7O1v8fuXKlRQSEiJhNMp38OBB\nksvlREQ0Y8YMmjFjhsQRKddff/1FCQkJJJPJ6MKFC1KH89qKiorI3t6ebt68SQUFBeTm5kbx8fHl\nbi/JqOzVq1dj1qxZ0NcXViBrqIUVHkjLR/l8/PHHWLJkidRhqISxsbH4fU5ODho0aCBhNMrn6+sL\n3f+fkNG+fXvcvXtX4oiUq0WLFnjrrbekDkNpSs790dfXF+f+lEeSpJ6UlITjx4/j7bffhkwmQ1xc\nnBRhqNR3330HNzc3hISE4PHjx1KHo1RRUVGwtLSEq6ur1KGozGeffQZra2ts3LgRM2dWbNKHJvr5\n55/Ru3dvqcNgL3Hv3j1YWVmJP1taWuLevXvlbq+ySpa+vr64f//+C48vWLAARUVFePToEc6ePYs/\n/vgDQ4YMwY0bN1QVikq87PVNnDgRc+bMASD0z06bNg3r16+v7hBfy8te36JFi3Dw4EHxMU38VFLe\n61u4cCH69euHBQsWYMGCBVi8eDGmTp2KsLAwCaKsule9PkB4Lw0MDDB8ePl1MdVVRV6ftqj0hM1q\n6xgqoWfPnhQbGyv+bG9vT5mZmVKEonI3b94kZ2dnqcNQmqtXr1KjRo3IxsaGbGxsqFatWtSsWTNK\nT0+XOjSVuHXrFrVq1UrqMJQuLCyMOnToQHl5eVKHojLa0qd+5swZ8vPzE39euHAhLV68uNztJel+\n8ff3x5EjRwAAiYmJKCgogJmZmRShqERaWpr4/a5du+Di4iJhNMrl7OyM9PR03Lx5Ezdv3oSlpSUu\nXryIRo0aSR2a0iQlJYnfR0VFwcPDQ8JolC8mJgZLly5FVFQUDA0NpQ5HpUgDP0U+r7Jzf6p9PXUA\nKCwsxNixY3H58mUYGBhg+fLlWrUO8qhRo3D58mXo6OjA1tYWa9euhbm5udRhqYSdnR3i4uJQv359\nqUNRmsDAQCQkJEBPTw/29vZYvXq1Vv3RcnR0REFBgfieeXl54YcffpA4KuXZtWsXPvroI2RmZsLE\nxAQeHh7Yv3+/1GG9lv3792PKlCni3J/yhooDEiV1xhhjqsELzTLGmBbhpM4YY1qEkzpjjGkRTuqM\nMaZFOKmXMG/evEptL5PJcOHCBRVFU7ZvvvkGeXl54s9GRkavdbyTJ0+iffv2cHJygpOTk1ix6nWl\npqZi8ODBr9xu4cKF5T7Xp08fZGdnV+q8Q4cOFSey2djYlLnYWGhoKJYvX16h4/3+++9o27YtXF1d\n0bZtWxw9erTM7cpbJCslJQV16tQRF3d7//33K/V6ik2ZMgWWlpZqN0Tv+++/h4ODwysXdtPT0xOv\ngb+/PwDh9+3TTz8ttd3ly5fRsmVLAICPjw+ePn1apbiOHTuGDh06lHqsqKgI5ubmZU5a0iqqHTav\nGTZv3kxLly6lmTNn0pIlS2jz5s0V2k8mk1FcXJyKoyvNxsam1EQtIyOjKh8rLS2NrK2t6dKlS0RE\nlJmZSW3atKG9e/e+dpwV9TrxPy8pKYn69Okj/lzeYmOhoaG0bNmyCh3z0qVLlJaWRkRE165dIwsL\nizK3K2+RLGVMPpPL5WRra0u+vr509OjR1zqWsl26dIlSUlJeubBbWe9zYmIi2dnZlXpsxowZNH/+\nfCIiWrduXZUXxpPL5WRlZUW3bt0SH9u/fz/5+PhU6XiahFvqAEaMGAELCwssXboUzZo1w4gRI0o9\nL5fLERwcDBcXF7i6uuLbb78Vn9u2bRvat2+P5s2b4+TJkwCA/Px8jBkzBq6urmjdujViY2MBAH37\n9sXVq1cBAB4eHpg/fz4AYM6cOfjpp5+QlpaGLl26wMPDAy4uLuLxiq1cuRKpqanw9vaGj4+P+Pjs\n2bPh7u4OLy8vPHjwAACQkZGBwMBAtGvXDu3atcPp06dfeN2rVq3CmDFj4O7uDgAwMzPDkiVLylza\nMzQ0FCNHjkSHDh3w1ltv4aeffgIgTO745JNPxGsTGRkJQGihFk+62rBhAwYOHIhevXrhrbfeEpda\nnjlzJvLy8uDh4YGRI0e+cM6SLe3Nmzejffv28PDwwHvvvQeFQvHC9hEREeVOyliwYAGaN2+Ozp07\nIyEhocxtyuLu7o7GjRsDAFq2bIm8vDwUFha+sF1VFskyMjLC9OnT4ezsDF9fX5w9exZdu3aFvb09\n9uzZI24XGxsLNzc3jB07Flu2bCnzWF5eXoiPjxd/lslkuHjxIjIyMuDr6wtnZ2eMHz9evKbPnj1D\nnz594O7uDhcXF/F9qyx3d3c0a9asSvs6OjrC1NQU58+fFx/btm0bgoKCAAD9+/dHRERElY6tq6uL\nIUOGlNo/IiJCPPYff/wBV1dXeHh4iP9/AeD69evi/zM3Nzf8888/VTq/pKT+q6IOwsPDS7XUw8PD\nSz0fFxdHvr6+4s9PnjwhIqGl/r///Y+IiPbt20fdu3cnIqJly5aJy7X+/fffZG1tTfn5+bR48WJa\ntWoVPXnyhDw9Palnz55EROTt7U2JiYm0fPlyWrBgARERKRQKevr06QuxPt8i0tHRoejoaCIimj59\nOn355ZdERBQUFEQnT54kImGqu5OT0wvHGjhwIO3evbvUY48fPyYzM7MXtp07dy65u7tTfn4+ZWZm\nkpWVFaWmptL27dvJ19eXFAoFpaenk7W1Nd2/f79UCzUsLIzs7OwoOzub8vPzqVmzZnT37l0ienlL\nvfi1xsfHU79+/aioqIiIiCZOnEibNm16YfuePXuWmhZevH9cXBy5uLhQXl4eZWdnk4ODg9gCXLp0\nKbm7u7/wNXny5BeOv23btlL/D8rTt29f+vXXX4lIaKm/+eab5O7uTl27dqUTJ06I2+no6FBMTAwR\nEQUEBJCvry8VFRXRn3/+Se7u7uJ248aNoy1btlBOTg5ZWlqK16GkFStW0Ny5c4mIKDU1lZo3b05E\nRJMmTRKnlMfExJCOjg5lZWXR9u3bafz48eL+xf+np06dWub1+Oqrr176ml/VUq9Vqxa1bt2a3n77\nbfrtt9/Ex5ctW0ZTp04lImE6fNu2bUvtZ2trSzk5OS89d3ni4uLIw8ODiIjy8/OpUaNG9OjRIyIi\natWqFZ09e5aIiGbOnEkuLi5ERPTBBx+I711hYaFGLqPASb2E0NDQMh9/9OgR2dvb04cffkgxMTGk\nUCiISEjqp0+fJiKi+/fvk4ODAxEJv6AlPyZ37tyZrly5QqdOnaKhQ4fSvn37KDQ0lDp16kS5ublk\nY2NDRETHjx8nBwcHCg0NpcuXL5cZy/O/PLVr1xa/37p1K40bN46IiBo2bFjql9LS0pKePXtW6lgD\nBw6kqKioUo89fvyY6tatW+a1KU4aRESjRo2i3377jaZOnUphYWHi4yNHjqTdu3e/kNRLJpBevXrR\nqVOniOjVST0zM5O+++47atq0qfhamjdvTvPmzXtheycnJ0pNTX1h/5IJj4jo448/rnD3S7Fr166R\nvb093bhx46XbffnllzRw4EDx53///ZcePnxIREQXLlwgKysr8Y91yfduzpw5tHDhQiISug7q1asn\n7m9hYSEmtkGDBol/xEu6d++euEbNN998Q7NnzyYiInd3d0pJSRG3q1+/PmVlZVFiYiLZ2NjQjBkz\nSv2hqapXJfXi9+XGjRtkY2NDycnJRCSsy29lZUUKhYImT55MX3/9dan93n77bfrrr7+qHJejoyMl\nJCTQrl27qH///kQk/D43a9ZM3ObKlSvi/9Xw8HBq1aoVffXVV5SUlFTl80pJZas0aqK5c+eW+Xi9\nevVw5coVxMTEYM2aNYiMjBRXXaxduzYA4UZQUVGRuA89d0NLR0cHnp6eiIuLg52dHXx9fZGZmYl1\n69ahbdu2AIDOnTvjxIkTiI6ORnBwMD7++OMyuyVKKl6THhA+chbHQEQ4d+4cDAwMyt23ZcuWuHDh\nQqkuiwsXLlR4Sd3i1ePKeq3PK75OwIvXqiJGjx790puqxZ6PpTieko8TkRjj0qVLER4e/sI+Xbp0\nEbvZ7t69i4EDB+KXX36Bra1tuefesGED9u3bh8OHD4uPGRgYiO9B69atYW9vj8TERLRu3fqF9654\nu5Lv44EDB/D48WM4OzsDAHJzc2FoaIg+ffqUOnfTpk1hZmaGq1evIjIyEmvXrn3pNXF0dMSlS5ew\nd+9ezJ49Gz4+Pvj8888xdepUsbuwpKCgIEyfPh1+fn548OABPD09sW7dunKvxfOaNGkCALC1tYVM\nJsOlS5dgZ2cHKysr2NraIjY2Fjt37sTZs2dL7VfyvaqKoKAgRERE4K+//hK7Xp5X8voEBQXh7bff\nRnR0NHr37o21a9fC29u7yueXhGR/TjRIZmam+PH06tWr4ke6kqvAZWRkiC3ur7/+Wux+SUhIoGbN\nmolVnrp27UoODg6Un59PW7duJUtLS1q5ciURCd0kxR+tv//+e/FjaUkuLi508+ZN8eeSLd1t27ZR\ncHAwERENHz6cli5dKj5XfDO0pOIbpcWfCjIzM8nT05N27tz5wrbPd79YW1tTWloa7dy5k/z8/Egu\nl9ODBw/EFRufb6l/8MEH4rH69u1Lx44dIyIiU1NTKiwsLOuyl+p+cXR0FCtkZWVllboBVqxnz56l\nblwX73/x4kVydXUVu18cHR0rfAPu0aNH5OrqSrt27Xrpdvv376eWLVtSRkZGqcczMjLE9zQ5OZks\nLCzELoCS793zN2+LnwsKCqKIiAjx8WfPnlGjRo0oNzeXzp07R6NGjRKfW7VqFY0YMaLUjdlJkyaJ\nXScHDhwQu19SU1PFroU9e/aQv79/ha5HeZ6/gV/So0ePKD8/n4iE6+Ho6Fiq9b169Wpyc3MjmUxW\n5nGr2v1CJFRBcnBwIHNzc8rNzRUfd3Z2pnPnzhER0axZs8RrVvwJgojof//7H3377bdVPrdU+EZp\nBdy7dw/e3t7iDb1FixaVuV1xi+L999+HQqGAq6srhg0bho0bN4qtsi5dusDc3By1a9dGp06dkJqa\nis6dOwMQboi5u7ujdevWiIyMxOTJk184x4QJE9CzZ0/xRmnJVoyOjo7488qVKxEXFwc3Nze0atWq\nzFZV48aNsXnzZkyYMAEtWrSAhYUFRowYgYCAgDJfm6urK7y9veHl5YU5c+agcePGCAgIgKurK9zc\n3ODj44OlS5eKi18Vx1IyrrJej6ura5mfSIr3cXJywpdffokePXrAzc0NPXr0KHNYWqdOnUoVXCne\n38PDA0OHDoWbmxt69+6Ndu3alRlLWb7//nskJydj3rx54pC8zMxMAMD48ePFGpgffvghcnJy4Ovr\nW2ro4rFjx+Dm5gYPDw8MHjwYa9euRb169UrF93y8xd/n5eXhwIEDpVrlb7zxBjp16oQ9e/bg9u3b\neOONN8TnAgMDsXXrVgwZMkR8bO7cuTh48CBcXFywfft2NG7cGMbGxrhy5Yp4Q3D+/Pn4/PPPK3xN\nSlq5ciWsrKxw7949uLq6YsKECQCAuLg4jB8/HgAQHx8PT09PuLu7o1u3bpg1axZatGhRKu74+PgX\nWtL379+HmZkZ3nzzzSrFBghVkIyMjNCtWzfUqVNHfHz9+vUYP348PDw8kJubCxMTEwBAZGQknJ2d\n4eHhgevXr2PUqFFVPrdUeEEvJlq9ejUiIyOxe/fuUiXdAGFMsZGREaZNmyZRdK9248YNfPjhh9i7\nd6/UoVSL6dOnY9SoUWLXTFkKCgqgp6cHPT09nDlzBpMmTdKYYszr1q3Ds2fPMHXqVKUf+9mzZ+If\ni8WLFyM9PR0rVqxQ+nmkwH3qTDRx4kRMnDix3Odfp2+zOtjZ2cHY2BjJycmwt7eXOhyVq0iN2Nu3\nb2PIkCFQKBQwMDBQ2uSy6rB169aX1uJ8HXv37sWiRYtQVFQEGxsbbNiwQSXnkQK31BljTItwnzpj\njGkRTuqMMaZFOKkzxpgW4aTOGGNahJM6Y4xpEU7qjDGmRf4POLAc9yfktt4AAAAASUVORK5CYII=\n" + } + ], + "prompt_number": 11 + }, + { + "cell_type": "markdown", + "source": [ + "<h3>Example 7.11, Page Number: 228<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "''' To find gate to source voltage'''", + "", + "# variable declaration", + "V_DD=12; # voltage in volt", + "V_D=7; # voltage in volt", + "R_D=3.3*10**3; # resistance in ohm", + "R_S=2.2*10**3; # resistance in ohm", + "R_1=6.8*10**6; # resistance in ohm", + "R_2=1*10**6; # resistance in ohm", + "", + "#calculation", + "I_D=(V_DD-V_D)/R_D; # drain current in ampere", + "V_S=I_D*R_S; # source voltage in volt", + "V_G=(R_2/(R_1+R_2))*V_DD; # gate voltage in volt", + "V_GS=V_G-V_S; # gate to source voltage in volt", + "", + "# result", + "print \"Drain Current = %.4f Ampere\" %I_D", + "print \"Gate to source voltage = %.4f volts\" %V_GS" + ], + "language": "python", + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Drain Current = 0.0015 Ampere", + "Gate to source voltage = -1.7949 volts" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "markdown", + "source": [ + "<h3>Example 7.12, Page Number: 229<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "''' To find transfer characteristic for Q-point'''", + "", + "# variable declaration", + "R_1=2.2*10**6; # resistance in ohm ", + "R_2=R_1; # resistance in ohm", + "V_DD=8; # voltage in volt", + "R_S=3.3*10**3; # resistance in ohm", + "", + "#calculation", + "V_GS=(R_2/(R_1+R_2))*V_DD; #FOR I_D=0A", + "V_G=V_GS; # voltage in volt", + "I_D=(V_G-0)/R_S; #FOR V_GS=0V", + "", + "# result", + "print \"V_GS = %d volt\" %V_GS", + "print \"at V_GS=0V. I_D = %.4f ampere\" %I_D", + "print \"Plotting load line using the value of V_GS=4V at I_D=0\"", + "print \" and I_D=1.2mA at V_GS=0V, we find the intersection of\"", + "print \" load line with transfer characteristic to get Q-point\"", + "print \" values of V_GS=-1.8V and I_D=1.8mA\"" + ], + "language": "python", + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "V_GS = 4 volt", + "at V_GS=0V. I_D = 0.0012 ampere", + "Plotting load line using the value of V_GS=4V at I_D=0", + " and I_D=1.2mA at V_GS=0V, we find the intersection of", + " load line with transfer characteristic to get Q-point", + " values of V_GS=-1.8V and I_D=1.8mA" + ] + } + ], + "prompt_number": 13 + }, + { + "cell_type": "markdown", + "source": [ + "<h3>Example 7.13, Page Number: 235<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "'''DMOSFET'''", + "", + "I_DSS=10.0*10**-3;", + "V_GS_off=-8.0;", + "V_GS=-3.0;", + "I_D=I_DSS*(1-(V_GS/V_GS_off))**2;", + "print('Drain current when V_GS=-3V is %f Amperes'%I_D)", + "V_GS=3;", + "I_D=I_DSS*(1-(V_GS/V_GS_off))**2;", + "print('Drain current when V_GS=3V is %f Amperes'%I_D)" + ], + "language": "python", + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Drain current when V_GS=-3V is 0.003906 Amperes", + "Drain current when V_GS=3V is 0.018906 Amperes" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "markdown", + "source": [ + "<h3>Example 7.14, Page Number: 236<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "'''EMOSFET'''", + "", + "#variable Declaration", + "I_D_on=500.0*10**-3;", + "V_GS=10.0;", + "V_GS_th=1.0;", + "K=I_D_on/((V_GS-V_GS_th)**2)", + "V_GS=5.0;", + "I_D=K*(V_GS-V_GS_th)**2;", + "print('Drain current = %f A'%I_D)" + ], + "language": "python", + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Drain current = 0.098765 A" + ] + } + ], + "prompt_number": 15 + }, + { + "cell_type": "markdown", + "source": [ + "<h3>Example 7.15, Page Number: 237<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "''' To find drain to source voltage'''", + "", + "# variable declaration", + "I_DSS=12*10**-3; # currenin ampere", + "V_DD=18; # voltage in volt", + "R_D=620; # resistance in oh", + "", + "#calculation", + "I_D=I_DSS; # currents are equal", + "V_DS=V_DD-I_D*R_D; # drain to source voltage", + "", + "# result", + "print \"Drain to sorce voltage = %.2f volt\" %V_DS" + ], + "language": "python", + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Drain to sorce voltage = 10.56 volt" + ] + } + ], + "prompt_number": 16 + }, + { + "cell_type": "markdown", + "source": [ + "<h3>Example 7.16, Page Number: 238<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "'''EMOSFET bias'''", + "", + "#variable Declaration", + "I_D_on=200.0*10**-3;", + "V_DD=24.0;", + "R_D=200.0;", + "V_GS=4.0;", + "V_GS_th=2.0;", + "R_1=100.0*10**3;", + "R_2=15.0*10**3;", + "", + "#Calculation ", + "K=I_D_on/((V_GS-V_GS_th)**2)", + "V_GS=(R_2/(R_1+R_2))*V_DD;", + "I_D=K*(V_GS-V_GS_th)**2;", + "V_DS=V_DD-I_D*R_D;", + "", + "#Result", + "print('Drain to Source voltage = %f V'%V_DS)", + "print('Gate to Source voltage = %f V'%V_GS)" + ], + "language": "python", + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Drain to Source voltage = 11.221172 V", + "Gate to Source voltage = 3.130435 V" + ] + } + ], + "prompt_number": 17 + }, + { + "cell_type": "markdown", + "source": [ + "<h3>Example 7.17, Page Number: 239<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "''' To find drain current'''", + "", + "# variable declaration", + "V_GS_on=3; # voltage in volt", + "V_GS=8.5 #voltage displayed on meter", + "V_DS=V_GS; # voltages are equal ", + "V_DD=15; # voltage in volt", + "R_D=4.7*10**3; # resistance in ohm", + "", + "#calculation", + "I_D=(V_DD-V_DS)/R_D; # drain current", + "", + "# result", + "print \"Drain current = %.4f ampere\" %I_D" + ], + "language": "python", + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Drain current = 0.0014 ampere" + ] + } + ], + "prompt_number": 18 + } + ] + } + ] +}
\ No newline at end of file diff --git a/tbc/static/uploads/Jayaram/Engineering Thermodynamics/screenshots/Chapter7.png b/tbc/static/uploads/Jayaram/Engineering Thermodynamics/screenshots/Chapter7.png Binary files differnew file mode 100644 index 0000000..0036b02 --- /dev/null +++ b/tbc/static/uploads/Jayaram/Engineering Thermodynamics/screenshots/Chapter7.png diff --git a/tbc/static/uploads/Jayaram/Engineering Thermodynamics/screenshots/nb.png b/tbc/static/uploads/Jayaram/Engineering Thermodynamics/screenshots/nb.png Binary files differnew file mode 100644 index 0000000..d6e06b1 --- /dev/null +++ b/tbc/static/uploads/Jayaram/Engineering Thermodynamics/screenshots/nb.png diff --git a/tbc/static/uploads/Jayaram/Engineering Thermodynamics/screenshots/try.png b/tbc/static/uploads/Jayaram/Engineering Thermodynamics/screenshots/try.png Binary files differnew file mode 100644 index 0000000..57ad0f1 --- /dev/null +++ b/tbc/static/uploads/Jayaram/Engineering Thermodynamics/screenshots/try.png |