summaryrefslogtreecommitdiff
path: root/Connections/Shear/Finplate/drawing_2D.py
blob: 4232cc90530083956563b20db02ae7b40565571b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
'''
Created on 24-Aug-2015

@author: deepa
'''
import svgwrite
from PyQt4.QtCore import QString
import numpy as np
from numpy import math


class FinCommonData(object):
    
    def __init__(self, inputObj,ouputObj,dictBeamdata,dictColumndata):
        '''
        Provide all the data related to Finplate connection
        
        :param inputObj:
        :type inputObj:dictionary(Input parameter dictionary)
        :param outputObj:
        :type ouputObj :dictionary (output parameter dictionary)
        :param dictBeamdata :
        :type dictBeamdata:  dictionary (Beam sectional properties) 
        :param dictColumndata :
        :type dictBeamdata: dictionary (Column sectional properties dictionary)

        '''
        self.beam_T = float(dictBeamdata[QString("T")])
        self.col_T = float(dictColumndata[QString("T")])
        self.D_beam = int (dictBeamdata[QString("D")])
        self.D_col = int (dictColumndata[QString("D")])
        self.col_B = int(dictColumndata[QString("B")])
        self.beam_B = int(dictBeamdata[QString("B")])
        self.col_tw = float(dictColumndata[QString("tw")])
        self.beam_tw = float(dictBeamdata[QString("tw")])
        self.col_Designation = dictColumndata[QString("Designation")]
        self.beam_Designation = dictBeamdata[QString("Designation")]
        self.beam_R1 = float(dictBeamdata[QString("R1")])
        self.col_R1 = float(dictColumndata[QString("R1")])
        self.plate_ht= ouputObj['Plate']['height'] 
        self.plate_thick = inputObj['Plate']["Thickness (mm)"]

        self.plate_width = ouputObj['Plate']['width']
        self.weld_len = ouputObj['Plate']['height']
        self.weld_thick =  ouputObj['Weld']['thickness']
        self.bolt_dia  = inputObj["Bolt"]["Diameter (mm)"]
        self.connectivity =  inputObj['Member']['Connectivity']
        self.pitch = ouputObj['Bolt']["pitch"]
        self.gauge = ouputObj['Bolt']["gauge"]
        self.end_dist = ouputObj['Bolt']["enddist"]
        self.edge_dist = ouputObj['Bolt']["edge"]
        self.no_of_rows = ouputObj['Bolt']["numofrow"] 
        self.no_of_col = ouputObj['Bolt']["numofcol"]
        self.col_L = 800
        self.beam_L = 350
        self.gap = 20 # Clear distance between Column and Beam as per subramanyam's book ,range 15-20 mm
        
    def addSMarker(self, dwg):
        '''
        Draws start arrow to given line  -------->
        
        :param dwg :
        :type dwg : svgwrite (obj) ( Container for all svg elements)
        '''
        smarker = dwg.marker(insert=(-8,0), size=(10,10), orient="auto")
        smarker.add(dwg.polyline([(-2.5,0), (0,3), (-8,0), (0,-3)], fill='black'))
        dwg.defs.add(smarker)
        return smarker
    
    
    def addEMarker(self, dwg):
        '''
        This routine returns end arrow  <---------
        
        :param dwg :
        :type dwg : svgwrite  ( Container for all svg elements)
        
        '''
        emarker = dwg.marker(insert=(8,0), size=(10,10), orient="auto")
        emarker.add(dwg.polyline([(2.5,0), (0,3), (8,0), (0,-3)], fill='black'))
        dwg.defs.add(emarker)
        return emarker
    
    
    def drawFaintLine(self,ptOne,ptTwo,dwg):
        '''
        Draw faint line to show dimensions.
        
        :param dwg :
        :type dwg : svgwrite (obj)
        :param: ptOne :
        :type NumPy Array
        :param ptTwo :
        :type NumPy Array
        
        '''
        dwg.add(dwg.line(ptOne,ptTwo).stroke('#D8D8D8',width = 2.5,linecap = 'square',opacity = 0.7))
        
    
    def draw_dimension_outerArrow(self, dwg, pt1, pt2, text, params):    
        '''
        :param dwg :
        :type dwg : svgwrite (obj)
        :param: pt1 :
        :type NumPy Array
        :param pt2 :
        :type NumPy Array
        :param text :
        :type text : String
        :param params["offset"] :
        :type params["offset"] : offset of the dimension line
        :param params["textoffset"]:
        :type params["textoffset"]: float (offset of text from dimension line)
        :param params["lineori"]: 
        :type params ["lineori"]: String (right/left) 
        :param params["endlinedim"]:
        :type params'["endlindim"] : float (dimension line at the end of the outer arrow)       
        '''
        smarker = dwg.marker(insert=(-8,0), size=(10,10), orient="auto")
        smarker.add(dwg.polyline([(-2.5,0), (0,3), (-8,0), (0,-3)], fill='black'))
        emarker = dwg.marker(insert=(8,0), size=(10,10), orient="auto")
        emarker.add(dwg.polyline([(2.5,0), (0,3), (8,0), (0,-3)], fill='black'))
          
        dwg.defs.add(emarker)
        dwg.defs.add(smarker)

        lineVec = pt2 - pt1 # [a, b]
        normalVec = np.array([-lineVec[1], lineVec[0]]) # [-b, a]
        normalUnitVec = self.normalize(normalVec)
        if(params["lineori"] == "left"):
            normalUnitVec = -normalUnitVec
            
        # Q1 = pt1 + params["offset"] * normalUnitVec
        # Q2 = pt2 + params["offset"] * normalUnitVec
        Q1 = pt1 + params["offset"] * normalUnitVec
        Q2 = pt2 + params["offset"] * normalUnitVec
        line = dwg.add(dwg.line(Q1, Q2).stroke('black', width = 2.5, linecap = 'square'))
        line['marker-start'] = smarker.get_funciri()
        line['marker-end'] = emarker.get_funciri()

        Q12mid = 0.5 * (Q1 + Q2)
        txtPt = Q12mid + params["textoffset"] * normalUnitVec
        dwg.add(dwg.text(text, insert=(txtPt), fill='black',font_family = "sans-serif",font_size = 28))
        
        L1 = Q1 + params["endlinedim"] * normalUnitVec
        L2 = Q1 + params["endlinedim"]* (-normalUnitVec)
        dwg.add(dwg.line(L1,L2).stroke('black',width = 2.5,linecap = 'square',opacity = 1.0))
        L3 = Q2 + params["endlinedim"] * normalUnitVec
        L4 = Q2 + params["endlinedim"]* (-normalUnitVec)
        dwg.add(dwg.line(L3,L4).stroke('black',width = 2.5,linecap = 'square',opacity = 1.0))
        
    def normalize(self, vec):
        a = vec[0]
        b = vec[1]
        mag = math.sqrt(a * a + b * b)
        return vec / mag
    
        
    def draw_dimension_innerArrow(self, dwg, ptA, ptB, text, params):
        '''
        :param dwg :
        :type dwg : svgwrite (obj)
        :param: ptA :
        :type NumPy Array
        :param ptB :
        :type NumPy Array
        :param text :
        :type text : String
        :param params["textoffset"]:
        :type params["textoffset"]: float (offset of text from dimension line)
        :param params["endlinedim"]:
        :type params'["endlindim"] : float (dimension line at the end of the outer arrow)   
        :param params["arrowlen"]:
        :type params["arrowlen"]: float (Size of the arrow)
        '''
        
        smarker = dwg.marker(insert=(-8,0), size=(10,10), orient="auto")
        smarker.add(dwg.polyline([(-2.5,0), (0,3), (-8,0), (0,-3)], fill='black'))
        emarker = dwg.marker(insert=(8,0), size=(10,10), orient="auto")
        emarker.add(dwg.polyline([(2.5,0), (0,3), (8,0), (0,-3)], fill='black'))
          
        dwg.defs.add(emarker)
        dwg.defs.add(smarker)
        
        u = ptB - ptA # [a, b]
        uUnit = self.normalize(u)
        
        vUnit = np.array([-uUnit[1], uUnit[0]]) # [-b, a]
        
        A1 = ptA + params["endlinedim"] * vUnit
        A2 = ptA - params["endlinedim"]* (-vUnit)
        dwg.add(dwg.line(A1,A2).stroke('black',width = 2.5,linecap = 'square'))
        B1 = ptB + params["endlinedim"] * vUnit
        B2 = ptB - params["endlinedim"]* (-vUnit)
        dwg.add(dwg.line(B1,B2).stroke('black',width = 2.5,linecap = 'square'))
        A3 = ptA - params["arrowlen"]* uUnit
        B3 = ptB + params["arrowlen"]* uUnit
        
        line = dwg.add(dwg.line(A3, ptA).stroke('black', width = 2.5, linecap = 'square'))
        line['marker-end'] = emarker.get_funciri()
        line = dwg.add(dwg.line(B3, ptB).stroke('black', width = 2.5, linecap = 'square'))
        
        line['marker-end'] = emarker.get_funciri()
        txtPt = B3 + params["textoffset"] * uUnit
        dwg.add(dwg.text(text, insert=(txtPt), fill='black',font_family = "sans-serif",font_size = 28))
        
    def drawArrow(self,line,s_arrow,e_arrow):
        line['marker-start'] = s_arrow.get_funciri()
        line['marker-end'] = e_arrow.get_funciri()

    def drawStartArrow(self,line,s_arrow):
        line['marker-start'] = s_arrow.get_funciri()

    def drawEndArrow(self,line,e_arrow):
        line['marker-end'] = e_arrow.get_funciri()
        
        
    def drawOrientedArrow(self, dwg, pt, theta, orientation, offset, textUp,textDown):
    
        '''
        Drawing an arrow on given direction 
        
        :param dwg :
        :type dwg : svgwrite (obj)
        :param: ptA :
        :type NumPy Array
        :param theta: 
        :type theta : Int
        :param orientation :
        :type orientation : String
        :param offset :
        :type offset : float
        :param textUp :
        :type textUp : String
        :param textDown :
        :type textup : String
        
        '''
        #Right Up.
        theta = math.radians(theta)
        charWidth = 18
        xVec = np.array([1, 0])
        yVec = np.array([0, 1])
        
        p1 = pt
        lengthA = offset / math.sin(theta)
        
        arrowVec = None
        if(orientation == "NE"):
            arrowVec = np.array([-math.cos(theta), math.sin(theta)])
        elif(orientation == "NW"):
            arrowVec = np.array([math.cos(theta), math.sin(theta)])
        elif(orientation == "SE"):
            arrowVec = np.array([-math.cos(theta), -math.sin(theta)])
        elif(orientation == "SW"):
            arrowVec = np.array([math.cos(theta), -math.sin(theta)])
            
        p2 = p1 - lengthA * arrowVec
        
        text = textDown if len(textDown) > len(textUp) else textUp
        lengthB = len(text) * charWidth
        
        labelVec = None
        if(orientation == "NE"):
            labelVec = -xVec
        elif(orientation == "NW"):
            labelVec = xVec
        elif(orientation == "SE"):
            labelVec = -xVec
        elif(orientation == "SW"):
            labelVec = xVec

        
        p3 = p2 + lengthB * (-labelVec)
            
        txtOffset = 18
        offsetVec = - yVec

        txtPtUp = None
        if(orientation == "NE"):
            txtPtUp = p2 + 0.1 * lengthB * (-labelVec) + txtOffset * offsetVec
            txtPtDwn = p2 - 0.1 * lengthB * (labelVec) -  (txtOffset + 28) * offsetVec
        elif(orientation == "NW"):
            txtPtUp = p3 + 0.1 * lengthB * labelVec + txtOffset * offsetVec
            txtPtDwn = p3 - 0.1 * lengthB * labelVec - txtOffset * offsetVec
        elif(orientation == "SE"):
            txtPtUp = p2 + 0.1 * lengthB * (-labelVec) + txtOffset * offsetVec
            txtPtDwn = p2 - 0.1 * lengthB * (labelVec) - txtOffset * offsetVec
        elif(orientation == "SW"):
            txtPtUp = p3 + 0.1 * lengthB * labelVec + txtOffset * offsetVec
            txtPtDwn = p3 - 0.1 * lengthB * labelVec - txtOffset * offsetVec
        
        line = dwg.add(dwg.polyline(points=[p1, p2, p3], fill= 'none', stroke='black', stroke_width = 2.5))
        smarker = self.addSMarker(dwg)
        line['marker-start'] = smarker.get_funciri()
        
        dwg.add(dwg.text(textUp, insert=(txtPtUp), fill='black',font_family = "sans-serif",font_size = 28))
        dwg.add(dwg.text(textDown, insert=(txtPtDwn), fill='black',font_family = "sans-serif",font_size = 28))
    
    def saveToSvg(self):
        '''
         It returns the svg drawing depending upon connectivity
        CFBW = Column Flange Beam Web
        CWBW = Column Web Beam Web
        BWBW = Beam Web Beam Web
        
        '''
        fin2DFront = Fin2DCreatorFront(self)
        fin2DTop = Fin2DCreatorTop(self)
        fin2DSide = Fin2DCreatorSide(self)
        
        if self.connectivity == 'Column flange-Beam web':
            fin2DFront.callCFBWfront()
            fin2DSide.callCFBWSide()
            fin2DTop.callCFBWTop()
            
            
        elif self.connectivity == 'Column web-Beam web':
            fin2DFront.callCWBWfront()
            fin2DSide.callCWBWSide()
            fin2DTop.callCWBWTop()
            
        else:
            self.callBWBWSide()

class Fin2DCreatorFront(object):
    
    def __init__(self,finCommonObj):
        
        self.dataObj = finCommonObj
        
        self.A2 =(self.dataObj.col_B,(self.dataObj.col_L-self.dataObj.D_beam)/2)
        self.B = (self.dataObj.col_B,0)
        self.A = (0,0)
        self.D = (0,self.dataObj.col_L)
        self.C = (self.dataObj.col_B,self.dataObj.col_L)
        self.B2 = (self.dataObj.col_B,(self.dataObj.D_beam + self.dataObj.col_L)/2)
        
        ptEx = (self.dataObj.col_B-self.dataObj.col_tw)/2
        ptEy = 0.0
        self.E = (ptEx,ptEy)
        
        ptHx = (self.dataObj.col_B-self.dataObj.col_tw)/2
        ptHy = self.dataObj.col_L
        self.H = (ptHx,ptHy)
        
        ptFx = (self.dataObj.col_B + self.dataObj.col_tw)/2
        ptFy = 0
        self.F = (ptFx,ptFy)
        
        ptGx = (self.dataObj.col_B + self.dataObj.col_tw)/2
        ptGy = self.dataObj.col_L
        self.G = np.array([ptGx,ptGy])
        
        #Draw rectangle for finPlate PRSU
        ptPx = (self.dataObj.col_B + self.dataObj.col_tw)/2
        ptPy = ((self.dataObj.col_L - self.dataObj.D_beam)/2) + (self.dataObj.beam_T + self.dataObj.beam_R1 + 3)
        self.P = (ptPx,ptPy) 
        self.ptP = np.array([ptPx,ptPy])
        
        self.U = self.ptP + (self.dataObj.plate_ht) * np.array([0,1])
        
        ptRx = (self.dataObj.col_B + self.dataObj.col_tw)/2 + self.dataObj.plate_width
        ptRy = ((self.dataObj.col_L - self.dataObj.D_beam)/2) + (self.dataObj.beam_T + self.dataObj.beam_R1 + 3)
        self.R = (ptRx,ptRy)
        
        ptSx = ptRx
        ptSy = ptPy + self.dataObj.plate_ht
        self.S = (ptSx,ptSy)
        
        ptC1x = ((self.dataObj.col_B + self.dataObj.col_tw)/2 + self.dataObj.gap)
        ptC1y = ((self.dataObj.col_L - self.dataObj.D_beam)/2) + (self.dataObj.beam_T + self.dataObj.beam_R1 + 3)
        self.C1 =np.array([ptC1x,ptC1y])
        
        ptA1x = ((self.dataObj.col_B + self.dataObj.col_tw)/2 + self.dataObj.gap)
        ptA1y = ((self.dataObj.col_L - self.dataObj.D_beam)/2)
        self.A1 = np.array([ptA1x,ptA1y])
        
        ptA3x = ((self.dataObj.col_B + self.dataObj.col_tw)/2 + self.dataObj.gap) + self.dataObj.beam_L
        ptA3y = ((self.dataObj.col_L - self.dataObj.D_beam)/2)
        self.A3 = (ptA3x,ptA3y)
        
        ptB3x = ((self.dataObj.col_B + self.dataObj.col_tw)/2 + self.dataObj.gap) + self.dataObj.beam_L
        ptB3y = ((self.dataObj.col_L + self.dataObj.D_beam)/2 ) 
        self.B3 = (ptB3x,ptB3y)
        
        ptB1x = ((self.dataObj.col_B + self.dataObj.col_tw)/2 + self.dataObj.gap)
        ptB1y = ((self.dataObj.col_L + self.dataObj.D_beam)/2 ) 
        self.B1 = np.array([ptB1x,ptB1y])
        self.ptB1 = np.array([ptB1x,ptB1y])
        
        ptC2x= ((self.dataObj.col_B + self.dataObj.col_tw)/2 + 20)
        ptC2y = ptC1y + self.dataObj.plate_ht
        self.C2 = (ptC2x,ptC2y)
        
        ptA5x = ((self.dataObj.col_B + self.dataObj.col_tw)/2 + 20)
        ptA5y = ((self.dataObj.col_L - self.dataObj.D_beam)/2) + self.dataObj.beam_T
        self.A5 = ptA5x,ptA5y
        
        ptA4x = ((self.dataObj.col_B + self.dataObj.col_tw)/2 + 20) + self.dataObj.beam_L
        ptA4y = ((self.dataObj.col_L - self.dataObj.D_beam)/2) + self.dataObj.beam_T
        self.A4 = (ptA4x,ptA4y)
        
        ptB4x = ((self.dataObj.col_B + self.dataObj.col_tw)/2 + 20) + self.dataObj.beam_L
        ptB4y = ((self.dataObj.col_L + self.dataObj.D_beam)/2 )  - self.dataObj.beam_T  
        self.B4 = (ptB4x,ptB4y)
        
        ptBx5 = ((self.dataObj.col_B + self.dataObj.col_tw)/2) + 20
        ptBy5 = ((self.dataObj.col_L + self.dataObj.D_beam)/2 )  - self.dataObj.beam_T
        self.B5 = (ptBx5,ptBy5)
        
        ptP1x = ((self.dataObj.col_B + self.dataObj.col_tw)/2 + self.dataObj.edge_dist)
        ptP1y = ((self.dataObj.col_L - self.dataObj.D_beam)/2 +(self.dataObj.col_tw + self.dataObj.beam_R1 + 3)+ self.dataObj.end_dist)
        self.P1 = (ptP1x,ptP1y)
        

        #### Column flange points for column flange beam web connectivity #####
        
        fromPlate_pt = self.dataObj.D_col + self.dataObj.gap # 20 mm clear distance between colume and beam
        ptFAx = 0
        ptFAy = 0
        self.FA = (ptFAx,ptFAy)
         
        ptFEx = self.dataObj.col_T
        ptFEy = 0.0
        self.FE =(ptFEx,ptFEy)
         
        ptFFx = self.dataObj.D_col - self.dataObj.col_T
        ptFFy = 0.0
        self.FF =(ptFFx,ptFFy)
         
        ptFBx = self.dataObj.D_col 
        ptFBy = 0.0
        self.FB =(ptFBx,ptFBy)
         
        ptFCx = self.dataObj.D_col
        ptFCy = self.dataObj.col_L
        self.FC = np.array([ptFBx,ptFCy])
         
        ptFGx = self.dataObj.D_col - self.dataObj.col_T
        ptFGy = self.dataObj.col_L
        self.FG =(ptFGx,ptFGy)
         
        ptFHx = self.dataObj.col_T
        ptFHy = self.dataObj.col_L
        self.FH =(ptFHx,ptFHy)
         
        ptFDx = 0.0
        ptFDy = self.dataObj.col_L
        self.FD =(ptFDx,ptFDy)
        
        ptFPx = self.dataObj.D_col
        ptFPy = ((self.dataObj.col_L - self.dataObj.D_beam)/2) + (self.dataObj.beam_T + self.dataObj.beam_R1 + 3)
        self.FP = (ptFPx,ptFPy)
        self.ptFP = np.array([ptFPx,ptFPy])
        
        ptFUx = self.dataObj.D_col
        ptFUy = ((self.dataObj.col_L - self.dataObj.D_beam)/2) + (self.dataObj.beam_T + self.dataObj.beam_R1 + 3) + self.dataObj.plate_ht
        self.FU = (ptFUx,ptFUy)
        
        
        #FC1
        ptFC1x = fromPlate_pt 
        ptFC1y = ((self.dataObj.col_L - self.dataObj.D_beam)/2) + (self.dataObj.beam_T + self.dataObj.beam_R1 + 3)
        self.FC1 = np.array([ptFC1x, ptFC1y])
        
        #FC2
        ptFC2x = fromPlate_pt
        ptFC2y = ((self.dataObj.col_L - self.dataObj.D_beam)/2) +( self.dataObj.beam_T + self.dataObj.beam_R1 + 3) + self.dataObj.plate_ht
        self.FC2 = (ptFC2x, ptFC2y)
        
        #FA1
        ptFA1x = fromPlate_pt
        ptFA1y = (self.dataObj.col_L - self.dataObj.D_beam)/2
        self.FA1 = np.array([ptFA1x, ptFA1y])
        
        #FA4
        ptFA4x = fromPlate_pt
        ptFA4y = (self.dataObj.col_L - self.dataObj.D_beam)/2  + self.dataObj.beam_T
        self.FA4 = ptFA4x, ptFA4y
        
        #FA2
        ptFA2x = ptFC1x + self.dataObj.beam_L
        ptFA2y = ptFA1y
        self.FA2 = np.array([ptFA2x, ptFA2y])
        
        #FA3
        ptFA3x = fromPlate_pt  + self.dataObj.beam_L
        ptFA3y = (((self.dataObj.col_L - self.dataObj.D_beam)/2 ) + self.dataObj.beam_T) 
        self.FA3 = ptFA3x, ptFA3y
        
        #FB3
        ptFB3x = fromPlate_pt + self.dataObj.beam_L
        ptFB3y = ((self.dataObj.col_L - self.dataObj.D_beam)/2 + self.dataObj.D_beam) - self.dataObj.beam_T
        self.FB3 = (ptFB3x, ptFB3y)
        
        
        #FB2
        ptFB2x = fromPlate_pt + self.dataObj.beam_L
        ptFB2y = (self.dataObj.col_L -self.dataObj.D_beam)/2 +  self.dataObj.D_beam 
        self.FB2 = ptFB2x, ptFB2y
        
        #FB1
        ptFB1x = self.dataObj.D_col + self.dataObj.gap
        ptFB1y = (self.dataObj.col_L - self.dataObj.D_beam)/2 + self.dataObj.D_beam 
        self.FB1 = np.array([ptFB1x, ptFB1y])
        
        
        #FB4
        ptFB4x = fromPlate_pt
        ptFB4y = ((self.dataObj.col_L - self.dataObj.D_beam)/2 + self.dataObj.D_beam) - self.dataObj.beam_T
        self.FB4 = ptFB4x, ptFB4y
        
    def callBWBWfront(self):
        pass
    
    
    def callCFBWfront(self):
        
        dwg = svgwrite.Drawing('finfront.svg', profile='full')
        smarker = dwg.marker(insert=(-2.5,0), size=(10,10), orient="auto")
        smarker.add(dwg.polyline([(-2.5,0), (0,3), (-10,0), (0,-3)], fill='black'))
        
        emarker = dwg.marker(insert=(2.5,0), size=(10,10), orient="auto")
        emarker.add(dwg.polyline([(2.5,0), (0,3), (10,0), (0,-3)], fill='black'))
        dwg.add(dwg.polyline(points = [(self.FA),(self.FB),(self.FC),(self.FD),(self.FA)],stroke = 'blue',fill = 'none',stroke_width = 2.5))
        dwg.add(dwg.line((self.FE),(self.FH)).stroke('blue',width = 2.5,linecap = 'square'))
        dwg.add(dwg.line((self.FF),(self.FG)).stroke('blue',width = 2.5,linecap = 'square'))
        dwg.add(dwg.polyline(points=[(self.FC1),(self.FA1),(self.FA2),(self.FB2),(self.FB1),(self.FC2)],stroke = 'blue',fill= 'none',stroke_width =2.5))
        dwg.add(dwg.line((self.FC1),(self.FC2)).stroke('red',width = 2.5,linecap = 'square').dasharray(dasharray = ([5,5])))
        dwg.add(dwg.line((self.FA4),(self.FA3)).stroke('blue',width = 2.5,linecap = 'square'))
        dwg.add(dwg.line((self.FB4),(self.FB3)).stroke('blue',width = 2.5,linecap = 'square'))
        
        # Weld hatching to represent WELD.
        pattern = dwg.defs.add(dwg.pattern(id ="diagonalHatch",size=(4, 4), patternUnits="userSpaceOnUse",patternTransform="rotate(45 2 2)"))
        pattern.add(dwg.path(d = "M -1,2 l 6,0", stroke='#000000',stroke_width = 0.7))
        dwg.add(dwg.rect(insert=(self.FP), size=(self.dataObj.weld_thick, self.dataObj.plate_ht),fill= "url(#diagonalHatch)", stroke='white', stroke_width=2.0))
        
        dwg.add(dwg.rect(insert=(self.FP), size=(self.dataObj.plate_width, self.dataObj.plate_ht),fill = 'none', stroke='blue', stroke_width=2.5))
        dwg.add(dwg.rect(insert=(self.FP), size=(self.dataObj.plate_width, self.dataObj.plate_ht),fill = 'none', stroke='blue', stroke_width=2.5))
        
        
        nr = self.dataObj.no_of_rows
        nc = self.dataObj.no_of_col
        bolt_r = self.dataObj.bolt_dia/2
        ptList = []
        
        for i in range(1,(nr+1)):
            colList = []
            for j in range (1,(nc+1)):
                pt = self.ptFP + self.dataObj.edge_dist * np.array([1,0]) + self.dataObj.end_dist * np.array ([0,1]) + \
                    (i-1) * self.dataObj.pitch * np.array([0,1]) + (j-1) * self.dataObj.gauge * np.array([1,0])
                dwg.add(dwg.circle(center=(pt), r = bolt_r, stroke='blue',fill = 'none',stroke_width=1.5))
                ptC = pt - (bolt_r + 4) * np.array([1,0])
                PtD = pt + (bolt_r + 4) * np.array([1,0])
                dwg.add(dwg.line((ptC),(PtD)).stroke('red',width = 2.0,linecap = 'square'))
                ptE = self.ptFP + self.dataObj.edge_dist * np.array([1,0]) +(j-1) * self.dataObj.gauge * np.array([1,0])
                ptF = ptE + self.dataObj.plate_ht * np.array([0,1])
                dwg.add(dwg.line((ptE),(ptF)).stroke('blue',width = 1.5,linecap = 'square').dasharray(dasharray = ([20, 5, 1, 5])))   
                colList.append(pt)
            ptList.append(colList)
        
        pitchPts =[]
        for row in ptList:
            if len(row) > 0:
                pitchPts.append(row[0])
        params = {"offset": self.dataObj.D_col + self.dataObj.edge_dist + 50, "textoffset": 235, "lineori": "right", "endlinedim":10}
        self.dataObj.draw_dimension_outerArrow(dwg, np.array(pitchPts[0]), np.array(pitchPts[len( pitchPts)-1]), str(len(pitchPts)-1)+ u' \u0040'+ str(int(self.dataObj.pitch)) + " mm c/c", params)     
        
        # Distance between Beam Flange and Plate
        
        params = {"offset": self.dataObj.D_col + self.dataObj.gap + 50, "textoffset": 125, "lineori": "right", "endlinedim":10}
        self.dataObj.draw_dimension_outerArrow(dwg, self.FA1, self.FC1,  str(int(self.dataObj.beam_T + self.dataObj.beam_R1 + 3)) + " mm", params) 
            # Draw Faint Line To Represent Distance Between Beam Flange and Plate.
        ptOne = self.FA1
        ptBx = -30
        ptBy = ((self.dataObj.col_L - self.dataObj.D_beam)/2) 
        ptTwo = (ptBx,ptBy)
        self.dataObj.drawFaintLine(ptOne, ptTwo, dwg)
        
        # End Distance from the starting point of plate Information
        edgPtx = (self.dataObj.D_col) + self.dataObj.edge_dist
        edgPty = ((self.dataObj.col_L - self.dataObj.D_beam)/2) + (self.dataObj.beam_T + self.dataObj.beam_R1 + 3)
        edgPt = (edgPtx,edgPty)
        params = {"offset": self.dataObj.D_col + self.dataObj.edge_dist + 50, "textoffset": 125, "lineori": "left", "endlinedim":10}
        self.dataObj.draw_dimension_outerArrow(dwg, np.array(pitchPts[0]), np.array([edgPtx,edgPty]),  str(int(self.dataObj.end_dist)) + " mm", params)   
        
        # End Distance from plate end point.
        edgPt1x = edgPtx
        edgPt1y = edgPty + self.dataObj.plate_ht
        edgPt1 = (edgPt1x,edgPt1y)
        params = {"offset": self.dataObj.D_col + self.dataObj.edge_dist + 50, "textoffset": 125, "lineori": "right", "endlinedim":10}
        self.dataObj.draw_dimension_outerArrow(dwg, np.array(pitchPts[len( pitchPts)-1]), np.array([edgPt1x,edgPt1y]),  str(int(self.dataObj.end_dist)) + " mm", params)   
        
        # Edge Distance information
        pt1A = self.ptFP + self.dataObj.edge_dist * np.array([1,0])  + \
               (self.dataObj.no_of_col-1)*  self.dataObj.gauge * np.array([1,0]) + self.dataObj.end_dist * np.array ([0,1])
        pt1B = self.ptFP + self.dataObj.edge_dist * np.array([1,0])  + \
               (self.dataObj.no_of_col-1)*  self.dataObj.gauge * np.array([1,0]) + self.dataObj.edge_dist *  np.array([1,0]) + self.dataObj.end_dist * np.array ([0,1])
        offset = self.dataObj.end_dist + self.dataObj.beam_T + self.dataObj.beam_R1 +3
        params = {"offset": self.dataObj.D_col + self.dataObj.edge_dist , "textoffset": 20, "lineori": "left", "endlinedim":10}
        self.dataObj.draw_dimension_outerArrow(dwg, pt1A, pt1B, str(int(self.dataObj.edge_dist)) + " mm" , params)   
        
        # Faint line for Edge distance dimension
        ptB1 = self.ptFP + self.dataObj.edge_dist * np.array([1,0])  + \
               (self.dataObj.no_of_col-1)*  self.dataObj.gauge * np.array([1,0]) + self.dataObj.edge_dist *  np.array([1,0])
        ptB2 = ptB1 + ((self.dataObj.end_dist + self.dataObj.beam_T + self.dataObj.beam_R1 +3) + 115)* np.array([0,-1])    
        self.dataObj.drawFaintLine(ptB1,ptB2,dwg)
        
        # Gauge Distance
        
        if self.dataObj.no_of_col > 1:
            A = self.ptFP + self.dataObj.edge_dist * np.array([1,0]) + self.dataObj.end_dist * np.array([0,1])
            B = self.ptFP + self.dataObj.edge_dist * np.array([1,0])  + \
               (self.dataObj.no_of_col-1)*  self.dataObj.gauge * np.array([1,0]) + self.dataObj.end_dist * np.array ([0,1])
            offset = (self.dataObj.beam_T + self.dataObj.beam_R1 + 3) + 130
            params = {"offset": offset, "textoffset": 20, "lineori": "left", "endlinedim":10}
            self.dataObj.draw_dimension_outerArrow(dwg, A, B, str(int(self.dataObj.gauge)) + " mm" , params)  
            FA = self.FP + self.dataObj.edge_dist * np.array([1,0])
            FB = self.FP + self.dataObj.edge_dist * np.array([1,0]) + ((self.dataObj.beam_T + self.dataObj.beam_R1 + 3) + 70) * np.array([0,-1])
            self.dataObj.drawFaintLine(FA, FB, dwg) 
        
        # Gap Distance
        gapPt = self.dataObj.col_L - ((self.dataObj.col_L - self.dataObj.D_beam)/2 + (self.dataObj.beam_T + self.dataObj.beam_R1 + 3)) 
        ptG1 = self.ptFP + (gapPt + 30) * np.array([0,1])
        ptG2 = self.FC1 + (gapPt + 30) * np.array([0,1])
        offset = self.dataObj.col_L  # 60% of the column length
        params = {"offset": offset, "textoffset": 20, "lineori": "left", "endlinedim":10,"arrowlen":50}
        self.dataObj.draw_dimension_innerArrow(dwg, ptG1, ptG2, str(self.dataObj.gap) + " mm", params)
       
        # Draw Faint line for Gap Distance
        ptC1 = self.FC
        ptC2 = ptC1 + 40 * np.array([0,1])
        self.dataObj.drawFaintLine(ptC1,ptC2,dwg)
        
        ptD1 = self.FB1
        ptD2 = ptD1 + 240 * np.array([0,1])
        self.dataObj.drawFaintLine(ptD1,ptD2,dwg)
        
        ###### Draws faint line to show dimensions #########
        # Faint lines for gauge and edge distances
        ptA1 = self.ptFP + self.dataObj.edge_dist * np.array([1,0])  + \
               (self.dataObj.no_of_col-1)*  self.dataObj.gauge * np.array([1,0]) 
        ptA2 = ptA1 + ((self.dataObj.end_dist + self.dataObj.beam_T + self.dataObj.beam_R1 +3) + 115)* np.array([0,-1])    
        self.dataObj.drawFaintLine(ptA1, ptA2, dwg)
        
        ptA = self.FP
        ptBx = -30
        ptBy = ((self.dataObj.col_L - self.dataObj.D_beam)/2) + (self.dataObj.beam_T + self.dataObj.beam_R1 + 3)
        ptB = (ptBx,ptBy)
        self.dataObj.drawFaintLine(ptA, ptB, dwg)
        
        pt1 = np.array(pitchPts[0]) - 20 * np.array([1,0])
        ptBx = -30
        ptBy = ((self.dataObj.col_L - self.dataObj.D_beam)/2) + (self.dataObj.beam_T + self.dataObj.beam_R1 + 3) + self.dataObj.end_dist
        pt2 = (ptBx,ptBy)
        self.dataObj.drawFaintLine(pt1, pt2, dwg)
        
        ptOne = np.array(pitchPts[len( pitchPts)-1])
        ptBx = -30
        ptBy = ((self.dataObj.col_L - self.dataObj.D_beam)/2) + (self.dataObj.beam_T + self.dataObj.beam_R1 + 3) + (self.dataObj.plate_ht -self.dataObj.end_dist)
        ptTwo = (ptBx,ptBy)
        self.dataObj.drawFaintLine(ptOne, ptTwo, dwg)
        
        ptOne = self.FU
        ptBx = -30
        ptBy = ((self.dataObj.col_L - self.dataObj.D_beam)/2) + (self.dataObj.beam_T + self.dataObj.beam_R1 + 3) + self.dataObj.plate_ht 
        ptTwo = (ptBx,ptBy)
        self.dataObj.drawFaintLine(ptOne, ptTwo, dwg)
        
        
        # Beam Information
        beam_pt = self.FA2 + self.dataObj.D_beam/2 * np.array([0,1])
        theta = 1
        offset = 0.0 
        textUp = "Beam " + self.dataObj.beam_Designation
        textDown = ""
        self.dataObj.drawOrientedArrow(dwg, beam_pt, theta, "SE", offset, textUp, textDown)
        
        # Column Designation
        ptx = self.dataObj.D_col /2
        pty = 0
        pt = np.array([ptx,pty])
        theta = 30
        offset = self.dataObj.col_L /10
        textUp =  "Column " + self.dataObj.col_Designation
        textDown = ""
        self.dataObj.drawOrientedArrow(dwg, pt, theta, "NW", offset, textUp,textDown)
        
        # Weld Information
        weldPtx = (self.dataObj.D_col)
        weldPty = ((self.dataObj.col_L - self.dataObj.D_beam)/2) + (self.dataObj.beam_T + self.dataObj.beam_R1 + 3)
        weldPt = np.array([weldPtx,weldPty])
        theta = 45
        offset = self.dataObj.col_B 
        textUp = "          z " + str(int(self.dataObj.weld_thick)) + " mm"
        textDown = u"\u25C1"
        self.dataObj.drawOrientedArrow(dwg, weldPt, theta, "NW", offset, textUp, textDown)
        
        # Bolt Information
        bltPtx = self.FP + self.dataObj.edge_dist * np.array([1,0]) + self.dataObj.end_dist * np.array ([0,1]) +(self.dataObj.no_of_col-1) * self.dataObj.gauge * np.array([1,0])
        theta = 45
        offset = (self.dataObj.D_beam * 3)/8
        textUp = str(self.dataObj.no_of_rows) + " nos " + str(int(self.dataObj.bolt_dia)) + u'\u00d8' + " holes"
        textDown = "for M20 bolts (grade 8.8)"
        self.dataObj.drawOrientedArrow(dwg, bltPtx, theta, "NE", offset, textUp,textDown)
        
        # Plate Information
        pltPtx = self.dataObj.D_col  + self.dataObj.plate_width /2
        pltPty = ((self.dataObj.col_L - self.dataObj.D_beam)/2) + (self.dataObj.beam_T + self.dataObj.beam_R1 + 3) + self.dataObj.plate_ht
        pltPt = np.array([pltPtx,pltPty])
        theta = 45
        offset = (self.dataObj.D_beam)/2
        textUp = "PLT. " + str(int(self.dataObj.plate_ht)) +"X" + str(int(self.dataObj.plate_width)) +"X" + str(int(self.dataObj.plate_thick))
        textDown = ""
        self.dataObj.drawOrientedArrow(dwg, pltPt, theta, "SE", offset, textUp, textDown)
        
        # 2D view name
        ptx =  self.FC + (self.dataObj.col_L/4)* np.array([0,1])
        dwg.add(dwg.text('Front view', insert=(ptx), fill='black',font_family = "sans-serif",font_size = 30))
        
        dwg.save()
        print"########### Column Flange Beam Web Saved ############"
        
        
        
    def callCWBWfront(self):
        
        dwg = svgwrite.Drawing('finfront.svg', profile='full')
        smarker = dwg.marker(insert=(-2.5,0), size=(10,10), orient="auto")
        smarker.add(dwg.polyline([(-2.5,0), (0,3), (-10,0), (0,-3)], fill='black'))
        
        emarker = dwg.marker(insert=(2.5,0), size=(10,10), orient="auto")
        emarker.add(dwg.polyline([(2.5,0), (0,3), (10,0), (0,-3)], fill='black'))
        
        dwg.add(dwg.polyline(points=[(self.A2),(self.B),(self.A),(self.D),(self.C) ,(self.B2)], stroke='blue', fill='none', stroke_width=2.5))
        dwg.add(dwg.line((self.E),(self.H)).stroke('blue',width = 2.5,linecap = 'square'))
        dwg.add(dwg.line((self.F),(self.G)).stroke('blue',width = 2.5,linecap = 'square'))
        
        # Diagonal Hatching to represent WELD
        pattern = dwg.defs.add(dwg.pattern(id ="diagonalHatch",size=(4, 4), patternUnits="userSpaceOnUse",patternTransform="rotate(45 2 2)"))
        pattern.add(dwg.path(d = "M -1,2 l 6,0", stroke='#000000',stroke_width = 0.7))
        dwg.add(dwg.rect(insert=(self.P), size=(self.dataObj.weld_thick, self.dataObj.plate_ht),fill= "url(#diagonalHatch)", stroke='white', stroke_width=2.0))
        
        dwg.add(dwg.rect(insert=(self.P), size=(self.dataObj.plate_width, self.dataObj.plate_ht),fill = 'none', stroke='blue', stroke_width=2.5))
        
        #C1,A1,A3,B3,B1,C2
        dwg.add(dwg.polyline(points=[(self.C1),(self.A1),(self.A3),(self.B3),(self.B1),(self.C2)],stroke = 'blue',fill= 'none',stroke_width =2.5))
        #C1,C2
        dwg.add(dwg.line((self.C1),(self.C2)).stroke('red',width = 2.5,linecap = 'square').dasharray(dasharray = ([5,5])))
        #A2,B2
        dwg.add(dwg.line((self.A2),(self.B2)).stroke('red',width = 2.5,linecap = 'square').dasharray(dasharray = ([5,5])))
        dwg.add(dwg.line((self.A5),(self.A4)).stroke('blue',width = 2.5,linecap = 'square'))
        dwg.add(dwg.line((self.B5),(self.B4)).stroke('blue',width = 2.5,linecap = 'square'))
        nr = self.dataObj.no_of_rows
        nc = self.dataObj.no_of_col
        bolt_r = self.dataObj.bolt_dia/2
        ptList = []
        
        for i in range(1,(nr+1)):
            colList = []
            for j in range (1,(nc+1)):
                pt = self.ptP + self.dataObj.edge_dist * np.array([1,0]) + self.dataObj.end_dist * np.array ([0,1]) + \
                    (i-1) * self.dataObj.pitch * np.array([0,1]) + (j-1) * self.dataObj.gauge * np.array([1,0])
                dwg.add(dwg.circle(center=(pt), r = bolt_r, stroke='blue',fill = 'none',stroke_width=1.5))
                ptC = pt - (bolt_r + 4) * np.array([1,0])
                PtD = pt + (bolt_r + 4) * np.array([1,0])
                dwg.add(dwg.line((ptC),(PtD)).stroke('red',width = 2.0,linecap = 'square'))
                ptE = self.ptP + self.dataObj.edge_dist * np.array([1,0]) +(j-1) * self.dataObj.gauge * np.array([1,0])
                ptF = ptE + self.dataObj.plate_ht * np.array([0,1])
                dwg.add(dwg.line((ptE),(ptF)).stroke('blue',width = 1.5,linecap = 'square').dasharray(dasharray = ([20, 5, 1, 5])))
                colList.append(pt)
            ptList.append(colList)
            
        pitchPts =[]
        for row in ptList:
            if len(row) > 0:
                pitchPts.append(row[0])
        txtOffset = (self.dataObj.col_B + self.dataObj.col_tw)/2 + self.dataObj.edge_dist + 80
        params = {"offset": (self.dataObj.col_B + self.dataObj.col_tw)/2 + self.dataObj.edge_dist + 80, "textoffset": txtOffset, "lineori": "right", "endlinedim":10}
        self.dataObj.draw_dimension_outerArrow(dwg, np.array(pitchPts[0]), np.array(pitchPts[len( pitchPts)-1]), str(len(pitchPts)-1)+ u' \u0040'+ str(int(self.dataObj. pitch)) + " mm c/c", params)     
        
        # End Distance from the starting point of plate Information
        edgPtx = (self.dataObj.col_B + self.dataObj.col_tw)/2 + self.dataObj.edge_dist
        edgPty = ((self.dataObj.col_L - self.dataObj.D_beam)/2) + (self.dataObj.beam_T + self.dataObj.beam_R1 + 3)
        edgPt = (edgPtx,edgPty)
        params = {"offset": (self.dataObj.col_B + self.dataObj.col_tw)/2 + self.dataObj.edge_dist + 80, "textoffset": 120, "lineori": "left", "endlinedim":10}
        self.dataObj.draw_dimension_outerArrow(dwg, np.array(pitchPts[0]), np.array([edgPtx,edgPty]),  str(int(self.dataObj.end_dist)) + " mm", params)     
        
        # Distance between Beam Flange and Plate
        offset = (self.dataObj.col_B + self.dataObj.col_tw)/2 + self.dataObj.gap + 50
        params = {"offset":(self.dataObj.col_B + self.dataObj.col_tw)/2 + self.dataObj.gap + 80, "textoffset": 125, "lineori": "right", "endlinedim":10}
        self.dataObj.draw_dimension_outerArrow(dwg, self.A1, self.C1,  str(int(self.dataObj.beam_T + self.dataObj.beam_R1 + 3)) + " mm", params) 
        
        # Draw Faint line for dimensions
        ptOne = self.P
        ptTwox = -60 
        ptTwoy = ((self.dataObj.col_L - self.dataObj.D_beam)/2) + (self.dataObj.beam_T + self.dataObj.beam_R1 + 3)  
        ptTwo = (ptTwox,ptTwoy)
        self.dataObj.drawFaintLine(ptOne, ptTwo, dwg)
        
        pt1 = np.array(pitchPts[0])
        ptTwox = -60 
        ptTwoy = ((self.dataObj.col_L - self.dataObj.D_beam)/2) + (self.dataObj.beam_T + self.dataObj.beam_R1 + 3) + self.dataObj.end_dist
        pt2 = (ptTwox,ptTwoy)
        self.dataObj.drawFaintLine(pt1, pt2, dwg)
        
        ptA = np.array(pitchPts[len( pitchPts)-1])
        ptBx = -60
        ptBy = ((self.dataObj.col_L - self.dataObj.D_beam)/2) + (self.dataObj.beam_T + self.dataObj.beam_R1 + 3) + (self.dataObj.plate_ht -self.dataObj.end_dist)
        ptB = (ptBx,ptBy)
        self.dataObj.drawFaintLine(ptA, ptB, dwg)
        
        ptOne = self.U
        ptBx = -60
        ptBy = ((self.dataObj.col_L - self.dataObj.D_beam)/2) + (self.dataObj.beam_T + self.dataObj.beam_R1 + 3) + self.dataObj.plate_ht 
        ptTwo = (ptBx,ptBy)
        self.dataObj.drawFaintLine(ptOne, ptTwo, dwg)
        
        # End Distance from plate end point.
        edgPt1x = edgPtx
        edgPt1y = edgPty + self.dataObj.plate_ht
        edgPt1 = (edgPt1x,edgPt1y)
        params = {"offset": (self.dataObj.col_B + self.dataObj.col_tw)/2 + self.dataObj.edge_dist + 80, "textoffset": 120, "lineori": "right", "endlinedim":10}
        self.dataObj.draw_dimension_outerArrow(dwg, np.array(pitchPts[len( pitchPts)-1]), np.array([edgPt1x,edgPt1y]), str(int(self.dataObj.end_dist)) + " mm" , params)   
        
        # Gap Distance
            # Draw Faint Lines to representation of Gap distance #
        dist1 = self.dataObj.col_L - ((self.dataObj.col_L - self.dataObj.D_beam)/2 + self.dataObj.D_beam)
        ptA = self.B1
        ptB = self.B1 + (dist1 + 100)* np.array([0,1])
        self.dataObj.drawFaintLine(ptA,ptB,dwg)
        ptC = self.G 
        ptD = ptC + (100)*np.array([0,1])
        self.dataObj.drawFaintLine(ptC,ptD,dwg)
        ptG1 = self.B1 + (dist1 + 50)* np.array([0,1])
        ptG2 = self.B1 + self.dataObj.gap * np.array([-1,0]) + (dist1 + 50)* np.array([0,1])
        offset = 1
        params = {"offset": offset, "textoffset": 120, "lineori": "right", "endlinedim":10,"arrowlen":50}
        self.dataObj.draw_dimension_innerArrow(dwg, ptG1, ptG2, str(self.dataObj.gap) + " mm", params)
       
        # Gauge Distance Information
        gaugePts = ptList[0]   
        for i in range (len( gaugePts)-1):
            offset_dist = -(self.dataObj.end_dist + self.dataObj.beam_T + self.dataObj.beam_R1 + 3 + dist1 + 100)
            params = {"offset": offset_dist, "textoffset": 35, "lineori": "right", "endlinedim":10}
            ptP = np.array(gaugePts[i]) 
            ptQ = np.array(gaugePts[i + 1]) 
            self.dataObj.draw_dimension_outerArrow(dwg, ptP, ptQ, str(int(self.dataObj.gauge)) + " mm", params)
        
        if len(ptList[(len(ptList)-1)]) > 1:
            ptA = self.ptP + self.dataObj.edge_dist * np.array([1,0])
            ptB = ptA + (self.dataObj.end_dist + self.dataObj.beam_T + self.dataObj.beam_R1 + 3 + dist1 + 50)* np.array([0,-1])
            self.dataObj.drawFaintLine(ptA, ptB, dwg)  
            
            ptC = self.ptP + self.dataObj.edge_dist * np.array([1,0]) +self.dataObj.gauge * np.array([1,0])   
            ptD = ptC + (self.dataObj.end_dist + self.dataObj.beam_T + self.dataObj.beam_R1 + 3 + dist1 + 50)* np.array([0,-1])
            #self.dataObj.drawFaintLine(ptC, ptD, dwg)  
        
        # Edge Distance Information
        ptA = self.ptP + self.dataObj.edge_dist * np.array([1,0]) + (self.dataObj.no_of_col-1) * self.dataObj.gauge * np.array([1,0])
        ptB  = ptA + self.dataObj.edge_dist * np.array([1,0])
        offsetDist =  -(self.dataObj.end_dist + self.dataObj.beam_T + self.dataObj.beam_R1 + 3 + dist1 + 120)
        params = {"offset": offsetDist, "textoffset": 35, "lineori": "right", "endlinedim":10}
        self.dataObj.draw_dimension_outerArrow(dwg,ptA,ptB, str(int(self.dataObj.edge_dist)) + " mm", params)  
            # Draw Faint line for Edge distance
        ptC = self.ptP + self.dataObj.edge_dist * np.array([1,0]) + (self.dataObj.no_of_col-1) * self.dataObj.gauge * np.array([1,0])   
        ptD = ptC + (self.dataObj.end_dist + self.dataObj.beam_T + self.dataObj.beam_R1 + 3 + dist1 + 100)* np.array([0,-1])
        self.dataObj.drawFaintLine(ptC, ptD, dwg) 
        ptE = self.ptP + self.dataObj.edge_dist * np.array([1,0]) + (self.dataObj.no_of_col-1) * self.dataObj.gauge * np.array([1,0]) + self.dataObj.edge_dist * np.array([1,0])  
        ptF = ptE + (self.dataObj.end_dist + self.dataObj.beam_T + self.dataObj.beam_R1 + 3 + dist1 + 100)* np.array([0,-1])
        self.dataObj.drawFaintLine(ptE, ptF, dwg)   
        
        # Plate Width Information
        pltPtx = (self.dataObj.col_B + self.dataObj.col_tw)/2 + self.dataObj.plate_width /2
        pltPty = ((self.dataObj.col_L - self.dataObj.D_beam)/2) + (self.dataObj.beam_T + self.dataObj.beam_R1 + 3) + self.dataObj.plate_ht
        pltPt = np.array([pltPtx,pltPty])
        theta = 45
        offset = (self.dataObj.D_beam)/2
        textUp = "PLT. " + str(int(self.dataObj.plate_ht)) +"X" + str(int(self.dataObj.plate_width)) +"X" + str(int(self.dataObj.plate_thick))
        textDown = ""
        self.dataObj.drawOrientedArrow(dwg, pltPt, theta, "SE", offset, textUp, textDown)
        
        dwg.defs.add(emarker)
        dwg.defs.add(smarker)
        
        # Column Designation
        ptx = self.dataObj.col_B /2
        pty = 0
        pt = np.array([ptx,pty])
        theta = 30
        offset = self.dataObj.col_L /10
        textUp =  "Column " + self.dataObj.col_Designation
        textDown = ""
        self.dataObj.drawOrientedArrow(dwg, pt, theta, "NW", offset, textUp,textDown)
        
        # Bolt Information
        bltPtx = self.ptP + self.dataObj.edge_dist * np.array([1,0]) + self.dataObj.end_dist * np.array ([0,1]) +(self.dataObj.no_of_col-1) * self.dataObj.gauge * np.array([1,0])
        theta = 45
        offset = (self.dataObj.D_beam * 3)/8
        textUp = str(self.dataObj.no_of_rows) + " nos " + str(self.dataObj.bolt_dia) + u'\u00d8' + " holes"
        textDown = "for M20 bolts (grade 8.8)"
        self.dataObj.drawOrientedArrow(dwg, bltPtx, theta, "NE", offset, textUp,textDown)
        
        
        # Beam Information
        beam_pt = self.ptB1 + (self.dataObj.beam_L) * np.array([1,0])+ self.dataObj.D_beam/2 * np.array([0,-1])
        theta = 1
        offset = 0.0
        textUp = "Beam " + self.dataObj.beam_Designation
        textDown = ""
        self.dataObj.drawOrientedArrow(dwg, beam_pt, theta, "SE", offset, textUp, textDown)
        
        # Weld Information
        weldPtx = (self.dataObj.col_B + self.dataObj.col_tw)/2
        weldPty = ((self.dataObj.col_L - self.dataObj.D_beam)/2) + (self.dataObj.beam_T + self.dataObj.beam_R1 + 3)
        weldPt = np.array([weldPtx,weldPty])
        theta = 45
        offset = self.dataObj.col_B 
        textUp = "          z " + str(self.dataObj.weld_thick) + " mm"
        textDown = ""
        
        self.dataObj.drawOrientedArrow(dwg, weldPt, theta, "NW", offset, textUp, textDown)
        
        # 2D view name
        ptx =  self.C + (self.dataObj.col_L/4)* np.array([0,1])
        dwg.add(dwg.text('Front view', insert=(ptx), fill='black',font_family = "sans-serif",font_size = 30))
        
        dwg.save()
        print"########### Column Web Beam Web Saved ############"
    
             
class Fin2DCreatorTop(object):
    
    def __init__(self,finCommonObj):
        
        self.dataObj = finCommonObj
        self.A = np.array([0,0])
        self.B = np.array([0,0]) + (self.dataObj.col_B)* np.array([1,0])
        self.C = self.B + (self.dataObj.col_T)* np.array([0,1])
        self.D = self.A +  (self.dataObj.col_B + self.dataObj.col_tw)/2 * np.array([1,0]) + (self.dataObj.col_T) * np.array([0,1])
        self.E = self.A +  (self.dataObj.col_B + self.dataObj.col_tw)/2 * np.array([1,0]) + (self.dataObj.D_col - self.dataObj.col_T)* np.array([0,1])
        self.F = self.B + (self.dataObj.D_col - self.dataObj.col_T)* np.array([0,1])
        self.G = self.B + (self.dataObj.D_col)* np.array([0,1])
        self.H = self.A + (self.dataObj.D_col)* np.array([0,1])
        self.I = self.A + (self.dataObj.D_col - self.dataObj.col_T)* np.array([0,1])
        self.J = self.E - (self.dataObj.col_tw) * np.array([1,0])
        self.K = self.D - (self.dataObj.col_tw) * np.array([1,0])
        self.L = self.A + (self.dataObj.col_T)* np.array([0,1])
        self.A1 = self.A + ((self.dataObj.col_B + self.dataObj.col_tw)/2 + self.dataObj.gap)* np.array([1,0]) + (self.dataObj.col_T + self.dataObj.beam_R1)  * np.array([0,1])
        self.A4 = self.A1 + self.dataObj.beam_B * np.array([0,1])
        self.A7 = self.A1 + (self.dataObj.beam_B - self.dataObj.beam_tw) /2 * np.array([0,1])
        self.A5 = self.A7 - 20 * np.array([1,0])
        self.A8 = self.A7 + (self.dataObj.beam_L) * np.array([1,0])
        self.P1 = self.A1 + (self.dataObj.beam_B + self.dataObj.beam_tw) /2 * np.array([0,1])
        self.A6 = self.P1 + (self.dataObj.beam_L) * np.array([1,0])
        self.P = self.P1 - 20 * np.array([1,0])
        self.P2 = self.P + (self.dataObj.plate_width) * np.array([1,0])
        self.P4 = self.P1 + (self.dataObj.plate_thick)* np.array([0,1])
        self.P3 = self.P2 + (self.dataObj.plate_thick)* np.array([0,1])
        
        # Weld Triangle
        
        self.ptP = self.P + 2.5 * np.array([1,0]) + 2.5 * np.array([0,-1])
        self.O = self.P + self.dataObj.weld_thick * np.array([1,0])
        self.ptO = self.O  + 2.5 * np.array([1,0]) + 2.5 * np.array([0,-1])
        self.R = self.P + self.dataObj.weld_thick * np.array([0,-1])
        self.ptR = self.R + 2.5 * np.array([1,0]) + 2.5 * np.array([0,-1]) 
        
        self.X = self.P + (self.dataObj.plate_thick)* np.array([0,1])
        self.ptX = self.X + 2.5 * np.array([1,0]) + 2.5 * np.array([0,1]) 
        self.Y = self.X + (self.dataObj.weld_thick) * np.array([0,1])
        self.ptY = self.Y + 2.5 * np.array([1,0]) + 2.5 * np.array([0,1]) 
        self.Z = self.X + (self.dataObj.weld_thick) * np.array([1,0])
        self.ptZ = self.Z + 2.5 * np.array([1,0]) + 2.5 * np.array([0,1]) 
        
        
        #### CFBW connectivity points
        self.FA = np.array([0,0])
        self.FB = self.FA + self.dataObj.col_T * np.array([1,0])
        self.FC = self.FB + (self.dataObj.col_B - self.dataObj.col_tw)/2 * np.array([0,1])
        self.FD = self.FC  + (self.dataObj.D_col - 2*(self.dataObj.col_T))* np.array([1,0])
        self.FE = self.A + (self.dataObj.D_col - self.dataObj.col_T) * np.array([1,0])
        self.FF = self.FA + self.dataObj.D_col * np.array([1,0])
        self.FG = self.FF + self.dataObj.col_B * np.array([0,1])
        self.FH = self.FG + self.dataObj.col_T * np.array([-1,0])
        self.FI = self.FD + self.dataObj.col_tw * np.array([0,1])
        self.FJ = self.FC + self.dataObj.col_tw * np.array([0,1])
        self.FK = self.FB + self.dataObj.col_B * np.array([0,1])
        self.FL = self.FK + self.dataObj.col_T * np.array([-1,0])
        self.FA7 = self.FD + (self.dataObj.col_T + self.dataObj.gap) * np.array([1,0])
        self.FP1 = self.FA7 + self.dataObj.beam_tw * np.array([0,1])
        self.FP = self.FP1 + self.dataObj.gap * np.array([-1,0])
        self.FA1 = self.FA7 + (self.dataObj.beam_B - self.dataObj.beam_tw)/2 *np.array([0,-1])
        self.FA2 = self.FA1 + self.dataObj.beam_L * np.array([1,0])
        self.FA3 = self.FA2 + self.dataObj.beam_B * np.array([0,1])
        self.FA4 = self.FA1 + self.dataObj.beam_B * np.array([0,1])
        self.FX = self.FP + self.dataObj.plate_thick * np.array([0,1])
        self.FP2 = self.FP + self.dataObj.plate_width * np.array([1,0])
        self.FP3 = self.FP2 + self.dataObj.plate_thick * np.array([0,1])
        self.FP4 =  self.FX + self.dataObj.gap * np.array([1,0])
        self.FA8 = self.FA7 + self.dataObj.beam_L * np.array([1,0])
        self.FA6 = self.FP1 + self.dataObj.beam_L * np.array([1,0])
        self.FP5 = self.FA7 + self.dataObj.gap * np.array([-1,0])
        # Weld Triangle
        
        self.ptFP = self.FP + 2.5 * np.array([1,0]) + 2.5 * np.array([0,-1])
        self.FQ = self.FP + self.dataObj.weld_thick * np.array([1,0])
        self.ptFQ = self.FQ  + 2.5 * np.array([1,0]) + 2.5 * np.array([0,-1])
        self.FR = self.FP + self.dataObj.weld_thick * np.array([0,-1])
        self.ptFR = self.FR + 2.5 * np.array([1,0]) + 2.5 * np.array([0,-1]) 
        
        self.FX = self.FP + (self.dataObj.plate_thick)* np.array([0,1])
        self.ptFX = self.FX + 2.5 * np.array([1,0]) + 2.5 * np.array([0,1]) 
        self.FY = self.FX + (self.dataObj.weld_thick) * np.array([0,1])
        self.ptFY = self.FY + 2.5 * np.array([1,0]) + 2.5 * np.array([0,1]) 
        self.FZ = self.FX + (self.dataObj.weld_thick) * np.array([1,0])
        self.ptFZ = self.FZ + 2.5 * np.array([1,0]) + 2.5 * np.array([0,1]) 

    def callCFBWTop(self):
        '''
        '''
        dwg = svgwrite.Drawing('finTop.svg', profile = 'full')
        
        dwg.add(dwg.polyline(points=[(self.FA),(self.FB),(self.FC),(self.FD),(self.FE),(self.FF),(self.FG),(self.FH),(self.FI),(self.FJ),(self.FK),(self.FL),(self.FA)], stroke='blue', fill='none', stroke_width=2.5))
        dwg.add(dwg.rect(insert=(self.FA1), size=(self.dataObj.beam_L, self.dataObj.beam_B),fill = 'none', stroke='blue', stroke_width=2.5))
        dwg.add(dwg.line((self.FP),(self.FP1)).stroke('blue',width = 2.5,linecap = 'square'))
        dwg.add(dwg.line((self.FX),(self.FP4)).stroke('blue',width = 2.5,linecap = 'square'))
        dwg.add(dwg.polyline(points=[(self.FP1),(self.FP2),(self.FP3),(self.FP4)], stroke='red', fill='none', stroke_width=2.5).dasharray(dasharray = ([5,5])))
        dwg.add(dwg.line((self.FA7),(self.FA8)).stroke('red',width = 2.5,linecap = 'square').dasharray(dasharray = ([5,5])))
        dwg.add(dwg.line((self.FP1),(self.FA6)).stroke('red',width = 2.5,linecap = 'square').dasharray(dasharray = ([5,5])))
        dwg.add(dwg.polyline([(self.ptFP), (self.ptFQ), (self.ptFR), (self.ptFP)], fill='black',stroke_width=2.5,stroke='black'))
        dwg.add(dwg.polyline([(self.ptFX), (self.ptFY), (self.ptFZ), (self.ptFX)], fill='black',stroke_width=2.5,stroke='black'))
        
        nc = self.dataObj.no_of_col
        bolt_r = self.dataObj.bolt_dia/2
        ptList = []
        if nc >= 1:
            for col in range (nc):
                pt = self.FP5  + self.dataObj.edge_dist * np.array([1,0]) + (col) * self.dataObj.gauge * np.array([1,0])
                pt1 = pt - bolt_r *  np.array([1,0])
                rect_width = self.dataObj.bolt_dia
                rect_ht = self.dataObj.beam_tw + self.dataObj.plate_thick
                dwg.add(dwg.rect(insert=(pt1), size=(rect_width, rect_ht),fill = 'black', stroke='black', stroke_width=2.5))
                B1 = pt + 10 * np.array([0,-1])
                B2 = pt + (rect_ht + 10) * np.array([0,1])
                dwg.add(dwg.line((B1),(B2)).stroke('black',width = 2.5,linecap = 'square'))
                ptList.append(pt)
                dimOffset = self.dataObj.beam_B/2 + self.dataObj.col_T + self.dataObj.col_R1 + 150
                # Draw Faint line between edge and gauge distance
                ptA = B1 + (dimOffset ) * np.array([0,-1])
                self.dataObj.drawFaintLine(B1,ptA,dwg)
                
                if len(ptList) > 1:
                    params = {"offset": dimOffset, "textoffset": 20, "lineori": "left", "endlinedim":10}
                    self.dataObj.draw_dimension_outerArrow(dwg,np.array(ptList[0]),np.array(ptList[1]),  str(int(self.dataObj.gauge)) + " mm", params)  
                
        # Draw Faint line to represent edge distance
        ptB = self.FP5 + self.dataObj.edge_dist * np.array([1,0]) + (col) * self.dataObj.gauge * np.array([1,0]) + self.dataObj.edge_dist * np.array([1,0])
        ptC = ptB + (self.dataObj.beam_B/2 + self.dataObj.col_T + self.dataObj.col_R1 + 90) * np.array([0,-1])
        self.dataObj.drawFaintLine(ptB,ptC,dwg)
        
        ptx = self.FP5 + self.dataObj.edge_dist * np.array([1,0]) + (col) * self.dataObj.gauge * np.array([1,0])
        ptY = ptx + self.dataObj.edge_dist * np.array([1,0])
        offset = self.dataObj.beam_B/2 + self.dataObj.col_T + self.dataObj.col_R1 + 100
        params = {"offset": offset, "textoffset": 20, "lineori": "left", "endlinedim":10}
        self.dataObj.draw_dimension_outerArrow(dwg,ptx,ptY,  str(int(self.dataObj.edge_dist)) + " mm", params)  
        
        # Beam Information
        beam_pt = self.FA6
        theta = 1
        offset = 0
        textUp = "Beam " + self.dataObj.beam_Designation
        textDown = ""
        self.dataObj.drawOrientedArrow(dwg, beam_pt, theta, "SE", offset, textUp, textDown)
        
        # Column Information
        col_pt = self.FL
        theta = 45
        offset = (self.dataObj.D_beam * 3)/8
        textUp = "Beam " + self.dataObj.col_Designation
        textDown = ""
        self.dataObj.drawOrientedArrow(dwg, col_pt, theta, "SE", offset, textUp, textDown)
        
        # Plate  Information
        plt_pt = self.FP3 
        theta = 45
        offset =  self.dataObj.beam_B /2 + 50
        textUp = "PLT. " + str(int(self.dataObj.plate_ht))+'x'+ str(int(self.dataObj.plate_width))+ 'x' + str(int(self.dataObj.plate_thick))
        textDown = ""
        self.dataObj.drawOrientedArrow(dwg, plt_pt, theta, "SE", offset, textUp, textDown)
        
        # Weld Information
        weldPt = self.FP
        theta = 40
        offset = self.dataObj.weld_thick + self.dataObj.plate_thick + self.dataObj.beam_B /2 + 80
        textUp = "          z " + str(int(self.dataObj.weld_thick)) + " mm"
        textDown = u"\u25C1"
        self.dataObj.drawOrientedArrow(dwg, weldPt, theta, "NW", offset, textUp, textDown)

        # Gap Informatoin
        ptG1 = self.FG + 50 * np.array([0,1])
        ptG2 = ptG1 + 20 * np.array([1,0])
        offset = 1
        params = {"offset": offset, "textoffset": 10, "lineori": "right", "endlinedim":10,"arrowlen":50}
        self.dataObj.draw_dimension_innerArrow(dwg, ptG1, ptG2, str(self.dataObj.gap) + " mm", params)
            # Draw Faint Lines to representation of Gap distance #
        ptA = self.FG
        ptB = ptG1
        self.dataObj.drawFaintLine(ptA,ptB,dwg)
        ptC = self.FA4
        ptD = ptG2
        self.dataObj.drawFaintLine(ptC,ptD,dwg)
        
        # 2D view name
        ptx =  self.FG + (self.dataObj.col_B + 20)* np.array([0,1])
        dwg.add(dwg.text('Top view', insert=(ptx), fill='black',font_family = "sans-serif",font_size = 30)) 
        dwg.save()
        print"$$$$$$$$$ Saved Column Flange Beam Web Top $$$$$$$$$$$$"
    
    def callCWBWTop(self):
        '''
        '''
        dwg = svgwrite.Drawing('finTop.svg', profile='full')
        
        dwg.add(dwg.polyline(points=[(self.A),(self.B),(self.C),(self.D),(self.E),(self.F),(self.G),(self.H),(self.I),(self.J),(self.K),(self.L),(self.A)], stroke='blue', fill='none', stroke_width=2.5))
        dwg.add(dwg.rect(insert=(self.A1), size=(self.dataObj.beam_L, self.dataObj.beam_B),fill = 'none', stroke='blue', stroke_width=2.5))
        dwg.add(dwg.line((self.A7),(self.A8)).stroke('red',width = 2.5,linecap = 'square').dasharray(dasharray = ([5,5])))
        dwg.add(dwg.line((self.P1),(self.A6)).stroke('red',width = 2.5,linecap = 'square').dasharray(dasharray = ([5,5])))
        dwg.add(dwg.line((self.P),(self.P1)).stroke('blue',width = 2.5,linecap = 'square'))
        dwg.add(dwg.line((self.X),(self.P4)).stroke('blue',width = 2.5,linecap = 'square'))
        dwg.add(dwg.polyline(points=[(self.P1),(self.P2),(self.P3),(self.P4)], stroke='red', fill='none', stroke_width=2.5).dasharray(dasharray = ([5,5])))
        dwg.add(dwg.polyline([(self.ptP), (self.ptO), (self.ptR), (self.ptP)], fill='black',stroke_width=2.5,stroke='black'))
        dwg.add(dwg.polyline([(self.ptX), (self.ptY), (self.ptZ), (self.ptX)], fill='black',stroke_width=2.5,stroke='black'))
        
        nc = self.dataObj.no_of_col
        bolt_r = self.dataObj.bolt_dia/2
        ptList = []
        if nc >= 1:
            for col in range (nc):
                pt = self.A5  + self.dataObj.edge_dist * np.array([1,0]) + (col) * self.dataObj.gauge * np.array([1,0])
                print self.dataObj.gauge
                pt1 = pt - bolt_r *  np.array([1,0])
                rect_width = self.dataObj.bolt_dia
                rect_ht = self.dataObj.beam_tw + self.dataObj.plate_thick
                dwg.add(dwg.rect(insert=(pt1), size=(rect_width, rect_ht),fill = 'black', stroke='black', stroke_width=2.5))
                B1 = pt + 10 * np.array([0,-1])
                B2 = pt + (rect_ht + 10) * np.array([0,1])
                dwg.add(dwg.line((B1),(B2)).stroke('black',width = 2.5,linecap = 'square'))
                ptList.append(pt)
                if len(ptList) > 1:
                    dimOffset = self.dataObj.beam_B/2 + self.dataObj.col_T + self.dataObj.col_R1 + 50
                    params = {"offset": dimOffset, "textoffset": 20, "lineori": "left", "endlinedim":10}
                    self.dataObj.draw_dimension_outerArrow(dwg,np.array(ptList[0]),np.array(ptList[1]),  str(int(self.dataObj.gauge)) + "mm", params)  
                    
        # Draw Faint line to represent edge distance
        ptB = self.A5 + self.dataObj.edge_dist * np.array([1,0]) + (nc -1) * self.dataObj.gauge * np.array([1,0]) + self.dataObj.edge_dist * np.array([1,0])
        ptC = ptB + (self.dataObj.beam_B/2 + self.dataObj.col_T + self.dataObj.col_R1 + 150) * np.array([0,-1])
        self.dataObj.drawFaintLine(ptB,ptC,dwg)
        ptL = self.A5 + self.dataObj.edge_dist * np.array([1,0]) + (nc-1) * self.dataObj.gauge * np.array([1,0])
        ptM = ptL + (self.dataObj.beam_B/2 + self.dataObj.col_T + self.dataObj.col_R1 + 150) * np.array([0,-1])
        self.dataObj.drawFaintLine(ptL,ptM,dwg)
        
        # Edge Distance
        ptx = self.A5 + self.dataObj.edge_dist * np.array([1,0]) + (nc-1) * self.dataObj.gauge * np.array([1,0])
        ptY = ptx + self.dataObj.edge_dist * np.array([1,0])
        offset = self.dataObj.beam_B/2 + self.dataObj.col_T + self.dataObj.col_R1 + 150
        params = {"offset": offset, "textoffset": 20, "lineori": "left", "endlinedim":10}
        self.dataObj.draw_dimension_outerArrow(dwg,ptx,ptY,  str(int(self.dataObj.edge_dist)) + " mm", params)  
        
        #  Draws Faint line to represent Gauge Distance
        ptK = self.A5 + self.dataObj.edge_dist * np.array([1,0])
        ptM = ptK + (self.dataObj.beam_B/2 + self.dataObj.col_T + self.dataObj.col_R1 + 50)* np.array([0,-1])
        self.dataObj.drawFaintLine(ptK,ptM,dwg)
        
        # Beam Information
        beam_pt = self.A6
        theta = 1
        offset = 0
        textUp = "Beam " + self.dataObj.beam_Designation
        textDown = ""
        self.dataObj.drawOrientedArrow(dwg, beam_pt, theta, "NE", offset, textUp, textDown)
        
        # column  Information
        col_pt = self.H
        theta = 45
        offset = self.dataObj.beam_B /2 + 100
        textUp = "Column " + self.dataObj.col_Designation
        textDown = " " 
        self.dataObj.drawOrientedArrow(dwg, col_pt, theta, "SE", offset, textUp, textDown)
        
        # Plate  Information
        plt_pt = self.P3 
        theta = 45
        offset =  self.dataObj.beam_B /2 + 50
        textUp = "PLT. " + str(int(self.dataObj.plate_ht))+'x'+ str(int(self.dataObj.plate_width))+ 'x' + str(int(self.dataObj.plate_thick))
        textDown = ""
        self.dataObj.drawOrientedArrow(dwg, plt_pt, theta, "SE", offset, textUp, textDown)
        
        # Weld Information
        weldPt = self.P
        theta = 40
        offset = self.dataObj.weld_thick + self.dataObj.plate_thick + self.dataObj.beam_B /2 + 80
        textUp = "          z " + str(int(self.dataObj.weld_thick)) + " mm"
        textDown = u"\u25C1"
        self.dataObj.drawOrientedArrow(dwg, weldPt, theta, "NW", offset, textUp, textDown)
        
        # Gap Informatoin
        ptG1 = self.E + 50 * np.array([0,1])
        ptG2 = ptG1 + self.dataObj.gap * np.array([1,0]) 
        offset = 100
        params = {"offset": offset, "textoffset": 10, "lineori": "right", "endlinedim":10,"arrowlen":50}
        self.dataObj.draw_dimension_innerArrow(dwg, ptG1, ptG2, str(self.dataObj.gap) + " mm", params)
            # Draw Faint Lines to representation of Gap distance #
        ptA = self.E
        ptB = ptA + (85) * np.array([0,1])
        self.dataObj.drawFaintLine(ptA,ptB,dwg)
        ptC = self.A4
        ptD = ptC + (100) * np.array([0,1])
        self.dataObj.drawFaintLine(ptC,ptD,dwg)
        
        # 2D view name
        ptx =  self.G + (self.dataObj.D_col + 30)* np.array([0,1])
        dwg.add(dwg.text('Top view', insert=(ptx), fill='black',font_family = "sans-serif",font_size = 30)) 
        
        dwg.save()
        print"$$$$$$$$$ Saved Column Web Beam Web Top $$$$$$$$$$$"


            
class Fin2DCreatorSide(object):
    def __init__(self,finCommonObj):
        
        self.dataObj = finCommonObj
        
        # CWBW connectivity points
        self.A = np.array([0,0])
        self.B = self.A + self.dataObj.col_T * np.array([1,0])
        self.C = self.A + (self.dataObj.D_col - self.dataObj.col_T) * np.array([1,0])
        self.D = self.A + self.dataObj.D_col * np.array([1,0])
        self.H = self.C + self.dataObj.col_L * np.array([0,1])
        self.G = self.B + self.dataObj.col_L * np.array([0,1])
        self.A1 = (self.dataObj.col_T + self.dataObj.col_R1) * np.array((1,0)) + ((self.dataObj.col_L - self.dataObj.D_beam)/2) * np.array([0,1])
        self.A2 = self.A1 + self.dataObj.beam_B * np.array([1,0])
        self.A3 = self.A2 + self.dataObj.beam_T * np.array([0,1])
        self.A12 = self.A1 + self.dataObj.beam_T * np.array([0,1])
        self.A11 = self.A12 + (self.dataObj.beam_B - self.dataObj.beam_tw)/2 * np.array([1,0])
        self.A4 = self.A11 + self.dataObj.beam_tw * np.array([1,0])
        self.A5 = self.A4 + (self.dataObj.D_beam - (2* self.dataObj.beam_T)) * np.array([0,1])
        self.A6 = self.A2 + (self.dataObj.D_beam - self.dataObj.beam_T) * np.array([0,1])
        self.A7 = self.A2 + self.dataObj.D_beam * np.array([0,1])
        self.A8 = self.A1 + self.dataObj.D_beam * np.array([0,1])
        self.A9 = self.A1 + (self.dataObj.D_beam - self.dataObj.beam_T) * np.array([0,1])
        self.A10 = self.A11 + (self.dataObj.D_beam - (2* self.dataObj.beam_T)) * np.array([0,1])
        self.P = self.A11 + (self.dataObj.beam_R1 + 3) * np.array([0,1])
        self.Q = self.P + self.dataObj.plate_thick * np.array([-1,0])
        self.X = self.Q + self.dataObj.weld_thick * np.array([-1,0])
        self.R = self.P + self.dataObj.plate_ht * np.array([0,1])
        
        #### CFBW connectivity
        self.FA = np.array([0,0])
        self.FB = self.FA + self.dataObj.col_B * np.array([1,0])
        self.ptMid = self.FA + ((self.dataObj.col_B/2) + (self.dataObj.col_tw/2))* np.array([1,0])
        self.ptMid1 = self.ptMid + ((self.dataObj.col_L - self.dataObj.D_beam)/2) * np.array([0,1])
        self.FC = self.FB + self.dataObj.col_L * np.array([0,1])
        self.FD = self.FA + self.dataObj.col_L * np.array([0,1])
        self.FA1 = self.ptMid1 + (self.dataObj.beam_tw/2)* np.array([-1,0])+ self.dataObj.beam_B/2 * np.array([-1,0])
        self.FA2 = self.FA1 + self.dataObj.beam_B * np.array([1,0])
        self.FA3 = self.FA2 + self.dataObj.beam_T * np.array([0,1])
        self.FA12 = self.FA1 + self.dataObj.beam_T * np.array([0,1])
        self.FA11 = self.FA12 + (self.dataObj.beam_B - self.dataObj.beam_tw)/2 * np.array([1,0])
        self.FA4 = self.FA11 + self.dataObj.beam_tw * np.array([1,0])
        self.FA5 = self.FA4 + (self.dataObj.D_beam - (2* self.dataObj.beam_T)) * np.array([0,1])
        self.FA6 = self.FA2 + (self.dataObj.D_beam - self.dataObj.beam_T) * np.array([0,1])
        self.FA7 = self.FA2 + self.dataObj.D_beam * np.array([0,1])
        self.FA8 = self.FA1 + self.dataObj.D_beam * np.array([0,1])
        self.FA9 = self.FA1 + (self.dataObj.D_beam - self.dataObj.beam_T) * np.array([0,1])
        self.FA10 = self.FA11 + (self.dataObj.D_beam - (2* self.dataObj.beam_T)) * np.array([0,1])
        self.FP = self.FA11 + (self.dataObj.beam_R1 + 3) * np.array([0,1])
        self.FQ = self.FP + self.dataObj.plate_thick * np.array([-1,0])
        self.FX = self.FQ + self.dataObj.weld_thick * np.array([-1,0])
        self.FR = self.FP + self.dataObj.plate_ht * np.array([0,1])
        self.FY = self.FX + self.dataObj.plate_ht * np.array([0,1])
    
    def callCWBWSide(self):
        '''
        '''
        dwg = svgwrite.Drawing('finSide.svg', profile='full')
        dwg.add(dwg.rect(insert=(self.A), size=(self.dataObj.D_col, self.dataObj.col_L),fill = 'none', stroke='blue', stroke_width=2.5))
        dwg.add(dwg.line((self.C),(self.H)).stroke('blue',width = 2.5,linecap = 'square'))
        dwg.add(dwg.line((self.B),(self.G)).stroke('blue',width = 2.5,linecap = 'square'))
        dwg.add(dwg.polyline(points=[(self.A1),(self.A2),(self.A3),(self.A4),(self.A5),(self.A6),(self.A7),(self.A8),(self.A9),(self.A10),(self.A11),(self.A12),(self.A1)], stroke='blue', fill='none', stroke_width=2.5))
        
        # Diagonal Hatching for WELD
        pattern = dwg.defs.add(dwg.pattern(id ="diagonalHatch",size=(6, 6), patternUnits="userSpaceOnUse",patternTransform="rotate(45 2 2)"))
        pattern.add(dwg.path(d = "M -1,2 l 6,0", stroke='#000000',stroke_width = 0.7))
        dwg.add(dwg.rect(insert=(self.X), size=(self.dataObj.weld_thick, self.dataObj.plate_ht),fill = "url(#diagonalHatch)", stroke='white', stroke_width=2.5))
        
        dwg.add(dwg.rect(insert=(self.Q), size=(self.dataObj.plate_thick, self.dataObj.plate_ht),fill = 'none', stroke='blue', stroke_width=2.5))
        
        nr = self.dataObj.no_of_rows
        pitchPts = []
        for row in range(nr):
            pt = self.P + self.dataObj.end_dist * np.array([0,1]) + (row) *self.dataObj.pitch  * np.array([0,1])
            ptOne = pt + 20 * np.array([1,0])
            ptTwo = pt + 30 * np.array([-1,0])
            dwg.add(dwg.circle(center=(pt), r = 1.5, stroke='red',fill = 'none',stroke_width=1.5))
            dwg.add(dwg.line((ptOne),(ptTwo)).stroke('red',width = 1.5,linecap = 'square').dasharray(dasharray = ([10, 5, 1, 5])))   
            bltPt1 = pt + self.dataObj.bolt_dia/2 * np.array([0,-1]) + self.dataObj.plate_thick * np.array([-1,0]) 
            bltPt2 = pt + self.dataObj.bolt_dia/2 * np.array([0,-1]) + self.dataObj.beam_tw * np.array([1,0])
            bltPt3 = pt + self.dataObj.bolt_dia/2 * np.array([0,1]) + self.dataObj.plate_thick * np.array([-1,0])
            bltPt4 = pt +  self.dataObj.bolt_dia/2 * np.array([0,1]) + self.dataObj.beam_tw * np.array([1,0]) 
            dwg.add(dwg.line((bltPt1),(bltPt2)).stroke('black',width = 1.5,linecap = 'square'))   
            dwg.add(dwg.line((bltPt3),(bltPt4)).stroke('black',width = 1.5,linecap = 'square'))   
            pitchPts.append(pt)
        
        # End and Pitch Distance Information
        params = {"offset": self.dataObj.D_col / 2 + 30, "textoffset": 15, "lineori": "left", "endlinedim":10}
        self.dataObj.draw_dimension_outerArrow(dwg, np.array(pitchPts[0]), np.array(pitchPts[len( pitchPts)-1]),str(len(pitchPts)-1)+u' \u0040'+ str(int(self.dataObj.pitch)) + " mm c/c", params)     
        params = {"offset": self.dataObj.D_col / 2 + 30, "textoffset": 15, "lineori": "left", "endlinedim":10}
        self.dataObj.draw_dimension_outerArrow(dwg, self.P, np.array(pitchPts[0]), str(int(self.dataObj.end_dist)) + " mm ", params)     
        params = {"offset": self.dataObj.D_col / 2 + 30, "textoffset": 15, "lineori": "left", "endlinedim":10}
        self.dataObj.draw_dimension_outerArrow(dwg, np.array(pitchPts[len( pitchPts)-1]), self.R, str(int(self.dataObj.end_dist)) + " mm", params)     
        
        # Draw Faint Line
        pt2 = self.P + ((self.dataObj.D_col /2) + 15) * np.array([1,0])
        self.dataObj.drawFaintLine(self.P,pt2,dwg)
        pt1 = np.array(pitchPts[0]) + ((self.dataObj.D_col /2) + 15) * np.array([1,0])
        self.dataObj.drawFaintLine(np.array(pitchPts[0]),pt1,dwg)
        ptA = self.R + ((self.dataObj.D_col /2) + 15) * np.array([1,0])
        self.dataObj.drawFaintLine(self.R,ptA,dwg)
        ptB = np.array(pitchPts[len( pitchPts)-1]) + ((self.dataObj.D_col /2) + 15) * np.array([1,0])
        self.dataObj.drawFaintLine(np.array(pitchPts[len( pitchPts)-1]),ptB,dwg)
        
        # Beam Information
        beam_pt = self.A2
        theta = 45
        offset = self.dataObj.col_T + self.dataObj.col_R1 + 10 
        textUp = "Beam " + self.dataObj.beam_Designation
        textDown = ""
        self.dataObj.drawOrientedArrow(dwg, beam_pt, theta, "NE", offset, textUp, textDown)
        
        # column  Information
        col_pt = self.H
        theta = 45
        offset = 70
        textUp = "Column " + self.dataObj.col_Designation
        textDown = " " 
        self.dataObj.drawOrientedArrow(dwg, col_pt, theta, "SE", offset, textUp, textDown)
        
        # Plate  Information
        beam_pt = self.R + self.dataObj.plate_thick/2 * np.array([-1,0])
        theta = 45
        offset =  self.dataObj.plate_thick + self.dataObj.beam_B /2 + 80
        textUp = "PLT. " + str(int(self.dataObj.plate_ht))+'x'+ str(int(self.dataObj.plate_width))+ 'x' + str(int(self.dataObj.plate_thick))
        textDown = ""
        self.dataObj.drawOrientedArrow(dwg, beam_pt, theta, "SE", offset, textUp, textDown)
        
        # Weld Information
        weldPt = self.X + self.dataObj.weld_thick/2 * np.array([1,0])
        theta = 45
        offset = self.dataObj.weld_thick + self.dataObj.plate_thick + self.dataObj.beam_B /2 + 80
        textUp = "          z " + str(int(self.dataObj.weld_thick)) + " mm"
        textDown = u"\u25C1"
        self.dataObj.drawOrientedArrow(dwg, weldPt, theta, "NE", offset, textUp, textDown)
        
        # 2D view name
        ptx =  self.H + (self.dataObj.col_L/4)* np.array([0,1])
        dwg.add(dwg.text('Side view', insert=(ptx), fill='black',font_family = "sans-serif",font_size = 30)) 
        
        dwg.save()
        print "********* Column Web Beam Web Side Saved ***********"
    
    def callCFBWSide(self):
        '''
        '''
        dwg = svgwrite.Drawing('finSide.svg', profile='full')
        dwg.add(dwg.rect(insert=(self.FA), size=(self.dataObj.col_B, self.dataObj.col_L),fill = 'none', stroke='blue', stroke_width=2.5))
        dwg.add(dwg.polyline(points=[(self.FA1),(self.FA2),(self.FA3),(self.FA4),(self.FA5),(self.FA6),(self.FA7),(self.FA8),(self.FA9),(self.FA10),(self.FA11),(self.FA12),(self.FA1)], stroke='blue', fill='none', stroke_width=2.5))
        
        # Diagonal Hatching for WELD
        pattern = dwg.defs.add(dwg.pattern(id ="diagonalHatch",size=(6, 6), patternUnits="userSpaceOnUse",patternTransform="rotate(45 2 2)"))
        pattern.add(dwg.path(d = "M -1,2 l 6,0", stroke='#000000',stroke_width = 0.7))
        dwg.add(dwg.rect(insert=(self.FX), size=(self.dataObj.weld_thick, self.dataObj.plate_ht),fill = "url(#diagonalHatch)", stroke='white', stroke_width=2.5))
        
        dwg.add(dwg.rect(insert=(self.FQ), size=(self.dataObj.plate_thick, self.dataObj.plate_ht),fill = 'none', stroke='blue', stroke_width=2.5))#dwg.add(dwg.line((self.ptMid),(self.ptMid1)).stroke('green',width = 2.5,linecap = 'square'))

        nr = self.dataObj.no_of_rows
        pitchPts = []
        for row in range(nr):
            pt = self.FP + self.dataObj.end_dist * np.array([0,1]) + (row) *self.dataObj.pitch  * np.array([0,1])
            ptOne = pt + 20 * np.array([1,0])
            ptTwo = pt + 30 * np.array([-1,0])
            dwg.add(dwg.line((ptOne),(ptTwo)).stroke('red',width = 1.5,linecap = 'square').dasharray(dasharray = ([10, 5, 1, 5])))   
            bltPt1 = pt + self.dataObj.bolt_dia/2 * np.array([0,-1]) + self.dataObj.plate_thick * np.array([-1,0]) 
            bltPt2 = pt + self.dataObj.bolt_dia/2 * np.array([0,-1]) + self.dataObj.beam_tw * np.array([1,0])
            bltPt3 = pt + self.dataObj.bolt_dia/2 * np.array([0,1]) + self.dataObj.plate_thick * np.array([-1,0])
            bltPt4 = pt +  self.dataObj.bolt_dia/2 * np.array([0,1]) + self.dataObj.beam_tw * np.array([1,0]) 
            dwg.add(dwg.line((bltPt1),(bltPt2)).stroke('black',width = 1.5,linecap = 'square'))   
            dwg.add(dwg.line((bltPt3),(bltPt4)).stroke('black',width = 1.5,linecap = 'square'))
            pitchPts.append(pt)
                            
        params = {"offset": self.dataObj.col_B / 2 + 30, "textoffset": 15, "lineori": "left", "endlinedim":10}
        self.dataObj.draw_dimension_outerArrow(dwg, np.array(pitchPts[0]), np.array(pitchPts[len( pitchPts)-1]),str(len(pitchPts)-1)+u' \u0040'+ str(int(self.dataObj.pitch)) + "mm c/c", params)     
        params = {"offset": self.dataObj.col_B / 2 + 30, "textoffset": 15, "lineori": "left", "endlinedim":10}
        self.dataObj.draw_dimension_outerArrow(dwg, self.FP, np.array(pitchPts[0]), str(int(self.dataObj.end_dist)) + " mm ", params)     
        params = {"offset": self.dataObj.col_B / 2 + 30, "textoffset": 15, "lineori": "left", "endlinedim":10}
        self.dataObj.draw_dimension_outerArrow(dwg, np.array(pitchPts[len( pitchPts)-1]), self.FR, str(int(self.dataObj.end_dist)) + " mm", params)     
        
        # Draw Faint Line
        pt2 = self.FP  + ((self.dataObj.col_B /2) + 15) * np.array([1,0])
        self.dataObj.drawFaintLine(self.FP,pt2,dwg)
        pt1 = np.array(pitchPts[0]) + ((self.dataObj.col_B /2) + 15) * np.array([1,0])
        self.dataObj.drawFaintLine(np.array(pitchPts[0]),pt1,dwg)
        ptA = self.FR + ((self.dataObj.col_B /2) + 15) * np.array([1,0])
        self.dataObj.drawFaintLine(self.FR,ptA,dwg)
        ptB = np.array(pitchPts[len( pitchPts)-1]) + ((self.dataObj.col_B /2) + 15) * np.array([1,0])
        self.dataObj.drawFaintLine(np.array(pitchPts[len( pitchPts)-1]),ptB,dwg)
        
        # Beam Information
        beam_pt = self.FA2
        theta = 45
        offset = self.dataObj.col_T + self.dataObj.col_R1 + 10 
        textUp = "Beam " + self.dataObj.beam_Designation
        textDown = ""
        self.dataObj.drawOrientedArrow(dwg, beam_pt, theta, "NE", offset, textUp, textDown)
        
        # column  Information
        beam_pt = self.FC
        theta = 45
        offset = 70
        textUp = "Column " + self.dataObj.col_Designation
        textDown = " " 
        self.dataObj.drawOrientedArrow(dwg, beam_pt, theta, "SE", offset, textUp, textDown)
        
        # Plate  Information
        beam_pt = self.FR + self.dataObj.plate_thick/2 * np.array([-1,0])
        theta = 45
        offset =  self.dataObj.plate_thick + self.dataObj.beam_B /2 + 80
        textUp = "PLT. " + str(int(self.dataObj.plate_ht))+'x'+ str(int(self.dataObj.plate_width))+ 'x' + str(int(self.dataObj.plate_thick))
        textDown = ""
        self.dataObj.drawOrientedArrow(dwg, beam_pt, theta, "SE", offset, textUp, textDown)
        
        # Weld Information
        weldPt = self.FX + self.dataObj.weld_thick/2 * np.array([1,0])
        theta = 45
        offset = self.dataObj.weld_thick + self.dataObj.plate_thick + self.dataObj.beam_B /2 + 80
        textUp = "          z " + str(int(self.dataObj.weld_thick)) + " mm"
        textDown = u"\u25C1"
        self.dataObj.drawOrientedArrow(dwg, weldPt, theta, "NE", offset, textUp, textDown)
        
        # 2D view name
        ptx =  self.FC + (self.dataObj.col_L/4)* np.array([0,1])
        dwg.add(dwg.text('Side view', insert=(ptx), fill='black',font_family = "sans-serif",font_size = 30)) 
        
        dwg.save()
        print "********** Column Flange Beam Web Side Saved  *************"