summaryrefslogtreecommitdiff
path: root/External_Functions
diff options
context:
space:
mode:
Diffstat (limited to 'External_Functions')
-rw-r--r--External_Functions/gsl.mo939
1 files changed, 935 insertions, 4 deletions
diff --git a/External_Functions/gsl.mo b/External_Functions/gsl.mo
index fb3683c..169fd75 100644
--- a/External_Functions/gsl.mo
+++ b/External_Functions/gsl.mo
@@ -3096,14 +3096,452 @@ end gsl_sf_bessel_jl_e;
package STATISTICS
package chap_21_1
- function gsl_stats_mean
+ function gsl_stats_mean"This function returns the arithmetic mean of data, a dataset of length n with stride stride."
input Real data[:];
input Integer stride;
input Integer n;
output Real mean;
- external "C" mean=gsl_stats_mean( data[:], stride,n)annotation(Include="#include<gsl/gsl_statistics_double.h>",Include="#include<gsl/gsl_statistics_int.h>", Library="gsl",Library="gslcblas");
+ external "C" mean=gsl_stats_mean( data, stride,n)annotation(Include="#include<gsl/gsl_statistics_double.h>", Library="gsl",Library="gslcblas");
end gsl_stats_mean;
+
+ function gsl_stats_variance"This function returns the estimated, or sample, variance of data, a dataset of length n with stride stride."
+ input Real data[:];
+ input Integer stride;
+ input Integer n;
+ output Real variance;
+ external "C" variance=gsl_stats_variance(data,stride,n)annotation(Include="#include<gsl/gsl_statistics_double.h>",Library="gsl",Library="gslcblas");
+ end gsl_stats_variance;
+
+ function gsl_stats_variance_m"This function returns the sample variance of data relative to the value of mean calculated using the function gsl_stats_mean."
+ input Real data[:];
+ input Integer stride;
+ input Integer n;
+ input Real mean;
+ output Real variance_m;
+ external "C" variance_m=gsl_stats_variance_m(data ,stride,n,mean)annotation(Include="#include<gsl/gsl_statistics_double.h>",Library="gsl",Library="gslcblas");
+ end gsl_stats_variance_m;
+
+ function gsl_stats_sd"The function returns the standard deviation of the given data set of length n and stride 'stride'"
+ input Real data[:];
+ input Integer stride;
+ input Integer n;
+ output Real sd;
+ external "C" sd=gsl_stats_sd(data,stride,n)annotation(Include="#include<gsl/gsl_statistics_double.h>",Library="gsl",Library="gslcblas");
+ end gsl_stats_sd;
+
+ function gsl_stats_sd_m"This function returns the sample standard deviation of data relative to the value of mean calculated using the function gsl_stats_mean."
+ input Real data[:];
+ input Integer stride;
+ input Integer n;
+ input Real mean;
+ output Real sd_m;
+ external "C" sd_m=gsl_stats_sd_m(data ,stride,n,mean)annotation(Include="#include<gsl/gsl_statistics_double.h>",Library="gsl",Library="gslcblas");
+ end gsl_stats_sd_m;
+
+ function gsl_stats_tss"This function returns the total sum of squares(TSS) of a dataset of length n with stride stride."
+ input Real data[:];
+ input Integer stride;
+ input Integer n;
+ output Real tss"total sum of squares";
+ external "C" tss=gsl_stats_tss(data,stride,n)annotation(Include="#include<gsl/gsl_statistics_double.h>",Library="gsl",Library="gslcblas");
+ end gsl_stats_tss;
+
+ function gsl_stats_tss_m"This function returns the sample total sum of squares of data relative to the value of mean(calculated from the function gsl_stats_mean) for a given data set with length n and given stride"
+ input Real data[:];
+ input Integer stride;
+ input Integer n;
+ input Real mean;
+ output Real tss_m;
+ external "C" tss_m=gsl_stats_tss_m(data ,stride,n,mean)annotation(Include="#include<gsl/gsl_statistics_double.h>",Library="gsl",Library="gslcblas");
+ end gsl_stats_tss_m;
+
+ function gsl_stats_variance_with_fixed_mean"This function calculates the variance of a dataset with the population mean known a priori"
+ input Real data[:];
+ input Integer stride;
+ input Integer n;
+ input Real mean;
+ output Real variance;
+ external "C" variance=gsl_stats_variance_with_fixed_mean(data,stride,n,mean)annotation(Include="#include<gsl/gsl_statistics_double.h>",Library="gsl",Library="gslcblas");
+ end gsl_stats_variance_with_fixed_mean;
+
+ function gsl_stats_sd_with_fixed_mean"This function calculates the standard deviation of a dataset with the population mean known a priori"
+ input Real data[:];
+ input Integer stride;
+ input Integer n;
+ input Real mean;
+ output Real sd;
+ external "C" sd=gsl_stats_sd_with_fixed_mean(data,stride,n,mean)annotation(Include="#include<gsl/gsl_statistics_double.h>",Library="gsl",Library="gslcblas");
+ end gsl_stats_sd_with_fixed_mean;
+
end chap_21_1;
+
+ package chap_21_2
+ function gsl_stats_absdev"This function computes the absolute deviation from mean of the data and given length n and stride "
+ input Real data[:];
+ input Integer stride;
+ input Integer n;
+ output Real absdev;
+ external "C" absdev=gsl_stats_absdev(data,stride,n)annotation(Include="#include<gsl/gsl_statistics_double.h>",Library="gsl",Library="gslcblas");
+ end gsl_stats_absdev;
+
+ function gsl_stats_absdev_m"This function computes the absolute deviation of data set with the mean ,stride,length given"
+ input Real data[:];
+ input Integer stride;
+ input Integer n;
+ input Real mean;
+ output Real absdev_m;
+ external "C" absdev_m=gsl_stats_absdev_m(data,stride,n,mean)annotation(Include="#include<gsl/gsl_statistics_double.h>",Library="gsl",Library="gslcblas");
+ end gsl_stats_absdev_m;
+ end chap_21_2;
+ package chap_21_3
+ function gsl_stats_skew"This function computes the skewness of data, a dataset of length n with stride stride."
+ input Real data[:];
+ input Integer stride;
+ input Integer n;
+ output Real skew;
+ external "C" skew=gsl_stats_skew(data,stride,n)annotation(Include="#include<gsl/gsl_statistics_double.h>",Library="gsl",Library="gslcblas");
+ end gsl_stats_skew;
+
+ function gsl_stats_skew_m_sd"This function computes the skewness of the dataset data using the given values of the mean mean and standard
+ deviation sd"
+ input Real data[:];
+ input Integer stride;
+ input Integer n;
+ input Real mean;
+ input Real sd;
+ output Real skew;
+ external"C" skew= gsl_stats_skew_m_sd(data,stride,n,mean,sd)annotation(Include="#include<gsl/gsl_statistics_double.h>",Library="gsl",Library="gslcblas");
+ end gsl_stats_skew_m_sd;
+
+ function gsl_stats_kurtosis"This function computes the kurtosis of data, a dataset of length n with stride stride"
+ input Real data[:];
+ input Integer stride;
+ input Integer n;
+ output Real kurtosis;
+ external "C" kurtosis=gsl_stats_kurtosis(data,stride,n)annotation(Include="#include<gsl/gsl_statistics_double.h>",Library="gsl",Library="gslcblas");
+ end gsl_stats_kurtosis;
+
+
+ function gsl_stats_kurtosis_m_sd"This function computes the kurtosis of the dataset data using the given values of the mean mean and standard
+ deviation sd"
+ input Real data[:];
+ input Integer stride;
+ input Integer n;
+ input Real mean;
+ input Real sd;
+ output Real kurtosis;
+ external"C" kurtosis= gsl_stats_kurtosis_m_sd(data,stride,n,mean,sd)annotation(Include="#include<gsl/gsl_statistics_double.h>",Library="gsl",Library="gslcblas");
+ end gsl_stats_kurtosis_m_sd;
+ end chap_21_3;
+ package chap_21_4
+ function gsl_stats_lag1_autocorrelation"This function computes the lag-1 autocorrelation of the dataset data given stride and length n"
+ input Real data[:];
+ input Integer stride;
+ input Integer n;
+ output Real lag1;
+ external "C" lag1=gsl_stats_lag1_autocorrelation(data,stride,n)annotation(Include="#include<gsl/gsl_statistics_double.h>",Library="gsl",Library="gslcblas");
+ end gsl_stats_lag1_autocorrelation;
+
+ function gsl_stats_lag1_autocorrelation_m"This function computes the lag-1 autocorrelation of the dataset data using the given value of the mean mean,stride and length"
+ input Real data[:];
+ input Integer stride;
+ input Integer n;
+ input Real mean;
+ output Real lag1;
+ external "C" lag1=gsl_stats_lag1_autocorrelation_m(data,stride,n,mean)annotation(Include="#include<gsl/gsl_statistics_double.h>",Library="gsl",Library="gslcblas");
+ end gsl_stats_lag1_autocorrelation_m;
+ end chap_21_4;
+
+ package chap_21_5
+ function gsl_stats_covariance"This function computes the covariance of data sets data1 and data2 given their strides and length n"
+ input Real data1[:];
+ input Integer stride1;
+ input Real data2[:];
+ input Integer stride2;
+ input Integer n;
+ output Real covar;
+ external "C" covar=gsl_stats_covariance(data1,stride1,data2,stride2,n)annotation(Include="#include<gsl/gsl_statistics_double.h>",Library="gsl",Library="gslcblas");
+ end gsl_stats_covariance;
+
+ function gsl_stats_covariance_m"This function computes the covariance of data sets data1 and data2 given their strides and length n and mean1 and mean2"
+ input Real data1[:];
+ input Integer stride1;
+ input Real data2[:];
+ input Integer stride2;
+ input Integer n;
+ input Real mean1;
+ input Real mean2;
+ output Real covar;
+ external "C" covar=gsl_stats_covariance_m(data1,stride1,data2,stride2,n,mean1,mean2)annotation(Include="#include<gsl/gsl_statistics_double.h>",Library="gsl",Library="gslcblas");
+ end gsl_stats_covariance_m;
+ end chap_21_5;
+ package chap_21_6"correlation"
+ function gsl_stats_correlation"This function efficiently computes the Pearson correlation coefficient between the datasets data1 and data2
+ which must both be of the same length n."
+ input Real data1[:];
+ input Integer stride1;
+ input Real data2[:];
+ input Integer stride2;
+ input Integer n;
+ output Real r"pearson correlation coefficient";
+ external "C" r=gsl_stats_correlation(data1,stride1,data2,stride2,n)annotation(Include="#include<gsl/gsl_statistics_double.h>",Library="gsl",Library="gslcblas");
+ end gsl_stats_correlation;
+
+ function gsl_stats_spearman"This function computes the Spearman rank correlation coefficient between the datasets data1 and data2
+ which must both be of the same length n. Additional workspace of size 2 * n is required in work. The
+ Spearman rank correlation between vectors x and y is equivalent to the Pearson correlation between the ranked
+ vectors x R and y R , where ranks are defined to be the average of the positions of an element in the ascending
+ order of the values."
+ input Real data1[:];
+ input Integer stride1;
+ input Real data2[:];
+ input Integer stride2;
+ input Integer n;
+ output Real work[2*n];
+ output Real y;
+ external "C" y=gsl_stats_spearman(data1,stride1,data2,stride2,n,work)annotation(Include="#include<gsl/gsl_statistics_double.h>",Library="gsl",Library="gslcblas");
+ end gsl_stats_spearman;
+ end chap_21_6;
+ package chap_21_7"Weighted Samples"
+ function gsl_stats_wmean"This functiton finds the weighted mean given the weight array, stride of the weight ,data ,its stride and length of the data "
+ input Real w[:];
+ input Integer wstride;
+ input Real data[:];
+ input Integer stride;
+ input Integer n;
+ output Real wmean;
+ external "C" wmean=gsl_stats_wmean(w,wstride,data,stride,n)annotation(Include="#include<gsl/gsl_statistics_double.h>",Library="gsl",Library="gslcblas");
+ end gsl_stats_wmean;
+
+ function gsl_stats_wvariance"This functiton finds the weighted variance given the weight array, stride of the weight ,data ,its stride and length of the data"
+ input Real w[:];
+ input Integer wstride;
+ input Real data[:];
+ input Integer stride;
+ input Integer n;
+ output Real wvariance;
+ external "C" wvariance=gsl_stats_wvariance(w,wstride,data,stride,n)annotation(Include="#include<gsl/gsl_statistics_double.h>",Library="gsl",Library="gslcblas");
+ end gsl_stats_wvariance;
+
+ function gsl_stats_wvariance_m"This functiton finds the weighted variance given the weight array, stride of the weight ,data ,its stride , length of the data and the weighted mean"
+ input Real w[:];
+ input Integer wstride;
+ input Real data[:];
+ input Integer stride;
+ input Integer n;
+ input Real wmean;
+ output Real wvariance;
+ external "C" wvariance=gsl_stats_wvariance_m(w,wstride,data,stride,n,wmean)annotation(Include="#include<gsl/gsl_statistics_double.h>",Library="gsl",Library="gslcblas");
+
+ end gsl_stats_wvariance_m;
+
+
+ function gsl_stats_wsd"This function calculates the weighted standard deviation given the weight array,stride of the weights,the data set its stride and length of the dataset"
+ input Real w[:];
+ input Integer wstride;
+ input Real data[:];
+ input Integer stride;
+ input Integer n;
+ output Real wsd;
+ external "C" wsd=gsl_stats_wsd(w,wstride,data,stride,n)annotation(Include="#include<gsl/gsl_statistics_double.h>",Library="gsl",Library="gslcblas");
+ end gsl_stats_wsd;
+
+
+ function gsl_stats_wsd_m"This functiton finds the weighted standard deviation given the weight array, stride of the weight ,data ,its stride , length of the data and the weighted mean"
+ input Real w[:];
+ input Integer wstride;
+ input Real data[:];
+ input Integer stride;
+ input Integer n;
+ input Real wmean;
+ output Real wsd;
+ external "C" wsd=gsl_stats_wsd_m(w,wstride,data,stride,n,wmean)annotation(Include="#include<gsl/gsl_statistics_double.h>",Library="gsl",Library="gslcblas");
+
+ end gsl_stats_wsd_m;
+
+ function gsl_stats_wvariance_with_fixed_mean"This function computes an unbiased estimate of the variance of the weighted dataset data when the population
+ mean of the underlying distribution is known with stride of the dataset and weights known and length of dataset is given "
+ input Real w[:];
+ input Integer wstride;
+ input Real data[:];
+ input Integer stride;
+ input Integer n;
+ input Real mean;
+ output Real wvariance;
+ external "C" wvariance=gsl_stats_wvariance_with_fixed_mean(w,wstride,data,stride,n,mean)annotation(Include="#include<gsl/gsl_statistics_double.h>",Library="gsl",Library="gslcblas");
+ end gsl_stats_wvariance_with_fixed_mean;
+
+ function gsl_stats_wsd_with_fixed_mean"This function computes an unbiased estimate of the standard deviation of the weighted dataset data when the population
+ mean of the underlying distribution is known with stride of the dataset and weights known, length of dataset is given "
+ input Real w[:];
+ input Integer wstride;
+ input Real data[:];
+ input Integer stride;
+ input Integer n;
+ input Real mean;
+ output Real wsd;
+ external "C" wsd=gsl_stats_wsd_with_fixed_mean(w,wstride,data,stride,n,mean)annotation(Include="#include<gsl/gsl_statistics_double.h>",Library="gsl",Library="gslcblas");
+ end gsl_stats_wsd_with_fixed_mean;
+
+ function gsl_stats_wtss"this function computes total sum of square about the weighted mean given weight array ,wstride,dataset array, stride,length"
+ input Real w[:];
+ input Integer wstride;
+ input Real data[:];
+ input Integer stride;
+ input Integer n;
+ output Real wtss;
+ external "C" wtss=gsl_stats_wtss(w,wstride,data,stride,n)annotation(Include="#include<gsl/gsl_statistics_double.h>",Library="gsl",Library="gslcblas");
+ end gsl_stats_wtss;
+
+
+
+ function gsl_stats_wtss_m"this function computes total sum of square about the weighted mean given weight array ,wstride,dataset array, stride,length and weighted mean"
+ input Real w[:];
+ input Integer wstride;
+ input Real data[:];
+ input Integer stride;
+ input Integer n;
+ input Real wmean;
+ output Real wtss;
+ external "C" wtss=gsl_stats_wtss_m(w,wstride,data,stride,n,wmean)annotation(Include="#include<gsl/gsl_statistics_double.h>",Library="gsl",Library="gslcblas");
+ end gsl_stats_wtss_m;
+
+ function gsl_stats_wabsdev"This function calculates the weighted absolute deviation given the weight array,stride of the weights,the data set its stride and length of the dataset"
+ input Real w[:];
+ input Integer wstride;
+ input Real data[:];
+ input Integer stride;
+ input Integer n;
+ output Real wabsdev;
+ external "C" wabsdev=gsl_stats_wabsdev(w,wstride,data,stride,n)annotation(Include="#include<gsl/gsl_statistics_double.h>",Library="gsl",Library="gslcblas");
+ end gsl_stats_wabsdev;
+
+
+ function gsl_stats_wabsdev_m"this function computes weighted absolute deviation about the weighted mean given weight array ,wstride,dataset array, stride,length and weighted mean"
+ input Real w[:];
+ input Integer wstride;
+ input Real data[:];
+ input Integer stride;
+ input Integer n;
+ input Real wmean;
+ output Real wabsdev;
+ external "C" wabsdev=gsl_stats_wabsdev_m(w,wstride,data,stride,n,wmean)annotation(Include="#include<gsl/gsl_statistics_double.h>",Library="gsl",Library="gslcblas");
+ end gsl_stats_wabsdev_m;
+
+
+
+ function gsl_stats_wskew"This function calculates the weighted skewness given the weight array,stride of the weights,the data set its stride and length of the dataset"
+ input Real w[:];
+ input Integer wstride;
+ input Real data[:];
+ input Integer stride;
+ input Integer n;
+ output Real wskew;
+ external "C" wskew=gsl_stats_wskew(w,wstride,data,stride,n)annotation(Include="#include<gsl/gsl_statistics_double.h>",Library="gsl",Library="gslcblas");
+ end gsl_stats_wskew;
+
+ function gsl_stats_wskew_m_sd "this function computes weighted skewness about the weighted mean given weight array ,wstride,dataset array, stride,length , weighted mean and weighted standard deviation"
+ input Real w[:];
+ input Integer wstride;
+ input Real data[:];
+ input Integer stride;
+ input Integer n;
+ input Real wmean;
+ input Real wsd;
+ output Real wskew;
+ external "C" wskew=gsl_stats_wskew_m_sd(w,wstride,data,stride,n,wmean,wsd)annotation(Include="#include<gsl/gsl_statistics_double.h>",Library="gsl",Library="gslcblas");
+ end gsl_stats_wskew_m_sd;
+
+
+ function gsl_stats_wkurtosis"This function calculates the weighted kurtosis given the weight array,stride of the weights,the data set its stride and length of the dataset"
+ input Real w[:];
+ input Integer wstride;
+ input Real data[:];
+ input Integer stride;
+ input Integer n;
+ output Real wkurtosis;
+ external "C" wkurtosis=gsl_stats_wkurtosis(w,wstride,data,stride,n)annotation(Include="#include<gsl/gsl_statistics_double.h>",Library="gsl",Library="gslcblas");
+ end gsl_stats_wkurtosis;
+
+
+ function gsl_stats_wkurtosis_m_sd "this function computes weighted kurtosis about the weighted mean given weight array ,wstride,dataset array, stride,length , weighted mean and weighted standard deviation"
+ input Real w[:];
+ input Integer wstride;
+ input Real data[:];
+ input Integer stride;
+ input Integer n;
+ input Real wmean;
+ input Real wsd;
+ output Real wkurtosis;
+ external "C" wkurtosis=gsl_stats_wkurtosis_m_sd(w,wstride,data,stride,n,wmean,wsd)annotation(Include="#include<gsl/gsl_statistics_double.h>",Library="gsl",Library="gslcblas");
+ end gsl_stats_wkurtosis_m_sd;
+
+
+
+ end chap_21_7;
+
+ package chap_21_8"Maximum and Minimum of the dataset"
+ function gsl_stats_max"This function returns the maximum value in a given dataset with stride and length given"
+ input Real data[:];
+ input Integer stride;
+ input Integer n;
+ output Real max;
+ external "C" max=gsl_stats_max(data,stride,n)annotation(Include="#include<gsl/gsl_statistics_double.h>",Library="gsl",Library="gslcblas");
+ end gsl_stats_max;
+
+
+
+ function gsl_stats_min"This function returns the maximum value in a given dataset with stride and length given"
+ input Real data[:];
+ input Integer stride;
+ input Integer n;
+ output Real min;
+ external "C" min=gsl_stats_min(data,stride,n)annotation(Include="#include<gsl/gsl_statistics_double.h>",Library="gsl",Library="gslcblas");
+ end gsl_stats_min;
+
+ function gsl_stats_minmax"This function returns the minimum and maximum value in a given dataset with stride and length given"
+ output Real min;
+ output Real max;
+ input Real data[:];
+ input Integer stride;
+ input Integer n;
+ external "C" gsl_stats_minmax(min,max,data,stride,n)annotation(Include="#include<gsl/gsl_statistics_double.h>",Library="gsl",Library="gslcblas");
+ end gsl_stats_minmax;
+
+
+
+
+ function gsl_stats_max_index"This function returns index of then maximum value in a given dataset with stride and length given"
+ input Real data[:];
+ input Integer stride;
+ input Integer n;
+ output Real max_index;
+ external "C" max_index=gsl_stats_max_index(data,stride,n)annotation(Include="#include<gsl/gsl_statistics_double.h>",Library="gsl",Library="gslcblas");
+ end gsl_stats_max_index;
+
+
+ function gsl_stats_min_index"This function returns index of then maximum value in a given dataset with stride and length given"
+ input Real data[:];
+ input Integer stride;
+ input Integer n;
+ output Real min_index;
+ external "C" min_index=gsl_stats_min_index(data,stride,n)annotation(Include="#include<gsl/gsl_statistics_double.h>",Library="gsl",Library="gslcblas");
+ end gsl_stats_min_index;
+
+
+ function gsl_stats_minmax_index"This function returns the index of minimum and maximum value in a given dataset with stride and length given"
+
+ input Real data[:];
+ input Real stride;
+ input Integer n;
+ output Real min_index;
+ output Real max_index;
+ external "C" gsl_stats_minmax_index(min_index,max_index,data,stride,n)annotation(Include="#include<gsl/gsl_statistics_double.h>",Library="gsl",Library="gslcblas");
+ end gsl_stats_minmax_index;
+
+
+ end chap_21_8;
+
end STATISTICS;
package Examples
@@ -5185,14 +5623,507 @@ end gsl_sf_bessel_jl_e;
package statistics
package chap_21_1
model gsl_stats_mean
- parameter Real data[:]={1,2,3,4,5};
+ parameter Real data[:]={6.0,7.0,8.0,9.0,10.0};
parameter Integer stride=1;
parameter Integer n=size(data,1);
Real mean;
algorithm
- mean:=gsl.STATISTICS.chap_21_1.gsl_stats_mean(data[:],stride,n);
+ mean:=gsl.STATISTICS.chap_21_1.gsl_stats_mean(data,stride,n);
end gsl_stats_mean;
+
+ model gsl_stats_variance
+ "In this model we call the function gsl_stats_variance in gsl.STATISTICS.chap_21_1 to calculate variance of data set 'data'"
+ parameter Real data[:]={1.0,2.0,3.0,4.0,5.0};
+ parameter Integer stride=2;
+ parameter Integer n=size(data,1);
+ Real variance;
+ algorithm
+ variance:=gsl.STATISTICS.chap_21_1.gsl_stats_variance(data,stride,n);
+ end gsl_stats_variance;
+
+ model gsl_stats_variance_m "In this model we call the function gsl_stats_variance in gsl.STATISTICS.chap_21_1 to calculate Sampled variance of data set 'data' and given mean and stride "
+ parameter Real data[:]={1.0,2.0,3.0,4.0,5.0};
+ parameter Integer stride=2;
+ parameter Integer n=size(data,1);
+ parameter Real mean=2;
+ Real variance_m"Sampled variance";
+ algorithm
+ variance_m:=gsl.STATISTICS.chap_21_1.gsl_stats_variance_m(data,stride,n,mean);
+ end gsl_stats_variance_m;
+
+ model gsl_stats_sd
+ "In this model we call the function gsl_stats_sd in gsl.STATISTICS.chap_21_1 to calculate Standard deviation of data set 'data'"
+ parameter Real data[:]={1.0,2.0,3.0,4.0,5.0};
+ parameter Integer stride=2;
+ parameter Integer n=size(data,1);
+ Real sd;
+ algorithm
+ sd:=gsl.STATISTICS.chap_21_1.gsl_stats_sd(data,stride,n);
+ end gsl_stats_sd;
+
+ model gsl_stats_sd_m "In this model we call the function gsl_stats_sd_m in gsl.STATISTICS.chap_21_1 to calculate Sampled standard deviation of data set 'data' and given mean and stride "
+ parameter Real data[:]={1.0,2.0,3.0,4.0,5.0};
+ parameter Integer stride=2;
+ parameter Integer n=size(data,1);
+ parameter Real mean=2;
+ Real sd_m"Sampled standard deviation";
+ algorithm
+ sd_m:=gsl.STATISTICS.chap_21_1.gsl_stats_sd_m(data,stride,n,mean);
+ end gsl_stats_sd_m;
+
+ model gsl_stats_tss
+ "In this model we call the function gsl_stats_tss in gsl.STATISTICS.chap_21_1 to calculate total sum of squares of data set about mean"
+ parameter Real data[:]={1.0,2.0,3.0,4.0,5.0};
+ parameter Integer stride=2;
+ parameter Integer n=size(data,1);
+ Real tss"total sum of squares";
+ algorithm
+ tss:=gsl.STATISTICS.chap_21_1.gsl_stats_tss(data,stride,n);
+ end gsl_stats_tss;
+
+ model gsl_stats_tss_m " This model calls the function gsl_stats_m to calculate Sampled total sum of squares of data set 'data' and given mean and stride "
+ parameter Real data[:]={1.0,2.0,3.0,4.0,5.0};
+ parameter Integer stride=2;
+ parameter Integer n=size(data,1);
+ parameter Real mean=2;
+ Real tss_m"total sum of squares";
+ algorithm
+ tss_m:=gsl.STATISTICS.chap_21_1.gsl_stats_tss_m(data,stride,n,mean);
+ end gsl_stats_tss_m;
+
+ model gsl_stats_variance_with_fixed_mean"This model calls the function gsl_stats_variance_with_fixed_mean to calculate the variance with the mean known a priori"
+ parameter Real data[:]={1.0,2.0,3.0,4.0,5.0};
+ parameter Integer stride=2;
+ parameter Integer n=size(data,1);
+ parameter Real mean=2;
+ Real variance"Sampled variance";
+ algorithm
+ variance:=gsl.STATISTICS.chap_21_1.gsl_stats_variance_with_fixed_mean(data,stride,n,mean);
+ end gsl_stats_variance_with_fixed_mean;
+
+ model gsl_stats_sd_with_fixed_mean"This model calls the function gsl_stats_sd_with_fixed_mean to calculate the standard deviation with the mean known a priori"
+ parameter Real data[:]={1.0,2.0,3.0,4.0,5.0};
+ parameter Integer stride=2;
+ parameter Integer n=size(data,1);
+ parameter Real mean=2;
+ Real sd"Standard Deviation";
+ algorithm
+ sd:=gsl.STATISTICS.chap_21_1.gsl_stats_sd_with_fixed_mean(data,stride,n,mean);
+ end gsl_stats_sd_with_fixed_mean;
+
+
end chap_21_1;
+
+ package chap_21_2
+ model gsl_stats_absdev"This model calls the function gsl_stats_absdev to calculate the absolute deviation of the given data set ,stride and length"
+ parameter Real data[:]={1.0,2.0,3.0,4.0,5.0};
+ parameter Integer stride=1;
+ parameter Integer n=size(data, 1);
+ Real absdev;
+ algorithm
+ absdev:=gsl.STATISTICS.chap_21_2.gsl_stats_absdev(data,stride,n);
+ end gsl_stats_absdev;
+
+ model gsl_stats_absdev_m"This model calls the function
+ gsl_stats_absdev_m to calculate absolute deviation with given mean ,data set,stride and length"
+ parameter Real data[:]={1.0,2.0,3.0,4.0,5.0};
+ parameter Integer stride=1;
+ parameter Integer n=size(data, 1);
+ parameter Real mean=2;
+ Real absdev_m;
+ algorithm
+ absdev_m:=gsl.STATISTICS.chap_21_2.gsl_stats_absdev_m(data,stride,n,mean);
+ end gsl_stats_absdev_m;
+
+ end chap_21_2;
+ package chap_21_3
+ model gsl_stats_skew"model calls the function
+ gsl_stats_skew to calculate skewness with given data set,stride and length"
+ parameter Real data[:]={1.0,2.0,3.0,4.0,5.0};
+ parameter Integer stride=1;
+ parameter Integer n=size(data, 1);
+ Real skew;
+ algorithm
+ skew:=gsl.STATISTICS.chap_21_3.gsl_stats_skew(data,stride,n);
+ end gsl_stats_skew;
+
+ model gsl_stats_skew_m_sd"This model calls the function gsl_stats_skew_m_sd to calculate the skewness given the dataset,stride,length,mean and standard deviation"
+ parameter Real data[:]={1.0,2.0,3.0,4.0,5.0};
+ parameter Integer stride=2;
+ parameter Integer n=size(data, 1);
+ parameter Real mean=1.8;
+ parameter Real sd=2.16795;
+ Real skew;
+ algorithm
+ skew:=gsl.STATISTICS.chap_21_3.gsl_stats_skew_m_sd(data,stride,n,mean,sd);
+ end gsl_stats_skew_m_sd;
+
+
+ model gsl_stats_kurtosis"model calls the function
+ gsl_stats_kurtosis to calculate kurtosis with given data set,stride and length"
+ parameter Real data[:]={1.0,2.0,3.0,4.0,5.0};
+ parameter Integer stride=2;
+ parameter Integer n=size(data, 1);
+ Real kurtosis;
+ algorithm
+ kurtosis:=gsl.STATISTICS.chap_21_3.gsl_stats_kurtosis(data,stride,n);
+ end gsl_stats_kurtosis;
+
+
+ model gsl_stats_kurtosis_m_sd"This model calls the function gsl_stats_kurtosis_m_sd to calculate the kurtosis given the dataset,stride,length,mean and standard deviation"
+ parameter Real data[:]={1.0,2.0,3.0,4.0,5.0};
+ parameter Integer stride=2;
+ parameter Integer n=size(data, 1);
+ parameter Real mean=1.8;
+ parameter Real sd=2.16795;
+ Real kurtosis;
+ algorithm
+ kurtosis:=gsl.STATISTICS.chap_21_3.gsl_stats_skew_m_sd(data,stride,n,mean,sd);
+ end gsl_stats_kurtosis_m_sd;
+ end chap_21_3;
+ package chap_21_4
+ model gsl_stats_lag1_autocorrelation
+ "In this model we call the function gsl_stats_lag1_autocorrelationin to calculate lag1 autocorrelation of data set 'data'"
+ parameter Real data[:]={1.0,2.0,3.0,4.0,5.0};
+ parameter Integer stride=2;
+ parameter Integer n=size(data,1);
+ Real lag1;
+ algorithm
+ lag1:=gsl.STATISTICS.chap_21_4.gsl_stats_lag1_autocorrelation(data,stride,n);
+ end gsl_stats_lag1_autocorrelation;
+
+
+
+
+
+
+
+
+
+
+ model gsl_stats_lag1_autocorrelation_m
+ "In this model we call the function gsl_stats_lag1_autocorrelationin_m to calculate lag1 autocorrelation of data set 'data'given stride,length and mean"
+ parameter Real data[:]={1.0,2.0,3.0,4.0,5.0};
+ parameter Integer stride=1;
+ parameter Integer n=size(data,1);
+ parameter Real mean=1.8;
+ Real lag1;
+ algorithm
+ lag1:=gsl.STATISTICS.chap_21_4.gsl_stats_lag1_autocorrelation_m(data,stride,n,mean);
+ end gsl_stats_lag1_autocorrelation_m;
+ end chap_21_4;
+ package chap_21_5
+ model gsl_stats_covariance"This model calls the function gsl_stats_covariance to compute the covariance of the data-sets data1 and data2 ,stride1 and stride2 and length n"
+ parameter Real data1[:]={1.0,2.0,3.0,4.0,5.0};
+ parameter Integer stride1=1;
+ parameter Real data2[:]={6.0,7.0,8.0,9.0,10.0};
+ parameter Integer stride2=1;
+ parameter Integer n=5;
+ Real covar;
+ algorithm
+ covar:=gsl.STATISTICS.chap_21_5.gsl_stats_covariance(data1,stride1,data2,stride2,n);
+ end gsl_stats_covariance;
+
+ model gsl_stats_covariance_m"This model calls the function gsl_stats_covariance_m to compute the covariance of the data-sets data1 and data2 ,stride1 and stride2 and length n and mean1 and mean2"
+ parameter Real data1[:]={1.0,2.0,3.0,4.0,5.0};
+ parameter Integer stride1=1;
+ parameter Real data2[:]={6.0,7.0,8.0,9.0,10.0};
+ parameter Integer stride2=1;
+ parameter Integer n=5;
+ parameter Real mean1=3;
+ parameter Real mean2=8;
+ Real covar;
+ algorithm
+ covar:=gsl.STATISTICS.chap_21_5.gsl_stats_covariance_m(data1,stride1,data2,stride2,n,mean1,mean2);
+ end gsl_stats_covariance_m;
+
+ end chap_21_5;
+ package chap_21_6
+ model gsl_stats_correlation"This model calls the function gsl_stats_correlation to compute the Pearson correlation coefficient of the data-sets data1 and data2 ,stride1 and stride2 and length n"
+ parameter Real data1[:]={1.0,2.0,3.0,4.0,5.0};
+ parameter Integer stride1=1;
+ parameter Real data2[:]={6.0,7.0,8.0,9.0,10.0};
+ parameter Integer stride2=1;
+ parameter Integer n=5;
+ Real r;
+ algorithm
+ r:=gsl.STATISTICS.chap_21_6.gsl_stats_correlation(data1,stride1,data2,stride2,n);
+ end gsl_stats_correlation;
+
+ model gsl_stats_spearman"This model calls the function gsl_stats_spearman to calculate the spearmans coefficient"
+ parameter Real data1[:]={1.0,2.0,3.0,5.0,4.0};
+ parameter Integer stride1=1;
+ parameter Real data2[:]={6.0,7.0,8.0,9.0,1.0};
+ parameter Integer stride2=1;
+ parameter Integer n=5;
+ Real work[2*n];
+ Real y;
+ algorithm
+ (work,y):=gsl.STATISTICS.chap_21_6.gsl_stats_spearman(data1,stride1,data2,stride2,n);
+ end gsl_stats_spearman;
+ end chap_21_6;
+ package chap_21_7
+ model gsl_stats_wmean
+ parameter Real w[:]={0.2,0.2,0.2,0.2,0.2} ;
+ parameter Integer wstride=1;
+ parameter Real data[:]={1.0,1.0,1.0,1.0,1.0};
+ parameter Integer stride=1;
+ parameter Integer n=5;
+ Real wmean;
+ algorithm
+ (wmean):=gsl.STATISTICS.chap_21_7.gsl_stats_wmean(w,wstride,data,stride,n);
+ end gsl_stats_wmean;
+
+
+
+
+
+
+ model gsl_stats_wvariance"This model calls the function gsl_stats_wvariance to calculate the weighted variance given the weights ,stride of weights,data, stride of data ,length of the data"
+ parameter Real w[:]={0.2,0.2,0.2,0.2,0.2} ;
+ parameter Integer wstride=1;
+ parameter Real data[:]={1.0,1.0,1.0,1.0,1.0};
+ parameter Integer stride=1;
+ parameter Integer n=5;
+ Real wvariance;
+ algorithm
+ wvariance:=gsl.STATISTICS.chap_21_7.gsl_stats_wvariance(w,wstride,data,stride,n);
+ end gsl_stats_wvariance;
+
+
+ model gsl_stats_wvariance_m"This model calls the function gsl_stats_wvariance to calculate the weighted variance given the weights ,stride of weights,data, stride of data ,length of the data and weighted mean"
+ parameter Real w[:]={0.2,0.2,0.2,0.2,0.2} ;
+ parameter Integer wstride=1;
+ parameter Real data[:]={1.0,1.0,1.0,1.0,1.0};
+ parameter Integer stride=1;
+ parameter Integer n=5;
+ parameter Real wmean=1;
+ Real wvariance;
+ algorithm
+ wvariance:=gsl.STATISTICS.chap_21_7.gsl_stats_wvariance_m(w,wstride,data,stride,n,wmean);
+ end gsl_stats_wvariance_m;
+
+ model gsl_stats_wsd"This model calls the function gsl_stats_wsd to calculate the weighted standard deviation given the weights ,stride of weights,data, stride of data ,length of the data"
+ parameter Real w[:]={0.2,0.2,0.2,0.2,0.2} ;
+ parameter Integer wstride=1;
+ parameter Real data[:]={1.0,1.0,1.0,1.0,1.0};
+ parameter Integer stride=1;
+ parameter Integer n=5;
+ Real wsd;
+ algorithm
+ wsd:=gsl.STATISTICS.chap_21_7.gsl_stats_wsd(w,wstride,data,stride,n);
+ end gsl_stats_wsd;
+
+
+ model gsl_stats_wsd_m"This model calls the function gsl_stats_wsd_m to calculate the weighted standard deviation given the weights ,stride of weights,data, stride of data ,length of the data and weighted mean"
+ parameter Real w[:]={0.2,0.2,0.2,0.2,0.2} ;
+ parameter Integer wstride=1;
+ parameter Real data[:]={1.0,1.0,1.0,1.0,1.0};
+ parameter Integer stride=1;
+ parameter Integer n=5;
+ parameter Real wmean=1;
+ Real wsd;
+ algorithm
+ wsd:=gsl.STATISTICS.chap_21_7.gsl_stats_wsd_m(w,wstride,data,stride,n,wmean);
+ end gsl_stats_wsd_m;
+
+
+
+ model gsl_stats_wvariance_with_fixed_mean"This model calls the function gsl_stats_wvariance_with_fixed_mean to calculate the weighted variance given the weights ,stride of weights,data, stride of data ,length of the data and population mean"
+ parameter Real w[:]={0.2,0.2,0.2,0.2,0.2} ;
+ parameter Integer wstride=1;
+ parameter Real data[:]={1.0,1.0,1.0,1.0,1.0};
+ parameter Integer stride=1;
+ parameter Integer n=5;
+ parameter Real mean=1;
+ Real wvariance;
+ algorithm
+ wvariance:=gsl.STATISTICS.chap_21_7.gsl_stats_wvariance_with_fixed_mean(w,wstride,data,stride,n,mean);
+ end gsl_stats_wvariance_with_fixed_mean;
+
+
+
+
+
+ model gsl_stats_wsd_with_fixed_mean"This model calls the function gsl_stats_wsd_with_fixed_mean to calculate the weighted variance given the weights ,stride of weights,data, stride of data ,length of the data and population mean"
+ parameter Real w[:]={0.2,0.2,0.2,0.2,0.2} ;
+ parameter Integer wstride=1;
+ parameter Real data[:]={1.0,1.0,1.0,1.0,1.0};
+ parameter Integer stride=1;
+ parameter Integer n=5;
+ parameter Real mean=1;
+ Real wsd;
+ algorithm
+ wsd:=gsl.STATISTICS.chap_21_7.gsl_stats_wsd_with_fixed_mean(w,wstride,data,stride,n,mean);
+ end gsl_stats_wsd_with_fixed_mean;
+
+
+ model gsl_stats_wtss"This model calls the function gsl_stats_wtss to calculate the total sum of squares about weighted mean given the weights ,stride of weights,data, stride of data ,length of the data"
+ parameter Real w[:]={0.2,0.2,0.2,0.2,0.2} ;
+ parameter Integer wstride=1;
+ parameter Real data[:]={1.0,1.0,1.0,1.0,1.0};
+ parameter Integer stride=1;
+ parameter Integer n=5;
+ Real wtss;
+ algorithm
+ wtss:=gsl.STATISTICS.chap_21_7.gsl_stats_wtss(w,wstride,data,stride,n);
+ end gsl_stats_wtss;
+
+
+
+ model gsl_stats_wtss_m"This model calls the function gsl_stats_wtss_m to calculate the total sum of squares about weighted mean given the weights ,stride of weights,data, stride of data ,length of the data,weighted mean 'wmean'"
+ parameter Real w[:]={0.2,0.2,0.2,0.2,0.2} ;
+ parameter Integer wstride=1;
+ parameter Real data[:]={1.0,1.0,1.0,1.0,1.0};
+ parameter Integer stride=1;
+ parameter Integer n=5;
+ parameter Real wmean=1;
+ Real wtss;
+ algorithm
+ wtss:=gsl.STATISTICS.chap_21_7.gsl_stats_wtss_m(w,wstride,data,stride,n,wmean);
+ end gsl_stats_wtss_m;
+
+
+ model gsl_stats_wabsdev"This model calls the function gsl_stats_wabsdev to calculate the weighted absolute deviation given the weights ,stride of weights,data, stride of data ,length of the data"
+ parameter Real w[:]={0.2,0.2,0.2,0.2,0.2} ;
+ parameter Integer wstride=1;
+ parameter Real data[:]={1.0,1.0,1.0,1.0,1.0};
+ parameter Integer stride=1;
+ parameter Integer n=5;
+ Real wabsdev;
+ algorithm
+ wabsdev:=gsl.STATISTICS.chap_21_7.gsl_stats_wabsdev(w,wstride,data,stride,n);
+ end gsl_stats_wabsdev;
+
+ model gsl_stats_wabsdev_m"This model calls the function gsl_stats_wabsdev_m to calculate the weighted absolute deviation about weighted mean given the weights ,stride of weights,data, stride of data ,length of the data,weighted mean 'wmean'"
+ parameter Real w[:]={0.2,0.2,0.2,0.2,0.2} ;
+ parameter Integer wstride=1;
+ parameter Real data[:]={1.0,1.0,1.0,1.0,1.0};
+ parameter Integer stride=1;
+ parameter Integer n=5;
+ parameter Real wmean=1;
+ Real wabsdev;
+ algorithm
+ wabsdev:=gsl.STATISTICS.chap_21_7.gsl_stats_wabsdev_m(w,wstride,data,stride,n,wmean);
+ end gsl_stats_wabsdev_m;
+
+ model gsl_stats_wskew"This model calls the function gsl_stats_wskew to calculate the weighted skewness given the weights ,stride of weights,data, stride of data ,length of the data"
+ parameter Real w[:]={0.2,0.2,0.2,0.2,0.2} ;
+ parameter Integer wstride=1;
+ parameter Real data[:]={1.0,1.0,1.0,1.0,1.0};
+ parameter Integer stride=1;
+ parameter Integer n=5;
+ Real wskew;
+ algorithm
+ wskew:=gsl.STATISTICS.chap_21_7.gsl_stats_wskew(w,wstride,data,stride,n);
+ end gsl_stats_wskew;
+
+
+
+ model gsl_stats_wskew_m_sd"This model calls the function gsl_stats_wskew_m_sd to calculate the skewness about weighted mean given the weights ,stride of weights,data, stride of data ,length of the data,weighted mean 'wmean',weighted standard deviation"
+ parameter Real w[:]={0.2,0.2,0.2,0.2,0.2} ;
+ parameter Integer wstride=1;
+ parameter Real data[:]={1.0,1.0,1.0,1.0,1.0};
+ parameter Integer stride=1;
+ parameter Integer n=5;
+ parameter Real wmean=1;
+ parameter Real wsd=0;
+ Real wskew;
+ algorithm
+ wskew:=gsl.STATISTICS.chap_21_7.gsl_stats_wskew_m_sd(w,wstride,data,stride,n,wmean,wsd);
+ end gsl_stats_wskew_m_sd;
+
+
+ model gsl_stats_wkurtosis"This model calls the function gsl_stats_wkurtosis to calculate the weighted kurtosis given the weights ,stride of weights,data, stride of data ,length of the data"
+ parameter Real w[:]={0.2,0.2,0.2,0.2,0.2} ;
+ parameter Integer wstride=1;
+ parameter Real data[:]={1.0,1.0,1.0,1.0,1.0};
+ parameter Integer stride=1;
+ parameter Integer n=5;
+ Real wkurtosis;
+ algorithm
+ wkurtosis:=gsl.STATISTICS.chap_21_7.gsl_stats_wkurtosis(w,wstride,data,stride,n);
+ end gsl_stats_wkurtosis;
+
+ model gsl_stats_wkurtosis_m_sd"This model calls the function gsl_stats_wkurtosis_m_sd to calculate the weighted kurtosis about weighted mean given the weights ,stride of weights,data, stride of data ,length of the data,weighted mean 'wmean',weighted standard deviation"
+ parameter Real w[:]={0.2,0.2,0.2,0.2,0.2} ;
+ parameter Integer wstride=1;
+ parameter Real data[:]={1.0,1.0,1.0,1.0,1.0};
+ parameter Integer stride=1;
+ parameter Integer n=5;
+ parameter Real wmean=1;
+ parameter Real wsd=0;
+ Real wkurtosis;
+ algorithm
+ wkurtosis:=gsl.STATISTICS.chap_21_7.gsl_stats_wkurtosis_m_sd(w,wstride,data,stride,n,wmean,wsd);
+ end gsl_stats_wkurtosis_m_sd;
+
+ end chap_21_7;
+
+ package chap_21_8
+ model gsl_stats_max"This model calls the function gsl_stats_max to return the maximum of the given dataset"
+ parameter Real data[:]={6.0,7.0,8.0,9.0,10.0};
+ parameter Integer stride=1;
+ parameter Integer n=size(data,1);
+ Real max;
+ algorithm
+ max:=gsl.STATISTICS.chap_21_8.gsl_stats_max(data,stride,n);
+ end gsl_stats_max;
+
+
+ model gsl_stats_min"This model calls the function gsl_stats_min to return the maximum of the given dataset"
+ parameter Real data[:]={6.0,7.0,8.0,9.0,10.0};
+ parameter Integer stride=1;
+ parameter Integer n=size(data,1);
+ Real min;
+ algorithm
+ min:=gsl.STATISTICS.chap_21_8.gsl_stats_min(data,stride,n);
+ end gsl_stats_min;
+
+
+ model gsl_stats_minmax"This model calls the function gsl_stats_minmax to return the maximum of the given dataset"
+ Real min;
+ Real max;
+ parameter Real data[:]={6.0,7.0,8.0,9.0,10.0};
+ parameter Integer stride=1;
+ parameter Integer n=size(data,1);
+ algorithm
+ (min,max):=gsl.STATISTICS.chap_21_8.gsl_stats_minmax(data,stride,n);
+ end gsl_stats_minmax;
+
+
+ model gsl_stats_max_index"This model calls the function gsl_stats_max_index to return index of then maximum value of the given dataset"
+ parameter Real data[:]={6.0,7.0,8.0,9.0,10.0};
+ parameter Integer stride=1;
+ parameter Integer n=size(data,1);
+ Real max_index;
+ algorithm
+ max_index:=gsl.STATISTICS.chap_21_8.gsl_stats_max_index(data,stride,n)+1;
+ end gsl_stats_max_index;
+
+ model gsl_stats_min_index"This model calls the function gsl_stats_min_index to return index of then minimum value of the given dataset"
+ parameter Real data[:]={6.0,7.0,8.0,9.0,10.0};
+ parameter Integer stride=1;
+ parameter Integer n=size(data,1);
+ Real min_index;
+ algorithm
+ min_index:=gsl.STATISTICS.chap_21_8.gsl_stats_min_index(data,stride,n)+1;
+ end gsl_stats_min_index;
+
+
+ model gsl_stats_minmax_index"This model calls the function gsl_stats_minmax_index to return the index of maximum and minimum of the given dataset"
+
+ parameter Real data[:]={100.0,7.0,8.0,9.0,10.0};
+ parameter Real stride=1;
+ parameter Integer n=size(data,1);
+ Real min_index;
+ Real max_index;
+ algorithm
+ (min_index,max_index):=gsl.STATISTICS.chap_21_8.gsl_stats_minmax_index(data,stride,n);
+ end gsl_stats_minmax_index;
+ end chap_21_8;
+
+
end statistics;
end Examples;
end gsl; \ No newline at end of file