summaryrefslogtreecommitdiff
path: root/Flight_Eqns/Equations/Equations.tex
blob: dab0ffbcd5fe76ed3da48f398394dd732e96ead5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
\documentclass{article}

\usepackage{amsmath}
\newcommand\inv[1]{#1\raisebox{1.15ex}{$\scriptscriptstyle-\!1$}}


\title{Equation of Motions already included}
\begin{document}
\maketitle

These are the equations already included the 6DOF model.

\[
C_{b/n}=
  \begin{bmatrix}
    cos(\theta)cos(\psi) & cos(\theta)sin(\psi) & -sin(\theta) \\
    -cos(\phi)sin(\psi) + sin(\phi)sin(\theta)cos(\psi) & cos(\phi)cos(\psi) + sin(\phi)sin(\theta)sun(\psi) & sin(\phi)cos(\theta) \\
    sin(\phi)sin(\psi) + cos(\phi)sin(\theta)cos(\psi) & -sin(\phi)cos(\psi) + cos(\phi)sin(\theta)sin(\psi) & cos(\phi)cos(\theta)
  \end{bmatrix}
\]\\
Also represented as: $C_{b/n} = fn(\Theta)$
\\
\[
\Omega=
  \begin{bmatrix}
    0 & -R & Q \\
    R & 0 & -P\\
    -Q & P & 0
  \end{bmatrix}
\]
\\
\[
\left[ \begin{array}{c} 
   \dot{\phi}
\\ \dot{\theta}
\\ \dot{\psi}
 \end{array} \right] = \begin{bmatrix} 1 & tan(\theta)sin(\phi) & tan(\theta)cos(\phi) \\ 0 & cos(\phi) & -sin(\phi)\\
0 &  sin(\phi)/cos(\theta) & cos(\phi)/cos(\theta)
  \end{bmatrix} \times \left[ \begin{array}{c} P\\Q \\ R \end{array} \right]
\\
\]
\\ Also represented as: $\dot{\Phi} = H(\Phi) \omega^b _{b/e}$
\\
\\
${}^b\dot{v}^b_{CM/e} =(\frac{1}{m})F^b_{A,T} + C_{b/n} \times g + \Omega^b _{b/e}\times v^b_{CM/e} $
\\ \\
${}^e \dot{p}^n_{CM/T} = C_{n/b} \times v^b_{CM/e} $
\\ \\
${}^b\dot{\omega}^b_{b/e} = inv(J^b) \times [M^b_{A,T}- \Omega^b_{b/e}\times J^b \times \omega^b_{b/e}]$
\\

These are the equations in the force-moment model.

$\alpha = tan^-1 (w/u) $
\\
$Q = 0.5 \times \rho \times \lVert V \rVert ^2 $
\\\\
$C_{L} = C_{L0} + C_{L \alpha} \times \alpha + (\frac{C_{Lq} \times q \times c_{bar}}{2 \times \lVert V \rVert}) + C_{Lde} \times \delta_{e}  $
\\
$C_{m} = C_{m0} + C{m \alpha} \times \alpha +(\frac{C_{mq}*q*c_{bar}}{(2 \times \lVert V \rVert})+C_{mde} \times \delta_{e}$
\\
$C_{D}  = C_{D0} + K_{drag} \times C_{L} ^2$
\\ \\
$L = C_{L} \times s \times Q$
\\ 
$D = C_{D} \times s \times Q$
\\ \\
$Force = \left[ \begin{array}{c} -D \times cos(\alpha)+L \times sin(\alpha)+ thrust - mg \times sin(\theta)\\0 \\ -D \times sin(\alpha)-L \times cos(\alpha)+mg \times cos(\theta) \end{array} \right]$
\\ \\
$Moment  = \left[ \begin{array}{c} 0\\C_{m} \times s\times c_{bar} \times Q \\ 0 \end{array} \right]$

 \end{document}