summaryrefslogtreecommitdiff
path: root/ldmicro/simulate.cpp
blob: ecb9b0e2dbde46e7622c9317a2ee1b5f039af3ef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
//-----------------------------------------------------------------------------
// Copyright 2007 Jonathan Westhues
//
// This file is part of LDmicro.
// 
// LDmicro is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// 
// LDmicro is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
// 
// You should have received a copy of the GNU General Public License
// along with LDmicro.  If not, see <http://www.gnu.org/licenses/>.
//------
//
// Routines to simulate the logic interactively, for testing purposes. We can
// simulate in real time, triggering off a Windows timer, or we can 
// single-cycle it. The GUI acts differently in simulation mode, to show the
// status of all the signals graphically, show how much time is left on the
// timers, etc.
// Jonathan Westhues, Nov 2004
//-----------------------------------------------------------------------------
#include "linuxUI.h"
//#include <commctrl.h>
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>

#include "ldmicro.h"
#include "intcode.h"
#include "freezeLD.h"

static struct {
    char name[MAX_NAME_LEN];
    BOOL powered;
} SingleBitItems[MAX_IO];
static int SingleBitItemsCount;

static struct {
    char    name[MAX_NAME_LEN];
    SWORD   val;
    DWORD   usedFlags;
} Variables[MAX_IO];
static int VariablesCount;

static struct {
    char    name[MAX_NAME_LEN];
    SWORD   val;
} AdcShadows[MAX_IO];
static int AdcShadowsCount;

#define VAR_FLAG_TON  0x00000001
#define VAR_FLAG_TOF  0x00000002
#define VAR_FLAG_RTO  0x00000004
#define VAR_FLAG_CTU  0x00000008
#define VAR_FLAG_CTD  0x00000010
#define VAR_FLAG_CTC  0x00000020
#define VAR_FLAG_RES  0x00000040
#define VAR_FLAG_ANY  0x00000080

#define VAR_FLAG_OTHERWISE_FORGOTTEN  0x80000000


// Schematic-drawing code needs to know whether we're in simulation mode or
// note, as that changes how everything is drawn; also UI code, to disable
// editing during simulation.
BOOL InSimulationMode;

// Don't want to redraw the screen unless necessary; track whether a coil
// changed state or a timer output switched to see if anything could have
// changed (not just coil, as we show the intermediate steps too).
static BOOL NeedRedraw;
// Have to let the effects of a coil change in cycle k appear in cycle k+1,
// or set by the UI code to indicate that user manually changed an Xfoo
// input.
BOOL SimulateRedrawAfterNextCycle;

// Don't want to set a timer every 100 us to simulate a 100 us cycle
// time...but we can cycle multiple times per timer interrupt and it will
// be almost as good, as long as everything runs fast.
static int CyclesPerTimerTick;

// Program counter as we evaluate the intermediate code.
static int IntPc;

// A window to allow simulation with the UART stuff (insert keystrokes into
// the program, view the output, like a terminal window).
static HWND UartSimulationWindow;
static HWND UartSimulationTextControl;
static LONG_PTR PrevTextProc;

static int QueuedUartCharacter = -1;
static int SimulateUartTxCountdown = 0;

static void AppendToUartSimulationTextControl(BYTE b);

static void SimulateIntCode(void);
static char *MarkUsedVariable(char *name, DWORD flag);

//-----------------------------------------------------------------------------
// Query the state of a single-bit element (relay, digital in, digital out).
// Looks in the SingleBitItems list; if an item is not present then it is
// FALSE by default.
//-----------------------------------------------------------------------------
// static BOOL SingleBitOn(char *name)
// {
//     int i;
//     for(i = 0; i < SingleBitItemsCount; i++) {
//         if(strcmp(SingleBitItems[i].name, name)==0) {
//             return SingleBitItems[i].powered;
//         }
//     }
//     return FALSE;
// }

//-----------------------------------------------------------------------------
// Set the state of a single-bit item. Adds it to the list if it is not there
// already.
//-----------------------------------------------------------------------------
// static void SetSingleBit(char *name, BOOL state)
// {
//     int i;
//     for(i = 0; i < SingleBitItemsCount; i++) {
//         if(strcmp(SingleBitItems[i].name, name)==0) {
//             SingleBitItems[i].powered = state;
//             return;
//         }
//     }
//     if(i < MAX_IO) {
//         strcpy(SingleBitItems[i].name, name);
//         SingleBitItems[i].powered = state;
//         SingleBitItemsCount++;
//     }
// }

//-----------------------------------------------------------------------------
// Count a timer up (i.e. increment its associated count by 1). Must already
// exist in the table.
//-----------------------------------------------------------------------------
// static void IncrementVariable(char *name)
// {
//     int i;
//     for(i = 0; i < VariablesCount; i++) {
//         if(strcmp(Variables[i].name, name)==0) {
//             (Variables[i].val)++;
//             return;
//         }
//     }
//     oops();
// }

//-----------------------------------------------------------------------------
// Set a variable to a value.
//-----------------------------------------------------------------------------
// static void SetSimulationVariable(char *name, SWORD val)
// {
//     int i;
//     for(i = 0; i < VariablesCount; i++) {
//         if(strcmp(Variables[i].name, name)==0) {
//             Variables[i].val = val;
//             return;
//         }
//     }
//     MarkUsedVariable(name, VAR_FLAG_OTHERWISE_FORGOTTEN);
//     SetSimulationVariable(name, val);
// }

//-----------------------------------------------------------------------------
// Read a variable's value.
//-----------------------------------------------------------------------------
// SWORD GetSimulationVariable(char *name)
// {
//     int i;
//     for(i = 0; i < VariablesCount; i++) {
//         if(strcmp(Variables[i].name, name)==0) {
//             return Variables[i].val;
//         }
//     }
//     MarkUsedVariable(name, VAR_FLAG_OTHERWISE_FORGOTTEN);
//     return GetSimulationVariable(name);
// }

//-----------------------------------------------------------------------------
// Set the shadow copy of a variable associated with a READ ADC operation. This
// will get committed to the real copy when the rung-in condition to the
// READ ADC is true.
//-----------------------------------------------------------------------------
// void SetAdcShadow(char *name, SWORD val)
// {
//     int i;
//     for(i = 0; i < AdcShadowsCount; i++) {
//         if(strcmp(AdcShadows[i].name, name)==0) {
//             AdcShadows[i].val = val;
//             return;
//         }
//     }
//     strcpy(AdcShadows[i].name, name);
//     AdcShadows[i].val = val;
//     AdcShadowsCount++;
// }

//-----------------------------------------------------------------------------
// Return the shadow value of a variable associated with a READ ADC. This is
// what gets copied into the real variable when an ADC read is simulated.
//-----------------------------------------------------------------------------
// SWORD GetAdcShadow(char *name)
// {
//     int i;
//     for(i = 0; i < AdcShadowsCount; i++) {
//         if(strcmp(AdcShadows[i].name, name)==0) {
//             return AdcShadows[i].val;
//         }
//     }
//     return 0;
// }

//-----------------------------------------------------------------------------
// Mark how a variable is used; a series of flags that we can OR together,
// then we can check to make sure that only valid combinations have been used
// (e.g. just a TON, an RTO with its reset, etc.). Returns NULL for success,
// else an error string.
//-----------------------------------------------------------------------------
// static char *MarkUsedVariable(char *name, DWORD flag)
// {
//     int i;
//     for(i = 0; i < VariablesCount; i++) {
//         if(strcmp(Variables[i].name, name)==0) {
//             break;
//         }
//     }
//     if(i >= MAX_IO) return "";

//     if(i == VariablesCount) {
//         strcpy(Variables[i].name, name);
//         Variables[i].usedFlags = 0;
//         Variables[i].val = 0;
//         VariablesCount++;
//     }

//     switch(flag) {
//         case VAR_FLAG_TOF:
//             if(Variables[i].usedFlags != 0) 
//                 return _("TOF: variable cannot be used elsewhere");
//             break;

//         case VAR_FLAG_TON:
//             if(Variables[i].usedFlags != 0)
//                 return _("TON: variable cannot be used elsewhere");
//             break;
        
//         case VAR_FLAG_RTO:
//             if(Variables[i].usedFlags & ~VAR_FLAG_RES)
//                 return _("RTO: variable can only be used for RES elsewhere");
//             break;

//         case VAR_FLAG_CTU:
//         case VAR_FLAG_CTD:
//         case VAR_FLAG_CTC:
//         case VAR_FLAG_RES:
//         case VAR_FLAG_ANY:
//             break;

//         case VAR_FLAG_OTHERWISE_FORGOTTEN:
//             if(name[0] != '$') {
//                 Error(_("Variable '%s' not assigned to, e.g. with a "
//                     "MOV statement, an ADD statement, etc.\r\n\r\n"
//                     "This is probably a programming error; now it "
//                     "will always be zero."), name);
//             }
//             break;

//         default:
//             oops();
//     }

//     Variables[i].usedFlags |= flag;
//     return NULL;
// }

//-----------------------------------------------------------------------------
// Check for duplicate uses of a single variable. For example, there should
// not be two TONs with the same name. On the other hand, it would be okay
// to have an RTO with the same name as its reset; in fact, verify that
// there must be a reset for each RTO.
//-----------------------------------------------------------------------------
// static void MarkWithCheck(char *name, int flag)
// {
//     char *s = MarkUsedVariable(name, flag);
//     if(s) {
//         Error(_("Variable for '%s' incorrectly assigned: %s."), name, s);
//     }
// }

// static void CheckVariableNamesCircuit(int which, void *elem)
// {
//     ElemLeaf *l = (ElemLeaf *)elem;
//     char *name = NULL;
//     DWORD flag;

//     switch(which) {
//         case ELEM_SERIES_SUBCKT: {
//             int i;
//             ElemSubcktSeries *s = (ElemSubcktSeries *)elem;
//             for(i = 0; i < s->count; i++) {
//                 CheckVariableNamesCircuit(s->contents[i].which,
//                     s->contents[i].d.any);
//             }
//             break;
//         }

//         case ELEM_PARALLEL_SUBCKT: {
//             int i;
//             ElemSubcktParallel *p = (ElemSubcktParallel *)elem;
//             for(i = 0; i < p->count; i++) {
//                 CheckVariableNamesCircuit(p->contents[i].which,
//                     p->contents[i].d.any);
//             }
//             break;
//         }
        
//         case ELEM_RTO:
//         case ELEM_TOF:
//         case ELEM_TON:
//             if(which == ELEM_RTO)
//                 flag = VAR_FLAG_RTO;
//             else if(which == ELEM_TOF)
//                 flag = VAR_FLAG_TOF;
//             else if(which == ELEM_TON)
//                 flag = VAR_FLAG_TON;
//             else oops();

//             MarkWithCheck(l->d.timer.name, flag);

//             break;

//         case ELEM_CTU:
//         case ELEM_CTD:
//         case ELEM_CTC:
//             if(which == ELEM_CTU)
//                 flag = VAR_FLAG_CTU;
//             else if(which == ELEM_CTD)
//                 flag = VAR_FLAG_CTD;
//             else if(which == ELEM_CTC)
//                 flag = VAR_FLAG_CTC;
//             else oops();

//             MarkWithCheck(l->d.counter.name, flag);

//             break;

//         case ELEM_RES:
//             MarkWithCheck(l->d.reset.name, VAR_FLAG_RES);
//             break;

//         case ELEM_MOVE:
//             MarkWithCheck(l->d.move.dest, VAR_FLAG_ANY);
//             break;

//         case ELEM_LOOK_UP_TABLE:
//             MarkWithCheck(l->d.lookUpTable.dest, VAR_FLAG_ANY);
//             break;

//         case ELEM_PIECEWISE_LINEAR:
//             MarkWithCheck(l->d.piecewiseLinear.dest, VAR_FLAG_ANY);
//             break;

//         case ELEM_READ_ADC:
//             MarkWithCheck(l->d.readAdc.name, VAR_FLAG_ANY);
//             break;

//         case ELEM_ADD:
//         case ELEM_SUB:
//         case ELEM_MUL:
//         case ELEM_DIV:
//             MarkWithCheck(l->d.math.dest, VAR_FLAG_ANY);
//             break;

//         case ELEM_UART_RECV:
//             MarkWithCheck(l->d.uart.name, VAR_FLAG_ANY);
//             break;

//         case ELEM_SHIFT_REGISTER: {
//             int i;
//             for(i = 1; i < l->d.shiftRegister.stages; i++) {
//                 char str[MAX_NAME_LEN+10];
//                 sprintf(str, "%s%d", l->d.shiftRegister.name, i);
//                 MarkWithCheck(str, VAR_FLAG_ANY);
//             }
//             break;
//         }

//         case ELEM_PERSIST:
//         case ELEM_FORMATTED_STRING:
//         case ELEM_SET_PWM:
//         case ELEM_MASTER_RELAY:
//         case ELEM_UART_SEND:
//         case ELEM_PLACEHOLDER:
//         case ELEM_COMMENT:
//         case ELEM_OPEN:
//         case ELEM_SHORT:
//         case ELEM_COIL:
//         case ELEM_CONTACTS:
//         case ELEM_ONE_SHOT_RISING:
//         case ELEM_ONE_SHOT_FALLING:
//         case ELEM_EQU:
//         case ELEM_NEQ:
//         case ELEM_GRT:
//         case ELEM_GEQ:
//         case ELEM_LES:
//         case ELEM_LEQ:
//             break;

//         default:
//             oops();
//     }
// }

// static void CheckVariableNames(void)
// {
//     int i;
//     for(i = 0; i < Prog.numRungs; i++) {
//         CheckVariableNamesCircuit(ELEM_SERIES_SUBCKT, Prog.rungs[i]);
//     }
// }

//-----------------------------------------------------------------------------
// The IF condition is true. Execute the body, up until the ELSE or the
// END IF, and then skip the ELSE if it is present. Called with PC on the
// IF, returns with PC on the END IF.
//-----------------------------------------------------------------------------
// static void IfConditionTrue(void)
// {
//     IntPc++;
//     // now PC is on the first statement of the IF body
//     SimulateIntCode();
//     // now PC is on the ELSE or the END IF
//     if(IntCode[IntPc].op == INT_ELSE) {
//         int nesting = 1;
//         for(; ; IntPc++) {
//             if(IntPc >= IntCodeLen) oops();

//             if(IntCode[IntPc].op == INT_END_IF) {
//                 nesting--;
//             } else if(INT_IF_GROUP(IntCode[IntPc].op)) {
//                 nesting++;
//             }
//             if(nesting == 0) break;
//         }
//     } else if(IntCode[IntPc].op == INT_END_IF) {
//         return;
//     } else {
//         oops();
//     }
// }

//-----------------------------------------------------------------------------
// The IF condition is false. Skip the body, up until the ELSE or the END
// IF, and then execute the ELSE if it is present. Called with PC on the IF,
// returns with PC on the END IF.
//-----------------------------------------------------------------------------
// static void IfConditionFalse(void)
// {
//     int nesting = 0;
//     for(; ; IntPc++) {
//         if(IntPc >= IntCodeLen) oops();

//         if(IntCode[IntPc].op == INT_END_IF) {
//             nesting--;
//         } else if(INT_IF_GROUP(IntCode[IntPc].op)) {
//             nesting++;
//         } else if(IntCode[IntPc].op == INT_ELSE && nesting == 1) {
//             break;
//         }
//         if(nesting == 0) break;
//     }

//     // now PC is on the ELSE or the END IF
//     if(IntCode[IntPc].op == INT_ELSE) {
//         IntPc++;
//         SimulateIntCode();
//     } else if(IntCode[IntPc].op == INT_END_IF) {
//         return;
//     } else {
//         oops();
//     }
// }

//-----------------------------------------------------------------------------
// Evaluate a circuit, calling ourselves recursively to evaluate if/else
// constructs. Updates the on/off state of all the leaf elements in our
// internal tables. Returns when it reaches an end if or an else construct,
// or at the end of the program.
//-----------------------------------------------------------------------------
// static void SimulateIntCode(void)
// {
//     for(; IntPc < IntCodeLen; IntPc++) {
//         IntOp *a = &IntCode[IntPc];
//         switch(a->op) {
//             case INT_SIMULATE_NODE_STATE:
//                 if(*(a->poweredAfter) != SingleBitOn(a->name1))
//                     NeedRedraw = TRUE;
//                 *(a->poweredAfter) = SingleBitOn(a->name1);
//                 break;

//             case INT_SET_BIT:
//                 SetSingleBit(a->name1, TRUE);
//                 break;

//             case INT_CLEAR_BIT:
//                 SetSingleBit(a->name1, FALSE);
//                 break;

//             case INT_COPY_BIT_TO_BIT:
//                 SetSingleBit(a->name1, SingleBitOn(a->name2));
//                 break;

//             case INT_SET_VARIABLE_TO_LITERAL:
//                 if(GetSimulationVariable(a->name1) !=
//                     a->literal && a->name1[0] != '$')
//                 {
//                     NeedRedraw = TRUE;
//                 }
//                 SetSimulationVariable(a->name1, a->literal);
//                 break;

//             case INT_SET_VARIABLE_TO_VARIABLE:
//                 if(GetSimulationVariable(a->name1) != 
//                     GetSimulationVariable(a->name2))
//                 {
//                     NeedRedraw = TRUE;
//                 }
//                 SetSimulationVariable(a->name1,
//                     GetSimulationVariable(a->name2));
//                 break;

//             case INT_INCREMENT_VARIABLE:
//                 IncrementVariable(a->name1);
//                 break;

//             {
//                 SWORD v;
//                 case INT_SET_VARIABLE_ADD:
//                     v = GetSimulationVariable(a->name2) +
//                         GetSimulationVariable(a->name3);
//                     goto math;
//                 case INT_SET_VARIABLE_SUBTRACT:
//                     v = GetSimulationVariable(a->name2) -
//                         GetSimulationVariable(a->name3);
//                     goto math;
//                 case INT_SET_VARIABLE_MULTIPLY:
//                     v = GetSimulationVariable(a->name2) *
//                         GetSimulationVariable(a->name3);
//                     goto math;
//                 case INT_SET_VARIABLE_DIVIDE:
//                     if(GetSimulationVariable(a->name3) != 0) {
//                         v = GetSimulationVariable(a->name2) /
//                             GetSimulationVariable(a->name3);
//                     } else {
//                         v = 0;
//                         Error(_("Division by zero; halting simulation"));
//                         StopSimulation();
//                     }
//                     goto math;
// math:
//                     if(GetSimulationVariable(a->name1) != v) {
//                         NeedRedraw = TRUE;
//                         SetSimulationVariable(a->name1, v);
//                     }
//                     break;
//             }

// #define IF_BODY \
//     { \
//         IfConditionTrue(); \
//     } else { \
//         IfConditionFalse(); \
//     }
//             case INT_IF_BIT_SET:
//                 if(SingleBitOn(a->name1))
//                     IF_BODY
//                 break;

//             case INT_IF_BIT_CLEAR:
//                 if(!SingleBitOn(a->name1))
//                     IF_BODY
//                 break;

//             case INT_IF_VARIABLE_LES_LITERAL:
//                 if(GetSimulationVariable(a->name1) < a->literal)
//                     IF_BODY
//                 break;

//             case INT_IF_VARIABLE_EQUALS_VARIABLE:
//                 if(GetSimulationVariable(a->name1) ==
//                     GetSimulationVariable(a->name2))
//                     IF_BODY
//                 break;

//             case INT_IF_VARIABLE_GRT_VARIABLE:
//                 if(GetSimulationVariable(a->name1) >
//                     GetSimulationVariable(a->name2))
//                     IF_BODY
//                 break;

//             case INT_SET_PWM:
//                 // Dummy call will cause a warning if no one ever assigned
//                 // to that variable.
//                 (void)GetSimulationVariable(a->name1);
//                 break;

//             // Don't try to simulate the EEPROM stuff: just hold the EEPROM
//             // busy all the time, so that the program never does anything
//             // with it.
//             case INT_EEPROM_BUSY_CHECK:
//                 SetSingleBit(a->name1, TRUE);
//                 break;

//             case INT_EEPROM_READ:
//             case INT_EEPROM_WRITE:
//                 oops();
//                 break;

//             case INT_READ_ADC:
//                 // Keep the shadow copies of the ADC variables because in
//                 // the real device they will not be updated until an actual
//                 // read is performed, which occurs only for a true rung-in
//                 // condition there.
//                 SetSimulationVariable(a->name1, GetAdcShadow(a->name1));
//                 break;

//             case INT_UART_SEND:
//                 if(SingleBitOn(a->name2) && (SimulateUartTxCountdown == 0)) {
//                     SimulateUartTxCountdown = 2;
//                     AppendToUartSimulationTextControl(
//                         (BYTE)GetSimulationVariable(a->name1));
//                 }
//                 if(SimulateUartTxCountdown == 0) {
//                     SetSingleBit(a->name2, FALSE);
//                 } else {
//                     SetSingleBit(a->name2, TRUE);
//                 }
//                 break;

//             case INT_UART_RECV:
//                 if(QueuedUartCharacter >= 0) {
//                     SetSingleBit(a->name2, TRUE);
//                     SetSimulationVariable(a->name1, (SWORD)QueuedUartCharacter);
//                     QueuedUartCharacter = -1;
//                 } else {
//                     SetSingleBit(a->name2, FALSE);
//                 }
//                 break;

//             case INT_END_IF:
//             case INT_ELSE:
//                 return;

//             case INT_COMMENT:
//                 break;
            
//             default:
//                 oops();
//                 break;
//         }
//     }
// }

//-----------------------------------------------------------------------------
// Called by the Windows timer that triggers cycles when we are running
// in real time.
//-----------------------------------------------------------------------------
// void CALLBACK PlcCycleTimer(HWND hwnd, UINT msg, UINT_PTR id, DWORD time)
// {
//     int i;
//     for(i = 0; i < CyclesPerTimerTick; i++) {
//         SimulateOneCycle(FALSE);
//     }
// }

//-----------------------------------------------------------------------------
// Simulate one cycle of the PLC. Update everything, and keep track of whether
// any outputs have changed. If so, force a screen refresh. If requested do
// a screen refresh regardless.
//-----------------------------------------------------------------------------
// void SimulateOneCycle(BOOL forceRefresh)
// {
//     // When there is an error message up, the modal dialog makes its own
//     // event loop, and there is risk that we would go recursive. So let
//     // us fix that. (Note that there are no concurrency issues; we really
//     // would get called recursively, not just reentrantly.)
//     static BOOL Simulating = FALSE;

//     if(Simulating) return;
//     Simulating = TRUE;

//     NeedRedraw = FALSE;

//     if(SimulateUartTxCountdown > 0) {
//         SimulateUartTxCountdown--;
//     } else {
//         SimulateUartTxCountdown = 0;
//     }

//     IntPc = 0;
//     SimulateIntCode();

//     if(NeedRedraw || SimulateRedrawAfterNextCycle || forceRefresh) {
//         InvalidateRect(MainWindow, NULL, FALSE);
//         ListView_RedrawItems(IoList, 0, Prog.io.count - 1);
//     }

//     SimulateRedrawAfterNextCycle = FALSE;
//     if(NeedRedraw) SimulateRedrawAfterNextCycle = TRUE;

//     Simulating = FALSE;
// }

//-----------------------------------------------------------------------------
// Start the timer that we use to trigger PLC cycles in approximately real
// time. Independently of the given cycle time, just go at 40 Hz, since that
// is about as fast as anyone could follow by eye. Faster timers will just
// go instantly.
//-----------------------------------------------------------------------------
// void StartSimulationTimer(void)
// {
//     int p = Prog.cycleTime/1000;
//     if(p < 5) {
//         SetTimer(MainWindow, TIMER_SIMULATE, 10, PlcCycleTimer);
//         CyclesPerTimerTick = 10000 / Prog.cycleTime;
//     } else {
//         SetTimer(MainWindow, TIMER_SIMULATE, p, PlcCycleTimer);
//         CyclesPerTimerTick = 1;
//     }
// }

//-----------------------------------------------------------------------------
// Clear out all the parameters relating to the previous simulation.
//-----------------------------------------------------------------------------
// void ClearSimulationData(void)
// {
//     VariablesCount = 0;
//     SingleBitItemsCount = 0;
//     AdcShadowsCount = 0;
//     QueuedUartCharacter = -1;
//     SimulateUartTxCountdown = 0;

//     CheckVariableNames();

//     SimulateRedrawAfterNextCycle = TRUE;

//     if(!GenerateIntermediateCode()) {
//         ToggleSimulationMode();
//         return;
//     }

//     SimulateOneCycle(TRUE);
// }

//-----------------------------------------------------------------------------
// Provide a description for an item (Xcontacts, Ycoil, Rrelay, Ttimer,
// or other) in the I/O list.
//-----------------------------------------------------------------------------
// void DescribeForIoList(char *name, char *out)
// {
//     switch(name[0]) {
//         case 'R':
//         case 'X':
//         case 'Y':
//             sprintf(out, "%d", SingleBitOn(name));
//             break;

//         case 'T': {
//             double dtms = GetSimulationVariable(name) *
//                 (Prog.cycleTime / 1000.0);
//             if(dtms < 1000) {
//                 sprintf(out, "%.2f ms", dtms);
//             } else {
//                 sprintf(out, "%.3f s", dtms / 1000);
//             }
//             break;
//         }
//         default: {
//             SWORD v = GetSimulationVariable(name);
//             sprintf(out, "%hd (0x%04hx)", v, v);
//             break;
//         }
//     }
// }

//-----------------------------------------------------------------------------
// Toggle the state of a contact input; for simulation purposes, so that we
// can set the input state of the program.
//-----------------------------------------------------------------------------
// void SimulationToggleContact(char *name)
// {
//     SetSingleBit(name, !SingleBitOn(name));
//     ListView_RedrawItems(IoList, 0, Prog.io.count - 1);
// }

//-----------------------------------------------------------------------------
// Dialog proc for the popup that lets you interact with the UART stuff.
//-----------------------------------------------------------------------------
// static LRESULT CALLBACK UartSimulationProc(HWND hwnd, UINT msg,
//     WPARAM wParam, LPARAM lParam)
// {
//     switch (msg) {
//         case WM_DESTROY:
//             DestroyUartSimulationWindow();
//             break;

//         case WM_CLOSE:
//             break;

//         case WM_SIZE:
//             MoveWindow(UartSimulationTextControl, 0, 0, LOWORD(lParam),
//                 HIWORD(lParam), TRUE);
//             break;

//         case WM_ACTIVATE:
//             if(wParam != WA_INACTIVE) {
//                 SetFocus(UartSimulationTextControl);
//             }
//             break;

//         default:
//             return DefWindowProc(hwnd, msg, wParam, lParam);
//     }
//     return 1;
// }

//-----------------------------------------------------------------------------
// Intercept WM_CHAR messages that to the terminal simulation window so that
// we can redirect them to the PLC program.
//-----------------------------------------------------------------------------
// static LRESULT CALLBACK UartSimulationTextProc(HWND hwnd, UINT msg, 
//     WPARAM wParam, LPARAM lParam)
// {
//     if(msg == WM_CHAR) {
//         QueuedUartCharacter = (BYTE)wParam;
//         return 0;
//     }

//     return CallWindowProc((WNDPROC)PrevTextProc, hwnd, msg, wParam, lParam);
// }

//-----------------------------------------------------------------------------
// Pop up the UART simulation window; like a terminal window where the
// characters that you type go into UART RECV instruction and whatever
// the program puts into UART SEND shows up as text.
//-----------------------------------------------------------------------------
// void ShowUartSimulationWindow(void)
// {
//     WNDCLASSEX wc;
//     memset(&wc, 0, sizeof(wc));
//     wc.cbSize = sizeof(wc);

//     wc.style            = CS_BYTEALIGNCLIENT | CS_BYTEALIGNWINDOW | CS_OWNDC |
//                             CS_DBLCLKS;
//     wc.lpfnWndProc      = (WNDPROC)UartSimulationProc;
//     wc.hInstance        = Instance;
//     wc.hbrBackground    = (HBRUSH)COLOR_BTNSHADOW;
//     wc.lpszClassName    = "LDmicroUartSimulationWindow";
//     wc.lpszMenuName     = NULL;
//     wc.hCursor          = LoadCursor(NULL, IDC_ARROW);

//     RegisterClassEx(&wc);

//     DWORD TerminalX = 200, TerminalY = 200, TerminalW = 300, TerminalH = 150;

//     ThawDWORD(TerminalX);
//     ThawDWORD(TerminalY);
//     ThawDWORD(TerminalW);
//     ThawDWORD(TerminalH);

//     if(TerminalW > 800) TerminalW = 100;
//     if(TerminalH > 800) TerminalH = 100;

//     RECT r;
//     GetClientRect(GetDesktopWindow(), &r);
//     if(TerminalX >= (DWORD)(r.right - 10)) TerminalX = 100;
//     if(TerminalY >= (DWORD)(r.bottom - 10)) TerminalY = 100;

//     UartSimulationWindow = CreateWindowClient(WS_EX_TOOLWINDOW |
//         WS_EX_APPWINDOW, "LDmicroUartSimulationWindow",
//         "UART Simulation (Terminal)", WS_VISIBLE | WS_SIZEBOX,
//         TerminalX, TerminalY, TerminalW, TerminalH,
//         NULL, NULL, Instance, NULL);

//     UartSimulationTextControl = CreateWindowEx(0, WC_EDIT, "", WS_CHILD |
//         WS_CLIPSIBLINGS | WS_VISIBLE | ES_AUTOVSCROLL | ES_MULTILINE |
//         WS_VSCROLL, 0, 0, TerminalW, TerminalH, UartSimulationWindow, NULL,
//         Instance, NULL);

//     HFONT fixedFont = CreateFont(14, 0, 0, 0, FW_REGULAR, FALSE, FALSE, FALSE,
//         ANSI_CHARSET, OUT_DEFAULT_PRECIS, CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
//         FF_DONTCARE, "Lucida Console");
//     if(!fixedFont)
//         fixedFont = (HFONT)GetStockObject(SYSTEM_FONT);

//     SendMessage((HWND)UartSimulationTextControl, WM_SETFONT, (WPARAM)fixedFont,
//         TRUE);

//     PrevTextProc = SetWindowLongPtr(UartSimulationTextControl,
//         GWLP_WNDPROC, (LONG_PTR)UartSimulationTextProc);

//     ShowWindow(UartSimulationWindow, TRUE);
//     SetFocus(MainWindow);
// }

//-----------------------------------------------------------------------------
// Get rid of the UART simulation terminal-type window.
//-----------------------------------------------------------------------------
// void DestroyUartSimulationWindow(void)
// {
//     // Try not to destroy the window if it is already destroyed; that is
//     // not for the sake of the window, but so that we don't trash the
//     // stored position.
//     if(UartSimulationWindow == NULL) return;

//     DWORD TerminalX, TerminalY, TerminalW, TerminalH;
//     RECT r;

//     GetClientRect(UartSimulationWindow, &r);
//     TerminalW = r.right - r.left;
//     TerminalH = r.bottom - r.top;

//     GetWindowRect(UartSimulationWindow, &r);
//     TerminalX = r.left;
//     TerminalY = r.top;

//     FreezeDWORD(TerminalX);
//     FreezeDWORD(TerminalY);
//     FreezeDWORD(TerminalW);
//     FreezeDWORD(TerminalH);

//     DestroyWindow(UartSimulationWindow);
//     UartSimulationWindow = NULL;
// }

//-----------------------------------------------------------------------------
// Append a received character to the terminal buffer.
//-----------------------------------------------------------------------------
// static void AppendToUartSimulationTextControl(BYTE b)
// {
//     char append[5];

//     if((isalnum(b) || strchr("[]{};':\",.<>/?`~ !@#$%^&*()-=_+|", b) ||
//         b == '\r' || b == '\n') && b != '\0')
//     {
//         append[0] = b;
//         append[1] = '\0';
//     } else {
//         sprintf(append, "\\x%02x", b);
//     }

// #define MAX_SCROLLBACK 256
//     char buf[MAX_SCROLLBACK];

//     SendMessage(UartSimulationTextControl, WM_GETTEXT, (WPARAM)sizeof(buf),
//         (LPARAM)buf);

//     int overBy = (strlen(buf) + strlen(append) + 1) - sizeof(buf);
//     if(overBy > 0) {
//         memmove(buf, buf + overBy, strlen(buf));
//     }
//     strcat(buf, append);

//     SendMessage(UartSimulationTextControl, WM_SETTEXT, 0, (LPARAM)buf);
//     SendMessage(UartSimulationTextControl, EM_LINESCROLL, 0, (LPARAM)INT_MAX);
// }