1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
|
#include "linuxUI.h"
std::vector<HEAPRECORD> HeapRecords;
HANDLE HeapCreate(DWORD flOptions, SIZE_T dwInitialSize, SIZE_T dwMaximumSize)
{
HANDLE hHeap = NULL;
HEAPRECORD hHeapRecord;
hHeapRecord.dwMaximumSize = dwMaximumSize;
hHeap = malloc(dwInitialSize);
if (hHeap == NULL)
return NULL;
hHeapRecord.dwSize = dwInitialSize;
hHeapRecord.hHeap = hHeap;
hHeapRecord.dwAllocatedSizeOffset = 0;
hHeapRecord.HeapID = HeapRecords.size()+1;
HeapRecords.push_back(hHeapRecord);
return hHeap;
}
LPVOID HeapAlloc(HANDLE hHeap, DWORD dwFlags, SIZE_T dwBytes)
{
if (hHeap == NULL)
{
// printf("Alloc**********NULL HEAP***************\n");
LPVOID p = malloc(dwBytes);
return p;
}
auto it = std::find_if(HeapRecords.begin(), HeapRecords.end(), [&hHeap](HEAPRECORD &Record) { return Record.hHeap == hHeap; });
if (it == HeapRecords.end())
return NULL;
if ((*it).dwAllocatedSizeOffset + dwBytes > (*it).dwSize)
{
if ((*it).dwMaximumSize != 0)
if((*it).dwAllocatedSizeOffset + dwBytes > (*it).dwMaximumSize)
return NULL;
(*it).hHeap = realloc((*it).hHeap, (*it).dwAllocatedSizeOffset + dwBytes);
hHeap = (*it).hHeap;
}
/// HEAP_ZERO_MEMORY is set by default
DWORD flags = MAP_ANONYMOUS;
// if ( !((dwFlags & HEAP_ZERO_MEMORY) == HEAP_ZERO_MEMORY) )
// flags = MAP_ANONYMOUS | MAP_UNINITIALIZED;
/* Use for setting a meamory chunck with some value
* void * memset ( void * ptr, int value, size_t num );
*/
LPVOID p = mmap(hHeap + (*it).dwAllocatedSizeOffset, dwBytes, PROT_EXEC, flags, -1, 0);
if (p == NULL)
return NULL;
(*it).dwAllocatedSizeOffset += dwBytes;
HEAPCHUNCK chunck;
chunck.Chunck = p;
chunck.dwSize = dwBytes;
(*it).Element.push_back(chunck);
return p;
}
BOOL HeapFree(HANDLE hHeap, DWORD dwFlags, LPVOID lpMem)
{
/// if NULL free()
if (hHeap == NULL)
{
// printf("free*********NULL HEAP***************\n");
free(lpMem);
return TRUE;
}
auto heap_it = std::find_if(HeapRecords.begin(), HeapRecords.end(), [&hHeap](HEAPRECORD &Record) { return Record.hHeap == hHeap; });
if (heap_it == HeapRecords.end())
return FALSE;
auto chunck_it = std::find_if((*heap_it).Element.begin(), (*heap_it).Element.end(), [&lpMem](HEAPCHUNCK &Chunck) { return Chunck.Chunck == lpMem; });
if (chunck_it == (*heap_it).Element.end())
return FALSE;
int result = munmap((*chunck_it).Chunck, (*chunck_it).dwSize);
if (result == 0)
{
(*heap_it).Element.erase(chunck_it);
return TRUE;
}
else
return FALSE;
}
HICON LoadImage(HINSTANCE hinst, LPCTSTR lpszName, UINT uType, int cxDesired,
int cyDesired, UINT fuLoad)
{
HICON pixbuf;
GError *error = NULL;
pixbuf = gdk_pixbuf_new_from_file(lpszName, &error);
if(!pixbuf) {
fprintf(stderr, "%s\n", error->message);
g_error_free(error);
}
return pixbuf;
}
void OutputDebugString(char* str)
{
}
double GetTickCount(void)
{
// timespec now;
// clock_gettime()
// if (clock_gettime(CLOCK_MONOTONIC, &now))
// return 0;
return 10.2;//now.tv_sec * 1000.0 + now.tv_nsec / 1000000.0;
}
|