1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
|
/*
* Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors
* http://code.google.com/p/poly2tri/
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of Poly2Tri nor the names of its contributors may be
* used to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// Include guard
#ifndef SHAPES_H
#define SHAPES_H
#include <vector>
#include <cstddef>
#include <assert.h>
#include <cmath>
namespace p2t {
struct Edge;
struct Point
{
double x, y;
/// Default constructor does nothing (for performance).
Point()
{
x = 0.0;
y = 0.0;
}
/// The edges this point constitutes an upper ending point
std::vector<Edge*> edge_list;
/// Construct using coordinates.
Point( double x, double y ) : x( x ), y( y ) {}
/// Set this point to all zeros.
void set_zero()
{
x = 0.0;
y = 0.0;
}
/// Set this point to some specified coordinates.
void set( double x_, double y_ )
{
x = x_;
y = y_;
}
/// Negate this point.
Point operator -() const
{
Point v;
v.set( -x, -y );
return v;
}
/// Add a point to this point.
void operator +=( const Point& v )
{
x += v.x;
y += v.y;
}
/// Subtract a point from this point.
void operator -=( const Point& v )
{
x -= v.x;
y -= v.y;
}
/// Multiply this point by a scalar.
void operator *=( double a )
{
x *= a;
y *= a;
}
/// Get the length of this point (the norm).
double Length() const
{
return sqrt( x * x + y * y );
}
/// Convert this point into a unit point. Returns the Length.
double Normalize()
{
double len = Length();
x /= len;
y /= len;
return len;
}
};
// Represents a simple polygon's edge
struct Edge
{
Point* p, * q;
/// Constructor
Edge( Point& p1, Point& p2 ) : p( &p1 ), q( &p2 )
{
if( p1.y > p2.y )
{
q = &p1;
p = &p2;
}
else if( p1.y == p2.y )
{
if( p1.x > p2.x )
{
q = &p1;
p = &p2;
}
else if( p1.x == p2.x )
{
// Repeat points
assert( false );
}
}
q->edge_list.push_back( this );
}
};
// Triangle-based data structures are know to have better performance than quad-edge structures
// See: J. Shewchuk, "Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator"
// "Triangulations in CGAL"
class Triangle
{
public:
/// Constructor
Triangle( Point& a, Point& b, Point& c );
/// Flags to determine if an edge is a Constrained edge
bool constrained_edge[3];
/// Flags to determine if an edge is a Delauney edge
bool delaunay_edge[3];
Point* GetPoint( const int& index );
Point* PointCW( Point& point );
Point* PointCCW( Point& point );
Point* OppositePoint( Triangle& t, Point& p );
Triangle* GetNeighbor( const int& index );
void MarkNeighbor( Point* p1, Point* p2, Triangle* t );
void MarkNeighbor( Triangle& t );
void MarkConstrainedEdge( const int index );
void MarkConstrainedEdge( Edge& edge );
void MarkConstrainedEdge( Point* p, Point* q );
int Index( const Point* p );
int EdgeIndex( const Point* p1, const Point* p2 );
Triangle* NeighborCW( Point& point );
Triangle* NeighborCCW( Point& point );
bool GetConstrainedEdgeCCW( Point& p );
bool GetConstrainedEdgeCW( Point& p );
void SetConstrainedEdgeCCW( Point& p, bool ce );
void SetConstrainedEdgeCW( Point& p, bool ce );
bool GetDelunayEdgeCCW( Point& p );
bool GetDelunayEdgeCW( Point& p );
void SetDelunayEdgeCCW( Point& p, bool e );
void SetDelunayEdgeCW( Point& p, bool e );
bool Contains( Point* p );
bool Contains( const Edge& e );
bool Contains( Point* p, Point* q );
void Legalize( Point& point );
void Legalize( Point& opoint, Point& npoint );
/**
* Clears all references to all other triangles and points
*/
void Clear();
void ClearNeighbor( Triangle* triangle );
void ClearNeighbors();
void ClearDelunayEdges();
inline bool IsInterior();
inline void IsInterior( bool b );
Triangle& NeighborAcross( Point& opoint );
void DebugPrint();
private:
/// Triangle points
Point* points_[3];
/// Neighbor list
Triangle* neighbors_[3];
/// Has this triangle been marked as an interior triangle?
bool interior_;
};
inline bool cmp( const Point* a, const Point* b )
{
if( a->y < b->y )
{
return true;
}
else if( a->y == b->y )
{
// Make sure q is point with greater x value
if( a->x < b->x )
{
return true;
}
}
return false;
}
/// Add two points_ component-wise.
inline Point operator +( const Point& a, const Point& b )
{
return Point( a.x + b.x, a.y + b.y );
}
/// Subtract two points_ component-wise.
inline Point operator -( const Point& a, const Point& b )
{
return Point( a.x - b.x, a.y - b.y );
}
/// Multiply point by scalar
inline Point operator *( double s, const Point& a )
{
return Point( s * a.x, s * a.y );
}
inline bool operator ==( const Point& a, const Point& b )
{
return a.x == b.x && a.y == b.y;
}
inline bool operator !=( const Point& a, const Point& b )
{
return !(a.x == b.x) && !(a.y == b.y);
}
/// Peform the dot product on two vectors.
inline double Dot( const Point& a, const Point& b )
{
return a.x * b.x + a.y * b.y;
}
/// Perform the cross product on two vectors. In 2D this produces a scalar.
inline double Cross( const Point& a, const Point& b )
{
return a.x * b.y - a.y * b.x;
}
/// Perform the cross product on a point and a scalar. In 2D this produces
/// a point.
inline Point Cross( const Point& a, double s )
{
return Point( s * a.y, -s * a.x );
}
/// Perform the cross product on a scalar and a point. In 2D this produces
/// a point.
inline Point Cross( const double s, const Point& a )
{
return Point( -s * a.y, s * a.x );
}
inline Point* Triangle::GetPoint( const int& index )
{
return points_[index];
}
inline Triangle* Triangle::GetNeighbor( const int& index )
{
return neighbors_[index];
}
inline bool Triangle::Contains( Point* p )
{
return p == points_[0] || p == points_[1] || p == points_[2];
}
inline bool Triangle::Contains( const Edge& e )
{
return Contains( e.p ) && Contains( e.q );
}
inline bool Triangle::Contains( Point* p, Point* q )
{
return Contains( p ) && Contains( q );
}
inline bool Triangle::IsInterior()
{
return interior_;
}
inline void Triangle::IsInterior( bool b )
{
interior_ = b;
}
}
#endif
|