1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
|
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
# MA 02110-1301, USA.
#
from __future__ import division
import pcbnew
import math
class FootprintWizardDrawingAids:
"""
Collection of handy functions to simplify drawing shapes from within
footprint wizards
A "drawing context" is provided which can be used to set and retain
settings such as line tickness and layer
"""
# directions (in degrees, compass-like)
dirN = 0
dirNE = 45
dirE = 90
dirSE = 135
dirS = 180
dirSW = 225
dirW = 270
dirNW = 315
# flip constants
flipNone = 0
flipX = 1 # flip X values, i.e. about Y
flipY = 2 # flip Y valuersabout X
flipBoth = 3
xfrmIDENTITY = [1, 0, 0, 0, 1, 0] # no transform
# these values come from our KiCad Library Convention 0.11
defaultLineThickness = pcbnew.FromMM(0.15)
def DefaultGraphicLayer(self):
return pcbnew.F_SilkS
def DefaultTextValueLayer(self):
return pcbnew.F_Fab
def __init__(self, module):
self.module = module
# drawing context defaults
self.dc = {
'layer': self.DefaultGraphicLayer(),
'lineThickness': self.defaultLineThickness,
'transforms': [],
'transform': self.xfrmIDENTITY
}
def PushTransform(self, mat):
"""
Add a transform to the top of the stack and recompute the
overall transform
"""
self.dc['transforms'].append(mat)
self.RecomputeTransforms()
def PopTransform(self, num=1):
"""
Remove a transform from the top of the stack and recompute the
overall transform
"""
for i in range(num):
mat = self.dc['transforms'].pop()
self.RecomputeTransforms()
return mat
def ResetTransform(self):
"""
Reset the transform stack to the identity matrix
"""
self.dc['transforms'] = []
self.RecomputeTransforms()
def _ComposeMatricesWithIdentity(self, mats):
"""
Compose a sequence of matrices together by sequential
pre-mutiplciation with the identity matrix
"""
x = self.xfrmIDENTITY
for mat in mats:
#precompose with each transform in turn
x = [
x[0] * mat[0] + x[1] * mat[3],
x[0] * mat[1] + x[1] * mat[4],
x[0] * mat[2] + x[1] * mat[5] + x[2],
x[3] * mat[0] + x[4] * mat[3],
x[3] * mat[1] + x[4] * mat[4],
x[3] * mat[2] + x[4] * mat[5] + x[5]]
return x
def RecomputeTransforms(self):
"""
Re-compute the transform stack into a single transform and
store in the DC
"""
self.dc['transform'] = self._ComposeMatricesWithIdentity(
self.dc['transforms'])
def TransformTranslate(self, x, y, push=True):
"""
Set up and return a transform matrix representing a translartion
optionally pushing onto the stack
( 1 0 x )
( 0 1 y )
"""
mat = [1, 0, x, 0, 1, y]
if push:
self.PushTransform(mat)
return mat
def TransformFlipOrigin(self, flip, push=True):
"""
Set up and return a transform matrix representing a horizontal,
vertical or both flip about the origin
"""
mat = None
if flip == self.flipX:
mat = [-1, 0, 0, 0, 1, 0]
elif flip == self.flipY:
mat = [1, 0, 0, 0, -1, 0]
elif flip == self.flipBoth:
mat = [-1, 0, 0, 0, -1, 0]
elif flip == self.flipNone:
mat = self.xfrmIDENTITY
else:
raise ValueError
if push:
self.PushTransform(mat)
return mat
def TransformFlip(self, x, y, flip=flipNone, push=True):
"""
Set up and return a transform matrix representing a horizontal,
vertical or both flip about a point (x,y)
This is performed by a translate-to-origin, flip, translate-
back sequence
"""
mats = [self.TransformTranslate(x, y, push=False),
self.TransformFlipOrigin(flip, push=False),
self.TransformTranslate(-x, -y, push=False)]
#distill into a single matrix
mat = self._ComposeMatricesWithIdentity(mats)
if push:
self.PushTransform(mat)
return mat
def TransformRotationOrigin(self, rot, push=True):
"""
Set up and return a transform matrix representing a rotation
about the origin, and optionally push onto the stack
( cos(t) -sin(t) 0 )
( sin(t) cos(t) 0 )
"""
rads = rot * math.pi / 180
mat = [math.cos(rads), -math.sin(rads), 0,
math.sin(rads), math.cos(rads), 0]
if push:
self.PushTransform(mat)
return mat
def TransformRotation(self, x, y, rot, push=True):
"""
Set up and return a transform matrix representing a rotation
about the point (x,y), and optionally push onto the stack
This is performed by a translate-to-origin, rotate, translate-
back sequence
"""
mats = [self.TransformTranslate(x, y, push=False),
self.TransformRotationOrigin(rot, push=False),
self.TransformTranslate(-x, -y, push=False)]
#distill into a single matrix
mat = self._ComposeMatricesWithIdentity(mats)
if push:
self.PushTransform(mat)
return mat
def TransformScaleOrigin(self, sx, sy=None, push=True):
"""
Set up and return a transform matrix representing a scale about
the origin, and optionally push onto the stack
( sx 0 0 )
( 0 sy 0 )
"""
if sy is None:
sy = sx
mat = [sx, 0, 0, 0, sy, 0]
if push:
self.PushTransform(mat)
return mat
def TransformPoint(self, x, y, mat=None):
"""
Return a point (x, y) transformed by the given matrix, or if
that is not given, the drawing context transform
"""
if not mat:
mat = self.dc['transform']
return pcbnew.wxPoint(x * mat[0] + y * mat[1] + mat[2],
x * mat[3] + y * mat[4] + mat[5])
def SetLineTickness(self, lineThickness):
"""
Set the current pen lineThickness used for subsequent drawing
operations
"""
self.dc['lineThickness'] = lineThickness
def GetLineTickness(self):
"""
Get the current drawing context line tickness
"""
return self.dc['lineThickness']
def SetLayer(self, layer):
"""
Set the current drawing layer, used for subsequent drawing
operations
"""
self.dc['layer'] = layer
def GetLayer(self):
"""
return the current drawing layer, used drawing operations
"""
return self.dc['layer']
def Line(self, x1, y1, x2, y2):
"""
Draw a line from (x1, y1) to (x2, y2)
"""
outline = pcbnew.EDGE_MODULE(self.module)
outline.SetWidth(self.GetLineTickness())
outline.SetLayer(self.GetLayer())
outline.SetShape(pcbnew.S_SEGMENT)
start = self.TransformPoint(x1, y1)
end = self.TransformPoint(x2, y2)
outline.SetStartEnd(start, end)
self.module.Add(outline)
def Circle(self, x, y, r, filled=False):
"""
Draw a circle at (x,y) of radius r
If filled is true, the thickness and radius of the line will be set
such that the circle appears filled
"""
circle = pcbnew.EDGE_MODULE(self.module)
start = self.TransformPoint(x, y)
if filled:
circle.SetWidth(r)
end = self.TransformPoint(x, y + r/2)
else:
circle.SetWidth(self.dc['lineThickness'])
end = self.TransformPoint(x, y + r)
circle.SetLayer(self.dc['layer'])
circle.SetShape(pcbnew.S_CIRCLE)
circle.SetStartEnd(start, end)
self.module.Add(circle)
def Arc(self, cx, cy, sx, sy, a):
"""
Draw an arc based on centre, start and angle
The transform matrix is applied
Note that this won't work properly if the result is not a
circular arc (eg a horzontal scale)
"""
circle = pcbnew.EDGE_MODULE(self.module)
circle.SetWidth(self.dc['lineThickness'])
center = self.TransformPoint(cx, cy)
start = self.TransformPoint(sx, sy)
circle.SetLayer(self.dc['layer'])
circle.SetShape(pcbnew.S_ARC)
# check if the angle needs to be reverse (a flip scaling)
if cmp(self.dc['transform'][0], 0) != cmp(self.dc['transform'][4], 0):
a = -a
circle.SetAngle(a)
circle.SetStartEnd(center, start)
self.module.Add(circle)
# extends from (x1,y1) right
def HLine(self, x, y, l):
"""
Draw a horizontal line from (x,y), rightwards
"""
self.Line(x, y, x + l, y)
def VLine(self, x, y, l):
"""
Draw a vertical line from (x1,y1), downwards
"""
self.Line(x, y, x, y + l)
def Polyline(self, pts, mirrorX=None, mirrorY=None):
"""
Draw a polyline, optinally mirroring around the given points
"""
def _PolyLineInternal(pts):
if len(pts) < 2:
return
for i in range(0, len(pts) - 1):
self.Line(pts[i][0], pts[i][1], pts[i+1][0], pts[i+1][1])
_PolyLineInternal(pts) # original
if mirrorX is not None:
self.TransformFlip(mirrorX, 0, self.flipX)
_PolyLineInternal(pts)
self.PopTransform()
if mirrorY is not None:
self.TransformFlipOrigin(0, mirrorY, self.flipY)
_PolyLineInternal(pts)
self.PopTransform()
if mirrorX is not None and mirrorY is not None:
self.TransformFlip(mirrorX, mirrorY, self.flipBoth) # both
_PolyLineInternal(pts)
self.PopTransform()
def Reference(self, x, y, size, orientation_degree = 0):
"""
Draw the module's reference as the given point.
The actual setting of the reference is not done in this drawing
aid - that is up to the wizard
"""
text_size = pcbnew.wxSize(size, size)
self.module.Reference().SetPos0(self.TransformPoint(x, y))
self.module.Reference().SetTextPosition(
self.module.Reference().GetPos0())
self.module.Reference().SetSize(text_size)
self.module.Reference().SetOrientation(orientation_degree*10) # internal angles are in 0.1 deg
def Value(self, x, y, size, orientation_degree = 0):
"""
As for references, draw the module's value
"""
text_size = pcbnew.wxSize(size, size)
self.module.Value().SetPos0(self.TransformPoint(x, y))
self.module.Value().SetTextPosition(self.module.Value().GetPos0())
self.module.Value().SetSize(text_size)
self.module.Value().SetLayer(self.DefaultTextValueLayer())
self.module.Value().SetOrientation(orientation_degree*10) # internal angles are in 0.1 deg
def Box(self, x, y, w, h):
"""
Draw a rectangular box, centred at (x,y), with given width and
height
"""
pts = [[x - w/2, y - h/2], # left
[x + w/2, y - h/2], # right
[x + w/2, y + h/2], # bottom
[x - w/2, y + h/2], # top
[x - w/2, y - h/2]] # close
self.Polyline(pts)
def NotchedCircle(self, x, y, r, notch_w, notch_h, rotate=0):
"""
Circle radus r centred at (x, y) with a raised or depressed notch
at the top
Notch height is measured from the top of the circle radius
"""
self.TransformRotation(x, y, rotate)
# find the angle where the notch vertical meets the circle
angle_intercept = math.asin(notch_w/(2 * r))
# and find the co-ords of this point
sx = math.sin(angle_intercept) * r
sy = -math.cos(angle_intercept) * r
# NOTE: this may be out by a factor of ten one day
arc_angle = (math.pi * 2 - angle_intercept * 2) * (1800/math.pi)
self.Arc(x,y, sx, sy, arc_angle)
pts = [[sx, sy],
[sx, -r - notch_h],
[-sx, -r - notch_h],
[-sx, sy]]
self.Polyline(pts)
self.PopTransform()
def NotchedBox(self, x, y, w, h, notchW, notchH, rotate=0):
"""
Draw a box with a notch in the top edge
"""
self.TransformRotation(x, y, rotate)
# limit to half the overall width
notchW = min(x + w/2, notchW)
# draw notch
self.Polyline([ # three sides of box
(x - w/2, y - h/2),
(x - w/2, y + h/2),
(x + w/2, y + h/2),
(x + w/2, y - h/2),
# the notch
(notchW/2, y - h/2),
(notchW/2, y - h/2 + notchH),
(-notchW/2, y - h/2 + notchH),
(-notchW/2, y - h/2),
(x - w/2, y - h/2)
])
self.PopTransform()
def BoxWithDiagonalAtCorner(self, x, y, w, h,
setback=pcbnew.FromMM(1.27), flip=flipNone):
"""
Draw a box with a diagonal at the top left corner
"""
self.TransformFlip(x, y, flip, push=True)
pts = [[x - w/2 + setback, y - h/2],
[x - w/2, y - h/2 + setback],
[x - w/2, y + h/2],
[x + w/2, y + h/2],
[x + w/2, y - h/2],
[x - w/2 + setback, y - h/2]]
self.Polyline(pts)
self.PopTransform()
def BoxWithOpenCorner(self, x, y, w, h,
setback=pcbnew.FromMM(1.27), flip=flipNone):
"""
Draw a box with an opening at the top left corner
"""
self.TransformTranslate(x, y)
self.TransformFlipOrigin(flip)
pts = [[- w/2, - h/2 + setback],
[- w/2, + h/2],
[+ w/2, + h/2],
[+ w/2, - h/2],
[- w/2 + setback, - h/2]]
self.Polyline(pts)
self.PopTransform(num=2)
def MarkerArrow(self, x, y, direction=dirN, width=pcbnew.FromMM(1)):
"""
Draw a marker arrow facing in the given direction, with the
point at (x,y)
Direction of 0 is north
"""
self.TransformTranslate(x, y)
self.TransformRotationOrigin(direction)
pts = [[0, 0],
[width / 2, width / 2],
[-width / 2, width / 2],
[0, 0]]
self.Polyline(pts)
self.PopTransform(2)
|