1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
|
// ----------------------------------------------------------------------------------------
// Name : rect_placement.cpp
// Description : A class that fits subrectangles into a power-of-2 rectangle
// (C) Copyright 2000-2002 by Javier Arevalo
// This code is free to use and modify for all purposes
// ----------------------------------------------------------------------------------------
/*
* You have a bunch of rectangular pieces. You need to arrange them in a
* rectangular surface so that they don't overlap, keeping the total area of the
* rectangle as small as possible. This is fairly common when arranging characters
* in a bitmapped font, lightmaps for a 3D engine, and I guess other situations as
* well.
*
* The idea of this algorithm is that, as we add rectangles, we can pre-select
* "interesting" places where we can try to add the next rectangles. For optimal
* results, the rectangles should be added in order. I initially tried using area
* as a sorting criteria, but it didn't work well with very tall or very flat
* rectangles. I then tried using the longest dimension as a selector, and it
* worked much better. So much for intuition...
*
* These "interesting" places are just to the right and just below the currently
* added rectangle. The first rectangle, obviously, goes at the top left, the next
* one would go either to the right or below this one, and so on. It is a weird way
* to do it, but it seems to work very nicely.
*
* The way we search here is fairly brute-force, the fact being that for most off-
* line purposes the performance seems more than adequate. I have generated a
* japanese font with around 8500 characters and all the time was spent generating
* the bitmaps.
*
* Also, for all we care, we could grow the parent rectangle.
*
* I'd be interested in hearing of other approaches to this problem. Make sure
* to post them on http://www.flipcode.com
*/
#include "rect_placement.h"
// --------------------------------------------------------------------------------
// Name :
// Description :
// --------------------------------------------------------------------------------
void CRectPlacement::Init( int w, int h )
{
End();
m_size = TRect( 0, 0, w, h );
m_vPositions.push_back( TPos( 0, 0 ) );
m_area = 0;
}
// --------------------------------------------------------------------------------
// Name :
// Description :
// --------------------------------------------------------------------------------
void CRectPlacement::End()
{
m_vPositions.clear();
m_vRects.clear();
m_size.w = 0;
}
// --------------------------------------------------------------------------------
// Name : IsFree
// Description : Check if the given rectangle is partially or totally used
// --------------------------------------------------------------------------------
bool CRectPlacement::IsFree( const TRect& r ) const
{
if( !m_size.Contains( r ) )
return false;
for( CRectArray::const_iterator it = m_vRects.begin();
it != m_vRects.end(); ++it )
{
if( it->Intersects( r ) )
return false;
}
return true;
}
// --------------------------------------------------------------------------------
// Name : AddPosition
// Description : Add new anchor point
// --------------------------------------------------------------------------------
void CRectPlacement::AddPosition( const TPos& p )
{
// Try to insert anchor as close as possible to the top left corner
// So it will be tried first
bool bFound = false;
CPosArray::iterator it;
for( it = m_vPositions.begin();
!bFound && it != m_vPositions.end();
++it )
{
if( p.x + p.y < it->x + it->y )
bFound = true;
}
if( bFound )
m_vPositions.insert( it, p );
else
m_vPositions.push_back( p );
}
// --------------------------------------------------------------------------------
// Name : AddRect
// Description : Add the given rect and updates anchor points
// --------------------------------------------------------------------------------
void CRectPlacement::AddRect( const TRect& r )
{
m_vRects.push_back( r );
m_area += r.w * r.h;
// Add two new anchor points
AddPosition( TPos( r.x, r.y + r.h ) );
AddPosition( TPos( r.x + r.w, r.y ) );
}
// --------------------------------------------------------------------------------
// Name : AddAtEmptySpot
// Description : Add the given rectangle
// --------------------------------------------------------------------------------
bool CRectPlacement::AddAtEmptySpot( TRect& r )
{
// Find a valid spot among available anchors.
bool bFound = false;
CPosArray::iterator it;
for( it = m_vPositions.begin();
!bFound && it != m_vPositions.end();
++it )
{
TRect Rect( it->x, it->y, r.w, r.h );
if( IsFree( Rect ) )
{
r = Rect;
bFound = true;
break; // Don't let the loop increase the iterator.
}
}
if( bFound )
{
int x, y;
// Remove the used anchor point
m_vPositions.erase( it );
// Sometimes, anchors end up displaced from the optimal position
// due to irregular sizes of the subrects.
// So, try to adjut it up & left as much as possible.
for( x = 1; x <= r.x; x++ )
{
if( !IsFree( TRect( r.x - x, r.y, r.w, r.h ) ) )
break;
}
for( y = 1; y <= r.y; y++ )
{
if( !IsFree( TRect( r.x, r.y - y, r.w, r.h ) ) )
break;
}
if( y > x )
r.y -= y - 1;
else
r.x -= x - 1;
AddRect( r );
}
return bFound;
}
#include <stdio.h>
// --------------------------------------------------------------------------------
// Name : AddAtEmptySpotAutoGrow
// Description : Add a rectangle of the given size, growing our area if needed
// Area grows only until the max given.
// Returns the placement of the rect in the rect's x,y coords
// --------------------------------------------------------------------------------
bool CRectPlacement::AddAtEmptySpotAutoGrow( TRect* pRect, int maxW, int maxH )
{
double growing_factor = 1.2; // Must be > 1.0, and event > 1.1 for fast optimization
#define GROW(x) ((x * growing_factor) + 1)
if( pRect->w <= 0 )
return true;
int orgW = m_size.w;
int orgH = m_size.h;
// Try to add it in the existing space
while( !AddAtEmptySpot( *pRect ) )
{
int pw = m_size.w;
int ph = m_size.h;
// Sanity check - if area is complete.
if( pw >= maxW && ph >= maxH )
{
m_size.w = orgW;
m_size.h = orgH;
return false;
}
// Try growing the smallest dim
if( pw < maxW && ( pw < ph || ( (pw == ph) && (pRect->w >= pRect->h) ) ) )
m_size.w = GROW( pw );
else
m_size.h = GROW( ph );
if( AddAtEmptySpot( *pRect ) )
break;
// Try growing the other dim instead
if( pw != m_size.w )
{
m_size.w = pw;
if( ph < maxW )
m_size.h = GROW( ph );
}
else
{
m_size.h = ph;
if( pw < maxW )
m_size.w = GROW( pw );
}
if( pw != m_size.w || ph != m_size.h )
if( AddAtEmptySpot( *pRect ) )
break;
// Grow both if possible, and reloop.
m_size.w = pw;
m_size.h = ph;
if( pw < maxW )
m_size.w = GROW( pw );
if( ph < maxH )
m_size.h = GROW( ph );
}
return true;
}
|