summaryrefslogtreecommitdiff
path: root/include/ttl/ttl.h
blob: bbcf86ab940817ae56c52cb800bb84c3f1767ca1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
/*
 * Copyright (C) 1998, 2000-2007, 2010, 2011, 2012, 2013 SINTEF ICT,
 * Applied Mathematics, Norway.
 *
 * Contact information: E-mail: tor.dokken@sintef.no
 * SINTEF ICT, Department of Applied Mathematics,
 * P.O. Box 124 Blindern,
 * 0314 Oslo, Norway.
 *
 * This file is part of TTL.
 *
 * TTL is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Affero General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
 *
 * TTL is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Affero General Public License for more details.
 *
 * You should have received a copy of the GNU Affero General Public
 * License along with TTL. If not, see
 * <http://www.gnu.org/licenses/>.
 *
 * In accordance with Section 7(b) of the GNU Affero General Public
 * License, a covered work must retain the producer line in every data
 * file that is created or manipulated using TTL.
 *
 * Other Usage
 * You can be released from the requirements of the license by purchasing
 * a commercial license. Buying such a license is mandatory as soon as you
 * develop commercial activities involving the TTL library without
 * disclosing the source code of your own applications.
 *
 * This file may be used in accordance with the terms contained in a
 * written agreement between you and SINTEF ICT.
 */

#ifndef _TTL_H_
#define _TTL_H_

#include <list>
#include <iterator>

// Debugging
#ifdef DEBUG_TTL
static void errorAndExit( char* aMessage )
{
    cout << "\n!!! ERROR: " << aMessage << " !!!\n" << endl;
    exit(-1);
}
#endif

// Next on TOPOLOGY:
// - get triangle strips
// - weighted graph, algorithms using a weight (real) for each edge,
//   e.g. an "abstract length". Use for minimum spanning tree
//   or some arithmetics on weights?
// - Circulators as defined in CGAL with more STL compliant code

// - analyze in detail locateFace: e.g. detect 0-orbit in case of infinite loop
//   around a node etc.

/**
 * \brief Main interface to TTL
*
* This namespace contains the basic generic algorithms for the TTL,
* the Triangulation Template Library.\n
*
* Examples of functionality are:
* - Incremental Delaunay triangulation
* - Constrained triangulation
* - Insert/remove nodes and constrained edges
* - Traversal operations
* - Misc. queries for extracting information for visualisation systems etc.
*
* \par General requirements and assumptions:
* - \e DART_TYPE and \e TRAITS_TYPE should be implemented in accordance with the description
*   in \ref api.
* - A \b "Requires:" section in the documentation of a function template
*   shows which functionality is required in \e TRAITS_TYPE to
*   support that specific function.\n
*   Functionalty required in \e DART_TYPE is the same (almost) for all
*   function templates; see \ref api and the example referred to.
* - When a reference to a \e dart object is passed to a function in TTL,
*   it is assumed that it is oriented \e counterclockwise (CCW) in a triangle
*   unless it is explicitly mentioned that it can also be \e clockwise (CW).
*   The same applies for a dart that is passed from a function in TTL to
*   the users TRAITS_TYPE class (or struct).
* - When an edge (represented with a dart) is swapped, it is assumed that darts
*   outside the quadrilateral where the edge is a diagonal are not affected by
*   the swap. Thus, \ref hed::TTLtraits::swapEdge "TRAITS_TYPE::swapEdge"
*   must be implemented in accordance with this rule.
*
* \par Glossary:
* - General terms are explained in \ref api.
* - \e CCW - counterclockwise
* - \e CW  - clockwise
* - \e 0_orbit, \e 1_orbit and \e 2_orbit: A sequence of darts around
*   a node, around an edge and in a triangle respectively;
*   see get_0_orbit_interior and get_0_orbit_boundary
* - \e arc - In a triangulation an arc is equivalent with an edge
*
* \see
* \ref ttl_util and \ref api
*
* \author
* �yvind Hjelle, oyvindhj@ifi.uio.no
*/


namespace ttl
{
class TRIANGULATION_HELPER
{
#ifndef DOXYGEN_SHOULD_SKIP_THIS

public:
    TRIANGULATION_HELPER( hed::TRIANGULATION& aTriang ) :
        m_triangulation( aTriang )
    {
    }

    // Delaunay Triangulation
    template <class TRAITS_TYPE, class DART_TYPE, class POINT_TYPE>
    bool InsertNode( DART_TYPE& aDart, POINT_TYPE& aPoint );

    template <class TRAITS_TYPE, class DART_TYPE>
    void RemoveRectangularBoundary( DART_TYPE& aDart );

    template <class TRAITS_TYPE, class DART_TYPE>
    void RemoveNode( DART_TYPE& aDart );

    template <class TRAITS_TYPE, class DART_TYPE>
    void RemoveBoundaryNode( DART_TYPE& aDart );

    template <class TRAITS_TYPE, class DART_TYPE>
    void RemoveInteriorNode( DART_TYPE& aDart );

    // Topological and Geometric Queries
    // ---------------------------------
    template <class TRAITS_TYPE, class POINT_TYPE, class DART_TYPE>
    static bool LocateFaceSimplest( const POINT_TYPE& aPoint, DART_TYPE& aDart );

    template <class TRAITS_TYPE, class POINT_TYPE, class DART_TYPE>
    static bool LocateTriangle( const POINT_TYPE& aPoint, DART_TYPE& aDart );

    template <class TRAITS_TYPE, class POINT_TYPE, class DART_TYPE>
    static bool InTriangle( const POINT_TYPE& aPoint, const DART_TYPE& aDart );

    template <class DART_TYPE, class DART_LIST_TYPE>
    static void GetBoundary( const DART_TYPE& aDart, DART_LIST_TYPE& aBoundary );

    template <class DART_TYPE>
    static bool IsBoundaryEdge( const DART_TYPE& aDart );

    template <class DART_TYPE>
    static bool IsBoundaryFace( const DART_TYPE& aDart );

    template <class DART_TYPE>
    static bool IsBoundaryNode( const DART_TYPE& aDart );

    template <class DART_TYPE>
    static int GetDegreeOfNode( const DART_TYPE& aDart );

    template <class DART_TYPE, class DART_LIST_TYPE>
    static void Get0OrbitInterior( const DART_TYPE& aDart, DART_LIST_TYPE& aOrbit );

    template <class DART_TYPE, class DART_LIST_TYPE>
    static void Get0OrbitBoundary( const DART_TYPE& aDart, DART_LIST_TYPE& aOrbit );

    template <class DART_TYPE>
    static bool Same0Orbit( const DART_TYPE& aD1, const DART_TYPE& aD2 );

    template <class DART_TYPE>
    static bool Same1Orbit( const DART_TYPE& aD1, const DART_TYPE& aD2 );

    template <class DART_TYPE>
    static bool Same2Orbit( const DART_TYPE& aD1, const DART_TYPE& aD2 );

    template <class TRAITS_TYPE, class DART_TYPE>
    static bool SwappableEdge( const DART_TYPE& aDart, bool aAllowDegeneracy = false );

    template <class DART_TYPE>
    static void PositionAtNextBoundaryEdge( DART_TYPE& aDart );

    template <class TRAITS_TYPE, class DART_TYPE>
    static bool ConvexBoundary( const DART_TYPE& aDart );

    // Utilities for Delaunay Triangulation
    // ------------------------------------
    template <class TRAITS_TYPE, class DART_TYPE, class DART_LIST_TYPE>
    void OptimizeDelaunay( DART_LIST_TYPE& aElist );

    template <class TRAITS_TYPE, class DART_TYPE, class DART_LIST_TYPE>
    void OptimizeDelaunay( DART_LIST_TYPE& aElist, const typename DART_LIST_TYPE::iterator aEnd );

    template <class TRAITS_TYPE, class DART_TYPE>
    bool SwapTestDelaunay( const DART_TYPE& aDart, bool aCyclingCheck = false ) const;

    template <class TRAITS_TYPE, class DART_TYPE>
    void RecSwapDelaunay( DART_TYPE& aDiagonal );

    template <class TRAITS_TYPE, class DART_TYPE, class LIST_TYPE>
    void SwapEdgesAwayFromInteriorNode( DART_TYPE& aDart, LIST_TYPE& aSwappedEdges );

    template <class TRAITS_TYPE, class DART_TYPE, class LIST_TYPE>
    void SwapEdgesAwayFromBoundaryNode( DART_TYPE& aDart, LIST_TYPE& aSwappedEdges );

    template <class TRAITS_TYPE, class DART_TYPE, class DART_LIST_TYPE>
    void SwapEdgeInList( const typename DART_LIST_TYPE::iterator& aIt, DART_LIST_TYPE& aElist );

    // Constrained Triangulation
    // -------------------------
    template <class TRAITS_TYPE, class DART_TYPE>
    static DART_TYPE InsertConstraint( DART_TYPE& aDStart, DART_TYPE& aDEnd, bool aOptimizeDelaunay );

private:
    hed::TRIANGULATION& m_triangulation;

    template <class TRAITS_TYPE, class FORWARD_ITERATOR, class DART_TYPE>
    void insertNodes( FORWARD_ITERATOR aFirst, FORWARD_ITERATOR aLast, DART_TYPE& aDart );

    template <class TOPOLOGY_ELEMENT_TYPE, class DART_TYPE>
    static bool isMemberOfFace( const TOPOLOGY_ELEMENT_TYPE& aTopologyElement, const DART_TYPE& aDart );

    template <class TRAITS_TYPE, class NODE_TYPE, class DART_TYPE>
    static bool locateFaceWithNode( const NODE_TYPE& aNode, DART_TYPE& aDartIter );

    template <class DART_TYPE>
    static void getAdjacentTriangles( const DART_TYPE& aDart, DART_TYPE& aT1, DART_TYPE& aT2,
                                      DART_TYPE& aT3 );

    template <class DART_TYPE>
    static void getNeighborNodes( const DART_TYPE& aDart, std::list<DART_TYPE>& aNodeList,
                                  bool& aBoundary );

    template <class TRAITS_TYPE, class DART_TYPE>
    static bool degenerateTriangle( const DART_TYPE& aDart );
};

#endif // DOXYGEN_SHOULD_SKIP_THIS


  /** @name Delaunay Triangulation */
//@{
/**
 * Inserts a new node in an existing Delaunay triangulation and
 * swaps edges to obtain a new Delaunay triangulation.
 * This is the basic function for incremental Delaunay triangulation.
 * When starting from a set of points, an initial Delaunay triangulation
 * can be created as two triangles forming a rectangle that contains
 * all the points.
 * After \c insertNode has been called repeatedly with all the points,
 * removeRectangularBoundary can be called to remove triangles
 * at the boundary of the triangulation so that the boundary
 * form the convex hull of the points.
 *
 * Note that this incremetal scheme will run much faster if the points
 * have been sorted lexicographically on \e x and \e y.
 *
 * \param aDart
 * An arbitrary CCW dart in the tringulation.\n
 * Output: A CCW dart incident to the new node.
 *
 * \param aPoint
 * A point (node) to be inserted in the triangulation.
 *
 * \retval bool
 * \c true if \e point was inserted; \c false if not.\n
 * If \e point is outside the triangulation, or the input dart is not valid,
 * \c false is returned.
 *
 * \require
 *  - \ref hed::TTLtraits::splitTriangle "TRAITS_TYPE::splitTriangle" (DART_TYPE&, const POINT_TYPE&)
 *
 * \using
 * - locateTriangle
 * - RecSwapDelaunay
 *
 * \note
 * - For efficiency reasons \e dart should be close to the insertion \e point.
 *
 * \see
 * removeRectangularBoundary
 */
template <class TRAITS_TYPE, class DART_TYPE, class POINT_TYPE>
bool TRIANGULATION_HELPER::InsertNode( DART_TYPE& aDart, POINT_TYPE& aPoint )
{
    bool found = LocateTriangle<TRAITS_TYPE>( aPoint, aDart );

    if( !found )
    {
#ifdef DEBUG_TTL
        cout << "ERROR: Triangulation::insertNode: NO triangle found. /n";
#endif
        return false;
    }

    // ??? can we hide the dart? this is not possible if one triangle only
    m_triangulation.splitTriangle( aDart, aPoint );

    DART_TYPE d1 = aDart;
    d1.Alpha2().Alpha1().Alpha2().Alpha0().Alpha1();

    DART_TYPE d2 = aDart;
    d2.Alpha1().Alpha0().Alpha1();

    // Preserve a dart as output incident to the node and CCW
    DART_TYPE d3 = aDart;
    d3.Alpha2();
    aDart = d3; // and see below
    //DART_TYPE dsav = d3;
    d3.Alpha0().Alpha1();

    //if (!TRAITS_TYPE::fixedEdge(d1) && !IsBoundaryEdge(d1)) {
    if( !IsBoundaryEdge( d1 ) )
    {
        d1.Alpha2();
        RecSwapDelaunay<TRAITS_TYPE>( d1 );
    }

    //if (!TRAITS_TYPE::fixedEdge(d2) && !IsBoundaryEdge(d2)) {
    if( !IsBoundaryEdge( d2 ) )
    {
        d2.Alpha2();
        RecSwapDelaunay<TRAITS_TYPE>( d2 );
    }

    // Preserve the incoming dart as output incident to the node and CCW
    //d = dsav.Alpha2();
    aDart.Alpha2();
    //if (!TRAITS_TYPE::fixedEdge(d3) && !IsBoundaryEdge(d3)) {
    if( !IsBoundaryEdge( d3 ) )
    {
        d3.Alpha2();
        RecSwapDelaunay<TRAITS_TYPE>( d3 );
    }

    return true;
}

//------------------------------------------------------------------------------------------------
// Private/Hidden function (might change later)
template <class TRAITS_TYPE, class FORWARD_ITERATOR, class DART_TYPE>
void TRIANGULATION_HELPER::insertNodes( FORWARD_ITERATOR aFirst, FORWARD_ITERATOR aLast,
                                        DART_TYPE& aDart )
{

    // Assumes that the dereferenced point objects are pointers.
    // References to the point objects are then passed to TTL.

    FORWARD_ITERATOR it;
    for( it = aFirst; it != aLast; ++it )
    {
        InsertNode<TRAITS_TYPE>( aDart, **it );
    }
}


/** Removes the rectangular boundary of a triangulation as a final step of an
 *   incremental Delaunay triangulation.
 *   The four nodes at the corners will be removed and the resulting triangulation
 *   will have a convex boundary and be Delaunay.
 *
 *   \param dart
 *   A CCW dart at the boundary of the triangulation\n
 *   Output: A CCW dart at the new boundary
 *
 *   \using
 *   - RemoveBoundaryNode
 *
 *   \note
 *   - This function requires that the boundary of the m_triangulation is
 *     a rectangle with four nodes (one in each corner).
 */
template <class TRAITS_TYPE, class DART_TYPE>
void TRIANGULATION_HELPER::RemoveRectangularBoundary( DART_TYPE& aDart )
{
    DART_TYPE d_next = aDart;
    DART_TYPE d_iter;

    for( int i = 0; i < 4; i++ )
    {
        d_iter = d_next;
        d_next.Alpha0();
        PositionAtNextBoundaryEdge( d_next );
        RemoveBoundaryNode<TRAITS_TYPE>( d_iter );
    }

    aDart = d_next; // Return a dart at the new boundary
}

/** Removes the node associated with \e dart and
 *   updates the triangulation to be Delaunay.
 *
 *   \using
 *   - RemoveBoundaryNode if \e dart represents a node at the boundary
 *   - RemoveInteriorNode if \e dart represents an interior node
 *
 *   \note
 *   - The node cannot belong to a fixed (constrained) edge that is not
 *     swappable. (An endless loop is likely to occur in this case).
 */
template <class TRAITS_TYPE, class DART_TYPE>
void TRIANGULATION_HELPER::RemoveNode( DART_TYPE& aDart )
{

    if( isBoundaryNode( aDart ) )
        RemoveBoundaryNode<TRAITS_TYPE>( aDart );
    else
        RemoveInteriorNode<TRAITS_TYPE>( aDart );
}

/** Removes the boundary node associated with \e dart and
 *   updates the triangulation to be Delaunay.
 *
 *   \using
 *   - SwapEdgesAwayFromBoundaryNode
 *   - OptimizeDelaunay
 *
 *   \require
 *   - \ref hed::TTLtraits::removeBoundaryTriangle "TRAITS_TYPE::removeBoundaryTriangle" (Dart&)
 */
template <class TRAITS_TYPE, class DART_TYPE>
void TRIANGULATION_HELPER::RemoveBoundaryNode( DART_TYPE& aDart )
{

    // ... and update Delaunay
    // - CCW dart must be given (for remove)
    // - No dart is delivered back now (but this is possible if
    //   we assume that there is not only one triangle left in the m_triangulation.

    // Position at boundary edge and CCW
    if( !IsBoundaryEdge( aDart ) )
    {
        aDart.Alpha1(); // ensures that next function delivers back a CCW dart (if the given dart is CCW)
        PositionAtNextBoundaryEdge( aDart );
    }

    std::list<DART_TYPE> swapped_edges;
    SwapEdgesAwayFromBoundaryNode<TRAITS_TYPE>( aDart, swapped_edges );

    // Remove boundary triangles and remove the new boundary from the list
    // of swapped edges, see below.
    DART_TYPE d_iter = aDart;
    DART_TYPE dnext = aDart;
    bool bend = false;
    while( bend == false )
    {
        dnext.Alpha1().Alpha2();
        if( IsBoundaryEdge( dnext ) )
            bend = true; // Stop when boundary

        // Generic: Also remove the new boundary from the list of swapped edges
        DART_TYPE n_bedge = d_iter;
        n_bedge.Alpha1().Alpha0().Alpha1().Alpha2(); // new boundary edge

        // ??? can we avoid find if we do this in swap away?
        typename std::list<DART_TYPE>::iterator it;
        it = find( swapped_edges.begin(), swapped_edges.end(), n_bedge );

        if( it != swapped_edges.end() )
            swapped_edges.erase( it );

        // Remove the boundary triangle
        m_triangulation.removeBoundaryTriangle( d_iter );
        d_iter = dnext;
    }

    // Optimize Delaunay
    typedef std::list<DART_TYPE> DART_LIST_TYPE;
    OptimizeDelaunay<TRAITS_TYPE, DART_TYPE, DART_LIST_TYPE>( swapped_edges );
}


/** Removes the interior node associated with \e dart and
 *   updates the triangulation to be Delaunay.
 *
 *   \using
 *   - SwapEdgesAwayFromInteriorNode
 *   - OptimizeDelaunay
 *
 *   \require
 *   - \ref hed::TTLtraits::reverse_splitTriangle "TRAITS_TYPE::reverse_splitTriangle" (Dart&)
 *
 *   \note
 *   - The node cannot belong to a fixed (constrained) edge that is not
 *     swappable. (An endless loop is likely to occur in this case).
 */
template <class TRAITS_TYPE, class DART_TYPE>
void TRIANGULATION_HELPER::RemoveInteriorNode( DART_TYPE& aDart )
{
    // ... and update to Delaunay.
    // Must allow degeneracy temporarily, see comments in swap edges away
    // Assumes:
    // - revese_splitTriangle does not affect darts
    //   outside the resulting triangle.

    // 1) Swaps edges away from the node until degree=3 (generic)
    // 2) Removes the remaining 3 triangles and creates a new to fill the hole
    //    unsplitTriangle which is required
    // 3) Runs LOP on the platelet to obtain a Delaunay m_triangulation
    // (No dart is delivered as output)

    // Assumes dart is counterclockwise

    std::list<DART_TYPE> swapped_edges;
    SwapEdgesAwayFromInteriorNode<TRAITS_TYPE>( aDart, swapped_edges );

    // The reverse operation of split triangle:
    // Make one triangle of the three triangles at the node associated with dart
    // TRAITS_TYPE::
    m_triangulation.reverseSplitTriangle( aDart );

    // ???? Not generic yet if we are very strict:
    // When calling unsplit triangle, darts at the three opposite sides may
    // change!
    // Should we hide them longer away??? This is possible since they cannot
    // be boundary edges.
    // ----> Or should we just require that they are not changed???

    // Make the swapped-away edges Delaunay.
    // Note the theoretical result: if there are no edges in the list,
    // the triangulation is Delaunay already

    OptimizeDelaunay<TRAITS_TYPE, DART_TYPE>( swapped_edges );
}

//@} // End of Delaunay Triangulation Group

/** @name Topological and Geometric Queries */
//@{
//------------------------------------------------------------------------------------------------
// Private/Hidden function (might change later)
template <class TOPOLOGY_ELEMENT_TYPE, class DART_TYPE>
bool TRIANGULATION_HELPER::isMemberOfFace( const TOPOLOGY_ELEMENT_TYPE& aTopologyElement,
                                           const DART_TYPE& aDart )
{
    // Check if the given topology element (node, edge or face) is a member of the face
    // Assumes:
    // - DART_TYPE::isMember(TOPOLOGY_ELEMENT_TYPE)

    DART_TYPE dart_iter = aDart;

    do
    {
        if( dart_iter.isMember( aTopologyElement ) )
            return true;
        dart_iter.Alpha0().Alpha1();
    }
    while( dart_iter != aDart );

    return false;
}

//------------------------------------------------------------------------------------------------
// Private/Hidden function (might change later)
template <class TRAITS_TYPE, class NODE_TYPE, class DART_TYPE>
bool TRIANGULATION_HELPER::locateFaceWithNode( const NODE_TYPE& aNode, DART_TYPE& aDartIter )
{
    // Locate a face in the topology structure with the given node as a member
    // Assumes:
    // - TRAITS_TYPE::Orient2D(DART_TYPE, DART_TYPE, NODE_TYPE)
    // - DART_TYPE::isMember(NODE_TYPE)
    // - Note that if false is returned, the node might still be in the
    //   topology structure. Application programmer
    //   should check all if by hypothesis the node is in the topology structure;
    //   see doc. on LocateTriangle.

    bool status = LocateFaceSimplest<TRAITS_TYPE>( aNode, aDartIter );

    if( status == false )
        return status;

    // True was returned from LocateFaceSimplest, but if the located triangle is
    // degenerate and the node is on the extension of the edges,
    // the node might still be inside. Check if node is a member and return false
    // if not. (Still the node might be in the topology structure, see doc. above
    // and in locateTriangle(const POINT_TYPE& point, DART_TYPE& dart_iter)

    return isMemberOfFace( aNode, aDartIter );
}

/** Locates the face containing a given point.
 *   It is assumed that the tessellation (e.g. a triangulation) is \e regular in the sense that
 *   there are no holes, the boundary is convex and there are no degenerate faces.
 *
 *   \param aPoint
 *   A point to be located
 *
 *   \param aDart
 *   An arbitrary CCW dart in the triangulation\n
 *   Output: A CCW dart in the located face
 *
 *   \retval bool
 *   \c true if a face is found; \c false if not.
 *
 *   \require
 *   - \ref hed::TTLtraits::Orient2D "TRAITS_TYPE::Orient2D" (DART_TYPE&, DART_TYPE&, POINT_TYPE&)
 *
 *   \note
 *   - If \c false is returned, \e point may still be inside a face if the tessellation is not
 *     \e regular as explained above.
 *
 *   \see
 *   LocateTriangle
 */
template <class TRAITS_TYPE, class POINT_TYPE, class DART_TYPE>
bool TRIANGULATION_HELPER::LocateFaceSimplest( const POINT_TYPE& aPoint, DART_TYPE& aDart )
{
    // Not degenerate triangles if point is on the extension of the edges
    // But inTriangle may be called in case of true (may update to inFace2)
    // Convex boundary
    // no holes
    // convex faces (works for general convex faces)
    // Not specialized for triangles, but ok?
    //
    // TRAITS_TYPE::orint2d(POINT_TYPE) is the half open half-plane defined
    // by the dart:
    // n1 = dart.node()
    // n2 = dart.Alpha0().node
    // Only the following gives true:
    // ((n2->x()-n1->x())*(point.y()-n1->y()) >= (point.x()-n1->x())*(n2->y()-n1->y()))

    DART_TYPE dart_start;
    dart_start = aDart;
    DART_TYPE dart_prev;

    DART_TYPE d0;
    for( ;; )
    {
        d0 = aDart;
        d0.Alpha0();

        if( TRAITS_TYPE::Orient2D( aDart, d0, aPoint ) >= 0 )
        {
            aDart.Alpha0().Alpha1();
            if( aDart == dart_start )
                return true; // left to all edges in face
        }
        else
        {
            dart_prev = aDart;
            aDart.Alpha2();

            if( aDart == dart_prev )
                return false; // iteration to outside boundary

            dart_start = aDart;
            dart_start.Alpha0();

            aDart.Alpha1(); // avoid twice on same edge and ccw in next
        }
    }
}


/** Locates the triangle containing a given point.
 *   It is assumed that the triangulation is \e regular in the sense that there
 *   are no holes and the boundary is convex.
 *   This function deals with degeneracy to some extent, but round-off errors may still
 *   lead to a wrong result if triangles are degenerate.
 *
 *   \param point
 *   A point to be located
 *
 *   \param dart
 *   An arbitrary CCW dart in the triangulation\n
 *   Output: A CCW dart in the located triangle
 *
 *   \retval bool
 *   \c true if a triangle is found; \c false if not.\n
 *   If \e point is outside the m_triangulation, in which case \c false is returned,
 *   then the edge associated with \e dart will be at the boundary of the m_triangulation.
 *
 *   \using
 *   - LocateFaceSimplest
 *   - InTriangle
 */
template <class TRAITS_TYPE, class POINT_TYPE, class DART_TYPE>
bool TRIANGULATION_HELPER::LocateTriangle( const POINT_TYPE& aPoint, DART_TYPE& aDart )
{
    // The purpose is to have a fast and stable procedure that
    //  i) avoids concluding that a point is inside a triangle if it is not inside
    // ii) avoids infinite loops

    // Thus, if false is returned, the point might still be inside a triangle in
    // the triangulation. But this will probably only occur in the following cases:
    //  i) There are holes in the triangulation which causes the procedure to stop.
    // ii) The boundary of the m_triangulation is not convex.
    // ii) There might be degenerate triangles interior to the triangulation, or on the
    //     the boundary, which in some cases might cause the procedure to stop there due
    //     to the logic of the algorithm.

    // It is the application programmer's responsibility to check further if false is
    // returned. For example, if by hypothesis the point is inside a triangle
    // in the triangulation and and false is returned, then all triangles in the
    // triangulation should be checked by the application. This can be done using
    // the function:
    // bool inTriangle(const POINT_TYPE& point, const DART_TYPE& dart).

    // Assumes:
    // - CrossProduct2D, ScalarProduct2D etc., see functions called

    bool status = LocateFaceSimplest<TRAITS_TYPE>( aPoint, aDart );

    if( status == false )
        return status;

    // There may be degeneracy, i.e., the point might be outside the triangle
    // on the extension of the edges of a degenerate triangle.

    // The next call returns true if inside a non-degenerate or a degenerate triangle,
    // but false if the point coincides with the "supernode" in the case where all
    // edges are degenerate.
    return InTriangle<TRAITS_TYPE>( aPoint, aDart );
}

/** Checks if \e point is inside the triangle associated with \e dart.
 *   This function deals with degeneracy to some extent, but round-off errors may still
 *   lead to wrong result if the triangle is degenerate.
 *
 *   \param aDart
 *   A CCW dart in the triangle
 *
 *   \require
 *    - \ref hed::TTLtraits::CrossProduct2D "TRAITS_TYPE::CrossProduct2D" (DART_TYPE&, POINT_TYPE&)
 *    - \ref hed::TTLtraits::ScalarProduct2D "TRAITS_TYPE::ScalarProduct2D" (DART_TYPE&, POINT_TYPE&)
 *
 *   \see
 *   InTriangleSimplest
 */
template <class TRAITS_TYPE, class POINT_TYPE, class DART_TYPE>
bool TRIANGULATION_HELPER::InTriangle( const POINT_TYPE& aPoint, const DART_TYPE& aDart )
{

    // SHOULD WE INCLUDE A STRATEGY WITH EDGE X e_1 ETC? TO GUARANTEE THAT
    // ONLY ON ONE EDGE? BUT THIS DOES NOT SOLVE PROBLEMS WITH
    // notInE1 && notInE1.neghbour ?

    // Returns true if inside (but not necessarily strictly inside)
    // Works for degenerate triangles, but not when all edges are degenerate,
    // and the aPoint coincides with all nodes;
    // then false is always returned.

    typedef typename TRAITS_TYPE::REAL_TYPE REAL_TYPE;

    DART_TYPE dart_iter = aDart;

    REAL_TYPE cr1 = TRAITS_TYPE::CrossProduct2D( dart_iter, aPoint );
    if( cr1 < 0 )
        return false;

    dart_iter.Alpha0().Alpha1();
    REAL_TYPE cr2 = TRAITS_TYPE::CrossProduct2D( dart_iter, aPoint );

    if( cr2 < 0 )
        return false;

    dart_iter.Alpha0().Alpha1();
    REAL_TYPE cr3 = TRAITS_TYPE::CrossProduct2D( dart_iter, aPoint );
    if( cr3 < 0 )
        return false;

    // All cross products are >= 0
    // Check for degeneracy
    if( cr1 != 0 || cr2 != 0 || cr3 != 0 )
        return true; // inside non-degenerate face

    // All cross-products are zero, i.e. degenerate triangle, check if inside
    // Strategy: d.ScalarProduct2D >= 0 && alpha0(d).d.ScalarProduct2D >= 0 for one of
    // the edges. But if all edges are degenerate and the aPoint is on (all) the nodes,
    // then "false is returned".

    DART_TYPE dart_tmp = dart_iter;
    REAL_TYPE sc1 = TRAITS_TYPE::ScalarProduct2D( dart_tmp, aPoint );
    REAL_TYPE sc2 = TRAITS_TYPE::ScalarProduct2D( dart_tmp.Alpha0(), aPoint );

    if( sc1 >= 0 && sc2 >= 0 )
    {
        // test for degenerate edge
        if( sc1 != 0 || sc2 != 0 )
            return true; // interior to this edge or on a node (but see comment above)
    }

    dart_tmp = dart_iter.Alpha0().Alpha1();
    sc1 = TRAITS_TYPE::ScalarProduct2D( dart_tmp, aPoint );
    sc2 = TRAITS_TYPE::ScalarProduct2D( dart_tmp.Alpha0(), aPoint );

    if( sc1 >= 0 && sc2 >= 0 )
    {
        // test for degenerate edge
        if( sc1 != 0 || sc2 != 0 )
            return true; // interior to this edge or on a node (but see comment above)
    }

    dart_tmp = dart_iter.Alpha1();
    sc1 = TRAITS_TYPE::ScalarProduct2D( dart_tmp, aPoint );
    sc2 = TRAITS_TYPE::ScalarProduct2D( dart_tmp.Alpha0(), aPoint );

    if( sc1 >= 0 && sc2 >= 0 )
    {
        // test for degenerate edge
        if( sc1 != 0 || sc2 != 0 )
            return true; // interior to this edge or on a node (but see comment above)
    }

    // Not on any of the edges of the degenerate triangle.
    // The only possibility for the aPoint to be "inside" is that all edges are degenerate
    // and the point coincide with all nodes. So false is returned in this case.

    return false;
}


  //------------------------------------------------------------------------------------------------
// Private/Hidden function (might change later)
template <class DART_TYPE>
void TRIANGULATION_HELPER::getAdjacentTriangles( const DART_TYPE& aDart, DART_TYPE& aT1,
                                                 DART_TYPE& aT2, DART_TYPE& aT3 )
{

    DART_TYPE dart_iter = aDart;

    // add first
    if( dart_iter.Alpha2() != aDart )
    {
        aT1 = dart_iter;
        dart_iter = aDart;
    }

    // add second
    dart_iter.Alpha0();
    dart_iter.Alpha1();
    DART_TYPE dart_prev = dart_iter;

    if( ( dart_iter.Alpha2() ) != dart_prev )
    {
        aT2 = dart_iter;
        dart_iter = dart_prev;
    }

    // add third
    dart_iter.Alpha0();
    dart_iter.Alpha1();
    dart_prev = dart_iter;

    if( ( dart_iter.Alpha2() ) != dart_prev )
        aT3 = dart_iter;
}

//------------------------------------------------------------------------------------------------
/** Gets the boundary as sequence of darts, where the edges associated with the darts are boundary
 *   edges, given a dart with an associating edge at the boundary of a topology structure.
 *   The first dart in the sequence will be the given one, and the others will have the same
 *   orientation (CCW or CW) as the first.
 *   Assumes that the given dart is at the boundary.
 *
 *   \param aDart
 *   A dart at the boundary (CCW or CW)
 *
 *   \param aBoundary
 *   A sequence of darts, where the associated edges are the boundary edges
 *
 *   \require
 *   - DART_LIST_TYPE::push_back (DART_TYPE&)
 */
template <class DART_TYPE, class DART_LIST_TYPE>
void TRIANGULATION_HELPER::GetBoundary( const DART_TYPE& aDart, DART_LIST_TYPE& aBoundary )
{
    // assumes the given dart is at the boundary (by edge)

    DART_TYPE dart_iter( aDart );
    aBoundary.push_back( dart_iter ); // Given dart as first element
    dart_iter.Alpha0();
    PositionAtNextBoundaryEdge( dart_iter );

    while( dart_iter != aDart )
    {
        aBoundary.push_back( dart_iter );
        dart_iter.Alpha0();
        PositionAtNextBoundaryEdge( dart_iter );
    }
}

/** Checks if the edge associated with \e dart is at
 *   the boundary of the m_triangulation.
 *
 *   \par Implements:
 *   \code
 *   DART_TYPE dart_iter = dart;
 *   if (dart_iter.Alpha2() == dart)
 *     return true;
 *   else
 *     return false;
 *   \endcode
 */
template <class DART_TYPE>
bool TRIANGULATION_HELPER::IsBoundaryEdge( const DART_TYPE& aDart )
{
    DART_TYPE dart_iter = aDart;

    if( dart_iter.Alpha2() == aDart )
        return true;
    else
        return false;
}

/** Checks if the face associated with \e dart is at
 *   the boundary of the m_triangulation.
 */
template <class DART_TYPE>
bool TRIANGULATION_HELPER::IsBoundaryFace( const DART_TYPE& aDart )
{
    // Strategy: boundary if alpha2(d)=d

    DART_TYPE dart_iter( aDart );
    DART_TYPE dart_prev;

    do
    {
        dart_prev = dart_iter;

        if( dart_iter.Alpha2() == dart_prev )
            return true;
        else
            dart_iter = dart_prev; // back again

        dart_iter.Alpha0();
        dart_iter.Alpha1();

    } while( dart_iter != aDart );

    return false;
}

/** Checks if the node associated with \e dart is at
 *   the boundary of the m_triangulation.
 */
template <class DART_TYPE>
bool TRIANGULATION_HELPER::IsBoundaryNode( const DART_TYPE& aDart )
{
    // Strategy: boundary if alpha2(d)=d

    DART_TYPE dart_iter( aDart );
    DART_TYPE dart_prev;

    // If input dart is reached again, then internal node
    // If alpha2(d)=d, then boundary

    do
    {
        dart_iter.Alpha1();
        dart_prev = dart_iter;
        dart_iter.Alpha2();

        if( dart_iter == dart_prev )
            return true;

    } while( dart_iter != aDart );

    return false;
}

/** Returns the degree of the node associated with \e dart.
 *
 *   \par Definition:
 *   The \e degree (or valency) of a node \e V in a m_triangulation,
 *   is defined as the number of edges incident with \e V, i.e.,
 *   the number of edges joining \e V with another node in the triangulation.
 */
template <class DART_TYPE>
int TRIANGULATION_HELPER::GetDegreeOfNode( const DART_TYPE& aDart )
{
    DART_TYPE dart_iter( aDart );
    DART_TYPE dart_prev;

    // If input dart is reached again, then interior node
    // If alpha2(d)=d, then boundary

    int degree = 0;
    bool boundaryVisited = false;
    do
    {
        dart_iter.Alpha1();
        degree++;
        dart_prev = dart_iter;

        dart_iter.Alpha2();

        if( dart_iter == dart_prev )
        {
            if( !boundaryVisited )
            {
                boundaryVisited = true;
                // boundary is reached first time, count in the reversed direction
                degree++; // count the start since it is not done above
                dart_iter = aDart;
                dart_iter.Alpha2();
            } else
                return degree;
        }

    } while( dart_iter != aDart );

    return degree;
}

// Modification of GetDegreeOfNode:
// Strategy, reverse the list and start in the other direction if the boundary
// is reached. NB. copying of darts but ok., or we could have collected pointers,
// but the memory management.

// NOTE: not symmetry if we choose to collect opposite edges
//       now we collect darts with radiating edges

// Remember that we must also copy the node, but ok with push_back
// The size of the list will be the degree of the node

// No CW/CCW since topology only

// Each dart consists of an incident edge and an adjacent node.
// But note that this is only how we interpret the dart in this implementation.
// Given this list, how can we find the opposite edges:
//   We can perform alpha1 on each, but for boundary nodes we will get one edge twice.
//   But this is will always be the last dart!
// The darts in the list are in sequence and starts with the alpha0(dart)
// alpha0, alpha1 and alpha2

// Private/Hidden function
template <class DART_TYPE>
void TRIANGULATION_HELPER::getNeighborNodes( const DART_TYPE& aDart,
                                             std::list<DART_TYPE>& aNodeList, bool& aBoundary )
{
    DART_TYPE dart_iter( aDart );
    dart_iter.Alpha0(); // position the dart at an opposite node

    DART_TYPE dart_prev = dart_iter;
    bool start_at_boundary = false;
    dart_iter.Alpha2();

    if( dart_iter == dart_prev )
        start_at_boundary = true;
    else
        dart_iter = dart_prev; // back again

    DART_TYPE dart_start = dart_iter;

    do
    {
        aNodeList.push_back( dart_iter );
        dart_iter.Alpha1();
        dart_iter.Alpha0();
        dart_iter.Alpha1();
        dart_prev = dart_iter;
        dart_iter.Alpha2();

        if( dart_iter == dart_prev )
        {
            // boundary reached
            aBoundary = true;

            if( start_at_boundary == true )
            {
                // add the dart which now is positioned at the opposite boundary
                aNodeList.push_back( dart_iter );
                return;
            }
            else
            {
                // call the function again such that we start at the boundary
                // first clear the list and reposition to the initial node
                dart_iter.Alpha0();
                aNodeList.clear();
                getNeighborNodes( dart_iter, aNodeList, aBoundary );

                return; // after one recursive step
            }
        }
    }
    while( dart_iter != dart_start );

    aBoundary = false;
}

/** Gets the 0-orbit around an interior node.
 *
 *   \param aDart
 *   A dart (CCW or CW) positioned at an \e interior node.
 *
 *   \retval aOrbit
 *   Sequence of darts with one orbit for each arc. All the darts have the same
 *   orientation (CCW or CW) as \e dart, and \e dart is the first element
 *   in the sequence.
 *
 *   \require
 *   - DART_LIST_TYPE::push_back (DART_TYPE&)
 *
 *   \see
 *   Get0OrbitBoundary
 */
template <class DART_TYPE, class DART_LIST_TYPE>
void TRIANGULATION_HELPER::Get0OrbitInterior( const DART_TYPE& aDart, DART_LIST_TYPE& aOrbit )
{
    DART_TYPE d_iter = aDart;
    aOrbit.push_back( d_iter );
    d_iter.Alpha1().Alpha2();

    while( d_iter != aDart )
    {
        aOrbit.push_back( d_iter );
        d_iter.Alpha1().Alpha2();
    }
}

/** Gets the 0-orbit around a node at the boundary
 *
 *   \param aDart
 *   A dart (CCW or CW) positioned at a \e boundary \e node and at a \e boundary \e edge.
 *
 *   \retval orbit
 *   Sequence of darts with one orbit for each arc. All the darts, \e exept \e the \e last one,
 *   have the same orientation (CCW or CW) as \e dart, and \e dart is the first element
 *   in the sequence.
 *
 *   \require
 *   - DART_LIST_TYPE::push_back (DART_TYPE&)
 *
 *   \note
 *   - The last dart in the sequence have opposite orientation compared to the others!
 *
 *   \see
 *   Get0OrbitInterior
 */
template <class DART_TYPE, class DART_LIST_TYPE>
void TRIANGULATION_HELPER::Get0OrbitBoundary( const DART_TYPE& aDart, DART_LIST_TYPE& aOrbit )
{
    DART_TYPE dart_prev;
    DART_TYPE d_iter = aDart;

    do
    {
        aOrbit.push_back( d_iter );
        d_iter.Alpha1();
        dart_prev = d_iter;
        d_iter.Alpha2();
    }
    while( d_iter != dart_prev );

    aOrbit.push_back( d_iter ); // the last one with opposite orientation
}

/** Checks if the two darts belong to the same 0-orbit, i.e.,
 *   if they share a node.
 *   \e d1 and/or \e d2 can be CCW or CW.
 *
 *   (This function also examines if the the node associated with
 *   \e d1 is at the boundary, which slows down the function (slightly).
 *   If it is known that the node associated with \e d1 is an interior
 *   node and a faster version is needed, the user should implement his/her
 *   own version.)
 */
template <class DART_TYPE>
bool TRIANGULATION_HELPER::Same0Orbit( const DART_TYPE& aD1, const DART_TYPE& aD2 )
{
    // Two copies of the same dart
    DART_TYPE d_iter = aD2;
    DART_TYPE d_end = aD2;

    if( isBoundaryNode( d_iter ) )
    {
        // position at both boundary edges
        PositionAtNextBoundaryEdge( d_iter );
        d_end.Alpha1();
        PositionAtNextBoundaryEdge( d_end );
    }

    for( ;; )
    {
        if( d_iter == aD1 )
            return true;

        d_iter.Alpha1();

        if( d_iter == aD1 )
            return true;

        d_iter.Alpha2();

        if( d_iter == d_end )
            break;
    }

    return false;
}

/** Checks if the two darts belong to the same 1-orbit, i.e.,
 *   if they share an edge.
 *   \e d1 and/or \e d2 can be CCW or CW.
 */
template <class DART_TYPE>
bool TRIANGULATION_HELPER::Same1Orbit( const DART_TYPE& aD1, const DART_TYPE& aD2 )
{
    DART_TYPE d_iter = aD2;

    // (Also works at the boundary)
    return ( d_iter == aD1 || d_iter.Alpha0() == aD1 ||
             d_iter.Alpha2() == aD1 || d_iter.Alpha0() == aD1 );
}

//------------------------------------------------------------------------------------------------
/** Checks if the two darts belong to the same 2-orbit, i.e.,
 *   if they lie in the same triangle.
 *   \e d1 and/or \e d2 can be CCW or CW
 */
template <class DART_TYPE>
bool TRIANGULATION_HELPER::Same2Orbit( const DART_TYPE& aD1, const DART_TYPE& aD2 )
{
    DART_TYPE d_iter = aD2;

    return ( d_iter == aD1 || d_iter.Alpha0() == aD1 || d_iter.Alpha1() == aD1 ||
            d_iter.Alpha0() == aD1 || d_iter.Alpha1() == aD1 || d_iter.Alpha0() == aD1 );
}

// Private/Hidden function
template <class TRAITS_TYPE, class DART_TYPE>
bool TRIANGULATION_HELPER::degenerateTriangle( const DART_TYPE& aDart )
{
    // Check if triangle is degenerate
    // Assumes CCW dart

    DART_TYPE d1 = aDart;
    DART_TYPE d2 = d1;
    d2.Alpha1();

    return ( TRAITS_TYPE::CrossProduct2D( d1, d2 ) == 0 );
}

/** Checks if the edge associated with \e dart is swappable, i.e., if the edge
 *   is a diagonal in a \e strictly convex (or convex) quadrilateral.
 *
 *   \param aAllowDegeneracy
 *   If set to true, the function will also return true if the numerical calculations
 *   indicate that the quadrilateral is convex only, and not necessarily strictly
 *   convex.
 *
 *   \require
 *   - \ref hed::TTLtraits::CrossProduct2D "TRAITS_TYPE::CrossProduct2D" (Dart&, Dart&)
 */
template <class TRAITS_TYPE, class DART_TYPE>
bool TRIANGULATION_HELPER::SwappableEdge( const DART_TYPE& aDart, bool aAllowDegeneracy )
{
    // How "safe" is it?

    if( IsBoundaryEdge( aDart ) )
        return false;

    // "angles" are at the diagonal
    DART_TYPE d1 = aDart;
    d1.Alpha2().Alpha1();
    DART_TYPE d2 = aDart;
    d2.Alpha1();

    if( aAllowDegeneracy )
    {
        if( TRAITS_TYPE::CrossProduct2D( d1, d2 ) < 0.0 )
            return false;
    }
    else
    {
        if( TRAITS_TYPE::CrossProduct2D( d1, d2 ) <= 0.0 )
            return false;
    }

    // Opposite side (still angle at the diagonal)
    d1 = aDart;
    d1.Alpha0();
    d2 = d1;
    d1.Alpha1();
    d2.Alpha2().Alpha1();

    if( aAllowDegeneracy )
    {
        if( TRAITS_TYPE::CrossProduct2D( d1, d2 ) < 0.0 )
            return false;
    }
    else
    {
        if( TRAITS_TYPE::CrossProduct2D( d1, d2 ) <= 0.0 )
            return false;
    }

    return true;
}

/** Given a \e dart, CCW or CW, positioned in a 0-orbit at the boundary of a tessellation.
 *   Position \e dart at a boundary edge in the same 0-orbit.\n
 *   If the given \e dart is CCW, \e dart is positioned at the left boundary edge
 *   and will be CW.\n
 *   If the given \e dart is CW, \e dart is positioned at the right boundary edge
 *   and will be CCW.
 *
 *   \note
 *   - The given \e dart must have a source node at the boundary, otherwise an
 *     infinit loop occurs.
 */
template <class DART_TYPE>
void TRIANGULATION_HELPER::PositionAtNextBoundaryEdge( DART_TYPE& aDart )
{
    DART_TYPE dart_prev;

    // If alpha2(d)=d, then boundary

    //old convention: dart.Alpha0();
    do
    {
        aDart.Alpha1();
        dart_prev = aDart;
        aDart.Alpha2();
    }
    while( aDart != dart_prev );
}

/** Checks if the boundary of a triangulation is convex.
 *
 *   \param dart
 *   A CCW dart at the boundary of the m_triangulation
 *
 *   \require
 *   - \ref hed::TTLtraits::CrossProduct2D "TRAITS_TYPE::CrossProduct2D" (const Dart&, const Dart&)
 */
template <class TRAITS_TYPE, class DART_TYPE>
bool TRIANGULATION_HELPER::ConvexBoundary( const DART_TYPE& aDart )
{
    std::list<DART_TYPE> blist;
    getBoundary( aDart, blist );

    int no;
    no = (int) blist.size();
    typename std::list<DART_TYPE>::const_iterator bit = blist.begin();
    DART_TYPE d1 = *bit;
    ++bit;
    DART_TYPE d2;
    bool convex = true;

    for( ; bit != blist.end(); ++bit )
    {
        d2 = *bit;
        double crossProd = TRAITS_TYPE::CrossProduct2D( d1, d2 );

        if( crossProd < 0.0 )
        {
            //cout << "!!! Boundary is NOT convex: crossProd = " << crossProd << endl;
            convex = false;
            return convex;
        }

        d1 = d2;
    }

    // Check the last angle
    d2 = *blist.begin();
    double crossProd = TRAITS_TYPE::CrossProduct2D( d1, d2 );

    if( crossProd < 0.0 )
    {
        //cout << "!!! Boundary is NOT convex: crossProd = " << crossProd << endl;
        convex = false;
    }

    //if (convex)
    //  cout << "\n---> Boundary is convex\n" << endl;
    //cout << endl;
    return convex;
}

//@} // End of Topological and Geometric Queries Group

/** @name Utilities for Delaunay Triangulation */
//@{
//------------------------------------------------------------------------------------------------
/** Optimizes the edges in the given sequence according to the
 *   \e Delaunay criterion, i.e., such that the edge will fullfill the
 *   \e circumcircle criterion (or equivalently the \e MaxMin
 *   angle criterion) with respect to the quadrilaterals where
 *   they are diagonals.
 *
 *   \param aElist
 *   The sequence of edges
 *
 *   \require
 *   - \ref hed::TTLtraits::swapEdge "TRAITS_TYPE::swapEdge" (DART_TYPE& \e dart)\n
 *     \b Note: Must be implemented such that \e dart is delivered back in a position as
 *     seen if it was glued to the edge when swapping (rotating) the edge CCW
 *
 *   \using
 *   - swapTestDelaunay
 */
template <class TRAITS_TYPE, class DART_TYPE, class DART_LIST_TYPE>
void TRIANGULATION_HELPER::OptimizeDelaunay( DART_LIST_TYPE& aElist )
{
    OptimizeDelaunay<TRAITS_TYPE, DART_TYPE, DART_LIST_TYPE>( aElist, aElist.end() );
}

//------------------------------------------------------------------------------------------------
template <class TRAITS_TYPE, class DART_TYPE, class DART_LIST_TYPE>
void TRIANGULATION_HELPER::OptimizeDelaunay( DART_LIST_TYPE& aElist,
                                             const typename DART_LIST_TYPE::iterator aEnd )
{
    // CCW darts
    // Optimize here means Delaunay, but could be any criterion by
    // requiring a "should swap" in the traits class, or give
    // a function object?
    // Assumes that elist has only one dart for each arc.
    // Darts outside the quadrilateral are preserved

    // For some data structures it is possible to preserve
    // all darts when swapping. Thus a preserve_darts_when swapping
    // ccould be given to indicate this and we would gain performance by avoiding
    // find in list.

    // Requires that swap retuns a dart in the "same position when rotated CCW"
    // (A vector instead of a list may be better.)

    // First check that elist is not empty
    if( aElist.empty() )
        return;

    // Avoid cycling by more extensive circumcircle test
    bool cycling_check = true;
    bool optimal = false;
    typename DART_LIST_TYPE::iterator it;

    typename DART_LIST_TYPE::iterator end_opt = aEnd;

    // Hmm... The following code is trying to derefence an iterator that may
    // be invalid. This may lead to debug error on Windows, so we comment out
    // this code. Checking elist.empty() above will prevent some
    // problems...
    //
    // last_opt is passed the end of the "active list"
    //typename DART_LIST_TYPE::iterator end_opt;
    //if (*end != NULL)
    //  end_opt = end;
    //else
    //  end_opt = elist.end();

    while( !optimal )
    {
        optimal = true;
        for( it = aElist.begin(); it != end_opt; ++it )
        {
            if( SwapTestDelaunay<TRAITS_TYPE>( *it, cycling_check ) )
            {
                // Preserve darts. Potential darts in the list are:
                // - The current dart
                // - the four CCW darts on the boundary of the quadrilateral
                // (the current arc has only one dart)

                SwapEdgeInList<TRAITS_TYPE, DART_TYPE>( it, aElist );

                optimal = false;
            } // end if should swap
        } // end for
    } // end pass
}

/** Checks if the edge associated with \e dart should be swapped according
 *   to the \e Delaunay criterion, i.e., the \e circumcircle criterion (or
 *   equivalently the \e MaxMin angle criterion).
 *
 *   \param aCyclingCheck
 *   Must be set to \c true when used in connection with optimization algorithms,
 *   e.g., OptimizeDelaunay. This will avoid cycling and infinite loops in nearly
 *   neutral cases.
 *
 *   \require
 *   - \ref hed::TTLtraits::ScalarProduct2D "TRAITS_TYPE::ScalarProduct2D" (DART_TYPE&, DART_TYPE&)
 *   - \ref hed::TTLtraits::CrossProduct2D "TRAITS_TYPE::CrossProduct2D" (DART_TYPE&, DART_TYPE&)
 */
template <class TRAITS_TYPE, class DART_TYPE>
#if ((_MSC_VER > 0) && (_MSC_VER < 1300))//#ifdef _MSC_VER
bool TRIANGULATION_HELPER::SwapTestDelaunay(const DART_TYPE& aDart, bool aCyclingCheck = false) const
{
#else
bool TRIANGULATION_HELPER::SwapTestDelaunay( const DART_TYPE& aDart, bool aCyclingCheck ) const
{
#endif
    // The general strategy is taken from Cline & Renka. They claim that
    // their algorithm insure numerical stability, but experiments show
    // that this is not correct for neutral, or almost neutral cases.
    // I have extended this strategy (without using tolerances) to avoid
    // cycling and infinit loops when used in connection with LOP algorithms;
    // see the comments below.

    typedef typename TRAITS_TYPE::REAL_TYPE REAL_TYPE;

    if( IsBoundaryEdge( aDart ) )
        return false;

    DART_TYPE v11 = aDart;
    v11.Alpha1().Alpha0();
    DART_TYPE v12 = v11;
    v12.Alpha1();

    DART_TYPE v22 = aDart;
    v22.Alpha2().Alpha1().Alpha0();
    DART_TYPE v21 = v22;
    v21.Alpha1();

    REAL_TYPE cos1 = TRAITS_TYPE::ScalarProduct2D( v11, v12 );
    REAL_TYPE cos2 = TRAITS_TYPE::ScalarProduct2D( v21, v22 );

    // "Angles" are opposite to the diagonal.
    // The diagonals should be swapped iff (t1+t2) .gt. 180
    // degrees. The following two tests insure numerical
    // stability according to Cline & Renka. But experiments show
    // that cycling may still happen; see the aditional test below.
    if( cos1 >= 0 && cos2 >= 0 ) // both angles are grater or equual 90
        return false;

    if( cos1 < 0 && cos2 < 0 ) // both angles are less than 90
        return true;

    REAL_TYPE sin1 = TRAITS_TYPE::CrossProduct2D( v11, v12 );
    REAL_TYPE sin2 = TRAITS_TYPE::CrossProduct2D( v21, v22 );
    REAL_TYPE sin12 = sin1 * cos2 + cos1 * sin2;

    if( sin12 >= 0 ) // equality represents a neutral case
        return false;

    if( aCyclingCheck )
    {
        // situation so far is sin12 < 0. Test if this also
        // happens for the swapped edge.

        // The numerical calculations so far indicate that the edge is
        // not Delaunay and should not be swapped. But experiments show that
        // in neutral cases, or almost neutral cases, it may happen that
        // the swapped edge may again be found to be not Delaunay and thus
        // be swapped if we return true here. This may lead to cycling and
        // an infinte loop when used, e.g., in connection with OptimizeDelaunay.
        //
        // In an attempt to avoid this we test if the swapped edge will
        // also be found to be not Delaunay by repeating the last test above
        // for the swapped edge.
        // We now rely on the general requirement for TRAITS_TYPE::swapEdge which
        // should deliver CCW dart back in "the same position"; see the general
        // description. This will insure numerical stability as the next calculation
        // is the same as if this function was called again with the swapped edge.
        // Cycling is thus impossible provided that the initial tests above does
        // not result in ambiguity (and they should probably not do so).

        v11.Alpha0();
        v12.Alpha0();
        v21.Alpha0();
        v22.Alpha0();
        // as if the edge was swapped/rotated CCW
        cos1 = TRAITS_TYPE::ScalarProduct2D( v22, v11 );
        cos2 = TRAITS_TYPE::ScalarProduct2D( v12, v21 );
        sin1 = TRAITS_TYPE::CrossProduct2D( v22, v11 );
        sin2 = TRAITS_TYPE::CrossProduct2D( v12, v21 );
        sin12 = sin1 * cos2 + cos1 * sin2;

        if( sin12 < 0 )
        {
            // A neutral case, but the tests above lead to swapping
            return false;
        }
    }

    return true;
}

//-----------------------------------------------------------------------
//
//        x
//"     /   \                                                           "
//     /  |  \      Darts:
//oe2 /   |   \     oe2 = oppEdge2
//   x....|....x
//    \  d|  d/     d   = diagonal (input and output)
//     \  |  /
//  oe1 \   /       oe1 = oppEdge1
//        x
//
//-----------------------------------------------------------------------
/** Recursively swaps edges in the triangulation according to the \e Delaunay criterion.
 *
 *   \param aDiagonal
 *   A CCW dart representing the edge where the recursion starts from.
 *
 *   \require
 *   - \ref hed::TTLtraits::swapEdge "TRAITS_TYPE::swapEdge" (DART_TYPE&)\n
 *     \b Note: Must be implemented such that the darts outside the quadrilateral
 *     are not affected by the swap.
 *
 *   \using
 *   - Calls itself recursively
 */
template <class TRAITS_TYPE, class DART_TYPE>
void TRIANGULATION_HELPER::RecSwapDelaunay( DART_TYPE& aDiagonal )
{
    if( !SwapTestDelaunay<TRAITS_TYPE>( aDiagonal ) )
        // ??? swapTestDelaunay also checks if boundary, so this can be optimized
        return;

    // Get the other "edges" of the current triangle; see illustration above.
    DART_TYPE oppEdge1 = aDiagonal;
    oppEdge1.Alpha1();
    bool b1;

    if( IsBoundaryEdge( oppEdge1 ) )
        b1 = true;
    else
    {
        b1 = false;
        oppEdge1.Alpha2();
    }

    DART_TYPE oppEdge2 = aDiagonal;
    oppEdge2.Alpha0().Alpha1().Alpha0();
    bool b2;

    if( IsBoundaryEdge( oppEdge2 ) )
        b2 = true;
    else
    {
        b2 = false;
        oppEdge2.Alpha2();
    }

    // Swap the given diagonal
    m_triangulation.swapEdge( aDiagonal );

    if( !b1 )
        RecSwapDelaunay<TRAITS_TYPE>( oppEdge1 );

    if( !b2 )
        RecSwapDelaunay<TRAITS_TYPE>( oppEdge2 );
}

/** Swaps edges away from the (interior) node associated with
 *   \e dart such that that exactly three edges remain incident
 *   with the node.
 *   This function is used as a first step in RemoveInteriorNode
 *
 *   \retval dart
 *   A CCW dart incident with the node
 *
 *   \par Assumes:
 *   - The node associated with \e dart is interior to the
 *     triangulation.
 *
 *   \require
 *   - \ref hed::TTLtraits::swapEdge "TRAITS_TYPE::swapEdge" (DART_TYPE& \e dart)\n
 *     \b Note: Must be implemented such that \e dart is delivered back in a position as
 *     seen if it was glued to the edge when swapping (rotating) the edge CCW
 *
 *   \note
 *   - A degenerate triangle may be left at the node.
 *   - The function is not unique as it depends on which dart
 *     at the node that is given as input.
 *
 *   \see
 *   SwapEdgesAwayFromBoundaryNode
 */
template <class TRAITS_TYPE, class DART_TYPE, class LIST_TYPE>
void TRIANGULATION_HELPER::SwapEdgesAwayFromInteriorNode( DART_TYPE& aDart,
                                                          LIST_TYPE& aSwappedEdges )
{

    // Same iteration as in fixEdgesAtCorner, but not boundary
    DART_TYPE dnext = aDart;

    // Allow degeneracy, otherwise we might end up with degree=4.
    // For example, the reverse operation of inserting a point on an
    // existing edge gives a situation where all edges are non-swappable.
    // Ideally, degeneracy in this case should be along the actual node,
    // but there is no strategy for this now.
    // ??? An alternative here is to wait with degeneracy till we get an
    // infinite loop with degree > 3.
    bool allowDegeneracy = true;

    int degree = getDegreeOfNode( aDart );
    DART_TYPE d_iter;

    while( degree > 3 )
    {
        d_iter = dnext;
        dnext.Alpha1().Alpha2();

        if( SwappableEdge<TRAITS_TYPE>( d_iter, allowDegeneracy ) )
        {
            m_triangulation.swapEdge( d_iter ); // swap the edge away
            // Collect swapped edges in the list
            // "Hide" the dart on the other side of the edge to avoid it being changed for
            // other swaps
            DART_TYPE swapped_edge = d_iter; // it was delivered back
            swapped_edge.Alpha2().Alpha0(); // CCW (if not at boundary)
            aSwappedEdges.push_back( swapped_edge );

            degree--;
        }
    }

    // Output, incident to the node
    aDart = dnext;
}

/** Swaps edges away from the (boundary) node associated with
 *   \e dart in such a way that when removing the edges that remain incident
 *   with the node, the boundary of the triangulation will be convex.
 *   This function is used as a first step in RemoveBoundaryNode
 *
 *   \retval dart
 *   A CCW dart incident with the node
 *
 *   \require
 *   - \ref hed::TTLtraits::swapEdge "TRAITS_TYPE::swapEdge" (DART_TYPE& \e dart)\n
 *     \b Note: Must be implemented such that \e dart is delivered back in a position as
 *     seen if it was glued to the edge when swapping (rotating) the edge CCW
 *
 *   \par Assumes:
 *   - The node associated with \e dart is at the boundary of the m_triangulation.
 *
 *   \see
 *   SwapEdgesAwayFromInteriorNode
 */
template <class TRAITS_TYPE, class DART_TYPE, class LIST_TYPE>
void TRIANGULATION_HELPER::SwapEdgesAwayFromBoundaryNode( DART_TYPE& aDart,
                                                          LIST_TYPE& aSwappedEdges )
{
    // All darts that are swappable.
    // To treat collinear nodes at an existing boundary, we must allow degeneracy
    // when swapping to the boundary.
    // dart is CCW and at the boundary.
    // The 0-orbit runs CCW
    // Deliver the dart back in the "same position".
    // Assume for the swap in the traits class:
    // - A dart on the swapped edge is delivered back in a position as
    //   seen if it was glued to the edge when swapping (rotating) the edge CCW

    //int degree = getDegreeOfNode(dart);

    passes:
    // Swap swappable edges that radiate from the node away
    DART_TYPE d_iter = aDart; // ???? can simply use dart
    d_iter.Alpha1().Alpha2(); // first not at boundary
    DART_TYPE d_next = d_iter;
    bool bend = false;
    bool swapped_next_to_boundary = false;
    bool swapped_in_pass = false;

    bool allowDegeneracy; // = true;
    DART_TYPE tmp1, tmp2;

    while( !bend )
    {
        d_next.Alpha1().Alpha2();

        if( IsBoundaryEdge( d_next ) )
            bend = true;  // then it is CW since alpha2

        // To allow removing among collinear nodes at the boundary,
        // degenerate triangles must be allowed
        // (they will be removed when used in connection with RemoveBoundaryNode)
        tmp1 = d_iter;
        tmp1.Alpha1();
        tmp2 = d_iter;
        tmp2.Alpha2().Alpha1(); // don't bother with boundary (checked later)

        if( IsBoundaryEdge( tmp1 ) && IsBoundaryEdge( tmp2 ) )
            allowDegeneracy = true;
        else
            allowDegeneracy = false;

        if( SwappableEdge<TRAITS_TYPE>( d_iter, allowDegeneracy ) )
        {
            m_triangulation.swapEdge( d_iter );

            // Collect swapped edges in the list
            // "Hide" the dart on the other side of the edge to avoid it being changed for
            // other swapps
            DART_TYPE swapped_edge = d_iter; // it was delivered back
            swapped_edge.Alpha2().Alpha0(); // CCW
            aSwappedEdges.push_back( swapped_edge );

            //degree--; // if degree is 2, or bend=true, we are done
            swapped_in_pass = true;
            if( bend )
                swapped_next_to_boundary = true;
        }

        if( !bend )
            d_iter = d_next;
    }

    // Deliver a dart as output in the same position as the incoming dart
    if( swapped_next_to_boundary )
    {
        // Assume that "swapping is CCW and dart is preserved in the same position
        d_iter.Alpha1().Alpha0().Alpha1();  // CW and see below
    }
    else
    {
        d_iter.Alpha1(); // CW and see below
    }
    PositionAtNextBoundaryEdge( d_iter ); // CCW

    aDart = d_iter; // for next pass or output

    // If a dart was swapped in this iteration we must run it more
    if( swapped_in_pass )
        goto passes;
}

/**  Swap the the edge associated with iterator \e it and update affected darts
 *   in \e elist accordingly.
 *   The darts affected by the swap are those in the same quadrilateral.
 *   Thus, if one want to preserve one or more of these darts on should
 *   keep them in \e elist.
 */
template <class TRAITS_TYPE, class DART_TYPE, class DART_LIST_TYPE>
void TRIANGULATION_HELPER::SwapEdgeInList( const typename DART_LIST_TYPE::iterator& aIt,
                                           DART_LIST_TYPE& aElist )
{

    typename DART_LIST_TYPE::iterator it1, it2, it3, it4;
    DART_TYPE dart( *aIt );

    //typename TRAITS_TYPE::DART_TYPE d1 = dart; d1.Alpha2().Alpha1();
    //typename TRAITS_TYPE::DART_TYPE d2 =   d1; d2.Alpha0().Alpha1();
    //typename TRAITS_TYPE::DART_TYPE d3 = dart; d3.Alpha0().Alpha1();
    //typename TRAITS_TYPE::DART_TYPE d4 =   d3; d4.Alpha0().Alpha1();
    DART_TYPE d1 = dart;
    d1.Alpha2().Alpha1();
    DART_TYPE d2 = d1;
    d2.Alpha0().Alpha1();
    DART_TYPE d3 = dart;
    d3.Alpha0().Alpha1();
    DART_TYPE d4 = d3;
    d4.Alpha0().Alpha1();

    // Find pinters to the darts that may change.
    // ??? Note, this is not very efficient since we must use find, which is O(N),
    // four times.
    // - Solution?: replace elist with a vector of pair (dart,number)
    //   and avoid find?
    // - make a function for swapping generically?
    // - sould we use another container type or,
    // - erase them and reinsert?
    // - or use two lists?
    it1 = find( aElist.begin(), aElist.end(), d1 );
    it2 = find( aElist.begin(), aElist.end(), d2 );
    it3 = find( aElist.begin(), aElist.end(), d3 );
    it4 = find( aElist.begin(), aElist.end(), d4 );

    m_triangulation.swapEdge( dart );
    // Update the current dart which may have changed
    *aIt = dart;

    // Update darts that may have changed again (if they were present)
    // Note that dart is delivered back after swapping
    if( it1 != aElist.end() )
    {
        d1 = dart;
        d1.Alpha1().Alpha0();
        *it1 = d1;
    }

    if( it2 != aElist.end() )
    {
        d2 = dart;
        d2.Alpha2().Alpha1();
        *it2 = d2;
    }

    if( it3 != aElist.end() )
    {
        d3 = dart;
        d3.Alpha2().Alpha1().Alpha0().Alpha1();
        *it3 = d3;
    }

    if( it4 != aElist.end() )
    {
        d4 = dart;
        d4.Alpha0().Alpha1();
        *it4 = d4;
    }
}

//@} // End of Utilities for Delaunay Triangulation Group

}
// End of ttl namespace scope (but other files may also contain functions for ttl)

#endif // _TTL_H_