1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
|
/*
* Copyright (C) 1998, 2000-2007, 2010, 2011, 2012, 2013 SINTEF ICT,
* Applied Mathematics, Norway.
*
* Contact information: E-mail: tor.dokken@sintef.no
* SINTEF ICT, Department of Applied Mathematics,
* P.O. Box 124 Blindern,
* 0314 Oslo, Norway.
*
* This file is part of TTL.
*
* TTL is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* TTL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public
* License along with TTL. If not, see
* <http://www.gnu.org/licenses/>.
*
* In accordance with Section 7(b) of the GNU Affero General Public
* License, a covered work must retain the producer line in every data
* file that is created or manipulated using TTL.
*
* Other Usage
* You can be released from the requirements of the license by purchasing
* a commercial license. Buying such a license is mandatory as soon as you
* develop commercial activities involving the TTL library without
* disclosing the source code of your own applications.
*
* This file may be used in accordance with the terms contained in a
* written agreement between you and SINTEF ICT.
*/
#ifndef _HALF_EDGE_TRAITS_
#define _HALF_EDGE_TRAITS_
#include <ttl/halfedge/hetriang.h>
#include <ttl/halfedge/hedart.h>
namespace hed
{
/**
* \struct TTLtraits
* \brief \b Traits class (static struct) for the half-edge data structure.
*
* The member functions are those required by different function templates
* in the TTL. Documentation is given here to explain what actions
* should be carried out on the actual data structure as required by the functions
* in the \ref ttl namespace.
*
* The source code of \c %HeTraits.h shows how the traits class is implemented for the
* half-edge data structure.
*
* \see \ref api
*/
struct TTLtraits
{
/**
* The floating point type used in calculations involving scalar products and cross products.
*/
typedef double REAL_TYPE;
/** @name Geometric Predicates */
//@{
/**
* Scalar product between two 2D vectors represented as darts.\n
*
* ttl_util::scalarProduct2d can be used.
*/
static REAL_TYPE ScalarProduct2D( const DART& aV1, const DART& aV2 )
{
DART v10 = aV1;
v10.Alpha0();
DART v20 = aV2;
v20.Alpha0();
return ttl_util::ScalarProduct2D( v10.X() - aV1.X(), v10.Y() - aV1.Y(),
v20.X() - aV2.X(), v20.Y() - aV2.Y() );
}
/**
* Scalar product between two 2D vectors.
* The first vector is represented by a dart \e v, and the second
* vector has direction from the source node of \e v to the point \e p.\n
*
* ttl_util::ScalarProduct2D can be used.
*/
static REAL_TYPE ScalarProduct2D( const DART& aV, const NODE_PTR& aP )
{
DART d0 = aV;
d0.Alpha0();
return ttl_util::ScalarProduct2D( d0.X() - aV.X(), d0.Y() - aV.Y(),
aP->GetX() - aV.X(), aP->GetY() - aV.Y() );
}
/**
* Cross product between two vectors in the plane represented as darts.
* The z-component of the cross product is returned.\n
*
* ttl_util::CrossProduct2D can be used.
*/
static REAL_TYPE CrossProduct2D( const DART& aV1, const DART& aV2 )
{
DART v10 = aV1;
v10.Alpha0();
DART v20 = aV2;
v20.Alpha0();
return ttl_util::CrossProduct2D( v10.X() - aV1.X(), v10.Y() - aV1.Y(),
v20.X() - aV2.X(), v20.Y() - aV2.Y() );
}
/**
* Cross product between two vectors in the plane.
* The first vector is represented by a dart \e v, and the second
* vector has direction from the source node of \e v to the point \e p.
* The z-component of the cross product is returned.\n
*
* ttl_util::CrossProduct2d can be used.
*/
static REAL_TYPE CrossProduct2D( const DART& aV, const NODE_PTR& aP )
{
DART d0 = aV;
d0.Alpha0();
return ttl_util::CrossProduct2D( d0.X() - aV.X(), d0.Y() - aV.Y(),
aP->GetX() - aV.X(), aP->GetY() - aV.Y() );
}
/**
* Let \e n1 and \e n2 be the nodes associated with two darts, and let \e p
* be a point in the plane. Return a positive value if \e n1, \e n2,
* and \e p occur in counterclockwise order; a negative value if they occur
* in clockwise order; and zero if they are collinear.
*/
static REAL_TYPE Orient2D( const DART& aN1, const DART& aN2, const NODE_PTR& aP )
{
REAL_TYPE pa[2];
REAL_TYPE pb[2];
REAL_TYPE pc[2];
pa[0] = aN1.X();
pa[1] = aN1.Y();
pb[0] = aN2.X();
pb[1] = aN2.Y();
pc[0] = aP->GetX();
pc[1] = aP->GetY();
return ttl_util::Orient2DFast( pa, pb, pc );
}
/**
* This is the same predicate as represented with the function above,
* but with a slighty different interface:
* The last parameter is given as a dart where the source node of the dart
* represents a point in the plane.
* This function is required for constrained triangulation.
*/
static REAL_TYPE Orient2D( const DART& aN1, const DART& aN2, const DART& aP )
{
REAL_TYPE pa[2];
REAL_TYPE pb[2];
REAL_TYPE pc[2];
pa[0] = aN1.X();
pa[1] = aN1.Y();
pb[0] = aN2.X();
pb[1] = aN2.Y();
pc[0] = aP.X();
pc[1] = aP.Y();
return ttl_util::Orient2DFast( pa, pb, pc );
}
//@} // End of Geometric Predicates Group
};
}; // End of hed namespace
#endif
|