1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
|
/**
* The physical length library. Made for nanometer scale.
* @file length.h
*/
/* sorry it is not styled correctly, i'll work on it further */
#ifndef LENGTH_H_INCLUDED
#define LENGTH_H_INCLUDED 1
/* type to be used by length units by default */
typedef int DEF_LENGTH_VALUE;
/**
* Length template class
* @param T actual type holding a value (be aware of precision and range!)
* @param P power of length unit: 1 - length, 2 - area, 3 - volume, -1 - lin. density etc...
* This class check length dimension in compile time. In runtime it behaves
* exactly like contained type t (which should be numeric type, like int or double)
* This class can be replaced with its contained type or simple stub.
* Check rules:
* - comparisons (< = etc.), addition, subtraction require values of same dimension
* e. g. length with length, area with area etc.
* - multiplication and division result have appropriate dimension (powers
* added and subtracted respectively)
* - sqrt and cbrt have appropriate dimensions (P/2 and P/3).
* Limitations:
* - functions which should not be applied to dimensioned values are not implemeted:
* they include algebraic (exp, log...), trigo (sin, cos...), hyperbolic (sinh, cosh..)
* - pow function is not implemented as it is require dimension check in runtime
* you should use multiplication, division, sqrt and cbrt functions instead.
* - sqrt and cbrt result type should be instantiated before they used
* Be aware when using them in complex formulae, e. g.
* LENGTH< double, 1 > len = cbrt(vol) - is ok, but
* LENGTH< double, 2 > vol = sqrt(area*area*area*area)/length - will fail
* if LENGTH<..., 4> is not instantiated
* - non-integer power values do not supported
* they should be implemented carefully using natural fractions, not floats, to be exact
* but they are very rare so you should not worry about.
* e. g. linear electric noise density should be in mV/sqrt(m)
* - automatic numeric type casts are not performed. You even have to manually
* cast LENGTH< short > to LENGTH< int > or LENGTH< float >
* to LENGTH< double >. Anyway it is not such trouble as progremmer should be
* very careful when mixing numeric types and avoid automatic casts.
*
*/
template < typename T = DEF_LENGTH_VALUE, int P = 1 > class LENGTH;
/**
* Length units contained in this class
*/
template <typename T> class LENGTH_UNITS;
/**
* For internal needs
*/
template < typename T, int P > struct LENGTH_TRAITS
{
typedef LENGTH<T, P> flat;
};
template < typename T > struct LENGTH_TRAITS< T, 0 >
{
/* length dimension to power 0 is just a number, so LENGTH<T, 0> should be automatically converted to T */
typedef T flat;
};
template < typename T, int P > class LENGTH
{
friend class LENGTH_UNITS< T >;
friend class LENGTH_TRAITS< T, P >;
template < typename Y, int R > friend class LENGTH;
protected:
T m_U;
LENGTH( T units ) : m_U( units )
{
}
static T RawValue( const LENGTH<T, P> &x )
{
return x.m_U;
}
static T RawValue( const T& x )
{
return x;
}
public:
typedef T value_type;
enum
{
dimension = P
};
LENGTH( const LENGTH <T, P> &orig ) : m_U( orig.m_U )
{
}
LENGTH( void ) : m_U()
{
}
static LENGTH<T, P> zero ( void )
{
return T(0);
}
LENGTH<T, P> & operator = ( const LENGTH<T, P> & y )
{
this->m_U = y.m_U;
return *this;
}
template <typename Y> operator LENGTH< Y, P > ( void )
{
return this->m_U;
}
/*************************/
/* comparisons and tests */
/*************************/
bool operator ==( const LENGTH < T, P > y ) const
{
return m_U == y.m_U;
}
bool operator !=( const LENGTH < T, P > y ) const
{
return m_U != y.m_U;
}
bool operator <( const LENGTH < T, P > y ) const
{
return m_U < y.m_U;
}
bool operator >=( const LENGTH < T, P > y ) const
{
return m_U >= y.m_U;
}
bool operator >( const LENGTH < T, P > y ) const
{
return m_U > y.m_U;
}
bool operator <=( const LENGTH < T, P > y ) const
{
return m_U <= y.m_U;
}
bool operator !( void ) const
{
return !m_U;
}
/*************************/
/* basic arithmetic */
/*************************/
LENGTH< T, P > operator - ( void ) const
{
return LENGTH<T, P>(-this->m_U);
}
LENGTH< T, P > operator - ( const LENGTH< T, P > y ) const
{
return m_U - y.m_U;
}
LENGTH< T, P > operator + ( const LENGTH< T, P > y ) const
{
return m_U + y.m_U;
}
template < int R >
typename LENGTH_TRAITS< T, P + R >::flat operator * ( const LENGTH<T, R> &y ) const
{
return m_U * y.m_U;
}
LENGTH< T, P > operator * ( const T & y) const
{
return m_U * y;
}
LENGTH< T, P > friend operator * ( const T &y, const LENGTH<T, P> &x )
{
return x.m_U * y;
}
template < int R >
typename LENGTH_TRAITS< T, P - R >::flat operator / ( const LENGTH<T, R> &y ) const
{
return m_U / y.m_U;
}
LENGTH< T, P > operator / ( const T &y ) const
{
return m_U / y;
}
LENGTH< T, -P > friend operator / ( const T &y, const LENGTH< T, P > &x )
{
return y / x.m_U;
}
friend LENGTH< T, P > sqrt( LENGTH< T, P*2 > y )
{
return sqrt( y.m_U );
}
friend LENGTH< T, P > cbrt( LENGTH< T, P*3 > y )
{
return cbrt( y.m_U );
}
/*************************/
/* assignment arithmetic */
/*************************/
LENGTH< T, P >& operator -= ( const LENGTH< T, P > y )
{
return m_U -= y.m_U;
}
LENGTH< T, P >& operator += ( const LENGTH< T, P > y )
{
return m_U += y.m_U;
}
LENGTH< T, P >& operator *= ( const T y )
{
return m_U *= y;
}
LENGTH< T, P >& operator /= ( const T y )
{
return m_U /= y;
}
/*************************/
/* more arithmetic */
/*************************/
};
/**
* Units of length
*
* How to use them:
* there are several functions, named LENGTH_UNITS< T >::METRE, which return
* named unit (1 meter in example) which have type LENGTH< T, P >.
* to get specific length you should use a multiplication:
* 3*LENGTH_UNITS::metre() gives 3 metres
* 0.01*LENGTH_UNITS::metre() gives 0.01 inch
* to get numeric value of length in specific units you should use a division
* length/LENGTH_UNITS::metre() gives number of metres in length
* legnth/LENGTH_UNITS::foot() gives number of feet in length
*/
template < typename T = DEF_LENGTH_VALUE > class LENGTH_UNITS {
protected:
enum
{
METRE = 1000000000, /* The ONLY constant connecting length to the real world */
INCH = METRE / 10000 * 254
};
public:
static LENGTH< T, 1 > metre( void ) {
return T( METRE );
}
static LENGTH< T, 1 > decimetre( void ) {
return T( METRE / 10 );
}
static LENGTH< T, 1 > centimetre( void ) {
return T( METRE / 100 );
}
static LENGTH< T, 1 > millimetre( void ) {
return T( METRE / 1000 );
}
static LENGTH< T, 1 > micrometre( void ) {
return T( METRE / 1000000 );
}
static LENGTH< T, 1 > foot( void ) { /* do not think this will ever need */
return T( INCH * 12 );
}
static LENGTH< T, 1 > inch( void ) {
return T( INCH );
}
static LENGTH< T, 1 > mil( void ) {
return T( INCH / 1000 );
}
};
/**
* shortcut to get units of given length type
*/
template < typename T, int D > class LENGTH_UNITS< LENGTH< T, D > >: public LENGTH_UNITS< T >
{
};
#endif
|