1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
|
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2013 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtc_random
/// @file glm/gtc/random.inl
/// @date 2011-09-19 / 2012-04-07
/// @author Christophe Riccio
///////////////////////////////////////////////////////////////////////////////////
#include <ctime>
#include <cassert>
namespace glm{
namespace detail
{
struct compute_linearRand
{
template <typename T>
GLM_FUNC_QUALIFIER T operator() (T const & Min, T const & Max) const;
/*
{
GLM_STATIC_ASSERT(0, "'linearRand' invalid template parameter type. GLM_GTC_random only supports floating-point template types.");
return Min;
}
*/
};
template <>
GLM_FUNC_QUALIFIER half compute_linearRand::operator()<half> (half const & Min, half const & Max) const
{
return half(float(std::rand()) / float(RAND_MAX) * (float(Max) - float(Min)) + float(Min));
}
template <>
GLM_FUNC_QUALIFIER float compute_linearRand::operator()<float> (float const & Min, float const & Max) const
{
return float(std::rand()) / float(RAND_MAX) * (Max - Min) + Min;
}
template <>
GLM_FUNC_QUALIFIER double compute_linearRand::operator()<double> (double const & Min, double const & Max) const
{
return double(std::rand()) / double(RAND_MAX) * (Max - Min) + Min;
}
template <>
GLM_FUNC_QUALIFIER long double compute_linearRand::operator()<long double> (long double const & Min, long double const & Max) const
{
return (long double)(std::rand()) / (long double)(RAND_MAX) * (Max - Min) + Min;
}
}//namespace detail
template <typename genType>
GLM_FUNC_QUALIFIER genType linearRand
(
genType const & Min,
genType const & Max
)
{
return detail::compute_linearRand()(Min, Max);
}
VECTORIZE_VEC_VEC(linearRand)
template <typename genType>
GLM_FUNC_QUALIFIER genType gaussRand
(
genType const & Mean,
genType const & Deviation
)
{
genType w, x1, x2;
do
{
x1 = linearRand(genType(-1), genType(1));
x2 = linearRand(genType(-1), genType(1));
w = x1 * x1 + x2 * x2;
} while(w > genType(1));
return x2 * Deviation * Deviation * sqrt((genType(-2) * log(w)) / w) + Mean;
}
VECTORIZE_VEC_VEC(gaussRand)
template <typename T>
GLM_FUNC_QUALIFIER detail::tvec2<T> diskRand
(
T const & Radius
)
{
detail::tvec2<T> Result(T(0));
T LenRadius(T(0));
do
{
Result = linearRand(detail::tvec2<T>(-Radius), detail::tvec2<T>(Radius));
LenRadius = length(Result);
}
while(LenRadius > Radius);
return Result;
}
template <typename T>
GLM_FUNC_QUALIFIER detail::tvec3<T> ballRand
(
T const & Radius
)
{
detail::tvec3<T> Result(T(0));
T LenRadius(T(0));
do
{
Result = linearRand(detail::tvec3<T>(-Radius), detail::tvec3<T>(Radius));
LenRadius = length(Result);
}
while(LenRadius > Radius);
return Result;
}
template <typename T>
GLM_FUNC_QUALIFIER detail::tvec2<T> circularRand
(
T const & Radius
)
{
T a = linearRand(T(0), T(6.283185307179586476925286766559f));
return detail::tvec2<T>(cos(a), sin(a)) * Radius;
}
template <typename T>
GLM_FUNC_QUALIFIER detail::tvec3<T> sphericalRand
(
T const & Radius
)
{
T z = linearRand(T(-1), T(1));
T a = linearRand(T(0), T(6.283185307179586476925286766559f));
T r = sqrt(T(1) - z * z);
T x = r * cos(a);
T y = r * sin(a);
return detail::tvec3<T>(x, y, z) * Radius;
}
}//namespace glm
|