1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
|
/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2014 Jean-Pierre Charras, jp.charras at wanadoo.fr
* Copyright (C) 2014 KiCad Developers, see CHANGELOG.TXT for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file trigo.cpp
* @brief Trigonometric and geometric basic functions.
*/
#include <fctsys.h>
#include <macros.h>
#include <trigo.h>
#include <common.h>
#include <math_for_graphics.h>
// Returns true if the point P is on the segment S.
// faster than TestSegmentHit() because P should be exactly on S
// therefore works fine only for H, V and 45 deg segm (suitable for wires in eeschema)
bool IsPointOnSegment( const wxPoint& aSegStart, const wxPoint& aSegEnd,
const wxPoint& aTestPoint )
{
wxPoint vectSeg = aSegEnd - aSegStart; // Vector from S1 to S2
wxPoint vectPoint = aTestPoint - aSegStart; // Vector from S1 to P
// Use long long here to avoid overflow in calculations
if( (long long) vectSeg.x * vectPoint.y - (long long) vectSeg.y * vectPoint.x )
return false; /* Cross product non-zero, vectors not parallel */
if( ( (long long) vectSeg.x * vectPoint.x + (long long) vectSeg.y * vectPoint.y ) <
( (long long) vectPoint.x * vectPoint.x + (long long) vectPoint.y * vectPoint.y ) )
return false; /* Point not on segment */
return true;
}
// Returns true if the segment 1 intersectd the segment 2.
bool SegmentIntersectsSegment( const wxPoint &a_p1_l1, const wxPoint &a_p2_l1,
const wxPoint &a_p1_l2, const wxPoint &a_p2_l2 )
{
//We are forced to use 64bit ints because the internal units can oveflow 32bit ints when
// multiplied with each other, the alternative would be to scale the units down (i.e. divide
// by a fixed number).
long long dX_a, dY_a, dX_b, dY_b, dX_ab, dY_ab;
long long num_a, num_b, den;
//Test for intersection within the bounds of both line segments using line equations of the
// form:
// x_k(u_k) = u_k * dX_k + x_k(0)
// y_k(u_k) = u_k * dY_k + y_k(0)
// with 0 <= u_k <= 1 and k = [ a, b ]
dX_a = a_p2_l1.x - a_p1_l1.x;
dY_a = a_p2_l1.y - a_p1_l1.y;
dX_b = a_p2_l2.x - a_p1_l2.x;
dY_b = a_p2_l2.y - a_p1_l2.y;
dX_ab = a_p1_l2.x - a_p1_l1.x;
dY_ab = a_p1_l2.y - a_p1_l1.y;
den = dY_a * dX_b - dY_b * dX_a ;
//Check if lines are parallel
if( den == 0 )
return false;
num_a = dY_ab * dX_b - dY_b * dX_ab;
num_b = dY_ab * dX_a - dY_a * dX_ab;
//We wont calculate directly the u_k of the intersection point to avoid floating point
// division but they could be calculated with:
// u_a = (float) num_a / (float) den;
// u_b = (float) num_b / (float) den;
if( den < 0 )
{
den = -den;
num_a = -num_a;
num_b = -num_b;
}
//Test sign( u_a ) and return false if negative
if( num_a < 0 )
return false;
//Test sign( u_b ) and return false if negative
if( num_b < 0 )
return false;
//Test to ensure (u_a <= 1)
if( num_a > den )
return false;
//Test to ensure (u_b <= 1)
if( num_b > den )
return false;
return true;
}
/* Function TestSegmentHit
* test for hit on line segment
* i.e. a reference point is within a given distance from segment
* aRefPoint = reference point to test
* aStart, aEnd are coordinates of end points segment
* aDist = maximum distance for hit
* Note: for calculation time reasons, the distance between the ref point
* and the segment is not always exactly calculated
* (we only know if the actual dist is < aDist, not exactly know this dist.
* Because many times we have horizontal or vertical segments,
* a special calcultaion is made for them
* Note: sometimes we need to calculate the distande between 2 points
* A square root should be calculated.
* However, because we just compare 2 distnaces, to avoid calculating square root,
* the square of distances are compared.
*/
static inline double square( int x ) // helper function to calculate x*x
{
return (double) x * x;
}
bool TestSegmentHit( const wxPoint &aRefPoint, wxPoint aStart,
wxPoint aEnd, int aDist )
{
// test for vertical or horizontal segment
if( aEnd.x == aStart.x )
{
// vertical segment
int ll = abs( aRefPoint.x - aStart.x );
if( ll > aDist )
return false;
// To have only one case to examine, ensure aEnd.y > aStart.y
if( aEnd.y < aStart.y )
std::swap( aStart.y, aEnd.y );
if( aRefPoint.y <= aEnd.y && aRefPoint.y >= aStart.y )
return true;
// there is a special case: x,y near an end point (distance < dist )
// the distance should be carefully calculated
if( (aStart.y - aRefPoint.y) < aDist )
{
double dd = square( aRefPoint.x - aStart.x) +
square( aRefPoint.y - aStart.y );
if( dd <= square( aDist ) )
return true;
}
if( (aRefPoint.y - aEnd.y) < aDist )
{
double dd = square( aRefPoint.x - aEnd.x ) +
square( aRefPoint.y - aEnd.y );
if( dd <= square( aDist ) )
return true;
}
}
else if( aEnd.y == aStart.y )
{
// horizontal segment
int ll = abs( aRefPoint.y - aStart.y );
if( ll > aDist )
return false;
// To have only one case to examine, ensure xf > xi
if( aEnd.x < aStart.x )
std::swap( aStart.x, aEnd.x );
if( aRefPoint.x <= aEnd.x && aRefPoint.x >= aStart.x )
return true;
// there is a special case: x,y near an end point (distance < dist )
// the distance should be carefully calculated
if( (aStart.x - aRefPoint.x) <= aDist )
{
double dd = square( aRefPoint.x - aStart.x ) +
square( aRefPoint.y - aStart.y );
if( dd <= square( aDist ) )
return true;
}
if( (aRefPoint.x - aEnd.x) <= aDist )
{
double dd = square( aRefPoint.x - aEnd.x ) +
square( aRefPoint.y - aEnd.y );
if( dd <= square( aDist ) )
return true;
}
}
else
{
// oblique segment:
// First, we need to calculate the distance between the point
// and the line defined by aStart and aEnd
// this dist should be < dist
//
// find a,slope such that aStart and aEnd lie on y = a + slope*x
double slope = (double) (aEnd.y - aStart.y) / (aEnd.x - aStart.x);
double a = (double) aStart.y - slope * aStart.x;
// find c,orthoslope such that (x,y) lies on y = c + orthoslope*x,
// where orthoslope=(-1/slope)
// to calculate xp, yp = near point from aRefPoint
// which is on the line defined by aStart, aEnd
double orthoslope = -1.0 / slope;
double c = (double) aRefPoint.y - orthoslope * aRefPoint.x;
// find nearest point to (x,y) on line defined by aStart, aEnd
double xp = (a - c) / (orthoslope - slope);
double yp = a + slope * xp;
// find distance to line, in fact the square of dist,
// because we just know if it is > or < aDist
double dd = square( aRefPoint.x - xp ) + square( aRefPoint.y - yp );
double dist = square( aDist );
if( dd > dist ) // this reference point is not a good candiadte.
return false;
// dd is < dist, therefore we should make a fine test
if( fabs( slope ) > 0.7 )
{
// line segment more vertical than horizontal
if( (aEnd.y > aStart.y && yp <= aEnd.y && yp >= aStart.y) ||
(aEnd.y < aStart.y && yp >= aEnd.y && yp <= aStart.y) )
return true;
}
else
{
// line segment more horizontal than vertical
if( (aEnd.x > aStart.x && xp <= aEnd.x && xp >= aStart.x) ||
(aEnd.x < aStart.x && xp >= aEnd.x && xp <= aStart.x) )
return true;
}
// Here, the test point is still a good candidate,
// however it is not "between" the end points of the segment.
// It is "outside" the segment, but it could be near a segment end point
// Therefore, we test the dist from the test point to each segment end point
dd = square( aRefPoint.x - aEnd.x ) + square( aRefPoint.y - aEnd.y );
if( dd <= dist )
return true;
dd = square( aRefPoint.x - aStart.x ) + square( aRefPoint.y - aStart.y );
if( dd <= dist )
return true;
}
return false; // no hit
}
double ArcTangente( int dy, int dx )
{
/* gcc is surprisingly smart in optimizing these conditions in
a tree! */
if( dx == 0 && dy == 0 )
return 0;
if( dy == 0 )
{
if( dx >= 0 )
return 0;
else
return -1800;
}
if( dx == 0 )
{
if( dy >= 0 )
return 900;
else
return -900;
}
if( dx == dy )
{
if( dx >= 0 )
return 450;
else
return -1800 + 450;
}
if( dx == -dy )
{
if( dx >= 0 )
return -450;
else
return 1800 - 450;
}
// Of course dy and dx are treated as double
return RAD2DECIDEG( atan2( dy, dx ) );
}
void RotatePoint( int* pX, int* pY, double angle )
{
int tmp;
NORMALIZE_ANGLE_POS( angle );
// Cheap and dirty optimizations for 0, 90, 180, and 270 degrees.
if( angle == 0 )
return;
if( angle == 900 ) /* sin = 1, cos = 0 */
{
tmp = *pX;
*pX = *pY;
*pY = -tmp;
}
else if( angle == 1800 ) /* sin = 0, cos = -1 */
{
*pX = -*pX;
*pY = -*pY;
}
else if( angle == 2700 ) /* sin = -1, cos = 0 */
{
tmp = *pX;
*pX = -*pY;
*pY = tmp;
}
else
{
double fangle = DECIDEG2RAD( angle );
double sinus = sin( fangle );
double cosinus = cos( fangle );
double fpx = (*pY * sinus ) + (*pX * cosinus );
double fpy = (*pY * cosinus ) - (*pX * sinus );
*pX = KiROUND( fpx );
*pY = KiROUND( fpy );
}
}
void RotatePoint( int* pX, int* pY, int cx, int cy, double angle )
{
int ox, oy;
ox = *pX - cx;
oy = *pY - cy;
RotatePoint( &ox, &oy, angle );
*pX = ox + cx;
*pY = oy + cy;
}
void RotatePoint( wxPoint* point, const wxPoint& centre, double angle )
{
int ox, oy;
ox = point->x - centre.x;
oy = point->y - centre.y;
RotatePoint( &ox, &oy, angle );
point->x = ox + centre.x;
point->y = oy + centre.y;
}
void RotatePoint( double* pX, double* pY, double cx, double cy, double angle )
{
double ox, oy;
ox = *pX - cx;
oy = *pY - cy;
RotatePoint( &ox, &oy, angle );
*pX = ox + cx;
*pY = oy + cy;
}
void RotatePoint( double* pX, double* pY, double angle )
{
double tmp;
NORMALIZE_ANGLE_POS( angle );
// Cheap and dirty optimizations for 0, 90, 180, and 270 degrees.
if( angle == 0 )
return;
if( angle == 900 ) /* sin = 1, cos = 0 */
{
tmp = *pX;
*pX = *pY;
*pY = -tmp;
}
else if( angle == 1800 ) /* sin = 0, cos = -1 */
{
*pX = -*pX;
*pY = -*pY;
}
else if( angle == 2700 ) /* sin = -1, cos = 0 */
{
tmp = *pX;
*pX = -*pY;
*pY = tmp;
}
else
{
double fangle = DECIDEG2RAD( angle );
double sinus = sin( fangle );
double cosinus = cos( fangle );
double fpx = (*pY * sinus ) + (*pX * cosinus );
double fpy = (*pY * cosinus ) - (*pX * sinus );
*pX = fpx;
*pY = fpy;
}
}
|