summaryrefslogtreecommitdiff
path: root/common/bezier_curves.cpp
blob: 9dc67b6a93d5fae98319f7bf28a81c859d266e87 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
/*
 * This program source code file is part of KiCad, a free EDA CAD application.
 *
 * Copyright (C) 2014 Jean-Pierre Charras, jp.charras at wanadoo.fr
 * Copyright (C) 2014 KiCad Developers, see CHANGELOG.TXT for contributors.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, you may find one here:
 * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
 * or you may search the http://www.gnu.org website for the version 2 license,
 * or you may write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA
 */

/************************************/
/* routines to handle bezier curves */
/************************************/

#include <fctsys.h>
#include <bezier_curves.h>


#define add_segment(segment) if(s_bezier_Points_Buffer[s_bezier_Points_Buffer.size()-1] != segment) s_bezier_Points_Buffer.push_back(segment);


// Local variables:
static std::vector<wxPoint> s_bezier_Points_Buffer;

static int    bezier_recursion_limit     = 12;
static double bezier_approximation_scale = 0.5;  // 1

static double bezier_curve_collinearity_epsilon    = 1e-30;
static double bezier_curve_angle_tolerance_epsilon = 0.0001;
static double bezier_distance_tolerance_square; // derived by approximation_scale
static double bezier_angle_tolerance = 0.0;
static double bezier_cusp_limit = 0.0;

// Local functions:
static void recursive_bezier( int x1, int y1, int x2, int y2, int x3, int y3, int level );
static void recursive_bezier( int x1,
                              int y1,
                              int x2,
                              int y2,
                              int x3,
                              int y3,
                              int x4,
                              int y4,
                              int level );

/***********************************************************************************/


std::vector<wxPoint> Bezier2Poly( wxPoint c1, wxPoint c2, wxPoint c3, wxPoint c4 )
{
    return Bezier2Poly( c1.x, c1.y, c2.x, c2.y, c3.x, c3.y, c4.x, c4.y );
}


std::vector<wxPoint> Bezier2Poly( wxPoint c1, wxPoint c2, wxPoint c3 )
{
    return Bezier2Poly( c1.x, c1.y, c2.x, c2.y, c3.x, c3.y );
}


inline double calc_sq_distance( int x1, int y1, int x2, int y2 )
{
    int dx = x2 - x1;
    int dy = y2 - y1;

    return (double)dx * dx + (double)dy * dy;
}

inline double sqrt_len( int dx, int dy )
{
    return ((double)dx * dx) + ((double)dy * dy);
}


std::vector<wxPoint>  Bezier2Poly( int x1, int y1, int x2, int y2, int x3, int y3 )
{
    s_bezier_Points_Buffer.clear();

    bezier_distance_tolerance_square  = 0.5 / bezier_approximation_scale;
    bezier_distance_tolerance_square *= bezier_distance_tolerance_square;
    s_bezier_Points_Buffer.push_back( wxPoint( x1, y1 ) );
    recursive_bezier( x1, y1, x2, y2, x3, y3, 0 );
    s_bezier_Points_Buffer.push_back( wxPoint( x3, y3 ) );

    wxLogDebug( wxT( "Bezier Conversion - End (%d vertex)" ), s_bezier_Points_Buffer.size() );
    return s_bezier_Points_Buffer;
}


std::vector<wxPoint> Bezier2Poly( int x1, int y1, int x2, int y2, int x3, int y3, int x4, int y4 )
{
    s_bezier_Points_Buffer.clear();
    bezier_distance_tolerance_square  = 0.5 / bezier_approximation_scale;
    bezier_distance_tolerance_square *= bezier_distance_tolerance_square;

    s_bezier_Points_Buffer.push_back( wxPoint( x1, y1 ) );
    recursive_bezier( x1, y1, x2, y2, x3, y3, x4, y4, 0 );
    s_bezier_Points_Buffer.push_back( wxPoint( x4, y4 ) );
    wxLogDebug( wxT( "Bezier Conversion - End (%d vertex)" ), s_bezier_Points_Buffer.size() );
    return s_bezier_Points_Buffer;
}


void recursive_bezier( int x1, int y1, int x2, int y2, int x3, int y3, int level )
{
    if( abs( level ) > bezier_recursion_limit )
    {
        return;
    }

    // Calculate all the mid-points of the line segments
    //----------------------
    int    x12  = (x1 + x2) / 2;
    int    y12  = (y1 + y2) / 2;
    int    x23  = (x2 + x3) / 2;
    int    y23  = (y2 + y3) / 2;
    int    x123 = (x12 + x23) / 2;
    int    y123 = (y12 + y23) / 2;

    int    dx = x3 - x1;
    int    dy = y3 - y1;
    double d  = fabs( ((double) (x2 - x3) * dy) - ((double) (y2 - y3) * dx ) );
    double da;

    if( d > bezier_curve_collinearity_epsilon )
    {
        // Regular case
        //-----------------
        if( d * d <= bezier_distance_tolerance_square * (dx * dx + dy * dy) )
        {
            // If the curvature doesn't exceed the distance_tolerance value
            // we tend to finish subdivisions.
            //----------------------
            if( bezier_angle_tolerance < bezier_curve_angle_tolerance_epsilon )
            {
                add_segment( wxPoint( x123, y123 ) );
                return;
            }

            // Angle & Cusp Condition
            //----------------------
            da = fabs( atan2( (double) ( y3 - y2 ), (double) ( x3 - x2 ) ) -
                       atan2( (double) ( y2 - y1 ), (double) ( x2 - x1 ) ) );
            if( da >=M_PI )
                da = 2 * M_PI - da;

            if( da < bezier_angle_tolerance )
            {
                // Finally we can stop the recursion
                //----------------------
                add_segment( wxPoint( x123, y123 ) );
                return;
            }
        }
    }
    else
    {
        // Collinear case
        //------------------
        da = sqrt_len(dx, dy);
        if( da == 0 )
        {
            d = calc_sq_distance( x1, y1, x2, y2 );
        }
        else
        {
            d = ( (double)(x2 - x1) * dx + (double)(y2 - y1) * dy ) / da;
            if( d > 0 && d < 1 )
            {
                // Simple collinear case, 1---2---3
                // We can leave just two endpoints
                return;
            }
            if( d <= 0 )
                d = calc_sq_distance( x2, y2, x1, y1 );
            else if( d >= 1 )
                d = calc_sq_distance( x2, y2, x3, y3 );
            else
                d = calc_sq_distance( x2, y2, x1 + (int) d * dx,
                                      y1 + (int) d * dy );
        }
        if( d < bezier_distance_tolerance_square )
        {
            add_segment( wxPoint( x2, y2 ) );
            return;
        }
    }

    // Continue subdivision
    //----------------------
    recursive_bezier( x1, y1, x12, y12, x123, y123, level + 1 );
    recursive_bezier( x123, y123, x23, y23, x3, y3, -(level + 1) );
}


void recursive_bezier( int x1, int y1, int x2, int y2, int x3, int y3, int x4, int y4, int level )
{
    if( abs( level ) > bezier_recursion_limit )
    {
        return;
    }

    // Calculate all the mid-points of the line segments
    //----------------------
    int x12   = (x1 + x2) / 2;
    int y12   = (y1 + y2) / 2;
    int x23   = (x2 + x3) / 2;
    int y23   = (y2 + y3) / 2;
    int x34   = (x3 + x4) / 2;
    int y34   = (y3 + y4) / 2;
    int x123  = (x12 + x23) / 2;
    int y123  = (y12 + y23) / 2;
    int x234  = (x23 + x34) / 2;
    int y234  = (y23 + y34) / 2;
    int x1234 = (x123 + x234) / 2;
    int y1234 = (y123 + y234) / 2;


    // Try to approximate the full cubic curve by a single straight line
    //------------------
    int    dx = x4 - x1;
    int    dy = y4 - y1;

    double d2 = fabs( (double) ( (x2 - x4) * dy - (y2 - y4) * dx ) );
    double d3 = fabs( (double) ( (x3 - x4) * dy - (y3 - y4) * dx ) );
    double da1, da2, k;

    switch( (int(d2 > bezier_curve_collinearity_epsilon) << 1) +
           int(d3 > bezier_curve_collinearity_epsilon) )
    {
    case 0:

        // All collinear OR p1==p4
        //----------------------
        k = dx * dx + dy * dy;
        if( k == 0 )
        {
            d2 = calc_sq_distance( x1, y1, x2, y2 );
            d3 = calc_sq_distance( x4, y4, x3, y3 );
        }
        else
        {
            k   = 1 / k;
            da1 = x2 - x1;
            da2 = y2 - y1;
            d2  = k * (da1 * dx + da2 * dy);
            da1 = x3 - x1;
            da2 = y3 - y1;
            d3  = k * (da1 * dx + da2 * dy);
            if( d2 > 0 && d2 < 1 && d3 > 0 && d3 < 1 )
            {
                // Simple collinear case, 1---2---3---4
                // We can leave just two endpoints
                return;
            }
            if( d2 <= 0 )
                d2 = calc_sq_distance( x2, y2, x1, y1 );
            else if( d2 >= 1 )
                d2 = calc_sq_distance( x2, y2, x4, y4 );
            else
                d2 = calc_sq_distance( x2, y2, x1 + (int) d2 * dx,
                                       y1 + (int) d2 * dy );

            if( d3 <= 0 )
                d3 = calc_sq_distance( x3, y3, x1, y1 );
            else if( d3 >= 1 )
                d3 = calc_sq_distance( x3, y3, x4, y4 );
            else
                d3 = calc_sq_distance( x3, y3, x1 + (int) d3 * dx,
                                       y1 + (int) d3 * dy );
        }
        if( d2 > d3 )
        {
            if( d2 < bezier_distance_tolerance_square )
            {
                add_segment( wxPoint( x2, y2 ) );
                return;
            }
        }
        else
        {
            if( d3 < bezier_distance_tolerance_square )
            {
                add_segment( wxPoint( x3, y3 ) );
                return;
            }
        }
        break;

    case 1:

        // p1,p2,p4 are collinear, p3 is significant
        //----------------------
        if( d3 * d3 <= bezier_distance_tolerance_square * sqrt_len(dx, dy) )
        {
            if( bezier_angle_tolerance < bezier_curve_angle_tolerance_epsilon )
            {
                add_segment( wxPoint( x23, y23 ) );
                return;
            }

            // Angle Condition
            //----------------------
            da1 = fabs( atan2( (double) ( y4 - y3 ), (double) ( x4 - x3 ) ) -
                        atan2( (double) ( y3 - y2 ), (double) ( x3 - x2 ) ) );
            if( da1 >= M_PI )
                da1 = 2 * M_PI - da1;

            if( da1 < bezier_angle_tolerance )
            {
                add_segment( wxPoint( x2, y2 ) );
                add_segment( wxPoint( x3, y3 ) );
                return;
            }

            if( bezier_cusp_limit != 0.0 )
            {
                if( da1 > bezier_cusp_limit )
                {
                    add_segment( wxPoint( x3, y3 ) );
                    return;
                }
            }
        }
        break;

    case 2:

        // p1,p3,p4 are collinear, p2 is significant
        //----------------------
        if( d2 * d2 <= bezier_distance_tolerance_square * sqrt_len(dx, dy) )
        {
            if( bezier_angle_tolerance < bezier_curve_angle_tolerance_epsilon )
            {
                add_segment( wxPoint( x23, y23 ) );
                return;
            }

            // Angle Condition
            //----------------------
            da1 = fabs( atan2( (double) ( y3 - y2 ), (double) ( x3 - x2 ) ) -
                        atan2( (double) ( y2 - y1 ), (double) ( x2 - x1 ) ) );
            if( da1 >= M_PI )
                da1 = 2 * M_PI - da1;

            if( da1 < bezier_angle_tolerance )
            {
                add_segment( wxPoint( x2, y2 ) );
                add_segment( wxPoint( x3, y3 ) );
                return;
            }

            if( bezier_cusp_limit != 0.0 )
            {
                if( da1 > bezier_cusp_limit )
                {
                    add_segment( wxPoint( x2, y2 ) );
                    return;
                }
            }
        }
        break;

    case 3:

        // Regular case
        //-----------------
        if( (d2 + d3) * (d2 + d3) <= bezier_distance_tolerance_square * sqrt_len(dx, dy) )
        {
            // If the curvature doesn't exceed the distance_tolerance value
            // we tend to finish subdivisions.
            //----------------------
            if( bezier_angle_tolerance < bezier_curve_angle_tolerance_epsilon )
            {
                add_segment( wxPoint( x23, y23 ) );
                return;
            }

            // Angle & Cusp Condition
            //----------------------
            k   = atan2( (double) ( y3 - y2 ), (double) ( x3 - x2 ) );
            da1 = fabs( k - atan2( (double) ( y2 - y1 ),
                                   (double) ( x2 - x1 ) ) );
            da2 = fabs( atan2( (double) ( y4 - y3 ),
                               (double) ( x4 - x3 ) ) - k );
            if( da1 >= M_PI )
                da1 = 2 * M_PI - da1;
            if( da2 >= M_PI )
                da2 = 2 * M_PI - da2;

            if( da1 + da2 < bezier_angle_tolerance )
            {
                // Finally we can stop the recursion
                //----------------------
                add_segment( wxPoint( x23, y23 ) );
                return;
            }

            if( bezier_cusp_limit != 0.0 )
            {
                if( da1 > bezier_cusp_limit )
                {
                    add_segment( wxPoint( x2, y2 ) );
                    return;
                }

                if( da2 > bezier_cusp_limit )
                {
                    add_segment( wxPoint( x3, y3 ) );
                    return;
                }
            }
        }
        break;
    }

    // Continue subdivision
    //----------------------
    recursive_bezier( x1, y1, x12, y12, x123, y123, x1234, y1234, level + 1 );
    recursive_bezier( x1234, y1234, x234, y234, x34, y34, x4, y4, level + 1 );
}