summaryrefslogtreecommitdiff
path: root/lib/python2.7/decimal.py
diff options
context:
space:
mode:
Diffstat (limited to 'lib/python2.7/decimal.py')
-rw-r--r--lib/python2.7/decimal.py6221
1 files changed, 6221 insertions, 0 deletions
diff --git a/lib/python2.7/decimal.py b/lib/python2.7/decimal.py
new file mode 100644
index 0000000..e5329dd
--- /dev/null
+++ b/lib/python2.7/decimal.py
@@ -0,0 +1,6221 @@
+# Copyright (c) 2004 Python Software Foundation.
+# All rights reserved.
+
+# Written by Eric Price <eprice at tjhsst.edu>
+# and Facundo Batista <facundo at taniquetil.com.ar>
+# and Raymond Hettinger <python at rcn.com>
+# and Aahz <aahz at pobox.com>
+# and Tim Peters
+
+# This module is currently Py2.3 compatible and should be kept that way
+# unless a major compelling advantage arises. IOW, 2.3 compatibility is
+# strongly preferred, but not guaranteed.
+
+# Also, this module should be kept in sync with the latest updates of
+# the IBM specification as it evolves. Those updates will be treated
+# as bug fixes (deviation from the spec is a compatibility, usability
+# bug) and will be backported. At this point the spec is stabilizing
+# and the updates are becoming fewer, smaller, and less significant.
+
+"""
+This is a Py2.3 implementation of decimal floating point arithmetic based on
+the General Decimal Arithmetic Specification:
+
+ http://speleotrove.com/decimal/decarith.html
+
+and IEEE standard 854-1987:
+
+ http://en.wikipedia.org/wiki/IEEE_854-1987
+
+Decimal floating point has finite precision with arbitrarily large bounds.
+
+The purpose of this module is to support arithmetic using familiar
+"schoolhouse" rules and to avoid some of the tricky representation
+issues associated with binary floating point. The package is especially
+useful for financial applications or for contexts where users have
+expectations that are at odds with binary floating point (for instance,
+in binary floating point, 1.00 % 0.1 gives 0.09999999999999995 instead
+of the expected Decimal('0.00') returned by decimal floating point).
+
+Here are some examples of using the decimal module:
+
+>>> from decimal import *
+>>> setcontext(ExtendedContext)
+>>> Decimal(0)
+Decimal('0')
+>>> Decimal('1')
+Decimal('1')
+>>> Decimal('-.0123')
+Decimal('-0.0123')
+>>> Decimal(123456)
+Decimal('123456')
+>>> Decimal('123.45e12345678901234567890')
+Decimal('1.2345E+12345678901234567892')
+>>> Decimal('1.33') + Decimal('1.27')
+Decimal('2.60')
+>>> Decimal('12.34') + Decimal('3.87') - Decimal('18.41')
+Decimal('-2.20')
+>>> dig = Decimal(1)
+>>> print dig / Decimal(3)
+0.333333333
+>>> getcontext().prec = 18
+>>> print dig / Decimal(3)
+0.333333333333333333
+>>> print dig.sqrt()
+1
+>>> print Decimal(3).sqrt()
+1.73205080756887729
+>>> print Decimal(3) ** 123
+4.85192780976896427E+58
+>>> inf = Decimal(1) / Decimal(0)
+>>> print inf
+Infinity
+>>> neginf = Decimal(-1) / Decimal(0)
+>>> print neginf
+-Infinity
+>>> print neginf + inf
+NaN
+>>> print neginf * inf
+-Infinity
+>>> print dig / 0
+Infinity
+>>> getcontext().traps[DivisionByZero] = 1
+>>> print dig / 0
+Traceback (most recent call last):
+ ...
+ ...
+ ...
+DivisionByZero: x / 0
+>>> c = Context()
+>>> c.traps[InvalidOperation] = 0
+>>> print c.flags[InvalidOperation]
+0
+>>> c.divide(Decimal(0), Decimal(0))
+Decimal('NaN')
+>>> c.traps[InvalidOperation] = 1
+>>> print c.flags[InvalidOperation]
+1
+>>> c.flags[InvalidOperation] = 0
+>>> print c.flags[InvalidOperation]
+0
+>>> print c.divide(Decimal(0), Decimal(0))
+Traceback (most recent call last):
+ ...
+ ...
+ ...
+InvalidOperation: 0 / 0
+>>> print c.flags[InvalidOperation]
+1
+>>> c.flags[InvalidOperation] = 0
+>>> c.traps[InvalidOperation] = 0
+>>> print c.divide(Decimal(0), Decimal(0))
+NaN
+>>> print c.flags[InvalidOperation]
+1
+>>>
+"""
+
+__all__ = [
+ # Two major classes
+ 'Decimal', 'Context',
+
+ # Contexts
+ 'DefaultContext', 'BasicContext', 'ExtendedContext',
+
+ # Exceptions
+ 'DecimalException', 'Clamped', 'InvalidOperation', 'DivisionByZero',
+ 'Inexact', 'Rounded', 'Subnormal', 'Overflow', 'Underflow',
+
+ # Constants for use in setting up contexts
+ 'ROUND_DOWN', 'ROUND_HALF_UP', 'ROUND_HALF_EVEN', 'ROUND_CEILING',
+ 'ROUND_FLOOR', 'ROUND_UP', 'ROUND_HALF_DOWN', 'ROUND_05UP',
+
+ # Functions for manipulating contexts
+ 'setcontext', 'getcontext', 'localcontext'
+]
+
+__version__ = '1.70' # Highest version of the spec this complies with
+
+import math as _math
+import numbers as _numbers
+
+try:
+ from collections import namedtuple as _namedtuple
+ DecimalTuple = _namedtuple('DecimalTuple', 'sign digits exponent')
+except ImportError:
+ DecimalTuple = lambda *args: args
+
+# Rounding
+ROUND_DOWN = 'ROUND_DOWN'
+ROUND_HALF_UP = 'ROUND_HALF_UP'
+ROUND_HALF_EVEN = 'ROUND_HALF_EVEN'
+ROUND_CEILING = 'ROUND_CEILING'
+ROUND_FLOOR = 'ROUND_FLOOR'
+ROUND_UP = 'ROUND_UP'
+ROUND_HALF_DOWN = 'ROUND_HALF_DOWN'
+ROUND_05UP = 'ROUND_05UP'
+
+# Errors
+
+class DecimalException(ArithmeticError):
+ """Base exception class.
+
+ Used exceptions derive from this.
+ If an exception derives from another exception besides this (such as
+ Underflow (Inexact, Rounded, Subnormal) that indicates that it is only
+ called if the others are present. This isn't actually used for
+ anything, though.
+
+ handle -- Called when context._raise_error is called and the
+ trap_enabler is not set. First argument is self, second is the
+ context. More arguments can be given, those being after
+ the explanation in _raise_error (For example,
+ context._raise_error(NewError, '(-x)!', self._sign) would
+ call NewError().handle(context, self._sign).)
+
+ To define a new exception, it should be sufficient to have it derive
+ from DecimalException.
+ """
+ def handle(self, context, *args):
+ pass
+
+
+class Clamped(DecimalException):
+ """Exponent of a 0 changed to fit bounds.
+
+ This occurs and signals clamped if the exponent of a result has been
+ altered in order to fit the constraints of a specific concrete
+ representation. This may occur when the exponent of a zero result would
+ be outside the bounds of a representation, or when a large normal
+ number would have an encoded exponent that cannot be represented. In
+ this latter case, the exponent is reduced to fit and the corresponding
+ number of zero digits are appended to the coefficient ("fold-down").
+ """
+
+class InvalidOperation(DecimalException):
+ """An invalid operation was performed.
+
+ Various bad things cause this:
+
+ Something creates a signaling NaN
+ -INF + INF
+ 0 * (+-)INF
+ (+-)INF / (+-)INF
+ x % 0
+ (+-)INF % x
+ x._rescale( non-integer )
+ sqrt(-x) , x > 0
+ 0 ** 0
+ x ** (non-integer)
+ x ** (+-)INF
+ An operand is invalid
+
+ The result of the operation after these is a quiet positive NaN,
+ except when the cause is a signaling NaN, in which case the result is
+ also a quiet NaN, but with the original sign, and an optional
+ diagnostic information.
+ """
+ def handle(self, context, *args):
+ if args:
+ ans = _dec_from_triple(args[0]._sign, args[0]._int, 'n', True)
+ return ans._fix_nan(context)
+ return _NaN
+
+class ConversionSyntax(InvalidOperation):
+ """Trying to convert badly formed string.
+
+ This occurs and signals invalid-operation if a string is being
+ converted to a number and it does not conform to the numeric string
+ syntax. The result is [0,qNaN].
+ """
+ def handle(self, context, *args):
+ return _NaN
+
+class DivisionByZero(DecimalException, ZeroDivisionError):
+ """Division by 0.
+
+ This occurs and signals division-by-zero if division of a finite number
+ by zero was attempted (during a divide-integer or divide operation, or a
+ power operation with negative right-hand operand), and the dividend was
+ not zero.
+
+ The result of the operation is [sign,inf], where sign is the exclusive
+ or of the signs of the operands for divide, or is 1 for an odd power of
+ -0, for power.
+ """
+
+ def handle(self, context, sign, *args):
+ return _SignedInfinity[sign]
+
+class DivisionImpossible(InvalidOperation):
+ """Cannot perform the division adequately.
+
+ This occurs and signals invalid-operation if the integer result of a
+ divide-integer or remainder operation had too many digits (would be
+ longer than precision). The result is [0,qNaN].
+ """
+
+ def handle(self, context, *args):
+ return _NaN
+
+class DivisionUndefined(InvalidOperation, ZeroDivisionError):
+ """Undefined result of division.
+
+ This occurs and signals invalid-operation if division by zero was
+ attempted (during a divide-integer, divide, or remainder operation), and
+ the dividend is also zero. The result is [0,qNaN].
+ """
+
+ def handle(self, context, *args):
+ return _NaN
+
+class Inexact(DecimalException):
+ """Had to round, losing information.
+
+ This occurs and signals inexact whenever the result of an operation is
+ not exact (that is, it needed to be rounded and any discarded digits
+ were non-zero), or if an overflow or underflow condition occurs. The
+ result in all cases is unchanged.
+
+ The inexact signal may be tested (or trapped) to determine if a given
+ operation (or sequence of operations) was inexact.
+ """
+
+class InvalidContext(InvalidOperation):
+ """Invalid context. Unknown rounding, for example.
+
+ This occurs and signals invalid-operation if an invalid context was
+ detected during an operation. This can occur if contexts are not checked
+ on creation and either the precision exceeds the capability of the
+ underlying concrete representation or an unknown or unsupported rounding
+ was specified. These aspects of the context need only be checked when
+ the values are required to be used. The result is [0,qNaN].
+ """
+
+ def handle(self, context, *args):
+ return _NaN
+
+class Rounded(DecimalException):
+ """Number got rounded (not necessarily changed during rounding).
+
+ This occurs and signals rounded whenever the result of an operation is
+ rounded (that is, some zero or non-zero digits were discarded from the
+ coefficient), or if an overflow or underflow condition occurs. The
+ result in all cases is unchanged.
+
+ The rounded signal may be tested (or trapped) to determine if a given
+ operation (or sequence of operations) caused a loss of precision.
+ """
+
+class Subnormal(DecimalException):
+ """Exponent < Emin before rounding.
+
+ This occurs and signals subnormal whenever the result of a conversion or
+ operation is subnormal (that is, its adjusted exponent is less than
+ Emin, before any rounding). The result in all cases is unchanged.
+
+ The subnormal signal may be tested (or trapped) to determine if a given
+ or operation (or sequence of operations) yielded a subnormal result.
+ """
+
+class Overflow(Inexact, Rounded):
+ """Numerical overflow.
+
+ This occurs and signals overflow if the adjusted exponent of a result
+ (from a conversion or from an operation that is not an attempt to divide
+ by zero), after rounding, would be greater than the largest value that
+ can be handled by the implementation (the value Emax).
+
+ The result depends on the rounding mode:
+
+ For round-half-up and round-half-even (and for round-half-down and
+ round-up, if implemented), the result of the operation is [sign,inf],
+ where sign is the sign of the intermediate result. For round-down, the
+ result is the largest finite number that can be represented in the
+ current precision, with the sign of the intermediate result. For
+ round-ceiling, the result is the same as for round-down if the sign of
+ the intermediate result is 1, or is [0,inf] otherwise. For round-floor,
+ the result is the same as for round-down if the sign of the intermediate
+ result is 0, or is [1,inf] otherwise. In all cases, Inexact and Rounded
+ will also be raised.
+ """
+
+ def handle(self, context, sign, *args):
+ if context.rounding in (ROUND_HALF_UP, ROUND_HALF_EVEN,
+ ROUND_HALF_DOWN, ROUND_UP):
+ return _SignedInfinity[sign]
+ if sign == 0:
+ if context.rounding == ROUND_CEILING:
+ return _SignedInfinity[sign]
+ return _dec_from_triple(sign, '9'*context.prec,
+ context.Emax-context.prec+1)
+ if sign == 1:
+ if context.rounding == ROUND_FLOOR:
+ return _SignedInfinity[sign]
+ return _dec_from_triple(sign, '9'*context.prec,
+ context.Emax-context.prec+1)
+
+
+class Underflow(Inexact, Rounded, Subnormal):
+ """Numerical underflow with result rounded to 0.
+
+ This occurs and signals underflow if a result is inexact and the
+ adjusted exponent of the result would be smaller (more negative) than
+ the smallest value that can be handled by the implementation (the value
+ Emin). That is, the result is both inexact and subnormal.
+
+ The result after an underflow will be a subnormal number rounded, if
+ necessary, so that its exponent is not less than Etiny. This may result
+ in 0 with the sign of the intermediate result and an exponent of Etiny.
+
+ In all cases, Inexact, Rounded, and Subnormal will also be raised.
+ """
+
+# List of public traps and flags
+_signals = [Clamped, DivisionByZero, Inexact, Overflow, Rounded,
+ Underflow, InvalidOperation, Subnormal]
+
+# Map conditions (per the spec) to signals
+_condition_map = {ConversionSyntax:InvalidOperation,
+ DivisionImpossible:InvalidOperation,
+ DivisionUndefined:InvalidOperation,
+ InvalidContext:InvalidOperation}
+
+##### Context Functions ##################################################
+
+# The getcontext() and setcontext() function manage access to a thread-local
+# current context. Py2.4 offers direct support for thread locals. If that
+# is not available, use threading.currentThread() which is slower but will
+# work for older Pythons. If threads are not part of the build, create a
+# mock threading object with threading.local() returning the module namespace.
+
+try:
+ import threading
+except ImportError:
+ # Python was compiled without threads; create a mock object instead
+ import sys
+ class MockThreading(object):
+ def local(self, sys=sys):
+ return sys.modules[__name__]
+ threading = MockThreading()
+ del sys, MockThreading
+
+try:
+ threading.local
+
+except AttributeError:
+
+ # To fix reloading, force it to create a new context
+ # Old contexts have different exceptions in their dicts, making problems.
+ if hasattr(threading.currentThread(), '__decimal_context__'):
+ del threading.currentThread().__decimal_context__
+
+ def setcontext(context):
+ """Set this thread's context to context."""
+ if context in (DefaultContext, BasicContext, ExtendedContext):
+ context = context.copy()
+ context.clear_flags()
+ threading.currentThread().__decimal_context__ = context
+
+ def getcontext():
+ """Returns this thread's context.
+
+ If this thread does not yet have a context, returns
+ a new context and sets this thread's context.
+ New contexts are copies of DefaultContext.
+ """
+ try:
+ return threading.currentThread().__decimal_context__
+ except AttributeError:
+ context = Context()
+ threading.currentThread().__decimal_context__ = context
+ return context
+
+else:
+
+ local = threading.local()
+ if hasattr(local, '__decimal_context__'):
+ del local.__decimal_context__
+
+ def getcontext(_local=local):
+ """Returns this thread's context.
+
+ If this thread does not yet have a context, returns
+ a new context and sets this thread's context.
+ New contexts are copies of DefaultContext.
+ """
+ try:
+ return _local.__decimal_context__
+ except AttributeError:
+ context = Context()
+ _local.__decimal_context__ = context
+ return context
+
+ def setcontext(context, _local=local):
+ """Set this thread's context to context."""
+ if context in (DefaultContext, BasicContext, ExtendedContext):
+ context = context.copy()
+ context.clear_flags()
+ _local.__decimal_context__ = context
+
+ del threading, local # Don't contaminate the namespace
+
+def localcontext(ctx=None):
+ """Return a context manager for a copy of the supplied context
+
+ Uses a copy of the current context if no context is specified
+ The returned context manager creates a local decimal context
+ in a with statement:
+ def sin(x):
+ with localcontext() as ctx:
+ ctx.prec += 2
+ # Rest of sin calculation algorithm
+ # uses a precision 2 greater than normal
+ return +s # Convert result to normal precision
+
+ def sin(x):
+ with localcontext(ExtendedContext):
+ # Rest of sin calculation algorithm
+ # uses the Extended Context from the
+ # General Decimal Arithmetic Specification
+ return +s # Convert result to normal context
+
+ >>> setcontext(DefaultContext)
+ >>> print getcontext().prec
+ 28
+ >>> with localcontext():
+ ... ctx = getcontext()
+ ... ctx.prec += 2
+ ... print ctx.prec
+ ...
+ 30
+ >>> with localcontext(ExtendedContext):
+ ... print getcontext().prec
+ ...
+ 9
+ >>> print getcontext().prec
+ 28
+ """
+ if ctx is None: ctx = getcontext()
+ return _ContextManager(ctx)
+
+
+##### Decimal class #######################################################
+
+class Decimal(object):
+ """Floating point class for decimal arithmetic."""
+
+ __slots__ = ('_exp','_int','_sign', '_is_special')
+ # Generally, the value of the Decimal instance is given by
+ # (-1)**_sign * _int * 10**_exp
+ # Special values are signified by _is_special == True
+
+ # We're immutable, so use __new__ not __init__
+ def __new__(cls, value="0", context=None):
+ """Create a decimal point instance.
+
+ >>> Decimal('3.14') # string input
+ Decimal('3.14')
+ >>> Decimal((0, (3, 1, 4), -2)) # tuple (sign, digit_tuple, exponent)
+ Decimal('3.14')
+ >>> Decimal(314) # int or long
+ Decimal('314')
+ >>> Decimal(Decimal(314)) # another decimal instance
+ Decimal('314')
+ >>> Decimal(' 3.14 \\n') # leading and trailing whitespace okay
+ Decimal('3.14')
+ """
+
+ # Note that the coefficient, self._int, is actually stored as
+ # a string rather than as a tuple of digits. This speeds up
+ # the "digits to integer" and "integer to digits" conversions
+ # that are used in almost every arithmetic operation on
+ # Decimals. This is an internal detail: the as_tuple function
+ # and the Decimal constructor still deal with tuples of
+ # digits.
+
+ self = object.__new__(cls)
+
+ # From a string
+ # REs insist on real strings, so we can too.
+ if isinstance(value, basestring):
+ m = _parser(value.strip())
+ if m is None:
+ if context is None:
+ context = getcontext()
+ return context._raise_error(ConversionSyntax,
+ "Invalid literal for Decimal: %r" % value)
+
+ if m.group('sign') == "-":
+ self._sign = 1
+ else:
+ self._sign = 0
+ intpart = m.group('int')
+ if intpart is not None:
+ # finite number
+ fracpart = m.group('frac') or ''
+ exp = int(m.group('exp') or '0')
+ self._int = str(int(intpart+fracpart))
+ self._exp = exp - len(fracpart)
+ self._is_special = False
+ else:
+ diag = m.group('diag')
+ if diag is not None:
+ # NaN
+ self._int = str(int(diag or '0')).lstrip('0')
+ if m.group('signal'):
+ self._exp = 'N'
+ else:
+ self._exp = 'n'
+ else:
+ # infinity
+ self._int = '0'
+ self._exp = 'F'
+ self._is_special = True
+ return self
+
+ # From an integer
+ if isinstance(value, (int,long)):
+ if value >= 0:
+ self._sign = 0
+ else:
+ self._sign = 1
+ self._exp = 0
+ self._int = str(abs(value))
+ self._is_special = False
+ return self
+
+ # From another decimal
+ if isinstance(value, Decimal):
+ self._exp = value._exp
+ self._sign = value._sign
+ self._int = value._int
+ self._is_special = value._is_special
+ return self
+
+ # From an internal working value
+ if isinstance(value, _WorkRep):
+ self._sign = value.sign
+ self._int = str(value.int)
+ self._exp = int(value.exp)
+ self._is_special = False
+ return self
+
+ # tuple/list conversion (possibly from as_tuple())
+ if isinstance(value, (list,tuple)):
+ if len(value) != 3:
+ raise ValueError('Invalid tuple size in creation of Decimal '
+ 'from list or tuple. The list or tuple '
+ 'should have exactly three elements.')
+ # process sign. The isinstance test rejects floats
+ if not (isinstance(value[0], (int, long)) and value[0] in (0,1)):
+ raise ValueError("Invalid sign. The first value in the tuple "
+ "should be an integer; either 0 for a "
+ "positive number or 1 for a negative number.")
+ self._sign = value[0]
+ if value[2] == 'F':
+ # infinity: value[1] is ignored
+ self._int = '0'
+ self._exp = value[2]
+ self._is_special = True
+ else:
+ # process and validate the digits in value[1]
+ digits = []
+ for digit in value[1]:
+ if isinstance(digit, (int, long)) and 0 <= digit <= 9:
+ # skip leading zeros
+ if digits or digit != 0:
+ digits.append(digit)
+ else:
+ raise ValueError("The second value in the tuple must "
+ "be composed of integers in the range "
+ "0 through 9.")
+ if value[2] in ('n', 'N'):
+ # NaN: digits form the diagnostic
+ self._int = ''.join(map(str, digits))
+ self._exp = value[2]
+ self._is_special = True
+ elif isinstance(value[2], (int, long)):
+ # finite number: digits give the coefficient
+ self._int = ''.join(map(str, digits or [0]))
+ self._exp = value[2]
+ self._is_special = False
+ else:
+ raise ValueError("The third value in the tuple must "
+ "be an integer, or one of the "
+ "strings 'F', 'n', 'N'.")
+ return self
+
+ if isinstance(value, float):
+ value = Decimal.from_float(value)
+ self._exp = value._exp
+ self._sign = value._sign
+ self._int = value._int
+ self._is_special = value._is_special
+ return self
+
+ raise TypeError("Cannot convert %r to Decimal" % value)
+
+ # @classmethod, but @decorator is not valid Python 2.3 syntax, so
+ # don't use it (see notes on Py2.3 compatibility at top of file)
+ def from_float(cls, f):
+ """Converts a float to a decimal number, exactly.
+
+ Note that Decimal.from_float(0.1) is not the same as Decimal('0.1').
+ Since 0.1 is not exactly representable in binary floating point, the
+ value is stored as the nearest representable value which is
+ 0x1.999999999999ap-4. The exact equivalent of the value in decimal
+ is 0.1000000000000000055511151231257827021181583404541015625.
+
+ >>> Decimal.from_float(0.1)
+ Decimal('0.1000000000000000055511151231257827021181583404541015625')
+ >>> Decimal.from_float(float('nan'))
+ Decimal('NaN')
+ >>> Decimal.from_float(float('inf'))
+ Decimal('Infinity')
+ >>> Decimal.from_float(-float('inf'))
+ Decimal('-Infinity')
+ >>> Decimal.from_float(-0.0)
+ Decimal('-0')
+
+ """
+ if isinstance(f, (int, long)): # handle integer inputs
+ return cls(f)
+ if _math.isinf(f) or _math.isnan(f): # raises TypeError if not a float
+ return cls(repr(f))
+ if _math.copysign(1.0, f) == 1.0:
+ sign = 0
+ else:
+ sign = 1
+ n, d = abs(f).as_integer_ratio()
+ k = d.bit_length() - 1
+ result = _dec_from_triple(sign, str(n*5**k), -k)
+ if cls is Decimal:
+ return result
+ else:
+ return cls(result)
+ from_float = classmethod(from_float)
+
+ def _isnan(self):
+ """Returns whether the number is not actually one.
+
+ 0 if a number
+ 1 if NaN
+ 2 if sNaN
+ """
+ if self._is_special:
+ exp = self._exp
+ if exp == 'n':
+ return 1
+ elif exp == 'N':
+ return 2
+ return 0
+
+ def _isinfinity(self):
+ """Returns whether the number is infinite
+
+ 0 if finite or not a number
+ 1 if +INF
+ -1 if -INF
+ """
+ if self._exp == 'F':
+ if self._sign:
+ return -1
+ return 1
+ return 0
+
+ def _check_nans(self, other=None, context=None):
+ """Returns whether the number is not actually one.
+
+ if self, other are sNaN, signal
+ if self, other are NaN return nan
+ return 0
+
+ Done before operations.
+ """
+
+ self_is_nan = self._isnan()
+ if other is None:
+ other_is_nan = False
+ else:
+ other_is_nan = other._isnan()
+
+ if self_is_nan or other_is_nan:
+ if context is None:
+ context = getcontext()
+
+ if self_is_nan == 2:
+ return context._raise_error(InvalidOperation, 'sNaN',
+ self)
+ if other_is_nan == 2:
+ return context._raise_error(InvalidOperation, 'sNaN',
+ other)
+ if self_is_nan:
+ return self._fix_nan(context)
+
+ return other._fix_nan(context)
+ return 0
+
+ def _compare_check_nans(self, other, context):
+ """Version of _check_nans used for the signaling comparisons
+ compare_signal, __le__, __lt__, __ge__, __gt__.
+
+ Signal InvalidOperation if either self or other is a (quiet
+ or signaling) NaN. Signaling NaNs take precedence over quiet
+ NaNs.
+
+ Return 0 if neither operand is a NaN.
+
+ """
+ if context is None:
+ context = getcontext()
+
+ if self._is_special or other._is_special:
+ if self.is_snan():
+ return context._raise_error(InvalidOperation,
+ 'comparison involving sNaN',
+ self)
+ elif other.is_snan():
+ return context._raise_error(InvalidOperation,
+ 'comparison involving sNaN',
+ other)
+ elif self.is_qnan():
+ return context._raise_error(InvalidOperation,
+ 'comparison involving NaN',
+ self)
+ elif other.is_qnan():
+ return context._raise_error(InvalidOperation,
+ 'comparison involving NaN',
+ other)
+ return 0
+
+ def __nonzero__(self):
+ """Return True if self is nonzero; otherwise return False.
+
+ NaNs and infinities are considered nonzero.
+ """
+ return self._is_special or self._int != '0'
+
+ def _cmp(self, other):
+ """Compare the two non-NaN decimal instances self and other.
+
+ Returns -1 if self < other, 0 if self == other and 1
+ if self > other. This routine is for internal use only."""
+
+ if self._is_special or other._is_special:
+ self_inf = self._isinfinity()
+ other_inf = other._isinfinity()
+ if self_inf == other_inf:
+ return 0
+ elif self_inf < other_inf:
+ return -1
+ else:
+ return 1
+
+ # check for zeros; Decimal('0') == Decimal('-0')
+ if not self:
+ if not other:
+ return 0
+ else:
+ return -((-1)**other._sign)
+ if not other:
+ return (-1)**self._sign
+
+ # If different signs, neg one is less
+ if other._sign < self._sign:
+ return -1
+ if self._sign < other._sign:
+ return 1
+
+ self_adjusted = self.adjusted()
+ other_adjusted = other.adjusted()
+ if self_adjusted == other_adjusted:
+ self_padded = self._int + '0'*(self._exp - other._exp)
+ other_padded = other._int + '0'*(other._exp - self._exp)
+ if self_padded == other_padded:
+ return 0
+ elif self_padded < other_padded:
+ return -(-1)**self._sign
+ else:
+ return (-1)**self._sign
+ elif self_adjusted > other_adjusted:
+ return (-1)**self._sign
+ else: # self_adjusted < other_adjusted
+ return -((-1)**self._sign)
+
+ # Note: The Decimal standard doesn't cover rich comparisons for
+ # Decimals. In particular, the specification is silent on the
+ # subject of what should happen for a comparison involving a NaN.
+ # We take the following approach:
+ #
+ # == comparisons involving a quiet NaN always return False
+ # != comparisons involving a quiet NaN always return True
+ # == or != comparisons involving a signaling NaN signal
+ # InvalidOperation, and return False or True as above if the
+ # InvalidOperation is not trapped.
+ # <, >, <= and >= comparisons involving a (quiet or signaling)
+ # NaN signal InvalidOperation, and return False if the
+ # InvalidOperation is not trapped.
+ #
+ # This behavior is designed to conform as closely as possible to
+ # that specified by IEEE 754.
+
+ def __eq__(self, other, context=None):
+ other = _convert_other(other, allow_float=True)
+ if other is NotImplemented:
+ return other
+ if self._check_nans(other, context):
+ return False
+ return self._cmp(other) == 0
+
+ def __ne__(self, other, context=None):
+ other = _convert_other(other, allow_float=True)
+ if other is NotImplemented:
+ return other
+ if self._check_nans(other, context):
+ return True
+ return self._cmp(other) != 0
+
+ def __lt__(self, other, context=None):
+ other = _convert_other(other, allow_float=True)
+ if other is NotImplemented:
+ return other
+ ans = self._compare_check_nans(other, context)
+ if ans:
+ return False
+ return self._cmp(other) < 0
+
+ def __le__(self, other, context=None):
+ other = _convert_other(other, allow_float=True)
+ if other is NotImplemented:
+ return other
+ ans = self._compare_check_nans(other, context)
+ if ans:
+ return False
+ return self._cmp(other) <= 0
+
+ def __gt__(self, other, context=None):
+ other = _convert_other(other, allow_float=True)
+ if other is NotImplemented:
+ return other
+ ans = self._compare_check_nans(other, context)
+ if ans:
+ return False
+ return self._cmp(other) > 0
+
+ def __ge__(self, other, context=None):
+ other = _convert_other(other, allow_float=True)
+ if other is NotImplemented:
+ return other
+ ans = self._compare_check_nans(other, context)
+ if ans:
+ return False
+ return self._cmp(other) >= 0
+
+ def compare(self, other, context=None):
+ """Compares one to another.
+
+ -1 => a < b
+ 0 => a = b
+ 1 => a > b
+ NaN => one is NaN
+ Like __cmp__, but returns Decimal instances.
+ """
+ other = _convert_other(other, raiseit=True)
+
+ # Compare(NaN, NaN) = NaN
+ if (self._is_special or other and other._is_special):
+ ans = self._check_nans(other, context)
+ if ans:
+ return ans
+
+ return Decimal(self._cmp(other))
+
+ def __hash__(self):
+ """x.__hash__() <==> hash(x)"""
+ # Decimal integers must hash the same as the ints
+ #
+ # The hash of a nonspecial noninteger Decimal must depend only
+ # on the value of that Decimal, and not on its representation.
+ # For example: hash(Decimal('100E-1')) == hash(Decimal('10')).
+
+ # Equality comparisons involving signaling nans can raise an
+ # exception; since equality checks are implicitly and
+ # unpredictably used when checking set and dict membership, we
+ # prevent signaling nans from being used as set elements or
+ # dict keys by making __hash__ raise an exception.
+ if self._is_special:
+ if self.is_snan():
+ raise TypeError('Cannot hash a signaling NaN value.')
+ elif self.is_nan():
+ # 0 to match hash(float('nan'))
+ return 0
+ else:
+ # values chosen to match hash(float('inf')) and
+ # hash(float('-inf')).
+ if self._sign:
+ return -271828
+ else:
+ return 314159
+
+ # In Python 2.7, we're allowing comparisons (but not
+ # arithmetic operations) between floats and Decimals; so if
+ # a Decimal instance is exactly representable as a float then
+ # its hash should match that of the float.
+ self_as_float = float(self)
+ if Decimal.from_float(self_as_float) == self:
+ return hash(self_as_float)
+
+ if self._isinteger():
+ op = _WorkRep(self.to_integral_value())
+ # to make computation feasible for Decimals with large
+ # exponent, we use the fact that hash(n) == hash(m) for
+ # any two nonzero integers n and m such that (i) n and m
+ # have the same sign, and (ii) n is congruent to m modulo
+ # 2**64-1. So we can replace hash((-1)**s*c*10**e) with
+ # hash((-1)**s*c*pow(10, e, 2**64-1).
+ return hash((-1)**op.sign*op.int*pow(10, op.exp, 2**64-1))
+ # The value of a nonzero nonspecial Decimal instance is
+ # faithfully represented by the triple consisting of its sign,
+ # its adjusted exponent, and its coefficient with trailing
+ # zeros removed.
+ return hash((self._sign,
+ self._exp+len(self._int),
+ self._int.rstrip('0')))
+
+ def as_tuple(self):
+ """Represents the number as a triple tuple.
+
+ To show the internals exactly as they are.
+ """
+ return DecimalTuple(self._sign, tuple(map(int, self._int)), self._exp)
+
+ def __repr__(self):
+ """Represents the number as an instance of Decimal."""
+ # Invariant: eval(repr(d)) == d
+ return "Decimal('%s')" % str(self)
+
+ def __str__(self, eng=False, context=None):
+ """Return string representation of the number in scientific notation.
+
+ Captures all of the information in the underlying representation.
+ """
+
+ sign = ['', '-'][self._sign]
+ if self._is_special:
+ if self._exp == 'F':
+ return sign + 'Infinity'
+ elif self._exp == 'n':
+ return sign + 'NaN' + self._int
+ else: # self._exp == 'N'
+ return sign + 'sNaN' + self._int
+
+ # number of digits of self._int to left of decimal point
+ leftdigits = self._exp + len(self._int)
+
+ # dotplace is number of digits of self._int to the left of the
+ # decimal point in the mantissa of the output string (that is,
+ # after adjusting the exponent)
+ if self._exp <= 0 and leftdigits > -6:
+ # no exponent required
+ dotplace = leftdigits
+ elif not eng:
+ # usual scientific notation: 1 digit on left of the point
+ dotplace = 1
+ elif self._int == '0':
+ # engineering notation, zero
+ dotplace = (leftdigits + 1) % 3 - 1
+ else:
+ # engineering notation, nonzero
+ dotplace = (leftdigits - 1) % 3 + 1
+
+ if dotplace <= 0:
+ intpart = '0'
+ fracpart = '.' + '0'*(-dotplace) + self._int
+ elif dotplace >= len(self._int):
+ intpart = self._int+'0'*(dotplace-len(self._int))
+ fracpart = ''
+ else:
+ intpart = self._int[:dotplace]
+ fracpart = '.' + self._int[dotplace:]
+ if leftdigits == dotplace:
+ exp = ''
+ else:
+ if context is None:
+ context = getcontext()
+ exp = ['e', 'E'][context.capitals] + "%+d" % (leftdigits-dotplace)
+
+ return sign + intpart + fracpart + exp
+
+ def to_eng_string(self, context=None):
+ """Convert to a string, using engineering notation if an exponent is needed.
+
+ Engineering notation has an exponent which is a multiple of 3. This
+ can leave up to 3 digits to the left of the decimal place and may
+ require the addition of either one or two trailing zeros.
+ """
+ return self.__str__(eng=True, context=context)
+
+ def __neg__(self, context=None):
+ """Returns a copy with the sign switched.
+
+ Rounds, if it has reason.
+ """
+ if self._is_special:
+ ans = self._check_nans(context=context)
+ if ans:
+ return ans
+
+ if context is None:
+ context = getcontext()
+
+ if not self and context.rounding != ROUND_FLOOR:
+ # -Decimal('0') is Decimal('0'), not Decimal('-0'), except
+ # in ROUND_FLOOR rounding mode.
+ ans = self.copy_abs()
+ else:
+ ans = self.copy_negate()
+
+ return ans._fix(context)
+
+ def __pos__(self, context=None):
+ """Returns a copy, unless it is a sNaN.
+
+ Rounds the number (if more than precision digits)
+ """
+ if self._is_special:
+ ans = self._check_nans(context=context)
+ if ans:
+ return ans
+
+ if context is None:
+ context = getcontext()
+
+ if not self and context.rounding != ROUND_FLOOR:
+ # + (-0) = 0, except in ROUND_FLOOR rounding mode.
+ ans = self.copy_abs()
+ else:
+ ans = Decimal(self)
+
+ return ans._fix(context)
+
+ def __abs__(self, round=True, context=None):
+ """Returns the absolute value of self.
+
+ If the keyword argument 'round' is false, do not round. The
+ expression self.__abs__(round=False) is equivalent to
+ self.copy_abs().
+ """
+ if not round:
+ return self.copy_abs()
+
+ if self._is_special:
+ ans = self._check_nans(context=context)
+ if ans:
+ return ans
+
+ if self._sign:
+ ans = self.__neg__(context=context)
+ else:
+ ans = self.__pos__(context=context)
+
+ return ans
+
+ def __add__(self, other, context=None):
+ """Returns self + other.
+
+ -INF + INF (or the reverse) cause InvalidOperation errors.
+ """
+ other = _convert_other(other)
+ if other is NotImplemented:
+ return other
+
+ if context is None:
+ context = getcontext()
+
+ if self._is_special or other._is_special:
+ ans = self._check_nans(other, context)
+ if ans:
+ return ans
+
+ if self._isinfinity():
+ # If both INF, same sign => same as both, opposite => error.
+ if self._sign != other._sign and other._isinfinity():
+ return context._raise_error(InvalidOperation, '-INF + INF')
+ return Decimal(self)
+ if other._isinfinity():
+ return Decimal(other) # Can't both be infinity here
+
+ exp = min(self._exp, other._exp)
+ negativezero = 0
+ if context.rounding == ROUND_FLOOR and self._sign != other._sign:
+ # If the answer is 0, the sign should be negative, in this case.
+ negativezero = 1
+
+ if not self and not other:
+ sign = min(self._sign, other._sign)
+ if negativezero:
+ sign = 1
+ ans = _dec_from_triple(sign, '0', exp)
+ ans = ans._fix(context)
+ return ans
+ if not self:
+ exp = max(exp, other._exp - context.prec-1)
+ ans = other._rescale(exp, context.rounding)
+ ans = ans._fix(context)
+ return ans
+ if not other:
+ exp = max(exp, self._exp - context.prec-1)
+ ans = self._rescale(exp, context.rounding)
+ ans = ans._fix(context)
+ return ans
+
+ op1 = _WorkRep(self)
+ op2 = _WorkRep(other)
+ op1, op2 = _normalize(op1, op2, context.prec)
+
+ result = _WorkRep()
+ if op1.sign != op2.sign:
+ # Equal and opposite
+ if op1.int == op2.int:
+ ans = _dec_from_triple(negativezero, '0', exp)
+ ans = ans._fix(context)
+ return ans
+ if op1.int < op2.int:
+ op1, op2 = op2, op1
+ # OK, now abs(op1) > abs(op2)
+ if op1.sign == 1:
+ result.sign = 1
+ op1.sign, op2.sign = op2.sign, op1.sign
+ else:
+ result.sign = 0
+ # So we know the sign, and op1 > 0.
+ elif op1.sign == 1:
+ result.sign = 1
+ op1.sign, op2.sign = (0, 0)
+ else:
+ result.sign = 0
+ # Now, op1 > abs(op2) > 0
+
+ if op2.sign == 0:
+ result.int = op1.int + op2.int
+ else:
+ result.int = op1.int - op2.int
+
+ result.exp = op1.exp
+ ans = Decimal(result)
+ ans = ans._fix(context)
+ return ans
+
+ __radd__ = __add__
+
+ def __sub__(self, other, context=None):
+ """Return self - other"""
+ other = _convert_other(other)
+ if other is NotImplemented:
+ return other
+
+ if self._is_special or other._is_special:
+ ans = self._check_nans(other, context=context)
+ if ans:
+ return ans
+
+ # self - other is computed as self + other.copy_negate()
+ return self.__add__(other.copy_negate(), context=context)
+
+ def __rsub__(self, other, context=None):
+ """Return other - self"""
+ other = _convert_other(other)
+ if other is NotImplemented:
+ return other
+
+ return other.__sub__(self, context=context)
+
+ def __mul__(self, other, context=None):
+ """Return self * other.
+
+ (+-) INF * 0 (or its reverse) raise InvalidOperation.
+ """
+ other = _convert_other(other)
+ if other is NotImplemented:
+ return other
+
+ if context is None:
+ context = getcontext()
+
+ resultsign = self._sign ^ other._sign
+
+ if self._is_special or other._is_special:
+ ans = self._check_nans(other, context)
+ if ans:
+ return ans
+
+ if self._isinfinity():
+ if not other:
+ return context._raise_error(InvalidOperation, '(+-)INF * 0')
+ return _SignedInfinity[resultsign]
+
+ if other._isinfinity():
+ if not self:
+ return context._raise_error(InvalidOperation, '0 * (+-)INF')
+ return _SignedInfinity[resultsign]
+
+ resultexp = self._exp + other._exp
+
+ # Special case for multiplying by zero
+ if not self or not other:
+ ans = _dec_from_triple(resultsign, '0', resultexp)
+ # Fixing in case the exponent is out of bounds
+ ans = ans._fix(context)
+ return ans
+
+ # Special case for multiplying by power of 10
+ if self._int == '1':
+ ans = _dec_from_triple(resultsign, other._int, resultexp)
+ ans = ans._fix(context)
+ return ans
+ if other._int == '1':
+ ans = _dec_from_triple(resultsign, self._int, resultexp)
+ ans = ans._fix(context)
+ return ans
+
+ op1 = _WorkRep(self)
+ op2 = _WorkRep(other)
+
+ ans = _dec_from_triple(resultsign, str(op1.int * op2.int), resultexp)
+ ans = ans._fix(context)
+
+ return ans
+ __rmul__ = __mul__
+
+ def __truediv__(self, other, context=None):
+ """Return self / other."""
+ other = _convert_other(other)
+ if other is NotImplemented:
+ return NotImplemented
+
+ if context is None:
+ context = getcontext()
+
+ sign = self._sign ^ other._sign
+
+ if self._is_special or other._is_special:
+ ans = self._check_nans(other, context)
+ if ans:
+ return ans
+
+ if self._isinfinity() and other._isinfinity():
+ return context._raise_error(InvalidOperation, '(+-)INF/(+-)INF')
+
+ if self._isinfinity():
+ return _SignedInfinity[sign]
+
+ if other._isinfinity():
+ context._raise_error(Clamped, 'Division by infinity')
+ return _dec_from_triple(sign, '0', context.Etiny())
+
+ # Special cases for zeroes
+ if not other:
+ if not self:
+ return context._raise_error(DivisionUndefined, '0 / 0')
+ return context._raise_error(DivisionByZero, 'x / 0', sign)
+
+ if not self:
+ exp = self._exp - other._exp
+ coeff = 0
+ else:
+ # OK, so neither = 0, INF or NaN
+ shift = len(other._int) - len(self._int) + context.prec + 1
+ exp = self._exp - other._exp - shift
+ op1 = _WorkRep(self)
+ op2 = _WorkRep(other)
+ if shift >= 0:
+ coeff, remainder = divmod(op1.int * 10**shift, op2.int)
+ else:
+ coeff, remainder = divmod(op1.int, op2.int * 10**-shift)
+ if remainder:
+ # result is not exact; adjust to ensure correct rounding
+ if coeff % 5 == 0:
+ coeff += 1
+ else:
+ # result is exact; get as close to ideal exponent as possible
+ ideal_exp = self._exp - other._exp
+ while exp < ideal_exp and coeff % 10 == 0:
+ coeff //= 10
+ exp += 1
+
+ ans = _dec_from_triple(sign, str(coeff), exp)
+ return ans._fix(context)
+
+ def _divide(self, other, context):
+ """Return (self // other, self % other), to context.prec precision.
+
+ Assumes that neither self nor other is a NaN, that self is not
+ infinite and that other is nonzero.
+ """
+ sign = self._sign ^ other._sign
+ if other._isinfinity():
+ ideal_exp = self._exp
+ else:
+ ideal_exp = min(self._exp, other._exp)
+
+ expdiff = self.adjusted() - other.adjusted()
+ if not self or other._isinfinity() or expdiff <= -2:
+ return (_dec_from_triple(sign, '0', 0),
+ self._rescale(ideal_exp, context.rounding))
+ if expdiff <= context.prec:
+ op1 = _WorkRep(self)
+ op2 = _WorkRep(other)
+ if op1.exp >= op2.exp:
+ op1.int *= 10**(op1.exp - op2.exp)
+ else:
+ op2.int *= 10**(op2.exp - op1.exp)
+ q, r = divmod(op1.int, op2.int)
+ if q < 10**context.prec:
+ return (_dec_from_triple(sign, str(q), 0),
+ _dec_from_triple(self._sign, str(r), ideal_exp))
+
+ # Here the quotient is too large to be representable
+ ans = context._raise_error(DivisionImpossible,
+ 'quotient too large in //, % or divmod')
+ return ans, ans
+
+ def __rtruediv__(self, other, context=None):
+ """Swaps self/other and returns __truediv__."""
+ other = _convert_other(other)
+ if other is NotImplemented:
+ return other
+ return other.__truediv__(self, context=context)
+
+ __div__ = __truediv__
+ __rdiv__ = __rtruediv__
+
+ def __divmod__(self, other, context=None):
+ """
+ Return (self // other, self % other)
+ """
+ other = _convert_other(other)
+ if other is NotImplemented:
+ return other
+
+ if context is None:
+ context = getcontext()
+
+ ans = self._check_nans(other, context)
+ if ans:
+ return (ans, ans)
+
+ sign = self._sign ^ other._sign
+ if self._isinfinity():
+ if other._isinfinity():
+ ans = context._raise_error(InvalidOperation, 'divmod(INF, INF)')
+ return ans, ans
+ else:
+ return (_SignedInfinity[sign],
+ context._raise_error(InvalidOperation, 'INF % x'))
+
+ if not other:
+ if not self:
+ ans = context._raise_error(DivisionUndefined, 'divmod(0, 0)')
+ return ans, ans
+ else:
+ return (context._raise_error(DivisionByZero, 'x // 0', sign),
+ context._raise_error(InvalidOperation, 'x % 0'))
+
+ quotient, remainder = self._divide(other, context)
+ remainder = remainder._fix(context)
+ return quotient, remainder
+
+ def __rdivmod__(self, other, context=None):
+ """Swaps self/other and returns __divmod__."""
+ other = _convert_other(other)
+ if other is NotImplemented:
+ return other
+ return other.__divmod__(self, context=context)
+
+ def __mod__(self, other, context=None):
+ """
+ self % other
+ """
+ other = _convert_other(other)
+ if other is NotImplemented:
+ return other
+
+ if context is None:
+ context = getcontext()
+
+ ans = self._check_nans(other, context)
+ if ans:
+ return ans
+
+ if self._isinfinity():
+ return context._raise_error(InvalidOperation, 'INF % x')
+ elif not other:
+ if self:
+ return context._raise_error(InvalidOperation, 'x % 0')
+ else:
+ return context._raise_error(DivisionUndefined, '0 % 0')
+
+ remainder = self._divide(other, context)[1]
+ remainder = remainder._fix(context)
+ return remainder
+
+ def __rmod__(self, other, context=None):
+ """Swaps self/other and returns __mod__."""
+ other = _convert_other(other)
+ if other is NotImplemented:
+ return other
+ return other.__mod__(self, context=context)
+
+ def remainder_near(self, other, context=None):
+ """
+ Remainder nearest to 0- abs(remainder-near) <= other/2
+ """
+ if context is None:
+ context = getcontext()
+
+ other = _convert_other(other, raiseit=True)
+
+ ans = self._check_nans(other, context)
+ if ans:
+ return ans
+
+ # self == +/-infinity -> InvalidOperation
+ if self._isinfinity():
+ return context._raise_error(InvalidOperation,
+ 'remainder_near(infinity, x)')
+
+ # other == 0 -> either InvalidOperation or DivisionUndefined
+ if not other:
+ if self:
+ return context._raise_error(InvalidOperation,
+ 'remainder_near(x, 0)')
+ else:
+ return context._raise_error(DivisionUndefined,
+ 'remainder_near(0, 0)')
+
+ # other = +/-infinity -> remainder = self
+ if other._isinfinity():
+ ans = Decimal(self)
+ return ans._fix(context)
+
+ # self = 0 -> remainder = self, with ideal exponent
+ ideal_exponent = min(self._exp, other._exp)
+ if not self:
+ ans = _dec_from_triple(self._sign, '0', ideal_exponent)
+ return ans._fix(context)
+
+ # catch most cases of large or small quotient
+ expdiff = self.adjusted() - other.adjusted()
+ if expdiff >= context.prec + 1:
+ # expdiff >= prec+1 => abs(self/other) > 10**prec
+ return context._raise_error(DivisionImpossible)
+ if expdiff <= -2:
+ # expdiff <= -2 => abs(self/other) < 0.1
+ ans = self._rescale(ideal_exponent, context.rounding)
+ return ans._fix(context)
+
+ # adjust both arguments to have the same exponent, then divide
+ op1 = _WorkRep(self)
+ op2 = _WorkRep(other)
+ if op1.exp >= op2.exp:
+ op1.int *= 10**(op1.exp - op2.exp)
+ else:
+ op2.int *= 10**(op2.exp - op1.exp)
+ q, r = divmod(op1.int, op2.int)
+ # remainder is r*10**ideal_exponent; other is +/-op2.int *
+ # 10**ideal_exponent. Apply correction to ensure that
+ # abs(remainder) <= abs(other)/2
+ if 2*r + (q&1) > op2.int:
+ r -= op2.int
+ q += 1
+
+ if q >= 10**context.prec:
+ return context._raise_error(DivisionImpossible)
+
+ # result has same sign as self unless r is negative
+ sign = self._sign
+ if r < 0:
+ sign = 1-sign
+ r = -r
+
+ ans = _dec_from_triple(sign, str(r), ideal_exponent)
+ return ans._fix(context)
+
+ def __floordiv__(self, other, context=None):
+ """self // other"""
+ other = _convert_other(other)
+ if other is NotImplemented:
+ return other
+
+ if context is None:
+ context = getcontext()
+
+ ans = self._check_nans(other, context)
+ if ans:
+ return ans
+
+ if self._isinfinity():
+ if other._isinfinity():
+ return context._raise_error(InvalidOperation, 'INF // INF')
+ else:
+ return _SignedInfinity[self._sign ^ other._sign]
+
+ if not other:
+ if self:
+ return context._raise_error(DivisionByZero, 'x // 0',
+ self._sign ^ other._sign)
+ else:
+ return context._raise_error(DivisionUndefined, '0 // 0')
+
+ return self._divide(other, context)[0]
+
+ def __rfloordiv__(self, other, context=None):
+ """Swaps self/other and returns __floordiv__."""
+ other = _convert_other(other)
+ if other is NotImplemented:
+ return other
+ return other.__floordiv__(self, context=context)
+
+ def __float__(self):
+ """Float representation."""
+ if self._isnan():
+ if self.is_snan():
+ raise ValueError("Cannot convert signaling NaN to float")
+ s = "-nan" if self._sign else "nan"
+ else:
+ s = str(self)
+ return float(s)
+
+ def __int__(self):
+ """Converts self to an int, truncating if necessary."""
+ if self._is_special:
+ if self._isnan():
+ raise ValueError("Cannot convert NaN to integer")
+ elif self._isinfinity():
+ raise OverflowError("Cannot convert infinity to integer")
+ s = (-1)**self._sign
+ if self._exp >= 0:
+ return s*int(self._int)*10**self._exp
+ else:
+ return s*int(self._int[:self._exp] or '0')
+
+ __trunc__ = __int__
+
+ def real(self):
+ return self
+ real = property(real)
+
+ def imag(self):
+ return Decimal(0)
+ imag = property(imag)
+
+ def conjugate(self):
+ return self
+
+ def __complex__(self):
+ return complex(float(self))
+
+ def __long__(self):
+ """Converts to a long.
+
+ Equivalent to long(int(self))
+ """
+ return long(self.__int__())
+
+ def _fix_nan(self, context):
+ """Decapitate the payload of a NaN to fit the context"""
+ payload = self._int
+
+ # maximum length of payload is precision if _clamp=0,
+ # precision-1 if _clamp=1.
+ max_payload_len = context.prec - context._clamp
+ if len(payload) > max_payload_len:
+ payload = payload[len(payload)-max_payload_len:].lstrip('0')
+ return _dec_from_triple(self._sign, payload, self._exp, True)
+ return Decimal(self)
+
+ def _fix(self, context):
+ """Round if it is necessary to keep self within prec precision.
+
+ Rounds and fixes the exponent. Does not raise on a sNaN.
+
+ Arguments:
+ self - Decimal instance
+ context - context used.
+ """
+
+ if self._is_special:
+ if self._isnan():
+ # decapitate payload if necessary
+ return self._fix_nan(context)
+ else:
+ # self is +/-Infinity; return unaltered
+ return Decimal(self)
+
+ # if self is zero then exponent should be between Etiny and
+ # Emax if _clamp==0, and between Etiny and Etop if _clamp==1.
+ Etiny = context.Etiny()
+ Etop = context.Etop()
+ if not self:
+ exp_max = [context.Emax, Etop][context._clamp]
+ new_exp = min(max(self._exp, Etiny), exp_max)
+ if new_exp != self._exp:
+ context._raise_error(Clamped)
+ return _dec_from_triple(self._sign, '0', new_exp)
+ else:
+ return Decimal(self)
+
+ # exp_min is the smallest allowable exponent of the result,
+ # equal to max(self.adjusted()-context.prec+1, Etiny)
+ exp_min = len(self._int) + self._exp - context.prec
+ if exp_min > Etop:
+ # overflow: exp_min > Etop iff self.adjusted() > Emax
+ ans = context._raise_error(Overflow, 'above Emax', self._sign)
+ context._raise_error(Inexact)
+ context._raise_error(Rounded)
+ return ans
+
+ self_is_subnormal = exp_min < Etiny
+ if self_is_subnormal:
+ exp_min = Etiny
+
+ # round if self has too many digits
+ if self._exp < exp_min:
+ digits = len(self._int) + self._exp - exp_min
+ if digits < 0:
+ self = _dec_from_triple(self._sign, '1', exp_min-1)
+ digits = 0
+ rounding_method = self._pick_rounding_function[context.rounding]
+ changed = rounding_method(self, digits)
+ coeff = self._int[:digits] or '0'
+ if changed > 0:
+ coeff = str(int(coeff)+1)
+ if len(coeff) > context.prec:
+ coeff = coeff[:-1]
+ exp_min += 1
+
+ # check whether the rounding pushed the exponent out of range
+ if exp_min > Etop:
+ ans = context._raise_error(Overflow, 'above Emax', self._sign)
+ else:
+ ans = _dec_from_triple(self._sign, coeff, exp_min)
+
+ # raise the appropriate signals, taking care to respect
+ # the precedence described in the specification
+ if changed and self_is_subnormal:
+ context._raise_error(Underflow)
+ if self_is_subnormal:
+ context._raise_error(Subnormal)
+ if changed:
+ context._raise_error(Inexact)
+ context._raise_error(Rounded)
+ if not ans:
+ # raise Clamped on underflow to 0
+ context._raise_error(Clamped)
+ return ans
+
+ if self_is_subnormal:
+ context._raise_error(Subnormal)
+
+ # fold down if _clamp == 1 and self has too few digits
+ if context._clamp == 1 and self._exp > Etop:
+ context._raise_error(Clamped)
+ self_padded = self._int + '0'*(self._exp - Etop)
+ return _dec_from_triple(self._sign, self_padded, Etop)
+
+ # here self was representable to begin with; return unchanged
+ return Decimal(self)
+
+ # for each of the rounding functions below:
+ # self is a finite, nonzero Decimal
+ # prec is an integer satisfying 0 <= prec < len(self._int)
+ #
+ # each function returns either -1, 0, or 1, as follows:
+ # 1 indicates that self should be rounded up (away from zero)
+ # 0 indicates that self should be truncated, and that all the
+ # digits to be truncated are zeros (so the value is unchanged)
+ # -1 indicates that there are nonzero digits to be truncated
+
+ def _round_down(self, prec):
+ """Also known as round-towards-0, truncate."""
+ if _all_zeros(self._int, prec):
+ return 0
+ else:
+ return -1
+
+ def _round_up(self, prec):
+ """Rounds away from 0."""
+ return -self._round_down(prec)
+
+ def _round_half_up(self, prec):
+ """Rounds 5 up (away from 0)"""
+ if self._int[prec] in '56789':
+ return 1
+ elif _all_zeros(self._int, prec):
+ return 0
+ else:
+ return -1
+
+ def _round_half_down(self, prec):
+ """Round 5 down"""
+ if _exact_half(self._int, prec):
+ return -1
+ else:
+ return self._round_half_up(prec)
+
+ def _round_half_even(self, prec):
+ """Round 5 to even, rest to nearest."""
+ if _exact_half(self._int, prec) and \
+ (prec == 0 or self._int[prec-1] in '02468'):
+ return -1
+ else:
+ return self._round_half_up(prec)
+
+ def _round_ceiling(self, prec):
+ """Rounds up (not away from 0 if negative.)"""
+ if self._sign:
+ return self._round_down(prec)
+ else:
+ return -self._round_down(prec)
+
+ def _round_floor(self, prec):
+ """Rounds down (not towards 0 if negative)"""
+ if not self._sign:
+ return self._round_down(prec)
+ else:
+ return -self._round_down(prec)
+
+ def _round_05up(self, prec):
+ """Round down unless digit prec-1 is 0 or 5."""
+ if prec and self._int[prec-1] not in '05':
+ return self._round_down(prec)
+ else:
+ return -self._round_down(prec)
+
+ _pick_rounding_function = dict(
+ ROUND_DOWN = _round_down,
+ ROUND_UP = _round_up,
+ ROUND_HALF_UP = _round_half_up,
+ ROUND_HALF_DOWN = _round_half_down,
+ ROUND_HALF_EVEN = _round_half_even,
+ ROUND_CEILING = _round_ceiling,
+ ROUND_FLOOR = _round_floor,
+ ROUND_05UP = _round_05up,
+ )
+
+ def fma(self, other, third, context=None):
+ """Fused multiply-add.
+
+ Returns self*other+third with no rounding of the intermediate
+ product self*other.
+
+ self and other are multiplied together, with no rounding of
+ the result. The third operand is then added to the result,
+ and a single final rounding is performed.
+ """
+
+ other = _convert_other(other, raiseit=True)
+
+ # compute product; raise InvalidOperation if either operand is
+ # a signaling NaN or if the product is zero times infinity.
+ if self._is_special or other._is_special:
+ if context is None:
+ context = getcontext()
+ if self._exp == 'N':
+ return context._raise_error(InvalidOperation, 'sNaN', self)
+ if other._exp == 'N':
+ return context._raise_error(InvalidOperation, 'sNaN', other)
+ if self._exp == 'n':
+ product = self
+ elif other._exp == 'n':
+ product = other
+ elif self._exp == 'F':
+ if not other:
+ return context._raise_error(InvalidOperation,
+ 'INF * 0 in fma')
+ product = _SignedInfinity[self._sign ^ other._sign]
+ elif other._exp == 'F':
+ if not self:
+ return context._raise_error(InvalidOperation,
+ '0 * INF in fma')
+ product = _SignedInfinity[self._sign ^ other._sign]
+ else:
+ product = _dec_from_triple(self._sign ^ other._sign,
+ str(int(self._int) * int(other._int)),
+ self._exp + other._exp)
+
+ third = _convert_other(third, raiseit=True)
+ return product.__add__(third, context)
+
+ def _power_modulo(self, other, modulo, context=None):
+ """Three argument version of __pow__"""
+
+ # if can't convert other and modulo to Decimal, raise
+ # TypeError; there's no point returning NotImplemented (no
+ # equivalent of __rpow__ for three argument pow)
+ other = _convert_other(other, raiseit=True)
+ modulo = _convert_other(modulo, raiseit=True)
+
+ if context is None:
+ context = getcontext()
+
+ # deal with NaNs: if there are any sNaNs then first one wins,
+ # (i.e. behaviour for NaNs is identical to that of fma)
+ self_is_nan = self._isnan()
+ other_is_nan = other._isnan()
+ modulo_is_nan = modulo._isnan()
+ if self_is_nan or other_is_nan or modulo_is_nan:
+ if self_is_nan == 2:
+ return context._raise_error(InvalidOperation, 'sNaN',
+ self)
+ if other_is_nan == 2:
+ return context._raise_error(InvalidOperation, 'sNaN',
+ other)
+ if modulo_is_nan == 2:
+ return context._raise_error(InvalidOperation, 'sNaN',
+ modulo)
+ if self_is_nan:
+ return self._fix_nan(context)
+ if other_is_nan:
+ return other._fix_nan(context)
+ return modulo._fix_nan(context)
+
+ # check inputs: we apply same restrictions as Python's pow()
+ if not (self._isinteger() and
+ other._isinteger() and
+ modulo._isinteger()):
+ return context._raise_error(InvalidOperation,
+ 'pow() 3rd argument not allowed '
+ 'unless all arguments are integers')
+ if other < 0:
+ return context._raise_error(InvalidOperation,
+ 'pow() 2nd argument cannot be '
+ 'negative when 3rd argument specified')
+ if not modulo:
+ return context._raise_error(InvalidOperation,
+ 'pow() 3rd argument cannot be 0')
+
+ # additional restriction for decimal: the modulus must be less
+ # than 10**prec in absolute value
+ if modulo.adjusted() >= context.prec:
+ return context._raise_error(InvalidOperation,
+ 'insufficient precision: pow() 3rd '
+ 'argument must not have more than '
+ 'precision digits')
+
+ # define 0**0 == NaN, for consistency with two-argument pow
+ # (even though it hurts!)
+ if not other and not self:
+ return context._raise_error(InvalidOperation,
+ 'at least one of pow() 1st argument '
+ 'and 2nd argument must be nonzero ;'
+ '0**0 is not defined')
+
+ # compute sign of result
+ if other._iseven():
+ sign = 0
+ else:
+ sign = self._sign
+
+ # convert modulo to a Python integer, and self and other to
+ # Decimal integers (i.e. force their exponents to be >= 0)
+ modulo = abs(int(modulo))
+ base = _WorkRep(self.to_integral_value())
+ exponent = _WorkRep(other.to_integral_value())
+
+ # compute result using integer pow()
+ base = (base.int % modulo * pow(10, base.exp, modulo)) % modulo
+ for i in xrange(exponent.exp):
+ base = pow(base, 10, modulo)
+ base = pow(base, exponent.int, modulo)
+
+ return _dec_from_triple(sign, str(base), 0)
+
+ def _power_exact(self, other, p):
+ """Attempt to compute self**other exactly.
+
+ Given Decimals self and other and an integer p, attempt to
+ compute an exact result for the power self**other, with p
+ digits of precision. Return None if self**other is not
+ exactly representable in p digits.
+
+ Assumes that elimination of special cases has already been
+ performed: self and other must both be nonspecial; self must
+ be positive and not numerically equal to 1; other must be
+ nonzero. For efficiency, other._exp should not be too large,
+ so that 10**abs(other._exp) is a feasible calculation."""
+
+ # In the comments below, we write x for the value of self and y for the
+ # value of other. Write x = xc*10**xe and abs(y) = yc*10**ye, with xc
+ # and yc positive integers not divisible by 10.
+
+ # The main purpose of this method is to identify the *failure*
+ # of x**y to be exactly representable with as little effort as
+ # possible. So we look for cheap and easy tests that
+ # eliminate the possibility of x**y being exact. Only if all
+ # these tests are passed do we go on to actually compute x**y.
+
+ # Here's the main idea. Express y as a rational number m/n, with m and
+ # n relatively prime and n>0. Then for x**y to be exactly
+ # representable (at *any* precision), xc must be the nth power of a
+ # positive integer and xe must be divisible by n. If y is negative
+ # then additionally xc must be a power of either 2 or 5, hence a power
+ # of 2**n or 5**n.
+ #
+ # There's a limit to how small |y| can be: if y=m/n as above
+ # then:
+ #
+ # (1) if xc != 1 then for the result to be representable we
+ # need xc**(1/n) >= 2, and hence also xc**|y| >= 2. So
+ # if |y| <= 1/nbits(xc) then xc < 2**nbits(xc) <=
+ # 2**(1/|y|), hence xc**|y| < 2 and the result is not
+ # representable.
+ #
+ # (2) if xe != 0, |xe|*(1/n) >= 1, so |xe|*|y| >= 1. Hence if
+ # |y| < 1/|xe| then the result is not representable.
+ #
+ # Note that since x is not equal to 1, at least one of (1) and
+ # (2) must apply. Now |y| < 1/nbits(xc) iff |yc|*nbits(xc) <
+ # 10**-ye iff len(str(|yc|*nbits(xc)) <= -ye.
+ #
+ # There's also a limit to how large y can be, at least if it's
+ # positive: the normalized result will have coefficient xc**y,
+ # so if it's representable then xc**y < 10**p, and y <
+ # p/log10(xc). Hence if y*log10(xc) >= p then the result is
+ # not exactly representable.
+
+ # if len(str(abs(yc*xe)) <= -ye then abs(yc*xe) < 10**-ye,
+ # so |y| < 1/xe and the result is not representable.
+ # Similarly, len(str(abs(yc)*xc_bits)) <= -ye implies |y|
+ # < 1/nbits(xc).
+
+ x = _WorkRep(self)
+ xc, xe = x.int, x.exp
+ while xc % 10 == 0:
+ xc //= 10
+ xe += 1
+
+ y = _WorkRep(other)
+ yc, ye = y.int, y.exp
+ while yc % 10 == 0:
+ yc //= 10
+ ye += 1
+
+ # case where xc == 1: result is 10**(xe*y), with xe*y
+ # required to be an integer
+ if xc == 1:
+ xe *= yc
+ # result is now 10**(xe * 10**ye); xe * 10**ye must be integral
+ while xe % 10 == 0:
+ xe //= 10
+ ye += 1
+ if ye < 0:
+ return None
+ exponent = xe * 10**ye
+ if y.sign == 1:
+ exponent = -exponent
+ # if other is a nonnegative integer, use ideal exponent
+ if other._isinteger() and other._sign == 0:
+ ideal_exponent = self._exp*int(other)
+ zeros = min(exponent-ideal_exponent, p-1)
+ else:
+ zeros = 0
+ return _dec_from_triple(0, '1' + '0'*zeros, exponent-zeros)
+
+ # case where y is negative: xc must be either a power
+ # of 2 or a power of 5.
+ if y.sign == 1:
+ last_digit = xc % 10
+ if last_digit in (2,4,6,8):
+ # quick test for power of 2
+ if xc & -xc != xc:
+ return None
+ # now xc is a power of 2; e is its exponent
+ e = _nbits(xc)-1
+
+ # We now have:
+ #
+ # x = 2**e * 10**xe, e > 0, and y < 0.
+ #
+ # The exact result is:
+ #
+ # x**y = 5**(-e*y) * 10**(e*y + xe*y)
+ #
+ # provided that both e*y and xe*y are integers. Note that if
+ # 5**(-e*y) >= 10**p, then the result can't be expressed
+ # exactly with p digits of precision.
+ #
+ # Using the above, we can guard against large values of ye.
+ # 93/65 is an upper bound for log(10)/log(5), so if
+ #
+ # ye >= len(str(93*p//65))
+ #
+ # then
+ #
+ # -e*y >= -y >= 10**ye > 93*p/65 > p*log(10)/log(5),
+ #
+ # so 5**(-e*y) >= 10**p, and the coefficient of the result
+ # can't be expressed in p digits.
+
+ # emax >= largest e such that 5**e < 10**p.
+ emax = p*93//65
+ if ye >= len(str(emax)):
+ return None
+
+ # Find -e*y and -xe*y; both must be integers
+ e = _decimal_lshift_exact(e * yc, ye)
+ xe = _decimal_lshift_exact(xe * yc, ye)
+ if e is None or xe is None:
+ return None
+
+ if e > emax:
+ return None
+ xc = 5**e
+
+ elif last_digit == 5:
+ # e >= log_5(xc) if xc is a power of 5; we have
+ # equality all the way up to xc=5**2658
+ e = _nbits(xc)*28//65
+ xc, remainder = divmod(5**e, xc)
+ if remainder:
+ return None
+ while xc % 5 == 0:
+ xc //= 5
+ e -= 1
+
+ # Guard against large values of ye, using the same logic as in
+ # the 'xc is a power of 2' branch. 10/3 is an upper bound for
+ # log(10)/log(2).
+ emax = p*10//3
+ if ye >= len(str(emax)):
+ return None
+
+ e = _decimal_lshift_exact(e * yc, ye)
+ xe = _decimal_lshift_exact(xe * yc, ye)
+ if e is None or xe is None:
+ return None
+
+ if e > emax:
+ return None
+ xc = 2**e
+ else:
+ return None
+
+ if xc >= 10**p:
+ return None
+ xe = -e-xe
+ return _dec_from_triple(0, str(xc), xe)
+
+ # now y is positive; find m and n such that y = m/n
+ if ye >= 0:
+ m, n = yc*10**ye, 1
+ else:
+ if xe != 0 and len(str(abs(yc*xe))) <= -ye:
+ return None
+ xc_bits = _nbits(xc)
+ if xc != 1 and len(str(abs(yc)*xc_bits)) <= -ye:
+ return None
+ m, n = yc, 10**(-ye)
+ while m % 2 == n % 2 == 0:
+ m //= 2
+ n //= 2
+ while m % 5 == n % 5 == 0:
+ m //= 5
+ n //= 5
+
+ # compute nth root of xc*10**xe
+ if n > 1:
+ # if 1 < xc < 2**n then xc isn't an nth power
+ if xc != 1 and xc_bits <= n:
+ return None
+
+ xe, rem = divmod(xe, n)
+ if rem != 0:
+ return None
+
+ # compute nth root of xc using Newton's method
+ a = 1L << -(-_nbits(xc)//n) # initial estimate
+ while True:
+ q, r = divmod(xc, a**(n-1))
+ if a <= q:
+ break
+ else:
+ a = (a*(n-1) + q)//n
+ if not (a == q and r == 0):
+ return None
+ xc = a
+
+ # now xc*10**xe is the nth root of the original xc*10**xe
+ # compute mth power of xc*10**xe
+
+ # if m > p*100//_log10_lb(xc) then m > p/log10(xc), hence xc**m >
+ # 10**p and the result is not representable.
+ if xc > 1 and m > p*100//_log10_lb(xc):
+ return None
+ xc = xc**m
+ xe *= m
+ if xc > 10**p:
+ return None
+
+ # by this point the result *is* exactly representable
+ # adjust the exponent to get as close as possible to the ideal
+ # exponent, if necessary
+ str_xc = str(xc)
+ if other._isinteger() and other._sign == 0:
+ ideal_exponent = self._exp*int(other)
+ zeros = min(xe-ideal_exponent, p-len(str_xc))
+ else:
+ zeros = 0
+ return _dec_from_triple(0, str_xc+'0'*zeros, xe-zeros)
+
+ def __pow__(self, other, modulo=None, context=None):
+ """Return self ** other [ % modulo].
+
+ With two arguments, compute self**other.
+
+ With three arguments, compute (self**other) % modulo. For the
+ three argument form, the following restrictions on the
+ arguments hold:
+
+ - all three arguments must be integral
+ - other must be nonnegative
+ - either self or other (or both) must be nonzero
+ - modulo must be nonzero and must have at most p digits,
+ where p is the context precision.
+
+ If any of these restrictions is violated the InvalidOperation
+ flag is raised.
+
+ The result of pow(self, other, modulo) is identical to the
+ result that would be obtained by computing (self**other) %
+ modulo with unbounded precision, but is computed more
+ efficiently. It is always exact.
+ """
+
+ if modulo is not None:
+ return self._power_modulo(other, modulo, context)
+
+ other = _convert_other(other)
+ if other is NotImplemented:
+ return other
+
+ if context is None:
+ context = getcontext()
+
+ # either argument is a NaN => result is NaN
+ ans = self._check_nans(other, context)
+ if ans:
+ return ans
+
+ # 0**0 = NaN (!), x**0 = 1 for nonzero x (including +/-Infinity)
+ if not other:
+ if not self:
+ return context._raise_error(InvalidOperation, '0 ** 0')
+ else:
+ return _One
+
+ # result has sign 1 iff self._sign is 1 and other is an odd integer
+ result_sign = 0
+ if self._sign == 1:
+ if other._isinteger():
+ if not other._iseven():
+ result_sign = 1
+ else:
+ # -ve**noninteger = NaN
+ # (-0)**noninteger = 0**noninteger
+ if self:
+ return context._raise_error(InvalidOperation,
+ 'x ** y with x negative and y not an integer')
+ # negate self, without doing any unwanted rounding
+ self = self.copy_negate()
+
+ # 0**(+ve or Inf)= 0; 0**(-ve or -Inf) = Infinity
+ if not self:
+ if other._sign == 0:
+ return _dec_from_triple(result_sign, '0', 0)
+ else:
+ return _SignedInfinity[result_sign]
+
+ # Inf**(+ve or Inf) = Inf; Inf**(-ve or -Inf) = 0
+ if self._isinfinity():
+ if other._sign == 0:
+ return _SignedInfinity[result_sign]
+ else:
+ return _dec_from_triple(result_sign, '0', 0)
+
+ # 1**other = 1, but the choice of exponent and the flags
+ # depend on the exponent of self, and on whether other is a
+ # positive integer, a negative integer, or neither
+ if self == _One:
+ if other._isinteger():
+ # exp = max(self._exp*max(int(other), 0),
+ # 1-context.prec) but evaluating int(other) directly
+ # is dangerous until we know other is small (other
+ # could be 1e999999999)
+ if other._sign == 1:
+ multiplier = 0
+ elif other > context.prec:
+ multiplier = context.prec
+ else:
+ multiplier = int(other)
+
+ exp = self._exp * multiplier
+ if exp < 1-context.prec:
+ exp = 1-context.prec
+ context._raise_error(Rounded)
+ else:
+ context._raise_error(Inexact)
+ context._raise_error(Rounded)
+ exp = 1-context.prec
+
+ return _dec_from_triple(result_sign, '1'+'0'*-exp, exp)
+
+ # compute adjusted exponent of self
+ self_adj = self.adjusted()
+
+ # self ** infinity is infinity if self > 1, 0 if self < 1
+ # self ** -infinity is infinity if self < 1, 0 if self > 1
+ if other._isinfinity():
+ if (other._sign == 0) == (self_adj < 0):
+ return _dec_from_triple(result_sign, '0', 0)
+ else:
+ return _SignedInfinity[result_sign]
+
+ # from here on, the result always goes through the call
+ # to _fix at the end of this function.
+ ans = None
+ exact = False
+
+ # crude test to catch cases of extreme overflow/underflow. If
+ # log10(self)*other >= 10**bound and bound >= len(str(Emax))
+ # then 10**bound >= 10**len(str(Emax)) >= Emax+1 and hence
+ # self**other >= 10**(Emax+1), so overflow occurs. The test
+ # for underflow is similar.
+ bound = self._log10_exp_bound() + other.adjusted()
+ if (self_adj >= 0) == (other._sign == 0):
+ # self > 1 and other +ve, or self < 1 and other -ve
+ # possibility of overflow
+ if bound >= len(str(context.Emax)):
+ ans = _dec_from_triple(result_sign, '1', context.Emax+1)
+ else:
+ # self > 1 and other -ve, or self < 1 and other +ve
+ # possibility of underflow to 0
+ Etiny = context.Etiny()
+ if bound >= len(str(-Etiny)):
+ ans = _dec_from_triple(result_sign, '1', Etiny-1)
+
+ # try for an exact result with precision +1
+ if ans is None:
+ ans = self._power_exact(other, context.prec + 1)
+ if ans is not None:
+ if result_sign == 1:
+ ans = _dec_from_triple(1, ans._int, ans._exp)
+ exact = True
+
+ # usual case: inexact result, x**y computed directly as exp(y*log(x))
+ if ans is None:
+ p = context.prec
+ x = _WorkRep(self)
+ xc, xe = x.int, x.exp
+ y = _WorkRep(other)
+ yc, ye = y.int, y.exp
+ if y.sign == 1:
+ yc = -yc
+
+ # compute correctly rounded result: start with precision +3,
+ # then increase precision until result is unambiguously roundable
+ extra = 3
+ while True:
+ coeff, exp = _dpower(xc, xe, yc, ye, p+extra)
+ if coeff % (5*10**(len(str(coeff))-p-1)):
+ break
+ extra += 3
+
+ ans = _dec_from_triple(result_sign, str(coeff), exp)
+
+ # unlike exp, ln and log10, the power function respects the
+ # rounding mode; no need to switch to ROUND_HALF_EVEN here
+
+ # There's a difficulty here when 'other' is not an integer and
+ # the result is exact. In this case, the specification
+ # requires that the Inexact flag be raised (in spite of
+ # exactness), but since the result is exact _fix won't do this
+ # for us. (Correspondingly, the Underflow signal should also
+ # be raised for subnormal results.) We can't directly raise
+ # these signals either before or after calling _fix, since
+ # that would violate the precedence for signals. So we wrap
+ # the ._fix call in a temporary context, and reraise
+ # afterwards.
+ if exact and not other._isinteger():
+ # pad with zeros up to length context.prec+1 if necessary; this
+ # ensures that the Rounded signal will be raised.
+ if len(ans._int) <= context.prec:
+ expdiff = context.prec + 1 - len(ans._int)
+ ans = _dec_from_triple(ans._sign, ans._int+'0'*expdiff,
+ ans._exp-expdiff)
+
+ # create a copy of the current context, with cleared flags/traps
+ newcontext = context.copy()
+ newcontext.clear_flags()
+ for exception in _signals:
+ newcontext.traps[exception] = 0
+
+ # round in the new context
+ ans = ans._fix(newcontext)
+
+ # raise Inexact, and if necessary, Underflow
+ newcontext._raise_error(Inexact)
+ if newcontext.flags[Subnormal]:
+ newcontext._raise_error(Underflow)
+
+ # propagate signals to the original context; _fix could
+ # have raised any of Overflow, Underflow, Subnormal,
+ # Inexact, Rounded, Clamped. Overflow needs the correct
+ # arguments. Note that the order of the exceptions is
+ # important here.
+ if newcontext.flags[Overflow]:
+ context._raise_error(Overflow, 'above Emax', ans._sign)
+ for exception in Underflow, Subnormal, Inexact, Rounded, Clamped:
+ if newcontext.flags[exception]:
+ context._raise_error(exception)
+
+ else:
+ ans = ans._fix(context)
+
+ return ans
+
+ def __rpow__(self, other, context=None):
+ """Swaps self/other and returns __pow__."""
+ other = _convert_other(other)
+ if other is NotImplemented:
+ return other
+ return other.__pow__(self, context=context)
+
+ def normalize(self, context=None):
+ """Normalize- strip trailing 0s, change anything equal to 0 to 0e0"""
+
+ if context is None:
+ context = getcontext()
+
+ if self._is_special:
+ ans = self._check_nans(context=context)
+ if ans:
+ return ans
+
+ dup = self._fix(context)
+ if dup._isinfinity():
+ return dup
+
+ if not dup:
+ return _dec_from_triple(dup._sign, '0', 0)
+ exp_max = [context.Emax, context.Etop()][context._clamp]
+ end = len(dup._int)
+ exp = dup._exp
+ while dup._int[end-1] == '0' and exp < exp_max:
+ exp += 1
+ end -= 1
+ return _dec_from_triple(dup._sign, dup._int[:end], exp)
+
+ def quantize(self, exp, rounding=None, context=None, watchexp=True):
+ """Quantize self so its exponent is the same as that of exp.
+
+ Similar to self._rescale(exp._exp) but with error checking.
+ """
+ exp = _convert_other(exp, raiseit=True)
+
+ if context is None:
+ context = getcontext()
+ if rounding is None:
+ rounding = context.rounding
+
+ if self._is_special or exp._is_special:
+ ans = self._check_nans(exp, context)
+ if ans:
+ return ans
+
+ if exp._isinfinity() or self._isinfinity():
+ if exp._isinfinity() and self._isinfinity():
+ return Decimal(self) # if both are inf, it is OK
+ return context._raise_error(InvalidOperation,
+ 'quantize with one INF')
+
+ # if we're not watching exponents, do a simple rescale
+ if not watchexp:
+ ans = self._rescale(exp._exp, rounding)
+ # raise Inexact and Rounded where appropriate
+ if ans._exp > self._exp:
+ context._raise_error(Rounded)
+ if ans != self:
+ context._raise_error(Inexact)
+ return ans
+
+ # exp._exp should be between Etiny and Emax
+ if not (context.Etiny() <= exp._exp <= context.Emax):
+ return context._raise_error(InvalidOperation,
+ 'target exponent out of bounds in quantize')
+
+ if not self:
+ ans = _dec_from_triple(self._sign, '0', exp._exp)
+ return ans._fix(context)
+
+ self_adjusted = self.adjusted()
+ if self_adjusted > context.Emax:
+ return context._raise_error(InvalidOperation,
+ 'exponent of quantize result too large for current context')
+ if self_adjusted - exp._exp + 1 > context.prec:
+ return context._raise_error(InvalidOperation,
+ 'quantize result has too many digits for current context')
+
+ ans = self._rescale(exp._exp, rounding)
+ if ans.adjusted() > context.Emax:
+ return context._raise_error(InvalidOperation,
+ 'exponent of quantize result too large for current context')
+ if len(ans._int) > context.prec:
+ return context._raise_error(InvalidOperation,
+ 'quantize result has too many digits for current context')
+
+ # raise appropriate flags
+ if ans and ans.adjusted() < context.Emin:
+ context._raise_error(Subnormal)
+ if ans._exp > self._exp:
+ if ans != self:
+ context._raise_error(Inexact)
+ context._raise_error(Rounded)
+
+ # call to fix takes care of any necessary folddown, and
+ # signals Clamped if necessary
+ ans = ans._fix(context)
+ return ans
+
+ def same_quantum(self, other):
+ """Return True if self and other have the same exponent; otherwise
+ return False.
+
+ If either operand is a special value, the following rules are used:
+ * return True if both operands are infinities
+ * return True if both operands are NaNs
+ * otherwise, return False.
+ """
+ other = _convert_other(other, raiseit=True)
+ if self._is_special or other._is_special:
+ return (self.is_nan() and other.is_nan() or
+ self.is_infinite() and other.is_infinite())
+ return self._exp == other._exp
+
+ def _rescale(self, exp, rounding):
+ """Rescale self so that the exponent is exp, either by padding with zeros
+ or by truncating digits, using the given rounding mode.
+
+ Specials are returned without change. This operation is
+ quiet: it raises no flags, and uses no information from the
+ context.
+
+ exp = exp to scale to (an integer)
+ rounding = rounding mode
+ """
+ if self._is_special:
+ return Decimal(self)
+ if not self:
+ return _dec_from_triple(self._sign, '0', exp)
+
+ if self._exp >= exp:
+ # pad answer with zeros if necessary
+ return _dec_from_triple(self._sign,
+ self._int + '0'*(self._exp - exp), exp)
+
+ # too many digits; round and lose data. If self.adjusted() <
+ # exp-1, replace self by 10**(exp-1) before rounding
+ digits = len(self._int) + self._exp - exp
+ if digits < 0:
+ self = _dec_from_triple(self._sign, '1', exp-1)
+ digits = 0
+ this_function = self._pick_rounding_function[rounding]
+ changed = this_function(self, digits)
+ coeff = self._int[:digits] or '0'
+ if changed == 1:
+ coeff = str(int(coeff)+1)
+ return _dec_from_triple(self._sign, coeff, exp)
+
+ def _round(self, places, rounding):
+ """Round a nonzero, nonspecial Decimal to a fixed number of
+ significant figures, using the given rounding mode.
+
+ Infinities, NaNs and zeros are returned unaltered.
+
+ This operation is quiet: it raises no flags, and uses no
+ information from the context.
+
+ """
+ if places <= 0:
+ raise ValueError("argument should be at least 1 in _round")
+ if self._is_special or not self:
+ return Decimal(self)
+ ans = self._rescale(self.adjusted()+1-places, rounding)
+ # it can happen that the rescale alters the adjusted exponent;
+ # for example when rounding 99.97 to 3 significant figures.
+ # When this happens we end up with an extra 0 at the end of
+ # the number; a second rescale fixes this.
+ if ans.adjusted() != self.adjusted():
+ ans = ans._rescale(ans.adjusted()+1-places, rounding)
+ return ans
+
+ def to_integral_exact(self, rounding=None, context=None):
+ """Rounds to a nearby integer.
+
+ If no rounding mode is specified, take the rounding mode from
+ the context. This method raises the Rounded and Inexact flags
+ when appropriate.
+
+ See also: to_integral_value, which does exactly the same as
+ this method except that it doesn't raise Inexact or Rounded.
+ """
+ if self._is_special:
+ ans = self._check_nans(context=context)
+ if ans:
+ return ans
+ return Decimal(self)
+ if self._exp >= 0:
+ return Decimal(self)
+ if not self:
+ return _dec_from_triple(self._sign, '0', 0)
+ if context is None:
+ context = getcontext()
+ if rounding is None:
+ rounding = context.rounding
+ ans = self._rescale(0, rounding)
+ if ans != self:
+ context._raise_error(Inexact)
+ context._raise_error(Rounded)
+ return ans
+
+ def to_integral_value(self, rounding=None, context=None):
+ """Rounds to the nearest integer, without raising inexact, rounded."""
+ if context is None:
+ context = getcontext()
+ if rounding is None:
+ rounding = context.rounding
+ if self._is_special:
+ ans = self._check_nans(context=context)
+ if ans:
+ return ans
+ return Decimal(self)
+ if self._exp >= 0:
+ return Decimal(self)
+ else:
+ return self._rescale(0, rounding)
+
+ # the method name changed, but we provide also the old one, for compatibility
+ to_integral = to_integral_value
+
+ def sqrt(self, context=None):
+ """Return the square root of self."""
+ if context is None:
+ context = getcontext()
+
+ if self._is_special:
+ ans = self._check_nans(context=context)
+ if ans:
+ return ans
+
+ if self._isinfinity() and self._sign == 0:
+ return Decimal(self)
+
+ if not self:
+ # exponent = self._exp // 2. sqrt(-0) = -0
+ ans = _dec_from_triple(self._sign, '0', self._exp // 2)
+ return ans._fix(context)
+
+ if self._sign == 1:
+ return context._raise_error(InvalidOperation, 'sqrt(-x), x > 0')
+
+ # At this point self represents a positive number. Let p be
+ # the desired precision and express self in the form c*100**e
+ # with c a positive real number and e an integer, c and e
+ # being chosen so that 100**(p-1) <= c < 100**p. Then the
+ # (exact) square root of self is sqrt(c)*10**e, and 10**(p-1)
+ # <= sqrt(c) < 10**p, so the closest representable Decimal at
+ # precision p is n*10**e where n = round_half_even(sqrt(c)),
+ # the closest integer to sqrt(c) with the even integer chosen
+ # in the case of a tie.
+ #
+ # To ensure correct rounding in all cases, we use the
+ # following trick: we compute the square root to an extra
+ # place (precision p+1 instead of precision p), rounding down.
+ # Then, if the result is inexact and its last digit is 0 or 5,
+ # we increase the last digit to 1 or 6 respectively; if it's
+ # exact we leave the last digit alone. Now the final round to
+ # p places (or fewer in the case of underflow) will round
+ # correctly and raise the appropriate flags.
+
+ # use an extra digit of precision
+ prec = context.prec+1
+
+ # write argument in the form c*100**e where e = self._exp//2
+ # is the 'ideal' exponent, to be used if the square root is
+ # exactly representable. l is the number of 'digits' of c in
+ # base 100, so that 100**(l-1) <= c < 100**l.
+ op = _WorkRep(self)
+ e = op.exp >> 1
+ if op.exp & 1:
+ c = op.int * 10
+ l = (len(self._int) >> 1) + 1
+ else:
+ c = op.int
+ l = len(self._int)+1 >> 1
+
+ # rescale so that c has exactly prec base 100 'digits'
+ shift = prec-l
+ if shift >= 0:
+ c *= 100**shift
+ exact = True
+ else:
+ c, remainder = divmod(c, 100**-shift)
+ exact = not remainder
+ e -= shift
+
+ # find n = floor(sqrt(c)) using Newton's method
+ n = 10**prec
+ while True:
+ q = c//n
+ if n <= q:
+ break
+ else:
+ n = n + q >> 1
+ exact = exact and n*n == c
+
+ if exact:
+ # result is exact; rescale to use ideal exponent e
+ if shift >= 0:
+ # assert n % 10**shift == 0
+ n //= 10**shift
+ else:
+ n *= 10**-shift
+ e += shift
+ else:
+ # result is not exact; fix last digit as described above
+ if n % 5 == 0:
+ n += 1
+
+ ans = _dec_from_triple(0, str(n), e)
+
+ # round, and fit to current context
+ context = context._shallow_copy()
+ rounding = context._set_rounding(ROUND_HALF_EVEN)
+ ans = ans._fix(context)
+ context.rounding = rounding
+
+ return ans
+
+ def max(self, other, context=None):
+ """Returns the larger value.
+
+ Like max(self, other) except if one is not a number, returns
+ NaN (and signals if one is sNaN). Also rounds.
+ """
+ other = _convert_other(other, raiseit=True)
+
+ if context is None:
+ context = getcontext()
+
+ if self._is_special or other._is_special:
+ # If one operand is a quiet NaN and the other is number, then the
+ # number is always returned
+ sn = self._isnan()
+ on = other._isnan()
+ if sn or on:
+ if on == 1 and sn == 0:
+ return self._fix(context)
+ if sn == 1 and on == 0:
+ return other._fix(context)
+ return self._check_nans(other, context)
+
+ c = self._cmp(other)
+ if c == 0:
+ # If both operands are finite and equal in numerical value
+ # then an ordering is applied:
+ #
+ # If the signs differ then max returns the operand with the
+ # positive sign and min returns the operand with the negative sign
+ #
+ # If the signs are the same then the exponent is used to select
+ # the result. This is exactly the ordering used in compare_total.
+ c = self.compare_total(other)
+
+ if c == -1:
+ ans = other
+ else:
+ ans = self
+
+ return ans._fix(context)
+
+ def min(self, other, context=None):
+ """Returns the smaller value.
+
+ Like min(self, other) except if one is not a number, returns
+ NaN (and signals if one is sNaN). Also rounds.
+ """
+ other = _convert_other(other, raiseit=True)
+
+ if context is None:
+ context = getcontext()
+
+ if self._is_special or other._is_special:
+ # If one operand is a quiet NaN and the other is number, then the
+ # number is always returned
+ sn = self._isnan()
+ on = other._isnan()
+ if sn or on:
+ if on == 1 and sn == 0:
+ return self._fix(context)
+ if sn == 1 and on == 0:
+ return other._fix(context)
+ return self._check_nans(other, context)
+
+ c = self._cmp(other)
+ if c == 0:
+ c = self.compare_total(other)
+
+ if c == -1:
+ ans = self
+ else:
+ ans = other
+
+ return ans._fix(context)
+
+ def _isinteger(self):
+ """Returns whether self is an integer"""
+ if self._is_special:
+ return False
+ if self._exp >= 0:
+ return True
+ rest = self._int[self._exp:]
+ return rest == '0'*len(rest)
+
+ def _iseven(self):
+ """Returns True if self is even. Assumes self is an integer."""
+ if not self or self._exp > 0:
+ return True
+ return self._int[-1+self._exp] in '02468'
+
+ def adjusted(self):
+ """Return the adjusted exponent of self"""
+ try:
+ return self._exp + len(self._int) - 1
+ # If NaN or Infinity, self._exp is string
+ except TypeError:
+ return 0
+
+ def canonical(self, context=None):
+ """Returns the same Decimal object.
+
+ As we do not have different encodings for the same number, the
+ received object already is in its canonical form.
+ """
+ return self
+
+ def compare_signal(self, other, context=None):
+ """Compares self to the other operand numerically.
+
+ It's pretty much like compare(), but all NaNs signal, with signaling
+ NaNs taking precedence over quiet NaNs.
+ """
+ other = _convert_other(other, raiseit = True)
+ ans = self._compare_check_nans(other, context)
+ if ans:
+ return ans
+ return self.compare(other, context=context)
+
+ def compare_total(self, other):
+ """Compares self to other using the abstract representations.
+
+ This is not like the standard compare, which use their numerical
+ value. Note that a total ordering is defined for all possible abstract
+ representations.
+ """
+ other = _convert_other(other, raiseit=True)
+
+ # if one is negative and the other is positive, it's easy
+ if self._sign and not other._sign:
+ return _NegativeOne
+ if not self._sign and other._sign:
+ return _One
+ sign = self._sign
+
+ # let's handle both NaN types
+ self_nan = self._isnan()
+ other_nan = other._isnan()
+ if self_nan or other_nan:
+ if self_nan == other_nan:
+ # compare payloads as though they're integers
+ self_key = len(self._int), self._int
+ other_key = len(other._int), other._int
+ if self_key < other_key:
+ if sign:
+ return _One
+ else:
+ return _NegativeOne
+ if self_key > other_key:
+ if sign:
+ return _NegativeOne
+ else:
+ return _One
+ return _Zero
+
+ if sign:
+ if self_nan == 1:
+ return _NegativeOne
+ if other_nan == 1:
+ return _One
+ if self_nan == 2:
+ return _NegativeOne
+ if other_nan == 2:
+ return _One
+ else:
+ if self_nan == 1:
+ return _One
+ if other_nan == 1:
+ return _NegativeOne
+ if self_nan == 2:
+ return _One
+ if other_nan == 2:
+ return _NegativeOne
+
+ if self < other:
+ return _NegativeOne
+ if self > other:
+ return _One
+
+ if self._exp < other._exp:
+ if sign:
+ return _One
+ else:
+ return _NegativeOne
+ if self._exp > other._exp:
+ if sign:
+ return _NegativeOne
+ else:
+ return _One
+ return _Zero
+
+
+ def compare_total_mag(self, other):
+ """Compares self to other using abstract repr., ignoring sign.
+
+ Like compare_total, but with operand's sign ignored and assumed to be 0.
+ """
+ other = _convert_other(other, raiseit=True)
+
+ s = self.copy_abs()
+ o = other.copy_abs()
+ return s.compare_total(o)
+
+ def copy_abs(self):
+ """Returns a copy with the sign set to 0. """
+ return _dec_from_triple(0, self._int, self._exp, self._is_special)
+
+ def copy_negate(self):
+ """Returns a copy with the sign inverted."""
+ if self._sign:
+ return _dec_from_triple(0, self._int, self._exp, self._is_special)
+ else:
+ return _dec_from_triple(1, self._int, self._exp, self._is_special)
+
+ def copy_sign(self, other):
+ """Returns self with the sign of other."""
+ other = _convert_other(other, raiseit=True)
+ return _dec_from_triple(other._sign, self._int,
+ self._exp, self._is_special)
+
+ def exp(self, context=None):
+ """Returns e ** self."""
+
+ if context is None:
+ context = getcontext()
+
+ # exp(NaN) = NaN
+ ans = self._check_nans(context=context)
+ if ans:
+ return ans
+
+ # exp(-Infinity) = 0
+ if self._isinfinity() == -1:
+ return _Zero
+
+ # exp(0) = 1
+ if not self:
+ return _One
+
+ # exp(Infinity) = Infinity
+ if self._isinfinity() == 1:
+ return Decimal(self)
+
+ # the result is now guaranteed to be inexact (the true
+ # mathematical result is transcendental). There's no need to
+ # raise Rounded and Inexact here---they'll always be raised as
+ # a result of the call to _fix.
+ p = context.prec
+ adj = self.adjusted()
+
+ # we only need to do any computation for quite a small range
+ # of adjusted exponents---for example, -29 <= adj <= 10 for
+ # the default context. For smaller exponent the result is
+ # indistinguishable from 1 at the given precision, while for
+ # larger exponent the result either overflows or underflows.
+ if self._sign == 0 and adj > len(str((context.Emax+1)*3)):
+ # overflow
+ ans = _dec_from_triple(0, '1', context.Emax+1)
+ elif self._sign == 1 and adj > len(str((-context.Etiny()+1)*3)):
+ # underflow to 0
+ ans = _dec_from_triple(0, '1', context.Etiny()-1)
+ elif self._sign == 0 and adj < -p:
+ # p+1 digits; final round will raise correct flags
+ ans = _dec_from_triple(0, '1' + '0'*(p-1) + '1', -p)
+ elif self._sign == 1 and adj < -p-1:
+ # p+1 digits; final round will raise correct flags
+ ans = _dec_from_triple(0, '9'*(p+1), -p-1)
+ # general case
+ else:
+ op = _WorkRep(self)
+ c, e = op.int, op.exp
+ if op.sign == 1:
+ c = -c
+
+ # compute correctly rounded result: increase precision by
+ # 3 digits at a time until we get an unambiguously
+ # roundable result
+ extra = 3
+ while True:
+ coeff, exp = _dexp(c, e, p+extra)
+ if coeff % (5*10**(len(str(coeff))-p-1)):
+ break
+ extra += 3
+
+ ans = _dec_from_triple(0, str(coeff), exp)
+
+ # at this stage, ans should round correctly with *any*
+ # rounding mode, not just with ROUND_HALF_EVEN
+ context = context._shallow_copy()
+ rounding = context._set_rounding(ROUND_HALF_EVEN)
+ ans = ans._fix(context)
+ context.rounding = rounding
+
+ return ans
+
+ def is_canonical(self):
+ """Return True if self is canonical; otherwise return False.
+
+ Currently, the encoding of a Decimal instance is always
+ canonical, so this method returns True for any Decimal.
+ """
+ return True
+
+ def is_finite(self):
+ """Return True if self is finite; otherwise return False.
+
+ A Decimal instance is considered finite if it is neither
+ infinite nor a NaN.
+ """
+ return not self._is_special
+
+ def is_infinite(self):
+ """Return True if self is infinite; otherwise return False."""
+ return self._exp == 'F'
+
+ def is_nan(self):
+ """Return True if self is a qNaN or sNaN; otherwise return False."""
+ return self._exp in ('n', 'N')
+
+ def is_normal(self, context=None):
+ """Return True if self is a normal number; otherwise return False."""
+ if self._is_special or not self:
+ return False
+ if context is None:
+ context = getcontext()
+ return context.Emin <= self.adjusted()
+
+ def is_qnan(self):
+ """Return True if self is a quiet NaN; otherwise return False."""
+ return self._exp == 'n'
+
+ def is_signed(self):
+ """Return True if self is negative; otherwise return False."""
+ return self._sign == 1
+
+ def is_snan(self):
+ """Return True if self is a signaling NaN; otherwise return False."""
+ return self._exp == 'N'
+
+ def is_subnormal(self, context=None):
+ """Return True if self is subnormal; otherwise return False."""
+ if self._is_special or not self:
+ return False
+ if context is None:
+ context = getcontext()
+ return self.adjusted() < context.Emin
+
+ def is_zero(self):
+ """Return True if self is a zero; otherwise return False."""
+ return not self._is_special and self._int == '0'
+
+ def _ln_exp_bound(self):
+ """Compute a lower bound for the adjusted exponent of self.ln().
+ In other words, compute r such that self.ln() >= 10**r. Assumes
+ that self is finite and positive and that self != 1.
+ """
+
+ # for 0.1 <= x <= 10 we use the inequalities 1-1/x <= ln(x) <= x-1
+ adj = self._exp + len(self._int) - 1
+ if adj >= 1:
+ # argument >= 10; we use 23/10 = 2.3 as a lower bound for ln(10)
+ return len(str(adj*23//10)) - 1
+ if adj <= -2:
+ # argument <= 0.1
+ return len(str((-1-adj)*23//10)) - 1
+ op = _WorkRep(self)
+ c, e = op.int, op.exp
+ if adj == 0:
+ # 1 < self < 10
+ num = str(c-10**-e)
+ den = str(c)
+ return len(num) - len(den) - (num < den)
+ # adj == -1, 0.1 <= self < 1
+ return e + len(str(10**-e - c)) - 1
+
+
+ def ln(self, context=None):
+ """Returns the natural (base e) logarithm of self."""
+
+ if context is None:
+ context = getcontext()
+
+ # ln(NaN) = NaN
+ ans = self._check_nans(context=context)
+ if ans:
+ return ans
+
+ # ln(0.0) == -Infinity
+ if not self:
+ return _NegativeInfinity
+
+ # ln(Infinity) = Infinity
+ if self._isinfinity() == 1:
+ return _Infinity
+
+ # ln(1.0) == 0.0
+ if self == _One:
+ return _Zero
+
+ # ln(negative) raises InvalidOperation
+ if self._sign == 1:
+ return context._raise_error(InvalidOperation,
+ 'ln of a negative value')
+
+ # result is irrational, so necessarily inexact
+ op = _WorkRep(self)
+ c, e = op.int, op.exp
+ p = context.prec
+
+ # correctly rounded result: repeatedly increase precision by 3
+ # until we get an unambiguously roundable result
+ places = p - self._ln_exp_bound() + 2 # at least p+3 places
+ while True:
+ coeff = _dlog(c, e, places)
+ # assert len(str(abs(coeff)))-p >= 1
+ if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
+ break
+ places += 3
+ ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places)
+
+ context = context._shallow_copy()
+ rounding = context._set_rounding(ROUND_HALF_EVEN)
+ ans = ans._fix(context)
+ context.rounding = rounding
+ return ans
+
+ def _log10_exp_bound(self):
+ """Compute a lower bound for the adjusted exponent of self.log10().
+ In other words, find r such that self.log10() >= 10**r.
+ Assumes that self is finite and positive and that self != 1.
+ """
+
+ # For x >= 10 or x < 0.1 we only need a bound on the integer
+ # part of log10(self), and this comes directly from the
+ # exponent of x. For 0.1 <= x <= 10 we use the inequalities
+ # 1-1/x <= log(x) <= x-1. If x > 1 we have |log10(x)| >
+ # (1-1/x)/2.31 > 0. If x < 1 then |log10(x)| > (1-x)/2.31 > 0
+
+ adj = self._exp + len(self._int) - 1
+ if adj >= 1:
+ # self >= 10
+ return len(str(adj))-1
+ if adj <= -2:
+ # self < 0.1
+ return len(str(-1-adj))-1
+ op = _WorkRep(self)
+ c, e = op.int, op.exp
+ if adj == 0:
+ # 1 < self < 10
+ num = str(c-10**-e)
+ den = str(231*c)
+ return len(num) - len(den) - (num < den) + 2
+ # adj == -1, 0.1 <= self < 1
+ num = str(10**-e-c)
+ return len(num) + e - (num < "231") - 1
+
+ def log10(self, context=None):
+ """Returns the base 10 logarithm of self."""
+
+ if context is None:
+ context = getcontext()
+
+ # log10(NaN) = NaN
+ ans = self._check_nans(context=context)
+ if ans:
+ return ans
+
+ # log10(0.0) == -Infinity
+ if not self:
+ return _NegativeInfinity
+
+ # log10(Infinity) = Infinity
+ if self._isinfinity() == 1:
+ return _Infinity
+
+ # log10(negative or -Infinity) raises InvalidOperation
+ if self._sign == 1:
+ return context._raise_error(InvalidOperation,
+ 'log10 of a negative value')
+
+ # log10(10**n) = n
+ if self._int[0] == '1' and self._int[1:] == '0'*(len(self._int) - 1):
+ # answer may need rounding
+ ans = Decimal(self._exp + len(self._int) - 1)
+ else:
+ # result is irrational, so necessarily inexact
+ op = _WorkRep(self)
+ c, e = op.int, op.exp
+ p = context.prec
+
+ # correctly rounded result: repeatedly increase precision
+ # until result is unambiguously roundable
+ places = p-self._log10_exp_bound()+2
+ while True:
+ coeff = _dlog10(c, e, places)
+ # assert len(str(abs(coeff)))-p >= 1
+ if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
+ break
+ places += 3
+ ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places)
+
+ context = context._shallow_copy()
+ rounding = context._set_rounding(ROUND_HALF_EVEN)
+ ans = ans._fix(context)
+ context.rounding = rounding
+ return ans
+
+ def logb(self, context=None):
+ """ Returns the exponent of the magnitude of self's MSD.
+
+ The result is the integer which is the exponent of the magnitude
+ of the most significant digit of self (as though it were truncated
+ to a single digit while maintaining the value of that digit and
+ without limiting the resulting exponent).
+ """
+ # logb(NaN) = NaN
+ ans = self._check_nans(context=context)
+ if ans:
+ return ans
+
+ if context is None:
+ context = getcontext()
+
+ # logb(+/-Inf) = +Inf
+ if self._isinfinity():
+ return _Infinity
+
+ # logb(0) = -Inf, DivisionByZero
+ if not self:
+ return context._raise_error(DivisionByZero, 'logb(0)', 1)
+
+ # otherwise, simply return the adjusted exponent of self, as a
+ # Decimal. Note that no attempt is made to fit the result
+ # into the current context.
+ ans = Decimal(self.adjusted())
+ return ans._fix(context)
+
+ def _islogical(self):
+ """Return True if self is a logical operand.
+
+ For being logical, it must be a finite number with a sign of 0,
+ an exponent of 0, and a coefficient whose digits must all be
+ either 0 or 1.
+ """
+ if self._sign != 0 or self._exp != 0:
+ return False
+ for dig in self._int:
+ if dig not in '01':
+ return False
+ return True
+
+ def _fill_logical(self, context, opa, opb):
+ dif = context.prec - len(opa)
+ if dif > 0:
+ opa = '0'*dif + opa
+ elif dif < 0:
+ opa = opa[-context.prec:]
+ dif = context.prec - len(opb)
+ if dif > 0:
+ opb = '0'*dif + opb
+ elif dif < 0:
+ opb = opb[-context.prec:]
+ return opa, opb
+
+ def logical_and(self, other, context=None):
+ """Applies an 'and' operation between self and other's digits."""
+ if context is None:
+ context = getcontext()
+
+ other = _convert_other(other, raiseit=True)
+
+ if not self._islogical() or not other._islogical():
+ return context._raise_error(InvalidOperation)
+
+ # fill to context.prec
+ (opa, opb) = self._fill_logical(context, self._int, other._int)
+
+ # make the operation, and clean starting zeroes
+ result = "".join([str(int(a)&int(b)) for a,b in zip(opa,opb)])
+ return _dec_from_triple(0, result.lstrip('0') or '0', 0)
+
+ def logical_invert(self, context=None):
+ """Invert all its digits."""
+ if context is None:
+ context = getcontext()
+ return self.logical_xor(_dec_from_triple(0,'1'*context.prec,0),
+ context)
+
+ def logical_or(self, other, context=None):
+ """Applies an 'or' operation between self and other's digits."""
+ if context is None:
+ context = getcontext()
+
+ other = _convert_other(other, raiseit=True)
+
+ if not self._islogical() or not other._islogical():
+ return context._raise_error(InvalidOperation)
+
+ # fill to context.prec
+ (opa, opb) = self._fill_logical(context, self._int, other._int)
+
+ # make the operation, and clean starting zeroes
+ result = "".join([str(int(a)|int(b)) for a,b in zip(opa,opb)])
+ return _dec_from_triple(0, result.lstrip('0') or '0', 0)
+
+ def logical_xor(self, other, context=None):
+ """Applies an 'xor' operation between self and other's digits."""
+ if context is None:
+ context = getcontext()
+
+ other = _convert_other(other, raiseit=True)
+
+ if not self._islogical() or not other._islogical():
+ return context._raise_error(InvalidOperation)
+
+ # fill to context.prec
+ (opa, opb) = self._fill_logical(context, self._int, other._int)
+
+ # make the operation, and clean starting zeroes
+ result = "".join([str(int(a)^int(b)) for a,b in zip(opa,opb)])
+ return _dec_from_triple(0, result.lstrip('0') or '0', 0)
+
+ def max_mag(self, other, context=None):
+ """Compares the values numerically with their sign ignored."""
+ other = _convert_other(other, raiseit=True)
+
+ if context is None:
+ context = getcontext()
+
+ if self._is_special or other._is_special:
+ # If one operand is a quiet NaN and the other is number, then the
+ # number is always returned
+ sn = self._isnan()
+ on = other._isnan()
+ if sn or on:
+ if on == 1 and sn == 0:
+ return self._fix(context)
+ if sn == 1 and on == 0:
+ return other._fix(context)
+ return self._check_nans(other, context)
+
+ c = self.copy_abs()._cmp(other.copy_abs())
+ if c == 0:
+ c = self.compare_total(other)
+
+ if c == -1:
+ ans = other
+ else:
+ ans = self
+
+ return ans._fix(context)
+
+ def min_mag(self, other, context=None):
+ """Compares the values numerically with their sign ignored."""
+ other = _convert_other(other, raiseit=True)
+
+ if context is None:
+ context = getcontext()
+
+ if self._is_special or other._is_special:
+ # If one operand is a quiet NaN and the other is number, then the
+ # number is always returned
+ sn = self._isnan()
+ on = other._isnan()
+ if sn or on:
+ if on == 1 and sn == 0:
+ return self._fix(context)
+ if sn == 1 and on == 0:
+ return other._fix(context)
+ return self._check_nans(other, context)
+
+ c = self.copy_abs()._cmp(other.copy_abs())
+ if c == 0:
+ c = self.compare_total(other)
+
+ if c == -1:
+ ans = self
+ else:
+ ans = other
+
+ return ans._fix(context)
+
+ def next_minus(self, context=None):
+ """Returns the largest representable number smaller than itself."""
+ if context is None:
+ context = getcontext()
+
+ ans = self._check_nans(context=context)
+ if ans:
+ return ans
+
+ if self._isinfinity() == -1:
+ return _NegativeInfinity
+ if self._isinfinity() == 1:
+ return _dec_from_triple(0, '9'*context.prec, context.Etop())
+
+ context = context.copy()
+ context._set_rounding(ROUND_FLOOR)
+ context._ignore_all_flags()
+ new_self = self._fix(context)
+ if new_self != self:
+ return new_self
+ return self.__sub__(_dec_from_triple(0, '1', context.Etiny()-1),
+ context)
+
+ def next_plus(self, context=None):
+ """Returns the smallest representable number larger than itself."""
+ if context is None:
+ context = getcontext()
+
+ ans = self._check_nans(context=context)
+ if ans:
+ return ans
+
+ if self._isinfinity() == 1:
+ return _Infinity
+ if self._isinfinity() == -1:
+ return _dec_from_triple(1, '9'*context.prec, context.Etop())
+
+ context = context.copy()
+ context._set_rounding(ROUND_CEILING)
+ context._ignore_all_flags()
+ new_self = self._fix(context)
+ if new_self != self:
+ return new_self
+ return self.__add__(_dec_from_triple(0, '1', context.Etiny()-1),
+ context)
+
+ def next_toward(self, other, context=None):
+ """Returns the number closest to self, in the direction towards other.
+
+ The result is the closest representable number to self
+ (excluding self) that is in the direction towards other,
+ unless both have the same value. If the two operands are
+ numerically equal, then the result is a copy of self with the
+ sign set to be the same as the sign of other.
+ """
+ other = _convert_other(other, raiseit=True)
+
+ if context is None:
+ context = getcontext()
+
+ ans = self._check_nans(other, context)
+ if ans:
+ return ans
+
+ comparison = self._cmp(other)
+ if comparison == 0:
+ return self.copy_sign(other)
+
+ if comparison == -1:
+ ans = self.next_plus(context)
+ else: # comparison == 1
+ ans = self.next_minus(context)
+
+ # decide which flags to raise using value of ans
+ if ans._isinfinity():
+ context._raise_error(Overflow,
+ 'Infinite result from next_toward',
+ ans._sign)
+ context._raise_error(Inexact)
+ context._raise_error(Rounded)
+ elif ans.adjusted() < context.Emin:
+ context._raise_error(Underflow)
+ context._raise_error(Subnormal)
+ context._raise_error(Inexact)
+ context._raise_error(Rounded)
+ # if precision == 1 then we don't raise Clamped for a
+ # result 0E-Etiny.
+ if not ans:
+ context._raise_error(Clamped)
+
+ return ans
+
+ def number_class(self, context=None):
+ """Returns an indication of the class of self.
+
+ The class is one of the following strings:
+ sNaN
+ NaN
+ -Infinity
+ -Normal
+ -Subnormal
+ -Zero
+ +Zero
+ +Subnormal
+ +Normal
+ +Infinity
+ """
+ if self.is_snan():
+ return "sNaN"
+ if self.is_qnan():
+ return "NaN"
+ inf = self._isinfinity()
+ if inf == 1:
+ return "+Infinity"
+ if inf == -1:
+ return "-Infinity"
+ if self.is_zero():
+ if self._sign:
+ return "-Zero"
+ else:
+ return "+Zero"
+ if context is None:
+ context = getcontext()
+ if self.is_subnormal(context=context):
+ if self._sign:
+ return "-Subnormal"
+ else:
+ return "+Subnormal"
+ # just a normal, regular, boring number, :)
+ if self._sign:
+ return "-Normal"
+ else:
+ return "+Normal"
+
+ def radix(self):
+ """Just returns 10, as this is Decimal, :)"""
+ return Decimal(10)
+
+ def rotate(self, other, context=None):
+ """Returns a rotated copy of self, value-of-other times."""
+ if context is None:
+ context = getcontext()
+
+ other = _convert_other(other, raiseit=True)
+
+ ans = self._check_nans(other, context)
+ if ans:
+ return ans
+
+ if other._exp != 0:
+ return context._raise_error(InvalidOperation)
+ if not (-context.prec <= int(other) <= context.prec):
+ return context._raise_error(InvalidOperation)
+
+ if self._isinfinity():
+ return Decimal(self)
+
+ # get values, pad if necessary
+ torot = int(other)
+ rotdig = self._int
+ topad = context.prec - len(rotdig)
+ if topad > 0:
+ rotdig = '0'*topad + rotdig
+ elif topad < 0:
+ rotdig = rotdig[-topad:]
+
+ # let's rotate!
+ rotated = rotdig[torot:] + rotdig[:torot]
+ return _dec_from_triple(self._sign,
+ rotated.lstrip('0') or '0', self._exp)
+
+ def scaleb(self, other, context=None):
+ """Returns self operand after adding the second value to its exp."""
+ if context is None:
+ context = getcontext()
+
+ other = _convert_other(other, raiseit=True)
+
+ ans = self._check_nans(other, context)
+ if ans:
+ return ans
+
+ if other._exp != 0:
+ return context._raise_error(InvalidOperation)
+ liminf = -2 * (context.Emax + context.prec)
+ limsup = 2 * (context.Emax + context.prec)
+ if not (liminf <= int(other) <= limsup):
+ return context._raise_error(InvalidOperation)
+
+ if self._isinfinity():
+ return Decimal(self)
+
+ d = _dec_from_triple(self._sign, self._int, self._exp + int(other))
+ d = d._fix(context)
+ return d
+
+ def shift(self, other, context=None):
+ """Returns a shifted copy of self, value-of-other times."""
+ if context is None:
+ context = getcontext()
+
+ other = _convert_other(other, raiseit=True)
+
+ ans = self._check_nans(other, context)
+ if ans:
+ return ans
+
+ if other._exp != 0:
+ return context._raise_error(InvalidOperation)
+ if not (-context.prec <= int(other) <= context.prec):
+ return context._raise_error(InvalidOperation)
+
+ if self._isinfinity():
+ return Decimal(self)
+
+ # get values, pad if necessary
+ torot = int(other)
+ rotdig = self._int
+ topad = context.prec - len(rotdig)
+ if topad > 0:
+ rotdig = '0'*topad + rotdig
+ elif topad < 0:
+ rotdig = rotdig[-topad:]
+
+ # let's shift!
+ if torot < 0:
+ shifted = rotdig[:torot]
+ else:
+ shifted = rotdig + '0'*torot
+ shifted = shifted[-context.prec:]
+
+ return _dec_from_triple(self._sign,
+ shifted.lstrip('0') or '0', self._exp)
+
+ # Support for pickling, copy, and deepcopy
+ def __reduce__(self):
+ return (self.__class__, (str(self),))
+
+ def __copy__(self):
+ if type(self) is Decimal:
+ return self # I'm immutable; therefore I am my own clone
+ return self.__class__(str(self))
+
+ def __deepcopy__(self, memo):
+ if type(self) is Decimal:
+ return self # My components are also immutable
+ return self.__class__(str(self))
+
+ # PEP 3101 support. the _localeconv keyword argument should be
+ # considered private: it's provided for ease of testing only.
+ def __format__(self, specifier, context=None, _localeconv=None):
+ """Format a Decimal instance according to the given specifier.
+
+ The specifier should be a standard format specifier, with the
+ form described in PEP 3101. Formatting types 'e', 'E', 'f',
+ 'F', 'g', 'G', 'n' and '%' are supported. If the formatting
+ type is omitted it defaults to 'g' or 'G', depending on the
+ value of context.capitals.
+ """
+
+ # Note: PEP 3101 says that if the type is not present then
+ # there should be at least one digit after the decimal point.
+ # We take the liberty of ignoring this requirement for
+ # Decimal---it's presumably there to make sure that
+ # format(float, '') behaves similarly to str(float).
+ if context is None:
+ context = getcontext()
+
+ spec = _parse_format_specifier(specifier, _localeconv=_localeconv)
+
+ # special values don't care about the type or precision
+ if self._is_special:
+ sign = _format_sign(self._sign, spec)
+ body = str(self.copy_abs())
+ if spec['type'] == '%':
+ body += '%'
+ return _format_align(sign, body, spec)
+
+ # a type of None defaults to 'g' or 'G', depending on context
+ if spec['type'] is None:
+ spec['type'] = ['g', 'G'][context.capitals]
+
+ # if type is '%', adjust exponent of self accordingly
+ if spec['type'] == '%':
+ self = _dec_from_triple(self._sign, self._int, self._exp+2)
+
+ # round if necessary, taking rounding mode from the context
+ rounding = context.rounding
+ precision = spec['precision']
+ if precision is not None:
+ if spec['type'] in 'eE':
+ self = self._round(precision+1, rounding)
+ elif spec['type'] in 'fF%':
+ self = self._rescale(-precision, rounding)
+ elif spec['type'] in 'gG' and len(self._int) > precision:
+ self = self._round(precision, rounding)
+ # special case: zeros with a positive exponent can't be
+ # represented in fixed point; rescale them to 0e0.
+ if not self and self._exp > 0 and spec['type'] in 'fF%':
+ self = self._rescale(0, rounding)
+
+ # figure out placement of the decimal point
+ leftdigits = self._exp + len(self._int)
+ if spec['type'] in 'eE':
+ if not self and precision is not None:
+ dotplace = 1 - precision
+ else:
+ dotplace = 1
+ elif spec['type'] in 'fF%':
+ dotplace = leftdigits
+ elif spec['type'] in 'gG':
+ if self._exp <= 0 and leftdigits > -6:
+ dotplace = leftdigits
+ else:
+ dotplace = 1
+
+ # find digits before and after decimal point, and get exponent
+ if dotplace < 0:
+ intpart = '0'
+ fracpart = '0'*(-dotplace) + self._int
+ elif dotplace > len(self._int):
+ intpart = self._int + '0'*(dotplace-len(self._int))
+ fracpart = ''
+ else:
+ intpart = self._int[:dotplace] or '0'
+ fracpart = self._int[dotplace:]
+ exp = leftdigits-dotplace
+
+ # done with the decimal-specific stuff; hand over the rest
+ # of the formatting to the _format_number function
+ return _format_number(self._sign, intpart, fracpart, exp, spec)
+
+def _dec_from_triple(sign, coefficient, exponent, special=False):
+ """Create a decimal instance directly, without any validation,
+ normalization (e.g. removal of leading zeros) or argument
+ conversion.
+
+ This function is for *internal use only*.
+ """
+
+ self = object.__new__(Decimal)
+ self._sign = sign
+ self._int = coefficient
+ self._exp = exponent
+ self._is_special = special
+
+ return self
+
+# Register Decimal as a kind of Number (an abstract base class).
+# However, do not register it as Real (because Decimals are not
+# interoperable with floats).
+_numbers.Number.register(Decimal)
+
+
+##### Context class #######################################################
+
+class _ContextManager(object):
+ """Context manager class to support localcontext().
+
+ Sets a copy of the supplied context in __enter__() and restores
+ the previous decimal context in __exit__()
+ """
+ def __init__(self, new_context):
+ self.new_context = new_context.copy()
+ def __enter__(self):
+ self.saved_context = getcontext()
+ setcontext(self.new_context)
+ return self.new_context
+ def __exit__(self, t, v, tb):
+ setcontext(self.saved_context)
+
+class Context(object):
+ """Contains the context for a Decimal instance.
+
+ Contains:
+ prec - precision (for use in rounding, division, square roots..)
+ rounding - rounding type (how you round)
+ traps - If traps[exception] = 1, then the exception is
+ raised when it is caused. Otherwise, a value is
+ substituted in.
+ flags - When an exception is caused, flags[exception] is set.
+ (Whether or not the trap_enabler is set)
+ Should be reset by user of Decimal instance.
+ Emin - Minimum exponent
+ Emax - Maximum exponent
+ capitals - If 1, 1*10^1 is printed as 1E+1.
+ If 0, printed as 1e1
+ _clamp - If 1, change exponents if too high (Default 0)
+ """
+
+ def __init__(self, prec=None, rounding=None,
+ traps=None, flags=None,
+ Emin=None, Emax=None,
+ capitals=None, _clamp=0,
+ _ignored_flags=None):
+ # Set defaults; for everything except flags and _ignored_flags,
+ # inherit from DefaultContext.
+ try:
+ dc = DefaultContext
+ except NameError:
+ pass
+
+ self.prec = prec if prec is not None else dc.prec
+ self.rounding = rounding if rounding is not None else dc.rounding
+ self.Emin = Emin if Emin is not None else dc.Emin
+ self.Emax = Emax if Emax is not None else dc.Emax
+ self.capitals = capitals if capitals is not None else dc.capitals
+ self._clamp = _clamp if _clamp is not None else dc._clamp
+
+ if _ignored_flags is None:
+ self._ignored_flags = []
+ else:
+ self._ignored_flags = _ignored_flags
+
+ if traps is None:
+ self.traps = dc.traps.copy()
+ elif not isinstance(traps, dict):
+ self.traps = dict((s, int(s in traps)) for s in _signals)
+ else:
+ self.traps = traps
+
+ if flags is None:
+ self.flags = dict.fromkeys(_signals, 0)
+ elif not isinstance(flags, dict):
+ self.flags = dict((s, int(s in flags)) for s in _signals)
+ else:
+ self.flags = flags
+
+ def __repr__(self):
+ """Show the current context."""
+ s = []
+ s.append('Context(prec=%(prec)d, rounding=%(rounding)s, '
+ 'Emin=%(Emin)d, Emax=%(Emax)d, capitals=%(capitals)d'
+ % vars(self))
+ names = [f.__name__ for f, v in self.flags.items() if v]
+ s.append('flags=[' + ', '.join(names) + ']')
+ names = [t.__name__ for t, v in self.traps.items() if v]
+ s.append('traps=[' + ', '.join(names) + ']')
+ return ', '.join(s) + ')'
+
+ def clear_flags(self):
+ """Reset all flags to zero"""
+ for flag in self.flags:
+ self.flags[flag] = 0
+
+ def _shallow_copy(self):
+ """Returns a shallow copy from self."""
+ nc = Context(self.prec, self.rounding, self.traps,
+ self.flags, self.Emin, self.Emax,
+ self.capitals, self._clamp, self._ignored_flags)
+ return nc
+
+ def copy(self):
+ """Returns a deep copy from self."""
+ nc = Context(self.prec, self.rounding, self.traps.copy(),
+ self.flags.copy(), self.Emin, self.Emax,
+ self.capitals, self._clamp, self._ignored_flags)
+ return nc
+ __copy__ = copy
+
+ def _raise_error(self, condition, explanation = None, *args):
+ """Handles an error
+
+ If the flag is in _ignored_flags, returns the default response.
+ Otherwise, it sets the flag, then, if the corresponding
+ trap_enabler is set, it reraises the exception. Otherwise, it returns
+ the default value after setting the flag.
+ """
+ error = _condition_map.get(condition, condition)
+ if error in self._ignored_flags:
+ # Don't touch the flag
+ return error().handle(self, *args)
+
+ self.flags[error] = 1
+ if not self.traps[error]:
+ # The errors define how to handle themselves.
+ return condition().handle(self, *args)
+
+ # Errors should only be risked on copies of the context
+ # self._ignored_flags = []
+ raise error(explanation)
+
+ def _ignore_all_flags(self):
+ """Ignore all flags, if they are raised"""
+ return self._ignore_flags(*_signals)
+
+ def _ignore_flags(self, *flags):
+ """Ignore the flags, if they are raised"""
+ # Do not mutate-- This way, copies of a context leave the original
+ # alone.
+ self._ignored_flags = (self._ignored_flags + list(flags))
+ return list(flags)
+
+ def _regard_flags(self, *flags):
+ """Stop ignoring the flags, if they are raised"""
+ if flags and isinstance(flags[0], (tuple,list)):
+ flags = flags[0]
+ for flag in flags:
+ self._ignored_flags.remove(flag)
+
+ # We inherit object.__hash__, so we must deny this explicitly
+ __hash__ = None
+
+ def Etiny(self):
+ """Returns Etiny (= Emin - prec + 1)"""
+ return int(self.Emin - self.prec + 1)
+
+ def Etop(self):
+ """Returns maximum exponent (= Emax - prec + 1)"""
+ return int(self.Emax - self.prec + 1)
+
+ def _set_rounding(self, type):
+ """Sets the rounding type.
+
+ Sets the rounding type, and returns the current (previous)
+ rounding type. Often used like:
+
+ context = context.copy()
+ # so you don't change the calling context
+ # if an error occurs in the middle.
+ rounding = context._set_rounding(ROUND_UP)
+ val = self.__sub__(other, context=context)
+ context._set_rounding(rounding)
+
+ This will make it round up for that operation.
+ """
+ rounding = self.rounding
+ self.rounding= type
+ return rounding
+
+ def create_decimal(self, num='0'):
+ """Creates a new Decimal instance but using self as context.
+
+ This method implements the to-number operation of the
+ IBM Decimal specification."""
+
+ if isinstance(num, basestring) and num != num.strip():
+ return self._raise_error(ConversionSyntax,
+ "no trailing or leading whitespace is "
+ "permitted.")
+
+ d = Decimal(num, context=self)
+ if d._isnan() and len(d._int) > self.prec - self._clamp:
+ return self._raise_error(ConversionSyntax,
+ "diagnostic info too long in NaN")
+ return d._fix(self)
+
+ def create_decimal_from_float(self, f):
+ """Creates a new Decimal instance from a float but rounding using self
+ as the context.
+
+ >>> context = Context(prec=5, rounding=ROUND_DOWN)
+ >>> context.create_decimal_from_float(3.1415926535897932)
+ Decimal('3.1415')
+ >>> context = Context(prec=5, traps=[Inexact])
+ >>> context.create_decimal_from_float(3.1415926535897932)
+ Traceback (most recent call last):
+ ...
+ Inexact: None
+
+ """
+ d = Decimal.from_float(f) # An exact conversion
+ return d._fix(self) # Apply the context rounding
+
+ # Methods
+ def abs(self, a):
+ """Returns the absolute value of the operand.
+
+ If the operand is negative, the result is the same as using the minus
+ operation on the operand. Otherwise, the result is the same as using
+ the plus operation on the operand.
+
+ >>> ExtendedContext.abs(Decimal('2.1'))
+ Decimal('2.1')
+ >>> ExtendedContext.abs(Decimal('-100'))
+ Decimal('100')
+ >>> ExtendedContext.abs(Decimal('101.5'))
+ Decimal('101.5')
+ >>> ExtendedContext.abs(Decimal('-101.5'))
+ Decimal('101.5')
+ >>> ExtendedContext.abs(-1)
+ Decimal('1')
+ """
+ a = _convert_other(a, raiseit=True)
+ return a.__abs__(context=self)
+
+ def add(self, a, b):
+ """Return the sum of the two operands.
+
+ >>> ExtendedContext.add(Decimal('12'), Decimal('7.00'))
+ Decimal('19.00')
+ >>> ExtendedContext.add(Decimal('1E+2'), Decimal('1.01E+4'))
+ Decimal('1.02E+4')
+ >>> ExtendedContext.add(1, Decimal(2))
+ Decimal('3')
+ >>> ExtendedContext.add(Decimal(8), 5)
+ Decimal('13')
+ >>> ExtendedContext.add(5, 5)
+ Decimal('10')
+ """
+ a = _convert_other(a, raiseit=True)
+ r = a.__add__(b, context=self)
+ if r is NotImplemented:
+ raise TypeError("Unable to convert %s to Decimal" % b)
+ else:
+ return r
+
+ def _apply(self, a):
+ return str(a._fix(self))
+
+ def canonical(self, a):
+ """Returns the same Decimal object.
+
+ As we do not have different encodings for the same number, the
+ received object already is in its canonical form.
+
+ >>> ExtendedContext.canonical(Decimal('2.50'))
+ Decimal('2.50')
+ """
+ return a.canonical(context=self)
+
+ def compare(self, a, b):
+ """Compares values numerically.
+
+ If the signs of the operands differ, a value representing each operand
+ ('-1' if the operand is less than zero, '0' if the operand is zero or
+ negative zero, or '1' if the operand is greater than zero) is used in
+ place of that operand for the comparison instead of the actual
+ operand.
+
+ The comparison is then effected by subtracting the second operand from
+ the first and then returning a value according to the result of the
+ subtraction: '-1' if the result is less than zero, '0' if the result is
+ zero or negative zero, or '1' if the result is greater than zero.
+
+ >>> ExtendedContext.compare(Decimal('2.1'), Decimal('3'))
+ Decimal('-1')
+ >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.1'))
+ Decimal('0')
+ >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.10'))
+ Decimal('0')
+ >>> ExtendedContext.compare(Decimal('3'), Decimal('2.1'))
+ Decimal('1')
+ >>> ExtendedContext.compare(Decimal('2.1'), Decimal('-3'))
+ Decimal('1')
+ >>> ExtendedContext.compare(Decimal('-3'), Decimal('2.1'))
+ Decimal('-1')
+ >>> ExtendedContext.compare(1, 2)
+ Decimal('-1')
+ >>> ExtendedContext.compare(Decimal(1), 2)
+ Decimal('-1')
+ >>> ExtendedContext.compare(1, Decimal(2))
+ Decimal('-1')
+ """
+ a = _convert_other(a, raiseit=True)
+ return a.compare(b, context=self)
+
+ def compare_signal(self, a, b):
+ """Compares the values of the two operands numerically.
+
+ It's pretty much like compare(), but all NaNs signal, with signaling
+ NaNs taking precedence over quiet NaNs.
+
+ >>> c = ExtendedContext
+ >>> c.compare_signal(Decimal('2.1'), Decimal('3'))
+ Decimal('-1')
+ >>> c.compare_signal(Decimal('2.1'), Decimal('2.1'))
+ Decimal('0')
+ >>> c.flags[InvalidOperation] = 0
+ >>> print c.flags[InvalidOperation]
+ 0
+ >>> c.compare_signal(Decimal('NaN'), Decimal('2.1'))
+ Decimal('NaN')
+ >>> print c.flags[InvalidOperation]
+ 1
+ >>> c.flags[InvalidOperation] = 0
+ >>> print c.flags[InvalidOperation]
+ 0
+ >>> c.compare_signal(Decimal('sNaN'), Decimal('2.1'))
+ Decimal('NaN')
+ >>> print c.flags[InvalidOperation]
+ 1
+ >>> c.compare_signal(-1, 2)
+ Decimal('-1')
+ >>> c.compare_signal(Decimal(-1), 2)
+ Decimal('-1')
+ >>> c.compare_signal(-1, Decimal(2))
+ Decimal('-1')
+ """
+ a = _convert_other(a, raiseit=True)
+ return a.compare_signal(b, context=self)
+
+ def compare_total(self, a, b):
+ """Compares two operands using their abstract representation.
+
+ This is not like the standard compare, which use their numerical
+ value. Note that a total ordering is defined for all possible abstract
+ representations.
+
+ >>> ExtendedContext.compare_total(Decimal('12.73'), Decimal('127.9'))
+ Decimal('-1')
+ >>> ExtendedContext.compare_total(Decimal('-127'), Decimal('12'))
+ Decimal('-1')
+ >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.3'))
+ Decimal('-1')
+ >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.30'))
+ Decimal('0')
+ >>> ExtendedContext.compare_total(Decimal('12.3'), Decimal('12.300'))
+ Decimal('1')
+ >>> ExtendedContext.compare_total(Decimal('12.3'), Decimal('NaN'))
+ Decimal('-1')
+ >>> ExtendedContext.compare_total(1, 2)
+ Decimal('-1')
+ >>> ExtendedContext.compare_total(Decimal(1), 2)
+ Decimal('-1')
+ >>> ExtendedContext.compare_total(1, Decimal(2))
+ Decimal('-1')
+ """
+ a = _convert_other(a, raiseit=True)
+ return a.compare_total(b)
+
+ def compare_total_mag(self, a, b):
+ """Compares two operands using their abstract representation ignoring sign.
+
+ Like compare_total, but with operand's sign ignored and assumed to be 0.
+ """
+ a = _convert_other(a, raiseit=True)
+ return a.compare_total_mag(b)
+
+ def copy_abs(self, a):
+ """Returns a copy of the operand with the sign set to 0.
+
+ >>> ExtendedContext.copy_abs(Decimal('2.1'))
+ Decimal('2.1')
+ >>> ExtendedContext.copy_abs(Decimal('-100'))
+ Decimal('100')
+ >>> ExtendedContext.copy_abs(-1)
+ Decimal('1')
+ """
+ a = _convert_other(a, raiseit=True)
+ return a.copy_abs()
+
+ def copy_decimal(self, a):
+ """Returns a copy of the decimal object.
+
+ >>> ExtendedContext.copy_decimal(Decimal('2.1'))
+ Decimal('2.1')
+ >>> ExtendedContext.copy_decimal(Decimal('-1.00'))
+ Decimal('-1.00')
+ >>> ExtendedContext.copy_decimal(1)
+ Decimal('1')
+ """
+ a = _convert_other(a, raiseit=True)
+ return Decimal(a)
+
+ def copy_negate(self, a):
+ """Returns a copy of the operand with the sign inverted.
+
+ >>> ExtendedContext.copy_negate(Decimal('101.5'))
+ Decimal('-101.5')
+ >>> ExtendedContext.copy_negate(Decimal('-101.5'))
+ Decimal('101.5')
+ >>> ExtendedContext.copy_negate(1)
+ Decimal('-1')
+ """
+ a = _convert_other(a, raiseit=True)
+ return a.copy_negate()
+
+ def copy_sign(self, a, b):
+ """Copies the second operand's sign to the first one.
+
+ In detail, it returns a copy of the first operand with the sign
+ equal to the sign of the second operand.
+
+ >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('7.33'))
+ Decimal('1.50')
+ >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('7.33'))
+ Decimal('1.50')
+ >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('-7.33'))
+ Decimal('-1.50')
+ >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('-7.33'))
+ Decimal('-1.50')
+ >>> ExtendedContext.copy_sign(1, -2)
+ Decimal('-1')
+ >>> ExtendedContext.copy_sign(Decimal(1), -2)
+ Decimal('-1')
+ >>> ExtendedContext.copy_sign(1, Decimal(-2))
+ Decimal('-1')
+ """
+ a = _convert_other(a, raiseit=True)
+ return a.copy_sign(b)
+
+ def divide(self, a, b):
+ """Decimal division in a specified context.
+
+ >>> ExtendedContext.divide(Decimal('1'), Decimal('3'))
+ Decimal('0.333333333')
+ >>> ExtendedContext.divide(Decimal('2'), Decimal('3'))
+ Decimal('0.666666667')
+ >>> ExtendedContext.divide(Decimal('5'), Decimal('2'))
+ Decimal('2.5')
+ >>> ExtendedContext.divide(Decimal('1'), Decimal('10'))
+ Decimal('0.1')
+ >>> ExtendedContext.divide(Decimal('12'), Decimal('12'))
+ Decimal('1')
+ >>> ExtendedContext.divide(Decimal('8.00'), Decimal('2'))
+ Decimal('4.00')
+ >>> ExtendedContext.divide(Decimal('2.400'), Decimal('2.0'))
+ Decimal('1.20')
+ >>> ExtendedContext.divide(Decimal('1000'), Decimal('100'))
+ Decimal('10')
+ >>> ExtendedContext.divide(Decimal('1000'), Decimal('1'))
+ Decimal('1000')
+ >>> ExtendedContext.divide(Decimal('2.40E+6'), Decimal('2'))
+ Decimal('1.20E+6')
+ >>> ExtendedContext.divide(5, 5)
+ Decimal('1')
+ >>> ExtendedContext.divide(Decimal(5), 5)
+ Decimal('1')
+ >>> ExtendedContext.divide(5, Decimal(5))
+ Decimal('1')
+ """
+ a = _convert_other(a, raiseit=True)
+ r = a.__div__(b, context=self)
+ if r is NotImplemented:
+ raise TypeError("Unable to convert %s to Decimal" % b)
+ else:
+ return r
+
+ def divide_int(self, a, b):
+ """Divides two numbers and returns the integer part of the result.
+
+ >>> ExtendedContext.divide_int(Decimal('2'), Decimal('3'))
+ Decimal('0')
+ >>> ExtendedContext.divide_int(Decimal('10'), Decimal('3'))
+ Decimal('3')
+ >>> ExtendedContext.divide_int(Decimal('1'), Decimal('0.3'))
+ Decimal('3')
+ >>> ExtendedContext.divide_int(10, 3)
+ Decimal('3')
+ >>> ExtendedContext.divide_int(Decimal(10), 3)
+ Decimal('3')
+ >>> ExtendedContext.divide_int(10, Decimal(3))
+ Decimal('3')
+ """
+ a = _convert_other(a, raiseit=True)
+ r = a.__floordiv__(b, context=self)
+ if r is NotImplemented:
+ raise TypeError("Unable to convert %s to Decimal" % b)
+ else:
+ return r
+
+ def divmod(self, a, b):
+ """Return (a // b, a % b).
+
+ >>> ExtendedContext.divmod(Decimal(8), Decimal(3))
+ (Decimal('2'), Decimal('2'))
+ >>> ExtendedContext.divmod(Decimal(8), Decimal(4))
+ (Decimal('2'), Decimal('0'))
+ >>> ExtendedContext.divmod(8, 4)
+ (Decimal('2'), Decimal('0'))
+ >>> ExtendedContext.divmod(Decimal(8), 4)
+ (Decimal('2'), Decimal('0'))
+ >>> ExtendedContext.divmod(8, Decimal(4))
+ (Decimal('2'), Decimal('0'))
+ """
+ a = _convert_other(a, raiseit=True)
+ r = a.__divmod__(b, context=self)
+ if r is NotImplemented:
+ raise TypeError("Unable to convert %s to Decimal" % b)
+ else:
+ return r
+
+ def exp(self, a):
+ """Returns e ** a.
+
+ >>> c = ExtendedContext.copy()
+ >>> c.Emin = -999
+ >>> c.Emax = 999
+ >>> c.exp(Decimal('-Infinity'))
+ Decimal('0')
+ >>> c.exp(Decimal('-1'))
+ Decimal('0.367879441')
+ >>> c.exp(Decimal('0'))
+ Decimal('1')
+ >>> c.exp(Decimal('1'))
+ Decimal('2.71828183')
+ >>> c.exp(Decimal('0.693147181'))
+ Decimal('2.00000000')
+ >>> c.exp(Decimal('+Infinity'))
+ Decimal('Infinity')
+ >>> c.exp(10)
+ Decimal('22026.4658')
+ """
+ a =_convert_other(a, raiseit=True)
+ return a.exp(context=self)
+
+ def fma(self, a, b, c):
+ """Returns a multiplied by b, plus c.
+
+ The first two operands are multiplied together, using multiply,
+ the third operand is then added to the result of that
+ multiplication, using add, all with only one final rounding.
+
+ >>> ExtendedContext.fma(Decimal('3'), Decimal('5'), Decimal('7'))
+ Decimal('22')
+ >>> ExtendedContext.fma(Decimal('3'), Decimal('-5'), Decimal('7'))
+ Decimal('-8')
+ >>> ExtendedContext.fma(Decimal('888565290'), Decimal('1557.96930'), Decimal('-86087.7578'))
+ Decimal('1.38435736E+12')
+ >>> ExtendedContext.fma(1, 3, 4)
+ Decimal('7')
+ >>> ExtendedContext.fma(1, Decimal(3), 4)
+ Decimal('7')
+ >>> ExtendedContext.fma(1, 3, Decimal(4))
+ Decimal('7')
+ """
+ a = _convert_other(a, raiseit=True)
+ return a.fma(b, c, context=self)
+
+ def is_canonical(self, a):
+ """Return True if the operand is canonical; otherwise return False.
+
+ Currently, the encoding of a Decimal instance is always
+ canonical, so this method returns True for any Decimal.
+
+ >>> ExtendedContext.is_canonical(Decimal('2.50'))
+ True
+ """
+ return a.is_canonical()
+
+ def is_finite(self, a):
+ """Return True if the operand is finite; otherwise return False.
+
+ A Decimal instance is considered finite if it is neither
+ infinite nor a NaN.
+
+ >>> ExtendedContext.is_finite(Decimal('2.50'))
+ True
+ >>> ExtendedContext.is_finite(Decimal('-0.3'))
+ True
+ >>> ExtendedContext.is_finite(Decimal('0'))
+ True
+ >>> ExtendedContext.is_finite(Decimal('Inf'))
+ False
+ >>> ExtendedContext.is_finite(Decimal('NaN'))
+ False
+ >>> ExtendedContext.is_finite(1)
+ True
+ """
+ a = _convert_other(a, raiseit=True)
+ return a.is_finite()
+
+ def is_infinite(self, a):
+ """Return True if the operand is infinite; otherwise return False.
+
+ >>> ExtendedContext.is_infinite(Decimal('2.50'))
+ False
+ >>> ExtendedContext.is_infinite(Decimal('-Inf'))
+ True
+ >>> ExtendedContext.is_infinite(Decimal('NaN'))
+ False
+ >>> ExtendedContext.is_infinite(1)
+ False
+ """
+ a = _convert_other(a, raiseit=True)
+ return a.is_infinite()
+
+ def is_nan(self, a):
+ """Return True if the operand is a qNaN or sNaN;
+ otherwise return False.
+
+ >>> ExtendedContext.is_nan(Decimal('2.50'))
+ False
+ >>> ExtendedContext.is_nan(Decimal('NaN'))
+ True
+ >>> ExtendedContext.is_nan(Decimal('-sNaN'))
+ True
+ >>> ExtendedContext.is_nan(1)
+ False
+ """
+ a = _convert_other(a, raiseit=True)
+ return a.is_nan()
+
+ def is_normal(self, a):
+ """Return True if the operand is a normal number;
+ otherwise return False.
+
+ >>> c = ExtendedContext.copy()
+ >>> c.Emin = -999
+ >>> c.Emax = 999
+ >>> c.is_normal(Decimal('2.50'))
+ True
+ >>> c.is_normal(Decimal('0.1E-999'))
+ False
+ >>> c.is_normal(Decimal('0.00'))
+ False
+ >>> c.is_normal(Decimal('-Inf'))
+ False
+ >>> c.is_normal(Decimal('NaN'))
+ False
+ >>> c.is_normal(1)
+ True
+ """
+ a = _convert_other(a, raiseit=True)
+ return a.is_normal(context=self)
+
+ def is_qnan(self, a):
+ """Return True if the operand is a quiet NaN; otherwise return False.
+
+ >>> ExtendedContext.is_qnan(Decimal('2.50'))
+ False
+ >>> ExtendedContext.is_qnan(Decimal('NaN'))
+ True
+ >>> ExtendedContext.is_qnan(Decimal('sNaN'))
+ False
+ >>> ExtendedContext.is_qnan(1)
+ False
+ """
+ a = _convert_other(a, raiseit=True)
+ return a.is_qnan()
+
+ def is_signed(self, a):
+ """Return True if the operand is negative; otherwise return False.
+
+ >>> ExtendedContext.is_signed(Decimal('2.50'))
+ False
+ >>> ExtendedContext.is_signed(Decimal('-12'))
+ True
+ >>> ExtendedContext.is_signed(Decimal('-0'))
+ True
+ >>> ExtendedContext.is_signed(8)
+ False
+ >>> ExtendedContext.is_signed(-8)
+ True
+ """
+ a = _convert_other(a, raiseit=True)
+ return a.is_signed()
+
+ def is_snan(self, a):
+ """Return True if the operand is a signaling NaN;
+ otherwise return False.
+
+ >>> ExtendedContext.is_snan(Decimal('2.50'))
+ False
+ >>> ExtendedContext.is_snan(Decimal('NaN'))
+ False
+ >>> ExtendedContext.is_snan(Decimal('sNaN'))
+ True
+ >>> ExtendedContext.is_snan(1)
+ False
+ """
+ a = _convert_other(a, raiseit=True)
+ return a.is_snan()
+
+ def is_subnormal(self, a):
+ """Return True if the operand is subnormal; otherwise return False.
+
+ >>> c = ExtendedContext.copy()
+ >>> c.Emin = -999
+ >>> c.Emax = 999
+ >>> c.is_subnormal(Decimal('2.50'))
+ False
+ >>> c.is_subnormal(Decimal('0.1E-999'))
+ True
+ >>> c.is_subnormal(Decimal('0.00'))
+ False
+ >>> c.is_subnormal(Decimal('-Inf'))
+ False
+ >>> c.is_subnormal(Decimal('NaN'))
+ False
+ >>> c.is_subnormal(1)
+ False
+ """
+ a = _convert_other(a, raiseit=True)
+ return a.is_subnormal(context=self)
+
+ def is_zero(self, a):
+ """Return True if the operand is a zero; otherwise return False.
+
+ >>> ExtendedContext.is_zero(Decimal('0'))
+ True
+ >>> ExtendedContext.is_zero(Decimal('2.50'))
+ False
+ >>> ExtendedContext.is_zero(Decimal('-0E+2'))
+ True
+ >>> ExtendedContext.is_zero(1)
+ False
+ >>> ExtendedContext.is_zero(0)
+ True
+ """
+ a = _convert_other(a, raiseit=True)
+ return a.is_zero()
+
+ def ln(self, a):
+ """Returns the natural (base e) logarithm of the operand.
+
+ >>> c = ExtendedContext.copy()
+ >>> c.Emin = -999
+ >>> c.Emax = 999
+ >>> c.ln(Decimal('0'))
+ Decimal('-Infinity')
+ >>> c.ln(Decimal('1.000'))
+ Decimal('0')
+ >>> c.ln(Decimal('2.71828183'))
+ Decimal('1.00000000')
+ >>> c.ln(Decimal('10'))
+ Decimal('2.30258509')
+ >>> c.ln(Decimal('+Infinity'))
+ Decimal('Infinity')
+ >>> c.ln(1)
+ Decimal('0')
+ """
+ a = _convert_other(a, raiseit=True)
+ return a.ln(context=self)
+
+ def log10(self, a):
+ """Returns the base 10 logarithm of the operand.
+
+ >>> c = ExtendedContext.copy()
+ >>> c.Emin = -999
+ >>> c.Emax = 999
+ >>> c.log10(Decimal('0'))
+ Decimal('-Infinity')
+ >>> c.log10(Decimal('0.001'))
+ Decimal('-3')
+ >>> c.log10(Decimal('1.000'))
+ Decimal('0')
+ >>> c.log10(Decimal('2'))
+ Decimal('0.301029996')
+ >>> c.log10(Decimal('10'))
+ Decimal('1')
+ >>> c.log10(Decimal('70'))
+ Decimal('1.84509804')
+ >>> c.log10(Decimal('+Infinity'))
+ Decimal('Infinity')
+ >>> c.log10(0)
+ Decimal('-Infinity')
+ >>> c.log10(1)
+ Decimal('0')
+ """
+ a = _convert_other(a, raiseit=True)
+ return a.log10(context=self)
+
+ def logb(self, a):
+ """ Returns the exponent of the magnitude of the operand's MSD.
+
+ The result is the integer which is the exponent of the magnitude
+ of the most significant digit of the operand (as though the
+ operand were truncated to a single digit while maintaining the
+ value of that digit and without limiting the resulting exponent).
+
+ >>> ExtendedContext.logb(Decimal('250'))
+ Decimal('2')
+ >>> ExtendedContext.logb(Decimal('2.50'))
+ Decimal('0')
+ >>> ExtendedContext.logb(Decimal('0.03'))
+ Decimal('-2')
+ >>> ExtendedContext.logb(Decimal('0'))
+ Decimal('-Infinity')
+ >>> ExtendedContext.logb(1)
+ Decimal('0')
+ >>> ExtendedContext.logb(10)
+ Decimal('1')
+ >>> ExtendedContext.logb(100)
+ Decimal('2')
+ """
+ a = _convert_other(a, raiseit=True)
+ return a.logb(context=self)
+
+ def logical_and(self, a, b):
+ """Applies the logical operation 'and' between each operand's digits.
+
+ The operands must be both logical numbers.
+
+ >>> ExtendedContext.logical_and(Decimal('0'), Decimal('0'))
+ Decimal('0')
+ >>> ExtendedContext.logical_and(Decimal('0'), Decimal('1'))
+ Decimal('0')
+ >>> ExtendedContext.logical_and(Decimal('1'), Decimal('0'))
+ Decimal('0')
+ >>> ExtendedContext.logical_and(Decimal('1'), Decimal('1'))
+ Decimal('1')
+ >>> ExtendedContext.logical_and(Decimal('1100'), Decimal('1010'))
+ Decimal('1000')
+ >>> ExtendedContext.logical_and(Decimal('1111'), Decimal('10'))
+ Decimal('10')
+ >>> ExtendedContext.logical_and(110, 1101)
+ Decimal('100')
+ >>> ExtendedContext.logical_and(Decimal(110), 1101)
+ Decimal('100')
+ >>> ExtendedContext.logical_and(110, Decimal(1101))
+ Decimal('100')
+ """
+ a = _convert_other(a, raiseit=True)
+ return a.logical_and(b, context=self)
+
+ def logical_invert(self, a):
+ """Invert all the digits in the operand.
+
+ The operand must be a logical number.
+
+ >>> ExtendedContext.logical_invert(Decimal('0'))
+ Decimal('111111111')
+ >>> ExtendedContext.logical_invert(Decimal('1'))
+ Decimal('111111110')
+ >>> ExtendedContext.logical_invert(Decimal('111111111'))
+ Decimal('0')
+ >>> ExtendedContext.logical_invert(Decimal('101010101'))
+ Decimal('10101010')
+ >>> ExtendedContext.logical_invert(1101)
+ Decimal('111110010')
+ """
+ a = _convert_other(a, raiseit=True)
+ return a.logical_invert(context=self)
+
+ def logical_or(self, a, b):
+ """Applies the logical operation 'or' between each operand's digits.
+
+ The operands must be both logical numbers.
+
+ >>> ExtendedContext.logical_or(Decimal('0'), Decimal('0'))
+ Decimal('0')
+ >>> ExtendedContext.logical_or(Decimal('0'), Decimal('1'))
+ Decimal('1')
+ >>> ExtendedContext.logical_or(Decimal('1'), Decimal('0'))
+ Decimal('1')
+ >>> ExtendedContext.logical_or(Decimal('1'), Decimal('1'))
+ Decimal('1')
+ >>> ExtendedContext.logical_or(Decimal('1100'), Decimal('1010'))
+ Decimal('1110')
+ >>> ExtendedContext.logical_or(Decimal('1110'), Decimal('10'))
+ Decimal('1110')
+ >>> ExtendedContext.logical_or(110, 1101)
+ Decimal('1111')
+ >>> ExtendedContext.logical_or(Decimal(110), 1101)
+ Decimal('1111')
+ >>> ExtendedContext.logical_or(110, Decimal(1101))
+ Decimal('1111')
+ """
+ a = _convert_other(a, raiseit=True)
+ return a.logical_or(b, context=self)
+
+ def logical_xor(self, a, b):
+ """Applies the logical operation 'xor' between each operand's digits.
+
+ The operands must be both logical numbers.
+
+ >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('0'))
+ Decimal('0')
+ >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('1'))
+ Decimal('1')
+ >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('0'))
+ Decimal('1')
+ >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('1'))
+ Decimal('0')
+ >>> ExtendedContext.logical_xor(Decimal('1100'), Decimal('1010'))
+ Decimal('110')
+ >>> ExtendedContext.logical_xor(Decimal('1111'), Decimal('10'))
+ Decimal('1101')
+ >>> ExtendedContext.logical_xor(110, 1101)
+ Decimal('1011')
+ >>> ExtendedContext.logical_xor(Decimal(110), 1101)
+ Decimal('1011')
+ >>> ExtendedContext.logical_xor(110, Decimal(1101))
+ Decimal('1011')
+ """
+ a = _convert_other(a, raiseit=True)
+ return a.logical_xor(b, context=self)
+
+ def max(self, a, b):
+ """max compares two values numerically and returns the maximum.
+
+ If either operand is a NaN then the general rules apply.
+ Otherwise, the operands are compared as though by the compare
+ operation. If they are numerically equal then the left-hand operand
+ is chosen as the result. Otherwise the maximum (closer to positive
+ infinity) of the two operands is chosen as the result.
+
+ >>> ExtendedContext.max(Decimal('3'), Decimal('2'))
+ Decimal('3')
+ >>> ExtendedContext.max(Decimal('-10'), Decimal('3'))
+ Decimal('3')
+ >>> ExtendedContext.max(Decimal('1.0'), Decimal('1'))
+ Decimal('1')
+ >>> ExtendedContext.max(Decimal('7'), Decimal('NaN'))
+ Decimal('7')
+ >>> ExtendedContext.max(1, 2)
+ Decimal('2')
+ >>> ExtendedContext.max(Decimal(1), 2)
+ Decimal('2')
+ >>> ExtendedContext.max(1, Decimal(2))
+ Decimal('2')
+ """
+ a = _convert_other(a, raiseit=True)
+ return a.max(b, context=self)
+
+ def max_mag(self, a, b):
+ """Compares the values numerically with their sign ignored.
+
+ >>> ExtendedContext.max_mag(Decimal('7'), Decimal('NaN'))
+ Decimal('7')
+ >>> ExtendedContext.max_mag(Decimal('7'), Decimal('-10'))
+ Decimal('-10')
+ >>> ExtendedContext.max_mag(1, -2)
+ Decimal('-2')
+ >>> ExtendedContext.max_mag(Decimal(1), -2)
+ Decimal('-2')
+ >>> ExtendedContext.max_mag(1, Decimal(-2))
+ Decimal('-2')
+ """
+ a = _convert_other(a, raiseit=True)
+ return a.max_mag(b, context=self)
+
+ def min(self, a, b):
+ """min compares two values numerically and returns the minimum.
+
+ If either operand is a NaN then the general rules apply.
+ Otherwise, the operands are compared as though by the compare
+ operation. If they are numerically equal then the left-hand operand
+ is chosen as the result. Otherwise the minimum (closer to negative
+ infinity) of the two operands is chosen as the result.
+
+ >>> ExtendedContext.min(Decimal('3'), Decimal('2'))
+ Decimal('2')
+ >>> ExtendedContext.min(Decimal('-10'), Decimal('3'))
+ Decimal('-10')
+ >>> ExtendedContext.min(Decimal('1.0'), Decimal('1'))
+ Decimal('1.0')
+ >>> ExtendedContext.min(Decimal('7'), Decimal('NaN'))
+ Decimal('7')
+ >>> ExtendedContext.min(1, 2)
+ Decimal('1')
+ >>> ExtendedContext.min(Decimal(1), 2)
+ Decimal('1')
+ >>> ExtendedContext.min(1, Decimal(29))
+ Decimal('1')
+ """
+ a = _convert_other(a, raiseit=True)
+ return a.min(b, context=self)
+
+ def min_mag(self, a, b):
+ """Compares the values numerically with their sign ignored.
+
+ >>> ExtendedContext.min_mag(Decimal('3'), Decimal('-2'))
+ Decimal('-2')
+ >>> ExtendedContext.min_mag(Decimal('-3'), Decimal('NaN'))
+ Decimal('-3')
+ >>> ExtendedContext.min_mag(1, -2)
+ Decimal('1')
+ >>> ExtendedContext.min_mag(Decimal(1), -2)
+ Decimal('1')
+ >>> ExtendedContext.min_mag(1, Decimal(-2))
+ Decimal('1')
+ """
+ a = _convert_other(a, raiseit=True)
+ return a.min_mag(b, context=self)
+
+ def minus(self, a):
+ """Minus corresponds to unary prefix minus in Python.
+
+ The operation is evaluated using the same rules as subtract; the
+ operation minus(a) is calculated as subtract('0', a) where the '0'
+ has the same exponent as the operand.
+
+ >>> ExtendedContext.minus(Decimal('1.3'))
+ Decimal('-1.3')
+ >>> ExtendedContext.minus(Decimal('-1.3'))
+ Decimal('1.3')
+ >>> ExtendedContext.minus(1)
+ Decimal('-1')
+ """
+ a = _convert_other(a, raiseit=True)
+ return a.__neg__(context=self)
+
+ def multiply(self, a, b):
+ """multiply multiplies two operands.
+
+ If either operand is a special value then the general rules apply.
+ Otherwise, the operands are multiplied together
+ ('long multiplication'), resulting in a number which may be as long as
+ the sum of the lengths of the two operands.
+
+ >>> ExtendedContext.multiply(Decimal('1.20'), Decimal('3'))
+ Decimal('3.60')
+ >>> ExtendedContext.multiply(Decimal('7'), Decimal('3'))
+ Decimal('21')
+ >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('0.8'))
+ Decimal('0.72')
+ >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('-0'))
+ Decimal('-0.0')
+ >>> ExtendedContext.multiply(Decimal('654321'), Decimal('654321'))
+ Decimal('4.28135971E+11')
+ >>> ExtendedContext.multiply(7, 7)
+ Decimal('49')
+ >>> ExtendedContext.multiply(Decimal(7), 7)
+ Decimal('49')
+ >>> ExtendedContext.multiply(7, Decimal(7))
+ Decimal('49')
+ """
+ a = _convert_other(a, raiseit=True)
+ r = a.__mul__(b, context=self)
+ if r is NotImplemented:
+ raise TypeError("Unable to convert %s to Decimal" % b)
+ else:
+ return r
+
+ def next_minus(self, a):
+ """Returns the largest representable number smaller than a.
+
+ >>> c = ExtendedContext.copy()
+ >>> c.Emin = -999
+ >>> c.Emax = 999
+ >>> ExtendedContext.next_minus(Decimal('1'))
+ Decimal('0.999999999')
+ >>> c.next_minus(Decimal('1E-1007'))
+ Decimal('0E-1007')
+ >>> ExtendedContext.next_minus(Decimal('-1.00000003'))
+ Decimal('-1.00000004')
+ >>> c.next_minus(Decimal('Infinity'))
+ Decimal('9.99999999E+999')
+ >>> c.next_minus(1)
+ Decimal('0.999999999')
+ """
+ a = _convert_other(a, raiseit=True)
+ return a.next_minus(context=self)
+
+ def next_plus(self, a):
+ """Returns the smallest representable number larger than a.
+
+ >>> c = ExtendedContext.copy()
+ >>> c.Emin = -999
+ >>> c.Emax = 999
+ >>> ExtendedContext.next_plus(Decimal('1'))
+ Decimal('1.00000001')
+ >>> c.next_plus(Decimal('-1E-1007'))
+ Decimal('-0E-1007')
+ >>> ExtendedContext.next_plus(Decimal('-1.00000003'))
+ Decimal('-1.00000002')
+ >>> c.next_plus(Decimal('-Infinity'))
+ Decimal('-9.99999999E+999')
+ >>> c.next_plus(1)
+ Decimal('1.00000001')
+ """
+ a = _convert_other(a, raiseit=True)
+ return a.next_plus(context=self)
+
+ def next_toward(self, a, b):
+ """Returns the number closest to a, in direction towards b.
+
+ The result is the closest representable number from the first
+ operand (but not the first operand) that is in the direction
+ towards the second operand, unless the operands have the same
+ value.
+
+ >>> c = ExtendedContext.copy()
+ >>> c.Emin = -999
+ >>> c.Emax = 999
+ >>> c.next_toward(Decimal('1'), Decimal('2'))
+ Decimal('1.00000001')
+ >>> c.next_toward(Decimal('-1E-1007'), Decimal('1'))
+ Decimal('-0E-1007')
+ >>> c.next_toward(Decimal('-1.00000003'), Decimal('0'))
+ Decimal('-1.00000002')
+ >>> c.next_toward(Decimal('1'), Decimal('0'))
+ Decimal('0.999999999')
+ >>> c.next_toward(Decimal('1E-1007'), Decimal('-100'))
+ Decimal('0E-1007')
+ >>> c.next_toward(Decimal('-1.00000003'), Decimal('-10'))
+ Decimal('-1.00000004')
+ >>> c.next_toward(Decimal('0.00'), Decimal('-0.0000'))
+ Decimal('-0.00')
+ >>> c.next_toward(0, 1)
+ Decimal('1E-1007')
+ >>> c.next_toward(Decimal(0), 1)
+ Decimal('1E-1007')
+ >>> c.next_toward(0, Decimal(1))
+ Decimal('1E-1007')
+ """
+ a = _convert_other(a, raiseit=True)
+ return a.next_toward(b, context=self)
+
+ def normalize(self, a):
+ """normalize reduces an operand to its simplest form.
+
+ Essentially a plus operation with all trailing zeros removed from the
+ result.
+
+ >>> ExtendedContext.normalize(Decimal('2.1'))
+ Decimal('2.1')
+ >>> ExtendedContext.normalize(Decimal('-2.0'))
+ Decimal('-2')
+ >>> ExtendedContext.normalize(Decimal('1.200'))
+ Decimal('1.2')
+ >>> ExtendedContext.normalize(Decimal('-120'))
+ Decimal('-1.2E+2')
+ >>> ExtendedContext.normalize(Decimal('120.00'))
+ Decimal('1.2E+2')
+ >>> ExtendedContext.normalize(Decimal('0.00'))
+ Decimal('0')
+ >>> ExtendedContext.normalize(6)
+ Decimal('6')
+ """
+ a = _convert_other(a, raiseit=True)
+ return a.normalize(context=self)
+
+ def number_class(self, a):
+ """Returns an indication of the class of the operand.
+
+ The class is one of the following strings:
+ -sNaN
+ -NaN
+ -Infinity
+ -Normal
+ -Subnormal
+ -Zero
+ +Zero
+ +Subnormal
+ +Normal
+ +Infinity
+
+ >>> c = Context(ExtendedContext)
+ >>> c.Emin = -999
+ >>> c.Emax = 999
+ >>> c.number_class(Decimal('Infinity'))
+ '+Infinity'
+ >>> c.number_class(Decimal('1E-10'))
+ '+Normal'
+ >>> c.number_class(Decimal('2.50'))
+ '+Normal'
+ >>> c.number_class(Decimal('0.1E-999'))
+ '+Subnormal'
+ >>> c.number_class(Decimal('0'))
+ '+Zero'
+ >>> c.number_class(Decimal('-0'))
+ '-Zero'
+ >>> c.number_class(Decimal('-0.1E-999'))
+ '-Subnormal'
+ >>> c.number_class(Decimal('-1E-10'))
+ '-Normal'
+ >>> c.number_class(Decimal('-2.50'))
+ '-Normal'
+ >>> c.number_class(Decimal('-Infinity'))
+ '-Infinity'
+ >>> c.number_class(Decimal('NaN'))
+ 'NaN'
+ >>> c.number_class(Decimal('-NaN'))
+ 'NaN'
+ >>> c.number_class(Decimal('sNaN'))
+ 'sNaN'
+ >>> c.number_class(123)
+ '+Normal'
+ """
+ a = _convert_other(a, raiseit=True)
+ return a.number_class(context=self)
+
+ def plus(self, a):
+ """Plus corresponds to unary prefix plus in Python.
+
+ The operation is evaluated using the same rules as add; the
+ operation plus(a) is calculated as add('0', a) where the '0'
+ has the same exponent as the operand.
+
+ >>> ExtendedContext.plus(Decimal('1.3'))
+ Decimal('1.3')
+ >>> ExtendedContext.plus(Decimal('-1.3'))
+ Decimal('-1.3')
+ >>> ExtendedContext.plus(-1)
+ Decimal('-1')
+ """
+ a = _convert_other(a, raiseit=True)
+ return a.__pos__(context=self)
+
+ def power(self, a, b, modulo=None):
+ """Raises a to the power of b, to modulo if given.
+
+ With two arguments, compute a**b. If a is negative then b
+ must be integral. The result will be inexact unless b is
+ integral and the result is finite and can be expressed exactly
+ in 'precision' digits.
+
+ With three arguments, compute (a**b) % modulo. For the
+ three argument form, the following restrictions on the
+ arguments hold:
+
+ - all three arguments must be integral
+ - b must be nonnegative
+ - at least one of a or b must be nonzero
+ - modulo must be nonzero and have at most 'precision' digits
+
+ The result of pow(a, b, modulo) is identical to the result
+ that would be obtained by computing (a**b) % modulo with
+ unbounded precision, but is computed more efficiently. It is
+ always exact.
+
+ >>> c = ExtendedContext.copy()
+ >>> c.Emin = -999
+ >>> c.Emax = 999
+ >>> c.power(Decimal('2'), Decimal('3'))
+ Decimal('8')
+ >>> c.power(Decimal('-2'), Decimal('3'))
+ Decimal('-8')
+ >>> c.power(Decimal('2'), Decimal('-3'))
+ Decimal('0.125')
+ >>> c.power(Decimal('1.7'), Decimal('8'))
+ Decimal('69.7575744')
+ >>> c.power(Decimal('10'), Decimal('0.301029996'))
+ Decimal('2.00000000')
+ >>> c.power(Decimal('Infinity'), Decimal('-1'))
+ Decimal('0')
+ >>> c.power(Decimal('Infinity'), Decimal('0'))
+ Decimal('1')
+ >>> c.power(Decimal('Infinity'), Decimal('1'))
+ Decimal('Infinity')
+ >>> c.power(Decimal('-Infinity'), Decimal('-1'))
+ Decimal('-0')
+ >>> c.power(Decimal('-Infinity'), Decimal('0'))
+ Decimal('1')
+ >>> c.power(Decimal('-Infinity'), Decimal('1'))
+ Decimal('-Infinity')
+ >>> c.power(Decimal('-Infinity'), Decimal('2'))
+ Decimal('Infinity')
+ >>> c.power(Decimal('0'), Decimal('0'))
+ Decimal('NaN')
+
+ >>> c.power(Decimal('3'), Decimal('7'), Decimal('16'))
+ Decimal('11')
+ >>> c.power(Decimal('-3'), Decimal('7'), Decimal('16'))
+ Decimal('-11')
+ >>> c.power(Decimal('-3'), Decimal('8'), Decimal('16'))
+ Decimal('1')
+ >>> c.power(Decimal('3'), Decimal('7'), Decimal('-16'))
+ Decimal('11')
+ >>> c.power(Decimal('23E12345'), Decimal('67E189'), Decimal('123456789'))
+ Decimal('11729830')
+ >>> c.power(Decimal('-0'), Decimal('17'), Decimal('1729'))
+ Decimal('-0')
+ >>> c.power(Decimal('-23'), Decimal('0'), Decimal('65537'))
+ Decimal('1')
+ >>> ExtendedContext.power(7, 7)
+ Decimal('823543')
+ >>> ExtendedContext.power(Decimal(7), 7)
+ Decimal('823543')
+ >>> ExtendedContext.power(7, Decimal(7), 2)
+ Decimal('1')
+ """
+ a = _convert_other(a, raiseit=True)
+ r = a.__pow__(b, modulo, context=self)
+ if r is NotImplemented:
+ raise TypeError("Unable to convert %s to Decimal" % b)
+ else:
+ return r
+
+ def quantize(self, a, b):
+ """Returns a value equal to 'a' (rounded), having the exponent of 'b'.
+
+ The coefficient of the result is derived from that of the left-hand
+ operand. It may be rounded using the current rounding setting (if the
+ exponent is being increased), multiplied by a positive power of ten (if
+ the exponent is being decreased), or is unchanged (if the exponent is
+ already equal to that of the right-hand operand).
+
+ Unlike other operations, if the length of the coefficient after the
+ quantize operation would be greater than precision then an Invalid
+ operation condition is raised. This guarantees that, unless there is
+ an error condition, the exponent of the result of a quantize is always
+ equal to that of the right-hand operand.
+
+ Also unlike other operations, quantize will never raise Underflow, even
+ if the result is subnormal and inexact.
+
+ >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.001'))
+ Decimal('2.170')
+ >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.01'))
+ Decimal('2.17')
+ >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.1'))
+ Decimal('2.2')
+ >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+0'))
+ Decimal('2')
+ >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+1'))
+ Decimal('0E+1')
+ >>> ExtendedContext.quantize(Decimal('-Inf'), Decimal('Infinity'))
+ Decimal('-Infinity')
+ >>> ExtendedContext.quantize(Decimal('2'), Decimal('Infinity'))
+ Decimal('NaN')
+ >>> ExtendedContext.quantize(Decimal('-0.1'), Decimal('1'))
+ Decimal('-0')
+ >>> ExtendedContext.quantize(Decimal('-0'), Decimal('1e+5'))
+ Decimal('-0E+5')
+ >>> ExtendedContext.quantize(Decimal('+35236450.6'), Decimal('1e-2'))
+ Decimal('NaN')
+ >>> ExtendedContext.quantize(Decimal('-35236450.6'), Decimal('1e-2'))
+ Decimal('NaN')
+ >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-1'))
+ Decimal('217.0')
+ >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-0'))
+ Decimal('217')
+ >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+1'))
+ Decimal('2.2E+2')
+ >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+2'))
+ Decimal('2E+2')
+ >>> ExtendedContext.quantize(1, 2)
+ Decimal('1')
+ >>> ExtendedContext.quantize(Decimal(1), 2)
+ Decimal('1')
+ >>> ExtendedContext.quantize(1, Decimal(2))
+ Decimal('1')
+ """
+ a = _convert_other(a, raiseit=True)
+ return a.quantize(b, context=self)
+
+ def radix(self):
+ """Just returns 10, as this is Decimal, :)
+
+ >>> ExtendedContext.radix()
+ Decimal('10')
+ """
+ return Decimal(10)
+
+ def remainder(self, a, b):
+ """Returns the remainder from integer division.
+
+ The result is the residue of the dividend after the operation of
+ calculating integer division as described for divide-integer, rounded
+ to precision digits if necessary. The sign of the result, if
+ non-zero, is the same as that of the original dividend.
+
+ This operation will fail under the same conditions as integer division
+ (that is, if integer division on the same two operands would fail, the
+ remainder cannot be calculated).
+
+ >>> ExtendedContext.remainder(Decimal('2.1'), Decimal('3'))
+ Decimal('2.1')
+ >>> ExtendedContext.remainder(Decimal('10'), Decimal('3'))
+ Decimal('1')
+ >>> ExtendedContext.remainder(Decimal('-10'), Decimal('3'))
+ Decimal('-1')
+ >>> ExtendedContext.remainder(Decimal('10.2'), Decimal('1'))
+ Decimal('0.2')
+ >>> ExtendedContext.remainder(Decimal('10'), Decimal('0.3'))
+ Decimal('0.1')
+ >>> ExtendedContext.remainder(Decimal('3.6'), Decimal('1.3'))
+ Decimal('1.0')
+ >>> ExtendedContext.remainder(22, 6)
+ Decimal('4')
+ >>> ExtendedContext.remainder(Decimal(22), 6)
+ Decimal('4')
+ >>> ExtendedContext.remainder(22, Decimal(6))
+ Decimal('4')
+ """
+ a = _convert_other(a, raiseit=True)
+ r = a.__mod__(b, context=self)
+ if r is NotImplemented:
+ raise TypeError("Unable to convert %s to Decimal" % b)
+ else:
+ return r
+
+ def remainder_near(self, a, b):
+ """Returns to be "a - b * n", where n is the integer nearest the exact
+ value of "x / b" (if two integers are equally near then the even one
+ is chosen). If the result is equal to 0 then its sign will be the
+ sign of a.
+
+ This operation will fail under the same conditions as integer division
+ (that is, if integer division on the same two operands would fail, the
+ remainder cannot be calculated).
+
+ >>> ExtendedContext.remainder_near(Decimal('2.1'), Decimal('3'))
+ Decimal('-0.9')
+ >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('6'))
+ Decimal('-2')
+ >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('3'))
+ Decimal('1')
+ >>> ExtendedContext.remainder_near(Decimal('-10'), Decimal('3'))
+ Decimal('-1')
+ >>> ExtendedContext.remainder_near(Decimal('10.2'), Decimal('1'))
+ Decimal('0.2')
+ >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('0.3'))
+ Decimal('0.1')
+ >>> ExtendedContext.remainder_near(Decimal('3.6'), Decimal('1.3'))
+ Decimal('-0.3')
+ >>> ExtendedContext.remainder_near(3, 11)
+ Decimal('3')
+ >>> ExtendedContext.remainder_near(Decimal(3), 11)
+ Decimal('3')
+ >>> ExtendedContext.remainder_near(3, Decimal(11))
+ Decimal('3')
+ """
+ a = _convert_other(a, raiseit=True)
+ return a.remainder_near(b, context=self)
+
+ def rotate(self, a, b):
+ """Returns a rotated copy of a, b times.
+
+ The coefficient of the result is a rotated copy of the digits in
+ the coefficient of the first operand. The number of places of
+ rotation is taken from the absolute value of the second operand,
+ with the rotation being to the left if the second operand is
+ positive or to the right otherwise.
+
+ >>> ExtendedContext.rotate(Decimal('34'), Decimal('8'))
+ Decimal('400000003')
+ >>> ExtendedContext.rotate(Decimal('12'), Decimal('9'))
+ Decimal('12')
+ >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('-2'))
+ Decimal('891234567')
+ >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('0'))
+ Decimal('123456789')
+ >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('+2'))
+ Decimal('345678912')
+ >>> ExtendedContext.rotate(1333333, 1)
+ Decimal('13333330')
+ >>> ExtendedContext.rotate(Decimal(1333333), 1)
+ Decimal('13333330')
+ >>> ExtendedContext.rotate(1333333, Decimal(1))
+ Decimal('13333330')
+ """
+ a = _convert_other(a, raiseit=True)
+ return a.rotate(b, context=self)
+
+ def same_quantum(self, a, b):
+ """Returns True if the two operands have the same exponent.
+
+ The result is never affected by either the sign or the coefficient of
+ either operand.
+
+ >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.001'))
+ False
+ >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.01'))
+ True
+ >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('1'))
+ False
+ >>> ExtendedContext.same_quantum(Decimal('Inf'), Decimal('-Inf'))
+ True
+ >>> ExtendedContext.same_quantum(10000, -1)
+ True
+ >>> ExtendedContext.same_quantum(Decimal(10000), -1)
+ True
+ >>> ExtendedContext.same_quantum(10000, Decimal(-1))
+ True
+ """
+ a = _convert_other(a, raiseit=True)
+ return a.same_quantum(b)
+
+ def scaleb (self, a, b):
+ """Returns the first operand after adding the second value its exp.
+
+ >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('-2'))
+ Decimal('0.0750')
+ >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('0'))
+ Decimal('7.50')
+ >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('3'))
+ Decimal('7.50E+3')
+ >>> ExtendedContext.scaleb(1, 4)
+ Decimal('1E+4')
+ >>> ExtendedContext.scaleb(Decimal(1), 4)
+ Decimal('1E+4')
+ >>> ExtendedContext.scaleb(1, Decimal(4))
+ Decimal('1E+4')
+ """
+ a = _convert_other(a, raiseit=True)
+ return a.scaleb(b, context=self)
+
+ def shift(self, a, b):
+ """Returns a shifted copy of a, b times.
+
+ The coefficient of the result is a shifted copy of the digits
+ in the coefficient of the first operand. The number of places
+ to shift is taken from the absolute value of the second operand,
+ with the shift being to the left if the second operand is
+ positive or to the right otherwise. Digits shifted into the
+ coefficient are zeros.
+
+ >>> ExtendedContext.shift(Decimal('34'), Decimal('8'))
+ Decimal('400000000')
+ >>> ExtendedContext.shift(Decimal('12'), Decimal('9'))
+ Decimal('0')
+ >>> ExtendedContext.shift(Decimal('123456789'), Decimal('-2'))
+ Decimal('1234567')
+ >>> ExtendedContext.shift(Decimal('123456789'), Decimal('0'))
+ Decimal('123456789')
+ >>> ExtendedContext.shift(Decimal('123456789'), Decimal('+2'))
+ Decimal('345678900')
+ >>> ExtendedContext.shift(88888888, 2)
+ Decimal('888888800')
+ >>> ExtendedContext.shift(Decimal(88888888), 2)
+ Decimal('888888800')
+ >>> ExtendedContext.shift(88888888, Decimal(2))
+ Decimal('888888800')
+ """
+ a = _convert_other(a, raiseit=True)
+ return a.shift(b, context=self)
+
+ def sqrt(self, a):
+ """Square root of a non-negative number to context precision.
+
+ If the result must be inexact, it is rounded using the round-half-even
+ algorithm.
+
+ >>> ExtendedContext.sqrt(Decimal('0'))
+ Decimal('0')
+ >>> ExtendedContext.sqrt(Decimal('-0'))
+ Decimal('-0')
+ >>> ExtendedContext.sqrt(Decimal('0.39'))
+ Decimal('0.624499800')
+ >>> ExtendedContext.sqrt(Decimal('100'))
+ Decimal('10')
+ >>> ExtendedContext.sqrt(Decimal('1'))
+ Decimal('1')
+ >>> ExtendedContext.sqrt(Decimal('1.0'))
+ Decimal('1.0')
+ >>> ExtendedContext.sqrt(Decimal('1.00'))
+ Decimal('1.0')
+ >>> ExtendedContext.sqrt(Decimal('7'))
+ Decimal('2.64575131')
+ >>> ExtendedContext.sqrt(Decimal('10'))
+ Decimal('3.16227766')
+ >>> ExtendedContext.sqrt(2)
+ Decimal('1.41421356')
+ >>> ExtendedContext.prec
+ 9
+ """
+ a = _convert_other(a, raiseit=True)
+ return a.sqrt(context=self)
+
+ def subtract(self, a, b):
+ """Return the difference between the two operands.
+
+ >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.07'))
+ Decimal('0.23')
+ >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.30'))
+ Decimal('0.00')
+ >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('2.07'))
+ Decimal('-0.77')
+ >>> ExtendedContext.subtract(8, 5)
+ Decimal('3')
+ >>> ExtendedContext.subtract(Decimal(8), 5)
+ Decimal('3')
+ >>> ExtendedContext.subtract(8, Decimal(5))
+ Decimal('3')
+ """
+ a = _convert_other(a, raiseit=True)
+ r = a.__sub__(b, context=self)
+ if r is NotImplemented:
+ raise TypeError("Unable to convert %s to Decimal" % b)
+ else:
+ return r
+
+ def to_eng_string(self, a):
+ """Convert to a string, using engineering notation if an exponent is needed.
+
+ Engineering notation has an exponent which is a multiple of 3. This
+ can leave up to 3 digits to the left of the decimal place and may
+ require the addition of either one or two trailing zeros.
+
+ The operation is not affected by the context.
+
+ >>> ExtendedContext.to_eng_string(Decimal('123E+1'))
+ '1.23E+3'
+ >>> ExtendedContext.to_eng_string(Decimal('123E+3'))
+ '123E+3'
+ >>> ExtendedContext.to_eng_string(Decimal('123E-10'))
+ '12.3E-9'
+ >>> ExtendedContext.to_eng_string(Decimal('-123E-12'))
+ '-123E-12'
+ >>> ExtendedContext.to_eng_string(Decimal('7E-7'))
+ '700E-9'
+ >>> ExtendedContext.to_eng_string(Decimal('7E+1'))
+ '70'
+ >>> ExtendedContext.to_eng_string(Decimal('0E+1'))
+ '0.00E+3'
+
+ """
+ a = _convert_other(a, raiseit=True)
+ return a.to_eng_string(context=self)
+
+ def to_sci_string(self, a):
+ """Converts a number to a string, using scientific notation.
+
+ The operation is not affected by the context.
+ """
+ a = _convert_other(a, raiseit=True)
+ return a.__str__(context=self)
+
+ def to_integral_exact(self, a):
+ """Rounds to an integer.
+
+ When the operand has a negative exponent, the result is the same
+ as using the quantize() operation using the given operand as the
+ left-hand-operand, 1E+0 as the right-hand-operand, and the precision
+ of the operand as the precision setting; Inexact and Rounded flags
+ are allowed in this operation. The rounding mode is taken from the
+ context.
+
+ >>> ExtendedContext.to_integral_exact(Decimal('2.1'))
+ Decimal('2')
+ >>> ExtendedContext.to_integral_exact(Decimal('100'))
+ Decimal('100')
+ >>> ExtendedContext.to_integral_exact(Decimal('100.0'))
+ Decimal('100')
+ >>> ExtendedContext.to_integral_exact(Decimal('101.5'))
+ Decimal('102')
+ >>> ExtendedContext.to_integral_exact(Decimal('-101.5'))
+ Decimal('-102')
+ >>> ExtendedContext.to_integral_exact(Decimal('10E+5'))
+ Decimal('1.0E+6')
+ >>> ExtendedContext.to_integral_exact(Decimal('7.89E+77'))
+ Decimal('7.89E+77')
+ >>> ExtendedContext.to_integral_exact(Decimal('-Inf'))
+ Decimal('-Infinity')
+ """
+ a = _convert_other(a, raiseit=True)
+ return a.to_integral_exact(context=self)
+
+ def to_integral_value(self, a):
+ """Rounds to an integer.
+
+ When the operand has a negative exponent, the result is the same
+ as using the quantize() operation using the given operand as the
+ left-hand-operand, 1E+0 as the right-hand-operand, and the precision
+ of the operand as the precision setting, except that no flags will
+ be set. The rounding mode is taken from the context.
+
+ >>> ExtendedContext.to_integral_value(Decimal('2.1'))
+ Decimal('2')
+ >>> ExtendedContext.to_integral_value(Decimal('100'))
+ Decimal('100')
+ >>> ExtendedContext.to_integral_value(Decimal('100.0'))
+ Decimal('100')
+ >>> ExtendedContext.to_integral_value(Decimal('101.5'))
+ Decimal('102')
+ >>> ExtendedContext.to_integral_value(Decimal('-101.5'))
+ Decimal('-102')
+ >>> ExtendedContext.to_integral_value(Decimal('10E+5'))
+ Decimal('1.0E+6')
+ >>> ExtendedContext.to_integral_value(Decimal('7.89E+77'))
+ Decimal('7.89E+77')
+ >>> ExtendedContext.to_integral_value(Decimal('-Inf'))
+ Decimal('-Infinity')
+ """
+ a = _convert_other(a, raiseit=True)
+ return a.to_integral_value(context=self)
+
+ # the method name changed, but we provide also the old one, for compatibility
+ to_integral = to_integral_value
+
+class _WorkRep(object):
+ __slots__ = ('sign','int','exp')
+ # sign: 0 or 1
+ # int: int or long
+ # exp: None, int, or string
+
+ def __init__(self, value=None):
+ if value is None:
+ self.sign = None
+ self.int = 0
+ self.exp = None
+ elif isinstance(value, Decimal):
+ self.sign = value._sign
+ self.int = int(value._int)
+ self.exp = value._exp
+ else:
+ # assert isinstance(value, tuple)
+ self.sign = value[0]
+ self.int = value[1]
+ self.exp = value[2]
+
+ def __repr__(self):
+ return "(%r, %r, %r)" % (self.sign, self.int, self.exp)
+
+ __str__ = __repr__
+
+
+
+def _normalize(op1, op2, prec = 0):
+ """Normalizes op1, op2 to have the same exp and length of coefficient.
+
+ Done during addition.
+ """
+ if op1.exp < op2.exp:
+ tmp = op2
+ other = op1
+ else:
+ tmp = op1
+ other = op2
+
+ # Let exp = min(tmp.exp - 1, tmp.adjusted() - precision - 1).
+ # Then adding 10**exp to tmp has the same effect (after rounding)
+ # as adding any positive quantity smaller than 10**exp; similarly
+ # for subtraction. So if other is smaller than 10**exp we replace
+ # it with 10**exp. This avoids tmp.exp - other.exp getting too large.
+ tmp_len = len(str(tmp.int))
+ other_len = len(str(other.int))
+ exp = tmp.exp + min(-1, tmp_len - prec - 2)
+ if other_len + other.exp - 1 < exp:
+ other.int = 1
+ other.exp = exp
+
+ tmp.int *= 10 ** (tmp.exp - other.exp)
+ tmp.exp = other.exp
+ return op1, op2
+
+##### Integer arithmetic functions used by ln, log10, exp and __pow__ #####
+
+# This function from Tim Peters was taken from here:
+# http://mail.python.org/pipermail/python-list/1999-July/007758.html
+# The correction being in the function definition is for speed, and
+# the whole function is not resolved with math.log because of avoiding
+# the use of floats.
+def _nbits(n, correction = {
+ '0': 4, '1': 3, '2': 2, '3': 2,
+ '4': 1, '5': 1, '6': 1, '7': 1,
+ '8': 0, '9': 0, 'a': 0, 'b': 0,
+ 'c': 0, 'd': 0, 'e': 0, 'f': 0}):
+ """Number of bits in binary representation of the positive integer n,
+ or 0 if n == 0.
+ """
+ if n < 0:
+ raise ValueError("The argument to _nbits should be nonnegative.")
+ hex_n = "%x" % n
+ return 4*len(hex_n) - correction[hex_n[0]]
+
+def _decimal_lshift_exact(n, e):
+ """ Given integers n and e, return n * 10**e if it's an integer, else None.
+
+ The computation is designed to avoid computing large powers of 10
+ unnecessarily.
+
+ >>> _decimal_lshift_exact(3, 4)
+ 30000
+ >>> _decimal_lshift_exact(300, -999999999) # returns None
+
+ """
+ if n == 0:
+ return 0
+ elif e >= 0:
+ return n * 10**e
+ else:
+ # val_n = largest power of 10 dividing n.
+ str_n = str(abs(n))
+ val_n = len(str_n) - len(str_n.rstrip('0'))
+ return None if val_n < -e else n // 10**-e
+
+def _sqrt_nearest(n, a):
+ """Closest integer to the square root of the positive integer n. a is
+ an initial approximation to the square root. Any positive integer
+ will do for a, but the closer a is to the square root of n the
+ faster convergence will be.
+
+ """
+ if n <= 0 or a <= 0:
+ raise ValueError("Both arguments to _sqrt_nearest should be positive.")
+
+ b=0
+ while a != b:
+ b, a = a, a--n//a>>1
+ return a
+
+def _rshift_nearest(x, shift):
+ """Given an integer x and a nonnegative integer shift, return closest
+ integer to x / 2**shift; use round-to-even in case of a tie.
+
+ """
+ b, q = 1L << shift, x >> shift
+ return q + (2*(x & (b-1)) + (q&1) > b)
+
+def _div_nearest(a, b):
+ """Closest integer to a/b, a and b positive integers; rounds to even
+ in the case of a tie.
+
+ """
+ q, r = divmod(a, b)
+ return q + (2*r + (q&1) > b)
+
+def _ilog(x, M, L = 8):
+ """Integer approximation to M*log(x/M), with absolute error boundable
+ in terms only of x/M.
+
+ Given positive integers x and M, return an integer approximation to
+ M * log(x/M). For L = 8 and 0.1 <= x/M <= 10 the difference
+ between the approximation and the exact result is at most 22. For
+ L = 8 and 1.0 <= x/M <= 10.0 the difference is at most 15. In
+ both cases these are upper bounds on the error; it will usually be
+ much smaller."""
+
+ # The basic algorithm is the following: let log1p be the function
+ # log1p(x) = log(1+x). Then log(x/M) = log1p((x-M)/M). We use
+ # the reduction
+ #
+ # log1p(y) = 2*log1p(y/(1+sqrt(1+y)))
+ #
+ # repeatedly until the argument to log1p is small (< 2**-L in
+ # absolute value). For small y we can use the Taylor series
+ # expansion
+ #
+ # log1p(y) ~ y - y**2/2 + y**3/3 - ... - (-y)**T/T
+ #
+ # truncating at T such that y**T is small enough. The whole
+ # computation is carried out in a form of fixed-point arithmetic,
+ # with a real number z being represented by an integer
+ # approximation to z*M. To avoid loss of precision, the y below
+ # is actually an integer approximation to 2**R*y*M, where R is the
+ # number of reductions performed so far.
+
+ y = x-M
+ # argument reduction; R = number of reductions performed
+ R = 0
+ while (R <= L and long(abs(y)) << L-R >= M or
+ R > L and abs(y) >> R-L >= M):
+ y = _div_nearest(long(M*y) << 1,
+ M + _sqrt_nearest(M*(M+_rshift_nearest(y, R)), M))
+ R += 1
+
+ # Taylor series with T terms
+ T = -int(-10*len(str(M))//(3*L))
+ yshift = _rshift_nearest(y, R)
+ w = _div_nearest(M, T)
+ for k in xrange(T-1, 0, -1):
+ w = _div_nearest(M, k) - _div_nearest(yshift*w, M)
+
+ return _div_nearest(w*y, M)
+
+def _dlog10(c, e, p):
+ """Given integers c, e and p with c > 0, p >= 0, compute an integer
+ approximation to 10**p * log10(c*10**e), with an absolute error of
+ at most 1. Assumes that c*10**e is not exactly 1."""
+
+ # increase precision by 2; compensate for this by dividing
+ # final result by 100
+ p += 2
+
+ # write c*10**e as d*10**f with either:
+ # f >= 0 and 1 <= d <= 10, or
+ # f <= 0 and 0.1 <= d <= 1.
+ # Thus for c*10**e close to 1, f = 0
+ l = len(str(c))
+ f = e+l - (e+l >= 1)
+
+ if p > 0:
+ M = 10**p
+ k = e+p-f
+ if k >= 0:
+ c *= 10**k
+ else:
+ c = _div_nearest(c, 10**-k)
+
+ log_d = _ilog(c, M) # error < 5 + 22 = 27
+ log_10 = _log10_digits(p) # error < 1
+ log_d = _div_nearest(log_d*M, log_10)
+ log_tenpower = f*M # exact
+ else:
+ log_d = 0 # error < 2.31
+ log_tenpower = _div_nearest(f, 10**-p) # error < 0.5
+
+ return _div_nearest(log_tenpower+log_d, 100)
+
+def _dlog(c, e, p):
+ """Given integers c, e and p with c > 0, compute an integer
+ approximation to 10**p * log(c*10**e), with an absolute error of
+ at most 1. Assumes that c*10**e is not exactly 1."""
+
+ # Increase precision by 2. The precision increase is compensated
+ # for at the end with a division by 100.
+ p += 2
+
+ # rewrite c*10**e as d*10**f with either f >= 0 and 1 <= d <= 10,
+ # or f <= 0 and 0.1 <= d <= 1. Then we can compute 10**p * log(c*10**e)
+ # as 10**p * log(d) + 10**p*f * log(10).
+ l = len(str(c))
+ f = e+l - (e+l >= 1)
+
+ # compute approximation to 10**p*log(d), with error < 27
+ if p > 0:
+ k = e+p-f
+ if k >= 0:
+ c *= 10**k
+ else:
+ c = _div_nearest(c, 10**-k) # error of <= 0.5 in c
+
+ # _ilog magnifies existing error in c by a factor of at most 10
+ log_d = _ilog(c, 10**p) # error < 5 + 22 = 27
+ else:
+ # p <= 0: just approximate the whole thing by 0; error < 2.31
+ log_d = 0
+
+ # compute approximation to f*10**p*log(10), with error < 11.
+ if f:
+ extra = len(str(abs(f)))-1
+ if p + extra >= 0:
+ # error in f * _log10_digits(p+extra) < |f| * 1 = |f|
+ # after division, error < |f|/10**extra + 0.5 < 10 + 0.5 < 11
+ f_log_ten = _div_nearest(f*_log10_digits(p+extra), 10**extra)
+ else:
+ f_log_ten = 0
+ else:
+ f_log_ten = 0
+
+ # error in sum < 11+27 = 38; error after division < 0.38 + 0.5 < 1
+ return _div_nearest(f_log_ten + log_d, 100)
+
+class _Log10Memoize(object):
+ """Class to compute, store, and allow retrieval of, digits of the
+ constant log(10) = 2.302585.... This constant is needed by
+ Decimal.ln, Decimal.log10, Decimal.exp and Decimal.__pow__."""
+ def __init__(self):
+ self.digits = "23025850929940456840179914546843642076011014886"
+
+ def getdigits(self, p):
+ """Given an integer p >= 0, return floor(10**p)*log(10).
+
+ For example, self.getdigits(3) returns 2302.
+ """
+ # digits are stored as a string, for quick conversion to
+ # integer in the case that we've already computed enough
+ # digits; the stored digits should always be correct
+ # (truncated, not rounded to nearest).
+ if p < 0:
+ raise ValueError("p should be nonnegative")
+
+ if p >= len(self.digits):
+ # compute p+3, p+6, p+9, ... digits; continue until at
+ # least one of the extra digits is nonzero
+ extra = 3
+ while True:
+ # compute p+extra digits, correct to within 1ulp
+ M = 10**(p+extra+2)
+ digits = str(_div_nearest(_ilog(10*M, M), 100))
+ if digits[-extra:] != '0'*extra:
+ break
+ extra += 3
+ # keep all reliable digits so far; remove trailing zeros
+ # and next nonzero digit
+ self.digits = digits.rstrip('0')[:-1]
+ return int(self.digits[:p+1])
+
+_log10_digits = _Log10Memoize().getdigits
+
+def _iexp(x, M, L=8):
+ """Given integers x and M, M > 0, such that x/M is small in absolute
+ value, compute an integer approximation to M*exp(x/M). For 0 <=
+ x/M <= 2.4, the absolute error in the result is bounded by 60 (and
+ is usually much smaller)."""
+
+ # Algorithm: to compute exp(z) for a real number z, first divide z
+ # by a suitable power R of 2 so that |z/2**R| < 2**-L. Then
+ # compute expm1(z/2**R) = exp(z/2**R) - 1 using the usual Taylor
+ # series
+ #
+ # expm1(x) = x + x**2/2! + x**3/3! + ...
+ #
+ # Now use the identity
+ #
+ # expm1(2x) = expm1(x)*(expm1(x)+2)
+ #
+ # R times to compute the sequence expm1(z/2**R),
+ # expm1(z/2**(R-1)), ... , exp(z/2), exp(z).
+
+ # Find R such that x/2**R/M <= 2**-L
+ R = _nbits((long(x)<<L)//M)
+
+ # Taylor series. (2**L)**T > M
+ T = -int(-10*len(str(M))//(3*L))
+ y = _div_nearest(x, T)
+ Mshift = long(M)<<R
+ for i in xrange(T-1, 0, -1):
+ y = _div_nearest(x*(Mshift + y), Mshift * i)
+
+ # Expansion
+ for k in xrange(R-1, -1, -1):
+ Mshift = long(M)<<(k+2)
+ y = _div_nearest(y*(y+Mshift), Mshift)
+
+ return M+y
+
+def _dexp(c, e, p):
+ """Compute an approximation to exp(c*10**e), with p decimal places of
+ precision.
+
+ Returns integers d, f such that:
+
+ 10**(p-1) <= d <= 10**p, and
+ (d-1)*10**f < exp(c*10**e) < (d+1)*10**f
+
+ In other words, d*10**f is an approximation to exp(c*10**e) with p
+ digits of precision, and with an error in d of at most 1. This is
+ almost, but not quite, the same as the error being < 1ulp: when d
+ = 10**(p-1) the error could be up to 10 ulp."""
+
+ # we'll call iexp with M = 10**(p+2), giving p+3 digits of precision
+ p += 2
+
+ # compute log(10) with extra precision = adjusted exponent of c*10**e
+ extra = max(0, e + len(str(c)) - 1)
+ q = p + extra
+
+ # compute quotient c*10**e/(log(10)) = c*10**(e+q)/(log(10)*10**q),
+ # rounding down
+ shift = e+q
+ if shift >= 0:
+ cshift = c*10**shift
+ else:
+ cshift = c//10**-shift
+ quot, rem = divmod(cshift, _log10_digits(q))
+
+ # reduce remainder back to original precision
+ rem = _div_nearest(rem, 10**extra)
+
+ # error in result of _iexp < 120; error after division < 0.62
+ return _div_nearest(_iexp(rem, 10**p), 1000), quot - p + 3
+
+def _dpower(xc, xe, yc, ye, p):
+ """Given integers xc, xe, yc and ye representing Decimals x = xc*10**xe and
+ y = yc*10**ye, compute x**y. Returns a pair of integers (c, e) such that:
+
+ 10**(p-1) <= c <= 10**p, and
+ (c-1)*10**e < x**y < (c+1)*10**e
+
+ in other words, c*10**e is an approximation to x**y with p digits
+ of precision, and with an error in c of at most 1. (This is
+ almost, but not quite, the same as the error being < 1ulp: when c
+ == 10**(p-1) we can only guarantee error < 10ulp.)
+
+ We assume that: x is positive and not equal to 1, and y is nonzero.
+ """
+
+ # Find b such that 10**(b-1) <= |y| <= 10**b
+ b = len(str(abs(yc))) + ye
+
+ # log(x) = lxc*10**(-p-b-1), to p+b+1 places after the decimal point
+ lxc = _dlog(xc, xe, p+b+1)
+
+ # compute product y*log(x) = yc*lxc*10**(-p-b-1+ye) = pc*10**(-p-1)
+ shift = ye-b
+ if shift >= 0:
+ pc = lxc*yc*10**shift
+ else:
+ pc = _div_nearest(lxc*yc, 10**-shift)
+
+ if pc == 0:
+ # we prefer a result that isn't exactly 1; this makes it
+ # easier to compute a correctly rounded result in __pow__
+ if ((len(str(xc)) + xe >= 1) == (yc > 0)): # if x**y > 1:
+ coeff, exp = 10**(p-1)+1, 1-p
+ else:
+ coeff, exp = 10**p-1, -p
+ else:
+ coeff, exp = _dexp(pc, -(p+1), p+1)
+ coeff = _div_nearest(coeff, 10)
+ exp += 1
+
+ return coeff, exp
+
+def _log10_lb(c, correction = {
+ '1': 100, '2': 70, '3': 53, '4': 40, '5': 31,
+ '6': 23, '7': 16, '8': 10, '9': 5}):
+ """Compute a lower bound for 100*log10(c) for a positive integer c."""
+ if c <= 0:
+ raise ValueError("The argument to _log10_lb should be nonnegative.")
+ str_c = str(c)
+ return 100*len(str_c) - correction[str_c[0]]
+
+##### Helper Functions ####################################################
+
+def _convert_other(other, raiseit=False, allow_float=False):
+ """Convert other to Decimal.
+
+ Verifies that it's ok to use in an implicit construction.
+ If allow_float is true, allow conversion from float; this
+ is used in the comparison methods (__eq__ and friends).
+
+ """
+ if isinstance(other, Decimal):
+ return other
+ if isinstance(other, (int, long)):
+ return Decimal(other)
+ if allow_float and isinstance(other, float):
+ return Decimal.from_float(other)
+
+ if raiseit:
+ raise TypeError("Unable to convert %s to Decimal" % other)
+ return NotImplemented
+
+##### Setup Specific Contexts ############################################
+
+# The default context prototype used by Context()
+# Is mutable, so that new contexts can have different default values
+
+DefaultContext = Context(
+ prec=28, rounding=ROUND_HALF_EVEN,
+ traps=[DivisionByZero, Overflow, InvalidOperation],
+ flags=[],
+ Emax=999999999,
+ Emin=-999999999,
+ capitals=1
+)
+
+# Pre-made alternate contexts offered by the specification
+# Don't change these; the user should be able to select these
+# contexts and be able to reproduce results from other implementations
+# of the spec.
+
+BasicContext = Context(
+ prec=9, rounding=ROUND_HALF_UP,
+ traps=[DivisionByZero, Overflow, InvalidOperation, Clamped, Underflow],
+ flags=[],
+)
+
+ExtendedContext = Context(
+ prec=9, rounding=ROUND_HALF_EVEN,
+ traps=[],
+ flags=[],
+)
+
+
+##### crud for parsing strings #############################################
+#
+# Regular expression used for parsing numeric strings. Additional
+# comments:
+#
+# 1. Uncomment the two '\s*' lines to allow leading and/or trailing
+# whitespace. But note that the specification disallows whitespace in
+# a numeric string.
+#
+# 2. For finite numbers (not infinities and NaNs) the body of the
+# number between the optional sign and the optional exponent must have
+# at least one decimal digit, possibly after the decimal point. The
+# lookahead expression '(?=\d|\.\d)' checks this.
+
+import re
+_parser = re.compile(r""" # A numeric string consists of:
+# \s*
+ (?P<sign>[-+])? # an optional sign, followed by either...
+ (
+ (?=\d|\.\d) # ...a number (with at least one digit)
+ (?P<int>\d*) # having a (possibly empty) integer part
+ (\.(?P<frac>\d*))? # followed by an optional fractional part
+ (E(?P<exp>[-+]?\d+))? # followed by an optional exponent, or...
+ |
+ Inf(inity)? # ...an infinity, or...
+ |
+ (?P<signal>s)? # ...an (optionally signaling)
+ NaN # NaN
+ (?P<diag>\d*) # with (possibly empty) diagnostic info.
+ )
+# \s*
+ \Z
+""", re.VERBOSE | re.IGNORECASE | re.UNICODE).match
+
+_all_zeros = re.compile('0*$').match
+_exact_half = re.compile('50*$').match
+
+##### PEP3101 support functions ##############################################
+# The functions in this section have little to do with the Decimal
+# class, and could potentially be reused or adapted for other pure
+# Python numeric classes that want to implement __format__
+#
+# A format specifier for Decimal looks like:
+#
+# [[fill]align][sign][0][minimumwidth][,][.precision][type]
+
+_parse_format_specifier_regex = re.compile(r"""\A
+(?:
+ (?P<fill>.)?
+ (?P<align>[<>=^])
+)?
+(?P<sign>[-+ ])?
+(?P<zeropad>0)?
+(?P<minimumwidth>(?!0)\d+)?
+(?P<thousands_sep>,)?
+(?:\.(?P<precision>0|(?!0)\d+))?
+(?P<type>[eEfFgGn%])?
+\Z
+""", re.VERBOSE)
+
+del re
+
+# The locale module is only needed for the 'n' format specifier. The
+# rest of the PEP 3101 code functions quite happily without it, so we
+# don't care too much if locale isn't present.
+try:
+ import locale as _locale
+except ImportError:
+ pass
+
+def _parse_format_specifier(format_spec, _localeconv=None):
+ """Parse and validate a format specifier.
+
+ Turns a standard numeric format specifier into a dict, with the
+ following entries:
+
+ fill: fill character to pad field to minimum width
+ align: alignment type, either '<', '>', '=' or '^'
+ sign: either '+', '-' or ' '
+ minimumwidth: nonnegative integer giving minimum width
+ zeropad: boolean, indicating whether to pad with zeros
+ thousands_sep: string to use as thousands separator, or ''
+ grouping: grouping for thousands separators, in format
+ used by localeconv
+ decimal_point: string to use for decimal point
+ precision: nonnegative integer giving precision, or None
+ type: one of the characters 'eEfFgG%', or None
+ unicode: boolean (always True for Python 3.x)
+
+ """
+ m = _parse_format_specifier_regex.match(format_spec)
+ if m is None:
+ raise ValueError("Invalid format specifier: " + format_spec)
+
+ # get the dictionary
+ format_dict = m.groupdict()
+
+ # zeropad; defaults for fill and alignment. If zero padding
+ # is requested, the fill and align fields should be absent.
+ fill = format_dict['fill']
+ align = format_dict['align']
+ format_dict['zeropad'] = (format_dict['zeropad'] is not None)
+ if format_dict['zeropad']:
+ if fill is not None:
+ raise ValueError("Fill character conflicts with '0'"
+ " in format specifier: " + format_spec)
+ if align is not None:
+ raise ValueError("Alignment conflicts with '0' in "
+ "format specifier: " + format_spec)
+ format_dict['fill'] = fill or ' '
+ # PEP 3101 originally specified that the default alignment should
+ # be left; it was later agreed that right-aligned makes more sense
+ # for numeric types. See http://bugs.python.org/issue6857.
+ format_dict['align'] = align or '>'
+
+ # default sign handling: '-' for negative, '' for positive
+ if format_dict['sign'] is None:
+ format_dict['sign'] = '-'
+
+ # minimumwidth defaults to 0; precision remains None if not given
+ format_dict['minimumwidth'] = int(format_dict['minimumwidth'] or '0')
+ if format_dict['precision'] is not None:
+ format_dict['precision'] = int(format_dict['precision'])
+
+ # if format type is 'g' or 'G' then a precision of 0 makes little
+ # sense; convert it to 1. Same if format type is unspecified.
+ if format_dict['precision'] == 0:
+ if format_dict['type'] is None or format_dict['type'] in 'gG':
+ format_dict['precision'] = 1
+
+ # determine thousands separator, grouping, and decimal separator, and
+ # add appropriate entries to format_dict
+ if format_dict['type'] == 'n':
+ # apart from separators, 'n' behaves just like 'g'
+ format_dict['type'] = 'g'
+ if _localeconv is None:
+ _localeconv = _locale.localeconv()
+ if format_dict['thousands_sep'] is not None:
+ raise ValueError("Explicit thousands separator conflicts with "
+ "'n' type in format specifier: " + format_spec)
+ format_dict['thousands_sep'] = _localeconv['thousands_sep']
+ format_dict['grouping'] = _localeconv['grouping']
+ format_dict['decimal_point'] = _localeconv['decimal_point']
+ else:
+ if format_dict['thousands_sep'] is None:
+ format_dict['thousands_sep'] = ''
+ format_dict['grouping'] = [3, 0]
+ format_dict['decimal_point'] = '.'
+
+ # record whether return type should be str or unicode
+ try:
+ format_dict['unicode'] = isinstance(format_spec, unicode)
+ except NameError:
+ format_dict['unicode'] = False
+
+ return format_dict
+
+def _format_align(sign, body, spec):
+ """Given an unpadded, non-aligned numeric string 'body' and sign
+ string 'sign', add padding and alignment conforming to the given
+ format specifier dictionary 'spec' (as produced by
+ parse_format_specifier).
+
+ Also converts result to unicode if necessary.
+
+ """
+ # how much extra space do we have to play with?
+ minimumwidth = spec['minimumwidth']
+ fill = spec['fill']
+ padding = fill*(minimumwidth - len(sign) - len(body))
+
+ align = spec['align']
+ if align == '<':
+ result = sign + body + padding
+ elif align == '>':
+ result = padding + sign + body
+ elif align == '=':
+ result = sign + padding + body
+ elif align == '^':
+ half = len(padding)//2
+ result = padding[:half] + sign + body + padding[half:]
+ else:
+ raise ValueError('Unrecognised alignment field')
+
+ # make sure that result is unicode if necessary
+ if spec['unicode']:
+ result = unicode(result)
+
+ return result
+
+def _group_lengths(grouping):
+ """Convert a localeconv-style grouping into a (possibly infinite)
+ iterable of integers representing group lengths.
+
+ """
+ # The result from localeconv()['grouping'], and the input to this
+ # function, should be a list of integers in one of the
+ # following three forms:
+ #
+ # (1) an empty list, or
+ # (2) nonempty list of positive integers + [0]
+ # (3) list of positive integers + [locale.CHAR_MAX], or
+
+ from itertools import chain, repeat
+ if not grouping:
+ return []
+ elif grouping[-1] == 0 and len(grouping) >= 2:
+ return chain(grouping[:-1], repeat(grouping[-2]))
+ elif grouping[-1] == _locale.CHAR_MAX:
+ return grouping[:-1]
+ else:
+ raise ValueError('unrecognised format for grouping')
+
+def _insert_thousands_sep(digits, spec, min_width=1):
+ """Insert thousands separators into a digit string.
+
+ spec is a dictionary whose keys should include 'thousands_sep' and
+ 'grouping'; typically it's the result of parsing the format
+ specifier using _parse_format_specifier.
+
+ The min_width keyword argument gives the minimum length of the
+ result, which will be padded on the left with zeros if necessary.
+
+ If necessary, the zero padding adds an extra '0' on the left to
+ avoid a leading thousands separator. For example, inserting
+ commas every three digits in '123456', with min_width=8, gives
+ '0,123,456', even though that has length 9.
+
+ """
+
+ sep = spec['thousands_sep']
+ grouping = spec['grouping']
+
+ groups = []
+ for l in _group_lengths(grouping):
+ if l <= 0:
+ raise ValueError("group length should be positive")
+ # max(..., 1) forces at least 1 digit to the left of a separator
+ l = min(max(len(digits), min_width, 1), l)
+ groups.append('0'*(l - len(digits)) + digits[-l:])
+ digits = digits[:-l]
+ min_width -= l
+ if not digits and min_width <= 0:
+ break
+ min_width -= len(sep)
+ else:
+ l = max(len(digits), min_width, 1)
+ groups.append('0'*(l - len(digits)) + digits[-l:])
+ return sep.join(reversed(groups))
+
+def _format_sign(is_negative, spec):
+ """Determine sign character."""
+
+ if is_negative:
+ return '-'
+ elif spec['sign'] in ' +':
+ return spec['sign']
+ else:
+ return ''
+
+def _format_number(is_negative, intpart, fracpart, exp, spec):
+ """Format a number, given the following data:
+
+ is_negative: true if the number is negative, else false
+ intpart: string of digits that must appear before the decimal point
+ fracpart: string of digits that must come after the point
+ exp: exponent, as an integer
+ spec: dictionary resulting from parsing the format specifier
+
+ This function uses the information in spec to:
+ insert separators (decimal separator and thousands separators)
+ format the sign
+ format the exponent
+ add trailing '%' for the '%' type
+ zero-pad if necessary
+ fill and align if necessary
+ """
+
+ sign = _format_sign(is_negative, spec)
+
+ if fracpart:
+ fracpart = spec['decimal_point'] + fracpart
+
+ if exp != 0 or spec['type'] in 'eE':
+ echar = {'E': 'E', 'e': 'e', 'G': 'E', 'g': 'e'}[spec['type']]
+ fracpart += "{0}{1:+}".format(echar, exp)
+ if spec['type'] == '%':
+ fracpart += '%'
+
+ if spec['zeropad']:
+ min_width = spec['minimumwidth'] - len(fracpart) - len(sign)
+ else:
+ min_width = 0
+ intpart = _insert_thousands_sep(intpart, spec, min_width)
+
+ return _format_align(sign, intpart+fracpart, spec)
+
+
+##### Useful Constants (internal use only) ################################
+
+# Reusable defaults
+_Infinity = Decimal('Inf')
+_NegativeInfinity = Decimal('-Inf')
+_NaN = Decimal('NaN')
+_Zero = Decimal(0)
+_One = Decimal(1)
+_NegativeOne = Decimal(-1)
+
+# _SignedInfinity[sign] is infinity w/ that sign
+_SignedInfinity = (_Infinity, _NegativeInfinity)
+
+
+
+if __name__ == '__main__':
+ import doctest, sys
+ doctest.testmod(sys.modules[__name__])