summaryrefslogtreecommitdiff
path: root/include/gal/opengl/glm/gtc/quaternion.inl
diff options
context:
space:
mode:
Diffstat (limited to 'include/gal/opengl/glm/gtc/quaternion.inl')
-rw-r--r--include/gal/opengl/glm/gtc/quaternion.inl792
1 files changed, 792 insertions, 0 deletions
diff --git a/include/gal/opengl/glm/gtc/quaternion.inl b/include/gal/opengl/glm/gtc/quaternion.inl
new file mode 100644
index 0000000..8b83865
--- /dev/null
+++ b/include/gal/opengl/glm/gtc/quaternion.inl
@@ -0,0 +1,792 @@
+///////////////////////////////////////////////////////////////////////////////////
+/// OpenGL Mathematics (glm.g-truc.net)
+///
+/// Copyright (c) 2005 - 2013 G-Truc Creation (www.g-truc.net)
+/// Permission is hereby granted, free of charge, to any person obtaining a copy
+/// of this software and associated documentation files (the "Software"), to deal
+/// in the Software without restriction, including without limitation the rights
+/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+/// copies of the Software, and to permit persons to whom the Software is
+/// furnished to do so, subject to the following conditions:
+///
+/// The above copyright notice and this permission notice shall be included in
+/// all copies or substantial portions of the Software.
+///
+/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+/// THE SOFTWARE.
+///
+/// @ref gtc_quaternion
+/// @file glm/gtc/quaternion.inl
+/// @date 2009-05-21 / 2011-06-15
+/// @author Christophe Riccio
+///////////////////////////////////////////////////////////////////////////////////
+
+#include <limits>
+
+namespace glm{
+namespace detail
+{
+ template <typename T>
+ GLM_FUNC_QUALIFIER typename tquat<T>::size_type tquat<T>::length() const
+ {
+ return 4;
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER tquat<T>::tquat() :
+ x(0),
+ y(0),
+ z(0),
+ w(1)
+ {}
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER tquat<T>::tquat
+ (
+ value_type const & s,
+ tvec3<T> const & v
+ ) :
+ x(v.x),
+ y(v.y),
+ z(v.z),
+ w(s)
+ {}
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER tquat<T>::tquat
+ (
+ value_type const & w,
+ value_type const & x,
+ value_type const & y,
+ value_type const & z
+ ) :
+ x(x),
+ y(y),
+ z(z),
+ w(w)
+ {}
+
+ //////////////////////////////////////////////////////////////
+ // tquat conversions
+
+ //template <typename valType>
+ //GLM_FUNC_QUALIFIER tquat<valType>::tquat
+ //(
+ // valType const & pitch,
+ // valType const & yaw,
+ // valType const & roll
+ //)
+ //{
+ // tvec3<valType> eulerAngle(pitch * valType(0.5), yaw * valType(0.5), roll * valType(0.5));
+ // tvec3<valType> c = glm::cos(eulerAngle * valType(0.5));
+ // tvec3<valType> s = glm::sin(eulerAngle * valType(0.5));
+ //
+ // this->w = c.x * c.y * c.z + s.x * s.y * s.z;
+ // this->x = s.x * c.y * c.z - c.x * s.y * s.z;
+ // this->y = c.x * s.y * c.z + s.x * c.y * s.z;
+ // this->z = c.x * c.y * s.z - s.x * s.y * c.z;
+ //}
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER tquat<T>::tquat
+ (
+ tvec3<T> const & eulerAngle
+ )
+ {
+ tvec3<T> c = glm::cos(eulerAngle * value_type(0.5));
+ tvec3<T> s = glm::sin(eulerAngle * value_type(0.5));
+
+ this->w = c.x * c.y * c.z + s.x * s.y * s.z;
+ this->x = s.x * c.y * c.z - c.x * s.y * s.z;
+ this->y = c.x * s.y * c.z + s.x * c.y * s.z;
+ this->z = c.x * c.y * s.z - s.x * s.y * c.z;
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER tquat<T>::tquat
+ (
+ tmat3x3<T> const & m
+ )
+ {
+ *this = quat_cast(m);
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER tquat<T>::tquat
+ (
+ tmat4x4<T> const & m
+ )
+ {
+ *this = quat_cast(m);
+ }
+
+ //////////////////////////////////////////////////////////////
+ // tquat<T> accesses
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER typename tquat<T>::value_type & tquat<T>::operator [] (int i)
+ {
+ return (&x)[i];
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER typename tquat<T>::value_type const & tquat<T>::operator [] (int i) const
+ {
+ return (&x)[i];
+ }
+
+ //////////////////////////////////////////////////////////////
+ // tquat<valType> operators
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER tquat<T> & tquat<T>::operator *=
+ (
+ value_type const & s
+ )
+ {
+ this->w *= s;
+ this->x *= s;
+ this->y *= s;
+ this->z *= s;
+ return *this;
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER tquat<T> & tquat<T>::operator /=
+ (
+ value_type const & s
+ )
+ {
+ this->w /= s;
+ this->x /= s;
+ this->y /= s;
+ this->z /= s;
+ return *this;
+ }
+
+ //////////////////////////////////////////////////////////////
+ // tquat<valType> external operators
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER detail::tquat<T> operator-
+ (
+ detail::tquat<T> const & q
+ )
+ {
+ return detail::tquat<T>(-q.w, -q.x, -q.y, -q.z);
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER detail::tquat<T> operator+
+ (
+ detail::tquat<T> const & q,
+ detail::tquat<T> const & p
+ )
+ {
+ return detail::tquat<T>(
+ q.w + p.w,
+ q.x + p.x,
+ q.y + p.y,
+ q.z + p.z);
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER detail::tquat<T> operator*
+ (
+ detail::tquat<T> const & q,
+ detail::tquat<T> const & p
+ )
+ {
+ return detail::tquat<T>(
+ q.w * p.w - q.x * p.x - q.y * p.y - q.z * p.z,
+ q.w * p.x + q.x * p.w + q.y * p.z - q.z * p.y,
+ q.w * p.y + q.y * p.w + q.z * p.x - q.x * p.z,
+ q.w * p.z + q.z * p.w + q.x * p.y - q.y * p.x);
+ }
+
+ // Transformation
+ template <typename T>
+ GLM_FUNC_QUALIFIER detail::tvec3<T> operator*
+ (
+ detail::tquat<T> const & q,
+ detail::tvec3<T> const & v
+ )
+ {
+ typename detail::tquat<T>::value_type Two(2);
+
+ detail::tvec3<T> uv, uuv;
+ detail::tvec3<T> QuatVector(q.x, q.y, q.z);
+ uv = glm::cross(QuatVector, v);
+ uuv = glm::cross(QuatVector, uv);
+ uv *= (Two * q.w);
+ uuv *= Two;
+
+ return v + uv + uuv;
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER detail::tvec3<T> operator*
+ (
+ detail::tvec3<T> const & v,
+ detail::tquat<T> const & q
+ )
+ {
+ return inverse(q) * v;
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER detail::tvec4<T> operator*
+ (
+ detail::tquat<T> const & q,
+ detail::tvec4<T> const & v
+ )
+ {
+ return detail::tvec4<T>(q * detail::tvec3<T>(v), v.w);
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER detail::tvec4<T> operator*
+ (
+ detail::tvec4<T> const & v,
+ detail::tquat<T> const & q
+ )
+ {
+ return inverse(q) * v;
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER detail::tquat<T> operator*
+ (
+ detail::tquat<T> const & q,
+ typename detail::tquat<T>::value_type const & s
+ )
+ {
+ return detail::tquat<T>(
+ q.w * s, q.x * s, q.y * s, q.z * s);
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER detail::tquat<T> operator*
+ (
+ typename detail::tquat<T>::value_type const & s,
+ detail::tquat<T> const & q
+ )
+ {
+ return q * s;
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER detail::tquat<T> operator/
+ (
+ detail::tquat<T> const & q,
+ typename detail::tquat<T>::value_type const & s
+ )
+ {
+ return detail::tquat<T>(
+ q.w / s, q.x / s, q.y / s, q.z / s);
+ }
+
+ //////////////////////////////////////
+ // Boolean operators
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER bool operator==
+ (
+ detail::tquat<T> const & q1,
+ detail::tquat<T> const & q2
+ )
+ {
+ return (q1.x == q2.x) && (q1.y == q2.y) && (q1.z == q2.z) && (q1.w == q2.w);
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER bool operator!=
+ (
+ detail::tquat<T> const & q1,
+ detail::tquat<T> const & q2
+ )
+ {
+ return (q1.x != q2.x) || (q1.y != q2.y) || (q1.z != q2.z) || (q1.w != q2.w);
+ }
+
+}//namespace detail
+
+ ////////////////////////////////////////////////////////
+ template <typename T>
+ GLM_FUNC_QUALIFIER T length
+ (
+ detail::tquat<T> const & q
+ )
+ {
+ return glm::sqrt(dot(q, q));
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER detail::tquat<T> normalize
+ (
+ detail::tquat<T> const & q
+ )
+ {
+ typename detail::tquat<T>::value_type len = length(q);
+ if(len <= typename detail::tquat<T>::value_type(0)) // Problem
+ return detail::tquat<T>(1, 0, 0, 0);
+ typename detail::tquat<T>::value_type oneOverLen = typename detail::tquat<T>::value_type(1) / len;
+ return detail::tquat<T>(q.w * oneOverLen, q.x * oneOverLen, q.y * oneOverLen, q.z * oneOverLen);
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER T dot
+ (
+ detail::tquat<T> const & q1,
+ detail::tquat<T> const & q2
+ )
+ {
+ return q1.x * q2.x + q1.y * q2.y + q1.z * q2.z + q1.w * q2.w;
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER detail::tquat<T> cross
+ (
+ detail::tquat<T> const & q1,
+ detail::tquat<T> const & q2
+ )
+ {
+ return detail::tquat<T>(
+ q1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z,
+ q1.w * q2.x + q1.x * q2.w + q1.y * q2.z - q1.z * q2.y,
+ q1.w * q2.y + q1.y * q2.w + q1.z * q2.x - q1.x * q2.z,
+ q1.w * q2.z + q1.z * q2.w + q1.x * q2.y - q1.y * q2.x);
+ }
+/*
+ // (x * sin(1 - a) * angle / sin(angle)) + (y * sin(a) * angle / sin(angle))
+ template <typename T>
+ GLM_FUNC_QUALIFIER detail::tquat<T> mix
+ (
+ detail::tquat<T> const & x,
+ detail::tquat<T> const & y,
+ typename detail::tquat<T>::value_type const & a
+ )
+ {
+ if(a <= typename detail::tquat<T>::value_type(0)) return x;
+ if(a >= typename detail::tquat<T>::value_type(1)) return y;
+
+ float fCos = dot(x, y);
+ detail::tquat<T> y2(y); //BUG!!! tquat<T> y2;
+ if(fCos < typename detail::tquat<T>::value_type(0))
+ {
+ y2 = -y;
+ fCos = -fCos;
+ }
+
+ //if(fCos > 1.0f) // problem
+ float k0, k1;
+ if(fCos > typename detail::tquat<T>::value_type(0.9999))
+ {
+ k0 = typename detail::tquat<T>::value_type(1) - a;
+ k1 = typename detail::tquat<T>::value_type(0) + a; //BUG!!! 1.0f + a;
+ }
+ else
+ {
+ typename detail::tquat<T>::value_type fSin = sqrt(T(1) - fCos * fCos);
+ typename detail::tquat<T>::value_type fAngle = atan(fSin, fCos);
+ typename detail::tquat<T>::value_type fOneOverSin = T(1) / fSin;
+ k0 = sin((typename detail::tquat<T>::value_type(1) - a) * fAngle) * fOneOverSin;
+ k1 = sin((typename detail::tquat<T>::value_type(0) + a) * fAngle) * fOneOverSin;
+ }
+
+ return detail::tquat<T>(
+ k0 * x.w + k1 * y2.w,
+ k0 * x.x + k1 * y2.x,
+ k0 * x.y + k1 * y2.y,
+ k0 * x.z + k1 * y2.z);
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER detail::tquat<T> mix2
+ (
+ detail::tquat<T> const & x,
+ detail::tquat<T> const & y,
+ T const & a
+ )
+ {
+ bool flip = false;
+ if(a <= T(0)) return x;
+ if(a >= T(1)) return y;
+
+ T cos_t = dot(x, y);
+ if(cos_t < T(0))
+ {
+ cos_t = -cos_t;
+ flip = true;
+ }
+
+ T alpha(0), beta(0);
+
+ if(T(1) - cos_t < 1e-7)
+ beta = T(1) - alpha;
+ else
+ {
+ T theta = acos(cos_t);
+ T sin_t = sin(theta);
+ beta = sin(theta * (T(1) - alpha)) / sin_t;
+ alpha = sin(alpha * theta) / sin_t;
+ }
+
+ if(flip)
+ alpha = -alpha;
+
+ return normalize(beta * x + alpha * y);
+ }
+*/
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER detail::tquat<T> mix
+ (
+ detail::tquat<T> const & x,
+ detail::tquat<T> const & y,
+ T const & a
+ )
+ {
+ T cosTheta = dot(x, y);
+
+ // Perform a linear interpolation when cosTheta is close to 1 to avoid side effect of sin(angle) becoming a zero denominator
+ if(cosTheta > T(1) - epsilon<T>())
+ {
+ // Linear interpolation
+ return detail::tquat<T>(
+ mix(x.w, y.w, a),
+ mix(x.x, y.x, a),
+ mix(x.y, y.y, a),
+ mix(x.z, y.z, a));
+ }
+ else
+ {
+ // Essential Mathematics, page 467
+ T angle = acos(cosTheta);
+ return (sin((T(1) - a) * angle) * x + sin(a * angle) * y) / sin(angle);
+ }
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER detail::tquat<T> lerp
+ (
+ detail::tquat<T> const & x,
+ detail::tquat<T> const & y,
+ T const & a
+ )
+ {
+ // Lerp is only defined in [0, 1]
+ assert(a >= T(0));
+ assert(a <= T(1));
+
+ return x * (T(1) - a) + (y * a);
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER detail::tquat<T> slerp
+ (
+ detail::tquat<T> const & x,
+ detail::tquat<T> const & y,
+ T const & a
+ )
+ {
+ detail::tquat<T> z = y;
+
+ T cosTheta = dot(x, y);
+
+ // If cosTheta < 0, the interpolation will take the long way around the sphere.
+ // To fix this, one quat must be negated.
+ if (cosTheta < T(0))
+ {
+ z = -y;
+ cosTheta = -cosTheta;
+ }
+
+ // Perform a linear interpolation when cosTheta is close to 1 to avoid side effect of sin(angle) becoming a zero denominator
+ if(cosTheta > T(1) - epsilon<T>())
+ {
+ // Linear interpolation
+ return detail::tquat<T>(
+ mix(x.w, z.w, a),
+ mix(x.x, z.x, a),
+ mix(x.y, z.y, a),
+ mix(x.z, z.z, a));
+ }
+ else
+ {
+ // Essential Mathematics, page 467
+ T angle = acos(cosTheta);
+ return (sin((T(1) - a) * angle) * x + sin(a * angle) * z) / sin(angle);
+ }
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER detail::tquat<T> conjugate
+ (
+ detail::tquat<T> const & q
+ )
+ {
+ return detail::tquat<T>(q.w, -q.x, -q.y, -q.z);
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER detail::tquat<T> inverse
+ (
+ detail::tquat<T> const & q
+ )
+ {
+ return conjugate(q) / dot(q, q);
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER detail::tquat<T> rotate
+ (
+ detail::tquat<T> const & q,
+ typename detail::tquat<T>::value_type const & angle,
+ detail::tvec3<T> const & v
+ )
+ {
+ detail::tvec3<T> Tmp = v;
+
+ // Axis of rotation must be normalised
+ typename detail::tquat<T>::value_type len = glm::length(Tmp);
+ if(abs(len - T(1)) > T(0.001))
+ {
+ T oneOverLen = T(1) / len;
+ Tmp.x *= oneOverLen;
+ Tmp.y *= oneOverLen;
+ Tmp.z *= oneOverLen;
+ }
+
+#ifdef GLM_FORCE_RADIANS
+ typename detail::tquat<T>::value_type const AngleRad(angle);
+#else
+ typename detail::tquat<T>::value_type const AngleRad = radians(angle);
+#endif
+ typename detail::tquat<T>::value_type const Sin = sin(AngleRad * T(0.5));
+
+ return q * detail::tquat<T>(cos(AngleRad * T(0.5)), Tmp.x * Sin, Tmp.y * Sin, Tmp.z * Sin);
+ //return gtc::quaternion::cross(q, detail::tquat<T>(cos(AngleRad * T(0.5)), Tmp.x * fSin, Tmp.y * fSin, Tmp.z * fSin));
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER detail::tvec3<T> eulerAngles
+ (
+ detail::tquat<T> const & x
+ )
+ {
+ return detail::tvec3<T>(pitch(x), yaw(x), roll(x));
+ }
+
+ template <typename valType>
+ GLM_FUNC_QUALIFIER valType roll
+ (
+ detail::tquat<valType> const & q
+ )
+ {
+#ifdef GLM_FORCE_RADIANS
+ return valType(atan2(valType(2) * (q.x * q.y + q.w * q.z), q.w * q.w + q.x * q.x - q.y * q.y - q.z * q.z));
+#else
+ return glm::degrees(atan(valType(2) * (q.x * q.y + q.w * q.z), q.w * q.w + q.x * q.x - q.y * q.y - q.z * q.z));
+#endif
+ }
+
+ template <typename valType>
+ GLM_FUNC_QUALIFIER valType pitch
+ (
+ detail::tquat<valType> const & q
+ )
+ {
+#ifdef GLM_FORCE_RADIANS
+ return valType(atan2(valType(2) * (q.y * q.z + q.w * q.x), q.w * q.w - q.x * q.x - q.y * q.y + q.z * q.z));
+#else
+ return glm::degrees(atan(valType(2) * (q.y * q.z + q.w * q.x), q.w * q.w - q.x * q.x - q.y * q.y + q.z * q.z));
+#endif
+ }
+
+ template <typename valType>
+ GLM_FUNC_QUALIFIER valType yaw
+ (
+ detail::tquat<valType> const & q
+ )
+ {
+#ifdef GLM_FORCE_RADIANS
+ return asin(valType(-2) * (q.x * q.z - q.w * q.y));
+#else
+ return glm::degrees(asin(valType(-2) * (q.x * q.z - q.w * q.y)));
+#endif
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER detail::tmat3x3<T> mat3_cast
+ (
+ detail::tquat<T> const & q
+ )
+ {
+ detail::tmat3x3<T> Result(T(1));
+ Result[0][0] = 1 - 2 * q.y * q.y - 2 * q.z * q.z;
+ Result[0][1] = 2 * q.x * q.y + 2 * q.w * q.z;
+ Result[0][2] = 2 * q.x * q.z - 2 * q.w * q.y;
+
+ Result[1][0] = 2 * q.x * q.y - 2 * q.w * q.z;
+ Result[1][1] = 1 - 2 * q.x * q.x - 2 * q.z * q.z;
+ Result[1][2] = 2 * q.y * q.z + 2 * q.w * q.x;
+
+ Result[2][0] = 2 * q.x * q.z + 2 * q.w * q.y;
+ Result[2][1] = 2 * q.y * q.z - 2 * q.w * q.x;
+ Result[2][2] = 1 - 2 * q.x * q.x - 2 * q.y * q.y;
+ return Result;
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER detail::tmat4x4<T> mat4_cast
+ (
+ detail::tquat<T> const & q
+ )
+ {
+ return detail::tmat4x4<T>(mat3_cast(q));
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER detail::tquat<T> quat_cast
+ (
+ detail::tmat3x3<T> const & m
+ )
+ {
+ typename detail::tquat<T>::value_type fourXSquaredMinus1 = m[0][0] - m[1][1] - m[2][2];
+ typename detail::tquat<T>::value_type fourYSquaredMinus1 = m[1][1] - m[0][0] - m[2][2];
+ typename detail::tquat<T>::value_type fourZSquaredMinus1 = m[2][2] - m[0][0] - m[1][1];
+ typename detail::tquat<T>::value_type fourWSquaredMinus1 = m[0][0] + m[1][1] + m[2][2];
+
+ int biggestIndex = 0;
+ typename detail::tquat<T>::value_type fourBiggestSquaredMinus1 = fourWSquaredMinus1;
+ if(fourXSquaredMinus1 > fourBiggestSquaredMinus1)
+ {
+ fourBiggestSquaredMinus1 = fourXSquaredMinus1;
+ biggestIndex = 1;
+ }
+ if(fourYSquaredMinus1 > fourBiggestSquaredMinus1)
+ {
+ fourBiggestSquaredMinus1 = fourYSquaredMinus1;
+ biggestIndex = 2;
+ }
+ if(fourZSquaredMinus1 > fourBiggestSquaredMinus1)
+ {
+ fourBiggestSquaredMinus1 = fourZSquaredMinus1;
+ biggestIndex = 3;
+ }
+
+ typename detail::tquat<T>::value_type biggestVal = sqrt(fourBiggestSquaredMinus1 + T(1)) * T(0.5);
+ typename detail::tquat<T>::value_type mult = T(0.25) / biggestVal;
+
+ detail::tquat<T> Result;
+ switch(biggestIndex)
+ {
+ case 0:
+ Result.w = biggestVal;
+ Result.x = (m[1][2] - m[2][1]) * mult;
+ Result.y = (m[2][0] - m[0][2]) * mult;
+ Result.z = (m[0][1] - m[1][0]) * mult;
+ break;
+ case 1:
+ Result.w = (m[1][2] - m[2][1]) * mult;
+ Result.x = biggestVal;
+ Result.y = (m[0][1] + m[1][0]) * mult;
+ Result.z = (m[2][0] + m[0][2]) * mult;
+ break;
+ case 2:
+ Result.w = (m[2][0] - m[0][2]) * mult;
+ Result.x = (m[0][1] + m[1][0]) * mult;
+ Result.y = biggestVal;
+ Result.z = (m[1][2] + m[2][1]) * mult;
+ break;
+ case 3:
+ Result.w = (m[0][1] - m[1][0]) * mult;
+ Result.x = (m[2][0] + m[0][2]) * mult;
+ Result.y = (m[1][2] + m[2][1]) * mult;
+ Result.z = biggestVal;
+ break;
+
+ default: // Silence a -Wswitch-default warning in GCC. Should never actually get here. Assert is just for sanity.
+ assert(false);
+ break;
+ }
+ return Result;
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER detail::tquat<T> quat_cast
+ (
+ detail::tmat4x4<T> const & m4
+ )
+ {
+ return quat_cast(detail::tmat3x3<T>(m4));
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER T angle
+ (
+ detail::tquat<T> const & x
+ )
+ {
+#ifdef GLM_FORCE_RADIANS
+ return acos(x.w) * T(2);
+#else
+ return glm::degrees(acos(x.w) * T(2));
+#endif
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER detail::tvec3<T> axis
+ (
+ detail::tquat<T> const & x
+ )
+ {
+ T tmp1 = T(1) - x.w * x.w;
+ if(tmp1 <= T(0))
+ return detail::tvec3<T>(0, 0, 1);
+ T tmp2 = T(1) / sqrt(tmp1);
+ return detail::tvec3<T>(x.x * tmp2, x.y * tmp2, x.z * tmp2);
+ }
+
+ template <typename valType>
+ GLM_FUNC_QUALIFIER detail::tquat<valType> angleAxis
+ (
+ valType const & angle,
+ valType const & x,
+ valType const & y,
+ valType const & z
+ )
+ {
+ return angleAxis(angle, detail::tvec3<valType>(x, y, z));
+ }
+
+ template <typename valType>
+ GLM_FUNC_QUALIFIER detail::tquat<valType> angleAxis
+ (
+ valType const & angle,
+ detail::tvec3<valType> const & v
+ )
+ {
+ detail::tquat<valType> result;
+
+#ifdef GLM_FORCE_RADIANS
+ valType a(angle);
+#else
+ valType a(glm::radians(angle));
+#endif
+ valType s = glm::sin(a * valType(0.5));
+
+ result.w = glm::cos(a * valType(0.5));
+ result.x = v.x * s;
+ result.y = v.y * s;
+ result.z = v.z * s;
+ return result;
+ }
+
+}//namespace glm