diff options
author | saurabhb17 | 2020-02-26 16:37:17 +0530 |
---|---|---|
committer | GitHub | 2020-02-26 16:37:17 +0530 |
commit | 07a8c86216b6b1f694b136ec64c281d62941952e (patch) | |
tree | ad18839d8b4eb1f13419d07878cc4ec4c9b70032 /potrace/render.cpp | |
parent | e255d0622297488c1c52755be670733418c994cf (diff) | |
parent | 1fa449fed953fa11f6bd0ea82cc2d3b115ee0781 (diff) | |
download | KiCad-eSim-07a8c86216b6b1f694b136ec64c281d62941952e.tar.gz KiCad-eSim-07a8c86216b6b1f694b136ec64c281d62941952e.tar.bz2 KiCad-eSim-07a8c86216b6b1f694b136ec64c281d62941952e.zip |
Merge pull request #2 from saurabhb17/develop
Remaining files transfered
Diffstat (limited to 'potrace/render.cpp')
-rw-r--r-- | potrace/render.cpp | 294 |
1 files changed, 294 insertions, 0 deletions
diff --git a/potrace/render.cpp b/potrace/render.cpp new file mode 100644 index 0000000..833f6b0 --- /dev/null +++ b/potrace/render.cpp @@ -0,0 +1,294 @@ +/* Copyright (C) 2001-2007 Peter Selinger. + * This file is part of Potrace. It is free software and it is covered + * by the GNU General Public License. See the file COPYING for details. */ + +/* $Id: render.c 147 2007-04-09 00:44:09Z selinger $ */ + +#include <stdio.h> +#include <stdlib.h> +#include <cmath> +#include <string.h> + +#include <render.h> +#include <greymap.h> +#include <auxiliary.h> + +/* ---------------------------------------------------------------------- */ +/* routines for anti-aliased rendering of curves */ + +/* we use the following method. Given a point (x,y) (with real-valued + * coordinates) in the plane, let (xi,yi) be the integer part of the + * coordinates, i.e., xi=floor(x), yi=floor(y). Define a path from + * (x,y) to infinity as follows: path(x,y) = + * (x,y)--(xi+1,y)--(xi+1,yi)--(+infty,yi). Now as the point (x,y) + * moves smoothly across the plane, the path path(x,y) sweeps + * (non-smoothly) across a certain area. We proportionately blacken + * the area as the path moves "downward", and we whiten the area as + * the path moves "upward". This way, after the point has traversed a + * closed curve, the interior of the curve has been darkened + * (counterclockwise movement) or lightened (clockwise movement). (The + * "grey shift" is actually proportional to the winding number). By + * choosing the above path with mostly integer coordinates, we achieve + * that only pixels close to (x,y) receive grey values and are subject + * to round-off errors. The grey value of pixels far away from (x,y) + * is always in "integer" (where 0=black, 1=white). As a special + * trick, we keep an accumulator rm->a1, which holds a double value to + * be added to the grey value to be added to the current pixel + * (xi,yi). Only when changing "current" pixels, we convert this + * double value to an integer. This way we avoid round-off errors at + * the meeting points of line segments. Another speedup measure is + * that we sometimes use the rm->incrow_buf array to postpone + * incrementing or decrementing an entire row. If incrow_buf[y]=x+1!=0, + * then all the pixels (x,y),(x+1,y),(x+2,y),... are scheduled to be + * incremented/decremented (which one is the case will be clear from + * context). This keeps the greymap operations reasonably local. */ + +/* allocate a new rendering state */ +render_t* render_new( greymap_t* gm ) +{ + render_t* rm; + + rm = (render_t*) malloc( sizeof(render_t) ); + if( !rm ) + { + return NULL; + } + memset( rm, 0, sizeof(render_t) ); + rm->gm = gm; + rm->incrow_buf = (int*) malloc( gm->h * sizeof(int) ); + if( !rm->incrow_buf ) + { + free( rm ); + return NULL; + } + memset( rm->incrow_buf, 0, gm->h * sizeof(int) ); + return rm; +} + + +/* free a given rendering state. Note: this does not free the + * underlying greymap. */ +void render_free( render_t* rm ) +{ + free( rm->incrow_buf ); + free( rm ); +} + + +/* close path */ +void render_close( render_t* rm ) +{ + if( rm->x0 != rm->x1 || rm->y0 != rm->y1 ) + { + render_lineto( rm, rm->x0, rm->y0 ); + } + GM_INC( rm->gm, rm->x0i, rm->y0i, (rm->a0 + rm->a1) * 255 ); + + /* assert (rm->x0i != rm->x1i || rm->y0i != rm->y1i); */ + + /* the persistent state is now undefined */ +} + + +/* move point */ +void render_moveto( render_t* rm, double x, double y ) +{ + /* close the previous path */ + render_close( rm ); + + rm->x0 = rm->x1 = x; + rm->y0 = rm->y1 = y; + rm->x0i = (int) floor( rm->x0 ); + rm->x1i = (int) floor( rm->x1 ); + rm->y0i = (int) floor( rm->y0 ); + rm->y1i = (int) floor( rm->y1 ); + rm->a0 = rm->a1 = 0; +} + + +/* add b to pixels (x,y) and all pixels to the right of it. However, + * use rm->incrow_buf as a buffer to economize on multiple calls */ +static void incrow( render_t* rm, int x, int y, int b ) +{ + int i, x0; + + if( y < 0 || y >= rm->gm->h ) + { + return; + } + + if( x < 0 ) + { + x = 0; + } + else if( x > rm->gm->w ) + { + x = rm->gm->w; + } + if( rm->incrow_buf[y] == 0 ) + { + rm->incrow_buf[y] = x + 1; /* store x+1 so that we can use 0 for "vacant" */ + return; + } + x0 = rm->incrow_buf[y] - 1; + rm->incrow_buf[y] = 0; + if( x0 < x ) + { + for( i = x0; i<x; i++ ) + { + GM_INC( rm->gm, i, y, -b ); + } + } + else + { + for( i = x; i<x0; i++ ) + { + GM_INC( rm->gm, i, y, b ); + } + } +} + + +/* render a straight line */ +void render_lineto( render_t* rm, double x2, double y2 ) +{ + int x2i, y2i; + double t0 = 2, s0 = 2; + int sn, tn; + double ss = 2, ts = 2; + double r0, r1; + int i, j; + int rxi, ryi; + int s; + + x2i = (int) floor( x2 ); + y2i = (int) floor( y2 ); + + sn = abs( x2i - rm->x1i ); + tn = abs( y2i - rm->y1i ); + + if( sn ) + { + s0 = ( (x2>rm->x1 ? rm->x1i + 1 : rm->x1i) - rm->x1 ) / (x2 - rm->x1); + ss = fabs( 1.0 / (x2 - rm->x1) ); + } + if( tn ) + { + t0 = ( (y2>rm->y1 ? rm->y1i + 1 : rm->y1i) - rm->y1 ) / (y2 - rm->y1); + ts = fabs( 1.0 / (y2 - rm->y1) ); + } + + r0 = 0; + + i = 0; + j = 0; + + rxi = rm->x1i; + ryi = rm->y1i; + + while( i<sn || j<tn ) + { + if( j>=tn || (i<sn && s0 + i * ss < t0 + j * ts) ) + { + r1 = s0 + i * ss; + i++; + s = 1; + } + else + { + r1 = t0 + j * ts; + j++; + s = 0; + } + /* render line from r0 to r1 segment of (rm->x1,rm->y1)..(x2,y2) */ + + /* move point to r1 */ + rm->a1 += + (r1 - r0) * (y2 - rm->y1) * ( rxi + 1 - ( (r0 + r1) / 2.0 * (x2 - rm->x1) + rm->x1 ) ); + + /* move point across pixel boundary */ + if( s && x2>rm->x1 ) + { + GM_INC( rm->gm, rxi, ryi, rm->a1 * 255 ); + rm->a1 = 0; + rxi++; + rm->a1 += rm->y1 + r1 * (y2 - rm->y1) - ryi; + } + else if( !s && y2>rm->y1 ) + { + GM_INC( rm->gm, rxi, ryi, rm->a1 * 255 ); + rm->a1 = 0; + incrow( rm, rxi + 1, ryi, 255 ); + ryi++; + } + else if( s && x2<=rm->x1 ) + { + rm->a1 -= rm->y1 + r1 * (y2 - rm->y1) - ryi; + GM_INC( rm->gm, rxi, ryi, rm->a1 * 255 ); + rm->a1 = 0; + rxi--; + } + else if( !s && y2<=rm->y1 ) + { + GM_INC( rm->gm, rxi, ryi, rm->a1 * 255 ); + rm->a1 = 0; + ryi--; + incrow( rm, rxi + 1, ryi, -255 ); + } + + r0 = r1; + } + + /* move point to (x2,y2) */ + + r1 = 1; + rm->a1 += (r1 - r0) * (y2 - rm->y1) * ( rxi + 1 - ( (r0 + r1) / 2.0 * (x2 - rm->x1) + rm->x1 ) ); + + rm->x1i = x2i; + rm->y1i = y2i; + rm->x1 = x2; + rm->y1 = y2; + + /* assert (rxi != rm->x1i || ryi != rm->y1i); */ +} + + +/* render a Bezier curve. */ +void render_curveto( render_t* rm, + double x2, + double y2, + double x3, + double y3, + double x4, + double y4 ) +{ + double x1, y1, dd0, dd1, dd, delta, e2, epsilon, t; + + x1 = rm->x1; /* starting point */ + y1 = rm->y1; + + /* we approximate the curve by small line segments. The interval + * size, epsilon, is determined on the fly so that the distance + * between the true curve and its approximation does not exceed the + * desired accuracy delta. */ + + delta = .1; /* desired accuracy, in pixels */ + + /* let dd = maximal value of 2nd derivative over curve - this must + * occur at an endpoint. */ + dd0 = sq( x1 - 2 * x2 + x3 ) + sq( y1 - 2 * y2 + y3 ); + dd1 = sq( x2 - 2 * x3 + x4 ) + sq( y2 - 2 * y3 + y4 ); + dd = 6 * sqrt( max( dd0, dd1 ) ); + e2 = 8 * delta <= dd ? 8 * delta / dd : 1; + epsilon = sqrt( e2 ); /* necessary interval size */ + + for( t = epsilon; t<1; t += epsilon ) + { + render_lineto( rm, x1 * cu( 1 - t ) + 3 * x2 * sq( 1 - t ) * t + 3 * x3 * (1 - t) * sq( + t ) + x4 * cu( t ), + y1 * cu( 1 - t ) + 3 * y2 * sq( 1 - t ) * t + 3 * y3 * (1 - t) * sq( + t ) + y4 * cu( t ) ); + } + + render_lineto( rm, x4, y4 ); +} |