diff options
author | saurabhb17 | 2020-02-26 16:04:40 +0530 |
---|---|---|
committer | saurabhb17 | 2020-02-26 16:04:40 +0530 |
commit | 039ac92480a09266146fc5b0c9ec67a32a2565ad (patch) | |
tree | 7b6cef031a580680690a0f32410db940f7e7d7d5 /common/bezier_curves.cpp | |
parent | aa35045840b78d3f48212db45da59a2e5c69b223 (diff) | |
download | KiCad-eSim-039ac92480a09266146fc5b0c9ec67a32a2565ad.tar.gz KiCad-eSim-039ac92480a09266146fc5b0c9ec67a32a2565ad.tar.bz2 KiCad-eSim-039ac92480a09266146fc5b0c9ec67a32a2565ad.zip |
Added secondary files
Diffstat (limited to 'common/bezier_curves.cpp')
-rw-r--r-- | common/bezier_curves.cpp | 435 |
1 files changed, 435 insertions, 0 deletions
diff --git a/common/bezier_curves.cpp b/common/bezier_curves.cpp new file mode 100644 index 0000000..9dc67b6 --- /dev/null +++ b/common/bezier_curves.cpp @@ -0,0 +1,435 @@ +/* + * This program source code file is part of KiCad, a free EDA CAD application. + * + * Copyright (C) 2014 Jean-Pierre Charras, jp.charras at wanadoo.fr + * Copyright (C) 2014 KiCad Developers, see CHANGELOG.TXT for contributors. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version 2 + * of the License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, you may find one here: + * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html + * or you may search the http://www.gnu.org website for the version 2 license, + * or you may write to the Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA + */ + +/************************************/ +/* routines to handle bezier curves */ +/************************************/ + +#include <fctsys.h> +#include <bezier_curves.h> + + +#define add_segment(segment) if(s_bezier_Points_Buffer[s_bezier_Points_Buffer.size()-1] != segment) s_bezier_Points_Buffer.push_back(segment); + + +// Local variables: +static std::vector<wxPoint> s_bezier_Points_Buffer; + +static int bezier_recursion_limit = 12; +static double bezier_approximation_scale = 0.5; // 1 + +static double bezier_curve_collinearity_epsilon = 1e-30; +static double bezier_curve_angle_tolerance_epsilon = 0.0001; +static double bezier_distance_tolerance_square; // derived by approximation_scale +static double bezier_angle_tolerance = 0.0; +static double bezier_cusp_limit = 0.0; + +// Local functions: +static void recursive_bezier( int x1, int y1, int x2, int y2, int x3, int y3, int level ); +static void recursive_bezier( int x1, + int y1, + int x2, + int y2, + int x3, + int y3, + int x4, + int y4, + int level ); + +/***********************************************************************************/ + + +std::vector<wxPoint> Bezier2Poly( wxPoint c1, wxPoint c2, wxPoint c3, wxPoint c4 ) +{ + return Bezier2Poly( c1.x, c1.y, c2.x, c2.y, c3.x, c3.y, c4.x, c4.y ); +} + + +std::vector<wxPoint> Bezier2Poly( wxPoint c1, wxPoint c2, wxPoint c3 ) +{ + return Bezier2Poly( c1.x, c1.y, c2.x, c2.y, c3.x, c3.y ); +} + + +inline double calc_sq_distance( int x1, int y1, int x2, int y2 ) +{ + int dx = x2 - x1; + int dy = y2 - y1; + + return (double)dx * dx + (double)dy * dy; +} + +inline double sqrt_len( int dx, int dy ) +{ + return ((double)dx * dx) + ((double)dy * dy); +} + + +std::vector<wxPoint> Bezier2Poly( int x1, int y1, int x2, int y2, int x3, int y3 ) +{ + s_bezier_Points_Buffer.clear(); + + bezier_distance_tolerance_square = 0.5 / bezier_approximation_scale; + bezier_distance_tolerance_square *= bezier_distance_tolerance_square; + s_bezier_Points_Buffer.push_back( wxPoint( x1, y1 ) ); + recursive_bezier( x1, y1, x2, y2, x3, y3, 0 ); + s_bezier_Points_Buffer.push_back( wxPoint( x3, y3 ) ); + + wxLogDebug( wxT( "Bezier Conversion - End (%d vertex)" ), s_bezier_Points_Buffer.size() ); + return s_bezier_Points_Buffer; +} + + +std::vector<wxPoint> Bezier2Poly( int x1, int y1, int x2, int y2, int x3, int y3, int x4, int y4 ) +{ + s_bezier_Points_Buffer.clear(); + bezier_distance_tolerance_square = 0.5 / bezier_approximation_scale; + bezier_distance_tolerance_square *= bezier_distance_tolerance_square; + + s_bezier_Points_Buffer.push_back( wxPoint( x1, y1 ) ); + recursive_bezier( x1, y1, x2, y2, x3, y3, x4, y4, 0 ); + s_bezier_Points_Buffer.push_back( wxPoint( x4, y4 ) ); + wxLogDebug( wxT( "Bezier Conversion - End (%d vertex)" ), s_bezier_Points_Buffer.size() ); + return s_bezier_Points_Buffer; +} + + +void recursive_bezier( int x1, int y1, int x2, int y2, int x3, int y3, int level ) +{ + if( abs( level ) > bezier_recursion_limit ) + { + return; + } + + // Calculate all the mid-points of the line segments + //---------------------- + int x12 = (x1 + x2) / 2; + int y12 = (y1 + y2) / 2; + int x23 = (x2 + x3) / 2; + int y23 = (y2 + y3) / 2; + int x123 = (x12 + x23) / 2; + int y123 = (y12 + y23) / 2; + + int dx = x3 - x1; + int dy = y3 - y1; + double d = fabs( ((double) (x2 - x3) * dy) - ((double) (y2 - y3) * dx ) ); + double da; + + if( d > bezier_curve_collinearity_epsilon ) + { + // Regular case + //----------------- + if( d * d <= bezier_distance_tolerance_square * (dx * dx + dy * dy) ) + { + // If the curvature doesn't exceed the distance_tolerance value + // we tend to finish subdivisions. + //---------------------- + if( bezier_angle_tolerance < bezier_curve_angle_tolerance_epsilon ) + { + add_segment( wxPoint( x123, y123 ) ); + return; + } + + // Angle & Cusp Condition + //---------------------- + da = fabs( atan2( (double) ( y3 - y2 ), (double) ( x3 - x2 ) ) - + atan2( (double) ( y2 - y1 ), (double) ( x2 - x1 ) ) ); + if( da >=M_PI ) + da = 2 * M_PI - da; + + if( da < bezier_angle_tolerance ) + { + // Finally we can stop the recursion + //---------------------- + add_segment( wxPoint( x123, y123 ) ); + return; + } + } + } + else + { + // Collinear case + //------------------ + da = sqrt_len(dx, dy); + if( da == 0 ) + { + d = calc_sq_distance( x1, y1, x2, y2 ); + } + else + { + d = ( (double)(x2 - x1) * dx + (double)(y2 - y1) * dy ) / da; + if( d > 0 && d < 1 ) + { + // Simple collinear case, 1---2---3 + // We can leave just two endpoints + return; + } + if( d <= 0 ) + d = calc_sq_distance( x2, y2, x1, y1 ); + else if( d >= 1 ) + d = calc_sq_distance( x2, y2, x3, y3 ); + else + d = calc_sq_distance( x2, y2, x1 + (int) d * dx, + y1 + (int) d * dy ); + } + if( d < bezier_distance_tolerance_square ) + { + add_segment( wxPoint( x2, y2 ) ); + return; + } + } + + // Continue subdivision + //---------------------- + recursive_bezier( x1, y1, x12, y12, x123, y123, level + 1 ); + recursive_bezier( x123, y123, x23, y23, x3, y3, -(level + 1) ); +} + + +void recursive_bezier( int x1, int y1, int x2, int y2, int x3, int y3, int x4, int y4, int level ) +{ + if( abs( level ) > bezier_recursion_limit ) + { + return; + } + + // Calculate all the mid-points of the line segments + //---------------------- + int x12 = (x1 + x2) / 2; + int y12 = (y1 + y2) / 2; + int x23 = (x2 + x3) / 2; + int y23 = (y2 + y3) / 2; + int x34 = (x3 + x4) / 2; + int y34 = (y3 + y4) / 2; + int x123 = (x12 + x23) / 2; + int y123 = (y12 + y23) / 2; + int x234 = (x23 + x34) / 2; + int y234 = (y23 + y34) / 2; + int x1234 = (x123 + x234) / 2; + int y1234 = (y123 + y234) / 2; + + + // Try to approximate the full cubic curve by a single straight line + //------------------ + int dx = x4 - x1; + int dy = y4 - y1; + + double d2 = fabs( (double) ( (x2 - x4) * dy - (y2 - y4) * dx ) ); + double d3 = fabs( (double) ( (x3 - x4) * dy - (y3 - y4) * dx ) ); + double da1, da2, k; + + switch( (int(d2 > bezier_curve_collinearity_epsilon) << 1) + + int(d3 > bezier_curve_collinearity_epsilon) ) + { + case 0: + + // All collinear OR p1==p4 + //---------------------- + k = dx * dx + dy * dy; + if( k == 0 ) + { + d2 = calc_sq_distance( x1, y1, x2, y2 ); + d3 = calc_sq_distance( x4, y4, x3, y3 ); + } + else + { + k = 1 / k; + da1 = x2 - x1; + da2 = y2 - y1; + d2 = k * (da1 * dx + da2 * dy); + da1 = x3 - x1; + da2 = y3 - y1; + d3 = k * (da1 * dx + da2 * dy); + if( d2 > 0 && d2 < 1 && d3 > 0 && d3 < 1 ) + { + // Simple collinear case, 1---2---3---4 + // We can leave just two endpoints + return; + } + if( d2 <= 0 ) + d2 = calc_sq_distance( x2, y2, x1, y1 ); + else if( d2 >= 1 ) + d2 = calc_sq_distance( x2, y2, x4, y4 ); + else + d2 = calc_sq_distance( x2, y2, x1 + (int) d2 * dx, + y1 + (int) d2 * dy ); + + if( d3 <= 0 ) + d3 = calc_sq_distance( x3, y3, x1, y1 ); + else if( d3 >= 1 ) + d3 = calc_sq_distance( x3, y3, x4, y4 ); + else + d3 = calc_sq_distance( x3, y3, x1 + (int) d3 * dx, + y1 + (int) d3 * dy ); + } + if( d2 > d3 ) + { + if( d2 < bezier_distance_tolerance_square ) + { + add_segment( wxPoint( x2, y2 ) ); + return; + } + } + else + { + if( d3 < bezier_distance_tolerance_square ) + { + add_segment( wxPoint( x3, y3 ) ); + return; + } + } + break; + + case 1: + + // p1,p2,p4 are collinear, p3 is significant + //---------------------- + if( d3 * d3 <= bezier_distance_tolerance_square * sqrt_len(dx, dy) ) + { + if( bezier_angle_tolerance < bezier_curve_angle_tolerance_epsilon ) + { + add_segment( wxPoint( x23, y23 ) ); + return; + } + + // Angle Condition + //---------------------- + da1 = fabs( atan2( (double) ( y4 - y3 ), (double) ( x4 - x3 ) ) - + atan2( (double) ( y3 - y2 ), (double) ( x3 - x2 ) ) ); + if( da1 >= M_PI ) + da1 = 2 * M_PI - da1; + + if( da1 < bezier_angle_tolerance ) + { + add_segment( wxPoint( x2, y2 ) ); + add_segment( wxPoint( x3, y3 ) ); + return; + } + + if( bezier_cusp_limit != 0.0 ) + { + if( da1 > bezier_cusp_limit ) + { + add_segment( wxPoint( x3, y3 ) ); + return; + } + } + } + break; + + case 2: + + // p1,p3,p4 are collinear, p2 is significant + //---------------------- + if( d2 * d2 <= bezier_distance_tolerance_square * sqrt_len(dx, dy) ) + { + if( bezier_angle_tolerance < bezier_curve_angle_tolerance_epsilon ) + { + add_segment( wxPoint( x23, y23 ) ); + return; + } + + // Angle Condition + //---------------------- + da1 = fabs( atan2( (double) ( y3 - y2 ), (double) ( x3 - x2 ) ) - + atan2( (double) ( y2 - y1 ), (double) ( x2 - x1 ) ) ); + if( da1 >= M_PI ) + da1 = 2 * M_PI - da1; + + if( da1 < bezier_angle_tolerance ) + { + add_segment( wxPoint( x2, y2 ) ); + add_segment( wxPoint( x3, y3 ) ); + return; + } + + if( bezier_cusp_limit != 0.0 ) + { + if( da1 > bezier_cusp_limit ) + { + add_segment( wxPoint( x2, y2 ) ); + return; + } + } + } + break; + + case 3: + + // Regular case + //----------------- + if( (d2 + d3) * (d2 + d3) <= bezier_distance_tolerance_square * sqrt_len(dx, dy) ) + { + // If the curvature doesn't exceed the distance_tolerance value + // we tend to finish subdivisions. + //---------------------- + if( bezier_angle_tolerance < bezier_curve_angle_tolerance_epsilon ) + { + add_segment( wxPoint( x23, y23 ) ); + return; + } + + // Angle & Cusp Condition + //---------------------- + k = atan2( (double) ( y3 - y2 ), (double) ( x3 - x2 ) ); + da1 = fabs( k - atan2( (double) ( y2 - y1 ), + (double) ( x2 - x1 ) ) ); + da2 = fabs( atan2( (double) ( y4 - y3 ), + (double) ( x4 - x3 ) ) - k ); + if( da1 >= M_PI ) + da1 = 2 * M_PI - da1; + if( da2 >= M_PI ) + da2 = 2 * M_PI - da2; + + if( da1 + da2 < bezier_angle_tolerance ) + { + // Finally we can stop the recursion + //---------------------- + add_segment( wxPoint( x23, y23 ) ); + return; + } + + if( bezier_cusp_limit != 0.0 ) + { + if( da1 > bezier_cusp_limit ) + { + add_segment( wxPoint( x2, y2 ) ); + return; + } + + if( da2 > bezier_cusp_limit ) + { + add_segment( wxPoint( x3, y3 ) ); + return; + } + } + } + break; + } + + // Continue subdivision + //---------------------- + recursive_bezier( x1, y1, x12, y12, x123, y123, x1234, y1234, level + 1 ); + recursive_bezier( x1234, y1234, x234, y234, x34, y34, x4, y4, level + 1 ); +} |