summaryrefslogtreecommitdiff
path: root/common/bezier_curves.cpp
diff options
context:
space:
mode:
authorsaurabhb172020-02-26 16:04:40 +0530
committersaurabhb172020-02-26 16:04:40 +0530
commit039ac92480a09266146fc5b0c9ec67a32a2565ad (patch)
tree7b6cef031a580680690a0f32410db940f7e7d7d5 /common/bezier_curves.cpp
parentaa35045840b78d3f48212db45da59a2e5c69b223 (diff)
downloadKiCad-eSim-039ac92480a09266146fc5b0c9ec67a32a2565ad.tar.gz
KiCad-eSim-039ac92480a09266146fc5b0c9ec67a32a2565ad.tar.bz2
KiCad-eSim-039ac92480a09266146fc5b0c9ec67a32a2565ad.zip
Added secondary files
Diffstat (limited to 'common/bezier_curves.cpp')
-rw-r--r--common/bezier_curves.cpp435
1 files changed, 435 insertions, 0 deletions
diff --git a/common/bezier_curves.cpp b/common/bezier_curves.cpp
new file mode 100644
index 0000000..9dc67b6
--- /dev/null
+++ b/common/bezier_curves.cpp
@@ -0,0 +1,435 @@
+/*
+ * This program source code file is part of KiCad, a free EDA CAD application.
+ *
+ * Copyright (C) 2014 Jean-Pierre Charras, jp.charras at wanadoo.fr
+ * Copyright (C) 2014 KiCad Developers, see CHANGELOG.TXT for contributors.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, you may find one here:
+ * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
+ * or you may search the http://www.gnu.org website for the version 2 license,
+ * or you may write to the Free Software Foundation, Inc.,
+ * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
+ */
+
+/************************************/
+/* routines to handle bezier curves */
+/************************************/
+
+#include <fctsys.h>
+#include <bezier_curves.h>
+
+
+#define add_segment(segment) if(s_bezier_Points_Buffer[s_bezier_Points_Buffer.size()-1] != segment) s_bezier_Points_Buffer.push_back(segment);
+
+
+// Local variables:
+static std::vector<wxPoint> s_bezier_Points_Buffer;
+
+static int bezier_recursion_limit = 12;
+static double bezier_approximation_scale = 0.5; // 1
+
+static double bezier_curve_collinearity_epsilon = 1e-30;
+static double bezier_curve_angle_tolerance_epsilon = 0.0001;
+static double bezier_distance_tolerance_square; // derived by approximation_scale
+static double bezier_angle_tolerance = 0.0;
+static double bezier_cusp_limit = 0.0;
+
+// Local functions:
+static void recursive_bezier( int x1, int y1, int x2, int y2, int x3, int y3, int level );
+static void recursive_bezier( int x1,
+ int y1,
+ int x2,
+ int y2,
+ int x3,
+ int y3,
+ int x4,
+ int y4,
+ int level );
+
+/***********************************************************************************/
+
+
+std::vector<wxPoint> Bezier2Poly( wxPoint c1, wxPoint c2, wxPoint c3, wxPoint c4 )
+{
+ return Bezier2Poly( c1.x, c1.y, c2.x, c2.y, c3.x, c3.y, c4.x, c4.y );
+}
+
+
+std::vector<wxPoint> Bezier2Poly( wxPoint c1, wxPoint c2, wxPoint c3 )
+{
+ return Bezier2Poly( c1.x, c1.y, c2.x, c2.y, c3.x, c3.y );
+}
+
+
+inline double calc_sq_distance( int x1, int y1, int x2, int y2 )
+{
+ int dx = x2 - x1;
+ int dy = y2 - y1;
+
+ return (double)dx * dx + (double)dy * dy;
+}
+
+inline double sqrt_len( int dx, int dy )
+{
+ return ((double)dx * dx) + ((double)dy * dy);
+}
+
+
+std::vector<wxPoint> Bezier2Poly( int x1, int y1, int x2, int y2, int x3, int y3 )
+{
+ s_bezier_Points_Buffer.clear();
+
+ bezier_distance_tolerance_square = 0.5 / bezier_approximation_scale;
+ bezier_distance_tolerance_square *= bezier_distance_tolerance_square;
+ s_bezier_Points_Buffer.push_back( wxPoint( x1, y1 ) );
+ recursive_bezier( x1, y1, x2, y2, x3, y3, 0 );
+ s_bezier_Points_Buffer.push_back( wxPoint( x3, y3 ) );
+
+ wxLogDebug( wxT( "Bezier Conversion - End (%d vertex)" ), s_bezier_Points_Buffer.size() );
+ return s_bezier_Points_Buffer;
+}
+
+
+std::vector<wxPoint> Bezier2Poly( int x1, int y1, int x2, int y2, int x3, int y3, int x4, int y4 )
+{
+ s_bezier_Points_Buffer.clear();
+ bezier_distance_tolerance_square = 0.5 / bezier_approximation_scale;
+ bezier_distance_tolerance_square *= bezier_distance_tolerance_square;
+
+ s_bezier_Points_Buffer.push_back( wxPoint( x1, y1 ) );
+ recursive_bezier( x1, y1, x2, y2, x3, y3, x4, y4, 0 );
+ s_bezier_Points_Buffer.push_back( wxPoint( x4, y4 ) );
+ wxLogDebug( wxT( "Bezier Conversion - End (%d vertex)" ), s_bezier_Points_Buffer.size() );
+ return s_bezier_Points_Buffer;
+}
+
+
+void recursive_bezier( int x1, int y1, int x2, int y2, int x3, int y3, int level )
+{
+ if( abs( level ) > bezier_recursion_limit )
+ {
+ return;
+ }
+
+ // Calculate all the mid-points of the line segments
+ //----------------------
+ int x12 = (x1 + x2) / 2;
+ int y12 = (y1 + y2) / 2;
+ int x23 = (x2 + x3) / 2;
+ int y23 = (y2 + y3) / 2;
+ int x123 = (x12 + x23) / 2;
+ int y123 = (y12 + y23) / 2;
+
+ int dx = x3 - x1;
+ int dy = y3 - y1;
+ double d = fabs( ((double) (x2 - x3) * dy) - ((double) (y2 - y3) * dx ) );
+ double da;
+
+ if( d > bezier_curve_collinearity_epsilon )
+ {
+ // Regular case
+ //-----------------
+ if( d * d <= bezier_distance_tolerance_square * (dx * dx + dy * dy) )
+ {
+ // If the curvature doesn't exceed the distance_tolerance value
+ // we tend to finish subdivisions.
+ //----------------------
+ if( bezier_angle_tolerance < bezier_curve_angle_tolerance_epsilon )
+ {
+ add_segment( wxPoint( x123, y123 ) );
+ return;
+ }
+
+ // Angle & Cusp Condition
+ //----------------------
+ da = fabs( atan2( (double) ( y3 - y2 ), (double) ( x3 - x2 ) ) -
+ atan2( (double) ( y2 - y1 ), (double) ( x2 - x1 ) ) );
+ if( da >=M_PI )
+ da = 2 * M_PI - da;
+
+ if( da < bezier_angle_tolerance )
+ {
+ // Finally we can stop the recursion
+ //----------------------
+ add_segment( wxPoint( x123, y123 ) );
+ return;
+ }
+ }
+ }
+ else
+ {
+ // Collinear case
+ //------------------
+ da = sqrt_len(dx, dy);
+ if( da == 0 )
+ {
+ d = calc_sq_distance( x1, y1, x2, y2 );
+ }
+ else
+ {
+ d = ( (double)(x2 - x1) * dx + (double)(y2 - y1) * dy ) / da;
+ if( d > 0 && d < 1 )
+ {
+ // Simple collinear case, 1---2---3
+ // We can leave just two endpoints
+ return;
+ }
+ if( d <= 0 )
+ d = calc_sq_distance( x2, y2, x1, y1 );
+ else if( d >= 1 )
+ d = calc_sq_distance( x2, y2, x3, y3 );
+ else
+ d = calc_sq_distance( x2, y2, x1 + (int) d * dx,
+ y1 + (int) d * dy );
+ }
+ if( d < bezier_distance_tolerance_square )
+ {
+ add_segment( wxPoint( x2, y2 ) );
+ return;
+ }
+ }
+
+ // Continue subdivision
+ //----------------------
+ recursive_bezier( x1, y1, x12, y12, x123, y123, level + 1 );
+ recursive_bezier( x123, y123, x23, y23, x3, y3, -(level + 1) );
+}
+
+
+void recursive_bezier( int x1, int y1, int x2, int y2, int x3, int y3, int x4, int y4, int level )
+{
+ if( abs( level ) > bezier_recursion_limit )
+ {
+ return;
+ }
+
+ // Calculate all the mid-points of the line segments
+ //----------------------
+ int x12 = (x1 + x2) / 2;
+ int y12 = (y1 + y2) / 2;
+ int x23 = (x2 + x3) / 2;
+ int y23 = (y2 + y3) / 2;
+ int x34 = (x3 + x4) / 2;
+ int y34 = (y3 + y4) / 2;
+ int x123 = (x12 + x23) / 2;
+ int y123 = (y12 + y23) / 2;
+ int x234 = (x23 + x34) / 2;
+ int y234 = (y23 + y34) / 2;
+ int x1234 = (x123 + x234) / 2;
+ int y1234 = (y123 + y234) / 2;
+
+
+ // Try to approximate the full cubic curve by a single straight line
+ //------------------
+ int dx = x4 - x1;
+ int dy = y4 - y1;
+
+ double d2 = fabs( (double) ( (x2 - x4) * dy - (y2 - y4) * dx ) );
+ double d3 = fabs( (double) ( (x3 - x4) * dy - (y3 - y4) * dx ) );
+ double da1, da2, k;
+
+ switch( (int(d2 > bezier_curve_collinearity_epsilon) << 1) +
+ int(d3 > bezier_curve_collinearity_epsilon) )
+ {
+ case 0:
+
+ // All collinear OR p1==p4
+ //----------------------
+ k = dx * dx + dy * dy;
+ if( k == 0 )
+ {
+ d2 = calc_sq_distance( x1, y1, x2, y2 );
+ d3 = calc_sq_distance( x4, y4, x3, y3 );
+ }
+ else
+ {
+ k = 1 / k;
+ da1 = x2 - x1;
+ da2 = y2 - y1;
+ d2 = k * (da1 * dx + da2 * dy);
+ da1 = x3 - x1;
+ da2 = y3 - y1;
+ d3 = k * (da1 * dx + da2 * dy);
+ if( d2 > 0 && d2 < 1 && d3 > 0 && d3 < 1 )
+ {
+ // Simple collinear case, 1---2---3---4
+ // We can leave just two endpoints
+ return;
+ }
+ if( d2 <= 0 )
+ d2 = calc_sq_distance( x2, y2, x1, y1 );
+ else if( d2 >= 1 )
+ d2 = calc_sq_distance( x2, y2, x4, y4 );
+ else
+ d2 = calc_sq_distance( x2, y2, x1 + (int) d2 * dx,
+ y1 + (int) d2 * dy );
+
+ if( d3 <= 0 )
+ d3 = calc_sq_distance( x3, y3, x1, y1 );
+ else if( d3 >= 1 )
+ d3 = calc_sq_distance( x3, y3, x4, y4 );
+ else
+ d3 = calc_sq_distance( x3, y3, x1 + (int) d3 * dx,
+ y1 + (int) d3 * dy );
+ }
+ if( d2 > d3 )
+ {
+ if( d2 < bezier_distance_tolerance_square )
+ {
+ add_segment( wxPoint( x2, y2 ) );
+ return;
+ }
+ }
+ else
+ {
+ if( d3 < bezier_distance_tolerance_square )
+ {
+ add_segment( wxPoint( x3, y3 ) );
+ return;
+ }
+ }
+ break;
+
+ case 1:
+
+ // p1,p2,p4 are collinear, p3 is significant
+ //----------------------
+ if( d3 * d3 <= bezier_distance_tolerance_square * sqrt_len(dx, dy) )
+ {
+ if( bezier_angle_tolerance < bezier_curve_angle_tolerance_epsilon )
+ {
+ add_segment( wxPoint( x23, y23 ) );
+ return;
+ }
+
+ // Angle Condition
+ //----------------------
+ da1 = fabs( atan2( (double) ( y4 - y3 ), (double) ( x4 - x3 ) ) -
+ atan2( (double) ( y3 - y2 ), (double) ( x3 - x2 ) ) );
+ if( da1 >= M_PI )
+ da1 = 2 * M_PI - da1;
+
+ if( da1 < bezier_angle_tolerance )
+ {
+ add_segment( wxPoint( x2, y2 ) );
+ add_segment( wxPoint( x3, y3 ) );
+ return;
+ }
+
+ if( bezier_cusp_limit != 0.0 )
+ {
+ if( da1 > bezier_cusp_limit )
+ {
+ add_segment( wxPoint( x3, y3 ) );
+ return;
+ }
+ }
+ }
+ break;
+
+ case 2:
+
+ // p1,p3,p4 are collinear, p2 is significant
+ //----------------------
+ if( d2 * d2 <= bezier_distance_tolerance_square * sqrt_len(dx, dy) )
+ {
+ if( bezier_angle_tolerance < bezier_curve_angle_tolerance_epsilon )
+ {
+ add_segment( wxPoint( x23, y23 ) );
+ return;
+ }
+
+ // Angle Condition
+ //----------------------
+ da1 = fabs( atan2( (double) ( y3 - y2 ), (double) ( x3 - x2 ) ) -
+ atan2( (double) ( y2 - y1 ), (double) ( x2 - x1 ) ) );
+ if( da1 >= M_PI )
+ da1 = 2 * M_PI - da1;
+
+ if( da1 < bezier_angle_tolerance )
+ {
+ add_segment( wxPoint( x2, y2 ) );
+ add_segment( wxPoint( x3, y3 ) );
+ return;
+ }
+
+ if( bezier_cusp_limit != 0.0 )
+ {
+ if( da1 > bezier_cusp_limit )
+ {
+ add_segment( wxPoint( x2, y2 ) );
+ return;
+ }
+ }
+ }
+ break;
+
+ case 3:
+
+ // Regular case
+ //-----------------
+ if( (d2 + d3) * (d2 + d3) <= bezier_distance_tolerance_square * sqrt_len(dx, dy) )
+ {
+ // If the curvature doesn't exceed the distance_tolerance value
+ // we tend to finish subdivisions.
+ //----------------------
+ if( bezier_angle_tolerance < bezier_curve_angle_tolerance_epsilon )
+ {
+ add_segment( wxPoint( x23, y23 ) );
+ return;
+ }
+
+ // Angle & Cusp Condition
+ //----------------------
+ k = atan2( (double) ( y3 - y2 ), (double) ( x3 - x2 ) );
+ da1 = fabs( k - atan2( (double) ( y2 - y1 ),
+ (double) ( x2 - x1 ) ) );
+ da2 = fabs( atan2( (double) ( y4 - y3 ),
+ (double) ( x4 - x3 ) ) - k );
+ if( da1 >= M_PI )
+ da1 = 2 * M_PI - da1;
+ if( da2 >= M_PI )
+ da2 = 2 * M_PI - da2;
+
+ if( da1 + da2 < bezier_angle_tolerance )
+ {
+ // Finally we can stop the recursion
+ //----------------------
+ add_segment( wxPoint( x23, y23 ) );
+ return;
+ }
+
+ if( bezier_cusp_limit != 0.0 )
+ {
+ if( da1 > bezier_cusp_limit )
+ {
+ add_segment( wxPoint( x2, y2 ) );
+ return;
+ }
+
+ if( da2 > bezier_cusp_limit )
+ {
+ add_segment( wxPoint( x3, y3 ) );
+ return;
+ }
+ }
+ }
+ break;
+ }
+
+ // Continue subdivision
+ //----------------------
+ recursive_bezier( x1, y1, x12, y12, x123, y123, x1234, y1234, level + 1 );
+ recursive_bezier( x1234, y1234, x234, y234, x34, y34, x4, y4, level + 1 );
+}