diff options
Diffstat (limited to 'OSCAD/LPCSim/report/presentation/SMCSim_SFD.tex')
-rw-r--r-- | OSCAD/LPCSim/report/presentation/SMCSim_SFD.tex | 737 |
1 files changed, 0 insertions, 737 deletions
diff --git a/OSCAD/LPCSim/report/presentation/SMCSim_SFD.tex b/OSCAD/LPCSim/report/presentation/SMCSim_SFD.tex deleted file mode 100644 index f2cd6dd..0000000 --- a/OSCAD/LPCSim/report/presentation/SMCSim_SFD.tex +++ /dev/null @@ -1,737 +0,0 @@ -%$Header: /cvsroot/latex-beamer/latex-beamer/solutions/generic-talks/generic-ornate-15min-45min.en.tex,v 1.4 2004/10/07 20:53:08 tantau Exp $ -\documentclass{beamer} -\mode<presentation> -{ - \usecolortheme{seahorse} - \usefonttheme{professionalfonts} - \useinnertheme{rounded} - \useoutertheme{shadow} -% \useoutertheme{smoothbars} -} -%\setbeamertemplate{background canvas}[vertical shading][bottom=white!10,top=blue!5] -\usepackage{verbatim} -\usepackage[english]{babel} -\usepackage[latin1]{inputenc} -\usepackage{pgf,pgfarrows,pgfnodes,pgfautomata,pgfheaps,pgfshade} -\usepackage{amsmath,amsfonts,amsthm,amssymb} -\usepackage{times} -\usepackage[T1]{fontenc} -\usepackage{graphics} -\usepackage{graphicx} -%\usepackage{psfig} -\usepackage{algorithmic} - -\title -{Scilab based Mini Circuit Simulator} - -\author[] -{Yogesh Dilip Save} -\institute -{ - Department of Electrical Engineering\\ - Indian Institute of Technology, Bombay -} -%\pgfdeclareimage[height=0.7cm]{university-logo}{iitblogo.eps} -%\logo{\pgfuseimage{university-logo}} - - -\date[seminar] % (optional) -{Sept., 2011 / \small{Software Freedom Day}} - - -\begin{document} -%*************************************************************************************** -\begin{frame} - \titlepage -\end{frame} -%*************************************************************************************** -%\begin{frame} -% \frametitle{Presentation Outline} -% \setcounter{tocdepth}{1} -% \tableofcontents -%\end{frame} -%*************************************************************************************** - -\section{Introduction} -\begin{frame} - \frametitle{Motivation} -\begin{block}{Objective} -To assist students in improving their knowledge in field of circuit simulation. -\end{block} -\begin{block}{Problem with commercial simulators} -\begin{itemize} -\item Generally software codes are not available. -\item Software codes are written in higher level language (C Programming and Fortran....). -\item Complex due to implementation of many features and complex modelling. -\end{itemize} -\end{block} -\end{frame} - -\begin{frame} - \frametitle{Motivation} -\begin{block}{Objective} -To assist students in improving their knowledge in field of circuit simulation. -\end{block} -\begin{block}{Mini simulator} -\begin{itemize} -\item used Scilab for coding. -\item integrated least number of component. -\item different versions for add-on features. -\end{itemize} -\end{block} -\end{frame} - -\section{Features} -\begin{frame} - \frametitle{Features} -\begin{itemize} - \item {\color{red} Various Analysis options.} - \begin{itemize} - \item Operating Point Analysis - \item DC Analysis - \item Transient Analysis - \item AC Analysis - \end{itemize} - \item Facility to define a new component. - \item Provides circuit equations for debugging as well as learning circuit simulator. - \item Easy to integrate and test a new method such as convergence technique, integration method etc. -\end{itemize} -\end{frame} - -\begin{frame} -\frametitle{Full Wave Bridge Rectifier with Filter} -\begin{minipage}[!b]{0.47\linewidth} % A minipage that covers half the page - \begin{small} {\bf Circuit Diagram and Netlist} \end{small} -\vspace{-0.5cm} -\begin{figure}[h] -\centering -\includegraphics[scale=0.47]{../figures/bridgeFilter.eps} -\end{figure} -\vspace{-0.5cm} -\begin{tiny} -* Full Wave Bridge Rectifier -\newline -\vspace{-0.1cm} -V1 1 2 sine (5 50) -\newline -\vspace{-0.1cm} -D1 1 3 mymodel (1e-8 0.026) -\newline -\vspace{-0.1cm} -D2 2 3 mymodel (1e-8 0.026) -\newline -\vspace{-0.1cm} -D3 0 1 mymodel (1e-8 0.026) -\newline -\vspace{-0.1cm} -D4 0 2 mymodel (1e-8 0.026) -\newline -\vspace{-0.1cm} -R1 3 0 10000 -\newline -\vspace{-0.1cm} -C1 3 0 1e-2 -\newline -\vspace{-0.1cm} -.tran 0 100 0.5 -\newline -\vspace{-0.1cm} -.plot v(1)-v(2) v(3) -\newline -\vspace{-0.1cm} -.end -\end{tiny} -\end{minipage} -\hspace{0.1cm} % To get a little bit of space between the figures -\begin{minipage}[!b]{0.47\linewidth} % A minipage that covers half the page -\begin{figure}[h] -\centering -\includegraphics[scale=0.3]{../figures/bridgeFilterOutput.eps} -\caption{Input-Output Waveform} -\end{figure} -\end{minipage} -\end{frame} - -\begin{frame} - \frametitle{Features} -\begin{itemize} - \item Various Analysis options. - \begin{itemize} - \item Operating Point Analysis - \item DC Analysis - \item Transient Analysis - \item AC Analysis - \end{itemize} - \item {\color{red} Facility to define a new component.} - \item Provides circuit equations for debugging as well as learning circuit simulator. - \item Easy to integrate and test a new method such as convergence technique, integration method etc. -\end{itemize} -\end{frame} - -\begin{frame} -\frametitle{User defined Components} -Consider, a non-linear resistance, -$$I=\frac{1}{R}V^3$$ - -\begin{itemize} -\item Create a file \$CompName.sci -\item Define -\begin{itemize} -\item Function in the $i=g(v)$ form -\item Jacobian of the function -\end{itemize} -\end{itemize} - -%{\bf Syntax:-} -%\newline -%function I=\$CompName\_func(voltage,parameter) -%\$par\_2=parameter(2) -%\$par\_3=parameter(3) -\end{frame} - -\begin{frame} -\frametitle{Non-linear Resistance} -\begin{minipage}[!b]{0.43\linewidth} % A minipage that covers half the page -\begin{figure}[h] -\centering -\includegraphics[scale=0.7]{../figures/myR.eps} -\end{figure} -\begin{tiny} -function I=myR\_func(voltage,param)\newline -\hspace*{1cm}R=param(2); \newline -\hspace*{1cm}I=1/R*(voltage$^3$);\newline -endfunction - -function Gj=myR\_Jacobian(voltage,param)\newline -\hspace*{1cm}R=param(2); \newline -\hspace*{1cm}Gj=3/R*(voltage$^2$);\newline -endfunction -\end{tiny} -\end{minipage} -\hspace{0.5cm} % To get a little bit of space between the figures -\begin{minipage}[!b]{0.5\linewidth} % A minipage that covers half the page -\begin{figure}[h] -\centering -\includegraphics[scale=0.3]{../figures/myROutput.eps} -\end{figure} -\end{minipage} -\end{frame} - -\begin{frame} - \frametitle{Features} -\begin{itemize} - \item Various Analysis options. - \begin{itemize} - \item Operating Point Analysis - \item DC Analysis - \item Transient Analysis - \item AC Analysis - \end{itemize} - \item Facility to define a new component. - \item {\color{red} Provides circuit equations for debugging as well as learning circuit simulator.} - \item Easy to integrate and test a new method such as convergence technique, integration method etc. -\end{itemize} -\end{frame} - -\begin{frame} -\begin{block}{Example} -%\begin{minipage}[!b]{0.4\linewidth} % A minipage that covers half the page -\begin{figure}[!ht] -\begin{center} -\includegraphics[scale=0.35]{../figures/modified_figure.eps} -\caption{ Example for MNA } \label{modifiedfig} -\end{center} -\end{figure} -%\end{minipage} -%\begin{minipage}[!b]{0.55\linewidth} % A minipage that covers half the page -\begin{tiny} -$$\left[ -\begin{array}{cccccc} -G_{1}+G_{4} & -G_{1} & -G_{4} & 1 & 0 \\ --G_{1} & G_{1}+G_{2}+G_{3} & -G_{3} & 0 & 0 \\ --G_{4} & -G_{3} & G_{3}+G_{4} & 0 & 1 \\ -1 & 0 & 0 & 0 & 0 \\ -0 & 0 & 1 & 0 & 0 -\end{array} -\right] \left[ -\begin{array}{c} -v_{1}\\ -v_{2}\\ -v_{3}\\ -i_{V_1}\\ -i_{V_2}\\ -\end{array} -\right]= \left[ -\begin{array}{c} -0\\ -0\\ -0\\ -V_{1}\\ -V_{2} -\end{array} -\right]$$ -\end{tiny} -%\end{minipage} -\end{block} -\end{frame} - -\begin{frame} - \frametitle{Features} -\begin{itemize} - \item Various Analysis options. - \begin{itemize} - \item Operating Point Analysis - \item DC Analysis - \item Transient Analysis - \item AC Analysis - \end{itemize} - \item Facility to define a new component. - \item Provides circuit equations for debugging as well as learning circuit simulator. - \item {\color{red} Easy to integrate and test a new method such as convergence technique, integration method etc.} -\end{itemize} -\end{frame} - -\begin{frame} - \begin{center} - {\Huge Thank You} -\end{center} -% \smiley -\end{frame} -% -% \section{Operating Point Analysis} -% \begin{frame} -% \begin{block}{Operating Point (OP) Analysis} -% \begin{itemize} -% \item OP Analysis is the central part of a circuit simulator. -% \item The equations that describe the electrical system are nonlinear and algebraic and their solution gives operating point. -% \item Systems of nonlinear equations are solved by iteratively formulating and solving systems of linear algebraic equations. -% \item The overall efficiency of a circuit simulator is dependent upon the performance of the linear DC analyzer. -% %\item Thus, our work is towards improving the performance of linear DC Analyzers and handling convergence issues related to large size nonlinear circuits. -% \end{itemize} -% \end{block} -% \end{frame} -% -% \begin{frame} -% \begin{block}{\small Nodal Analysis} -% \begin{itemize} -% \begin{small} -% \item Applicable when the network has only current sources and conductances type devices i.e., $i=g(v)$. -% \item Let, $\mathbf{A}_r$ be the reduced incidence matrix of $\cal{G}$ which is a representative matrix of $V_v(\cal{G})$. \\ -% \end{small} -% \begin{tiny} -% The KCL constraints are -% $$\mathbf{A_ri}=\mathbf{0}$$ -% $$\left[\begin{array}{cc} -% \mathbf{A}_{rG} & \mathbf{A}_{rJ} -% \end{array}\right] -% \left[\begin{array}{c} -% \mathbf{i}_{G} \\ -% \mathbf{i}_{J} -% \end{array}\right] -% =\mathbf{0}$$ -% $$\mathbf{A}_{rG}\mathbf{i}_{G}=-\mathbf{A}_{rJ}\mathbf{i}_{J}$$ -% -% $$\mathbf{A}_{rG}\mathbf{G}\mathbf{v}_{G}=-\mathbf{A}_{rJ}\mathbf{i}_{J}\ \ \ \ \ \ \ \ (As, \mathbf{i}_{G}=\mathbf{G}\mathbf{v}_{G})$$ -% -% The KVE constraints are -% $$\left[\begin{array}{c} -% \mathbf{v}_{G} \\ -% \mathbf{v}_{J} -% \end{array}\right] -% = -% \left[\begin{array}{c} -% \mathbf{A}_{rG}^T \\ -% \mathbf{A}_{rJ}^T -% \end{array}\right] -% \mathbf{v}_n$$ -% -% \begin{equation} -% \mathbf{A}_{rG}\mathbf{G}\mathbf{A}_{rG}^{T}\mathbf{v}_{n}=-\mathbf{A}_{rJ}\mathbf{i}_{J} -% \label{nodal_equation} -% \end{equation} -% \end{tiny} -% \end{itemize} -% \end{block} -% \end{frame} -% -% \begin{frame} -% \begin{block}{Matrix Formulation} -% \begin{itemize} -% \item The diagonal entries of the matrix are the sum of conductances incident on the corresponding nodes. -% \item The off diagonal entries $(i,j)^{th}$ of the matrix is the negative of conductances between node $i$ and $j$. -% \item The $\mathbf{A}_{rJ}\mathbf{i}_{J}$ is the sum of current sources leaving the nodes. -% \end{itemize} -% \end{block} -% \begin{block}{Example} -% \end{block} -% \begin{minipage}[!b]{0.4\linewidth} % A minipage that covers half the page -% \begin{figure}[h] -% \centering -% \includegraphics[scale=0.35]{../figures/nodal_figure.eps} -% \end{figure} -% \end{minipage} -% \begin{minipage}[!b]{0.55\linewidth} % A minipage that covers half the page -% \begin{tiny} -% $$\left[ -% \begin{array}{ccc} -% G_{1}+G_{2} & -G_{2} & 0\\ -% -G_{2} & G_{2}+G_{3}+G_{4} & -G_{4}\\ -% 0 & -G_{4} & G_{4}+G_{5} -% \end{array} -% \right] \left[ -% \begin{array}{c} -% v_{1}\\ -% v_{2}\\ -% v_{3} -% \end{array} -% \right]= \left[ -% \begin{array}{c} -% I_{1}\\ -% 0\\ -% I_{2} -% \end{array} -% \right]$$ -% \end{tiny} -% \end{minipage} -% \end{frame} -% -% -% \begin{frame} -% \begin{block}{Modified Nodal Analysis} -% \begin{small} -% \begin{itemize} -% \item applicable to all kinds of networks. -% \item Let $\mathbf{A}_{r}$ be the reduced incidence matrix of ${\cal{G}}$ -% By Tellegan's theorem, -% \begin{tiny} -% $$\mathbf{A_ri}=\mathbf{0}$$ -% $$\left[\begin{array}{ccc} -% \mathbf{A}_{rG} & \mathbf{A}_{rT} & \mathbf{A}_{rJ} -% \end{array}\right] -% \left[\begin{array}{c} -% \mathbf{i}_{G} \\ -% \mathbf{i}_{T} \\ -% \mathbf{i}_{J} -% \end{array}\right] -% =\mathbf{0}$$ -% -% $$\left[\begin{array}{cc} -% \mathbf{A}_{rG}\mathbf{G} & \mathbf{A}_{rT} -% \end{array}\right] -% \left[\begin{array}{c} -% \mathbf{v}_{G} \\ -% \mathbf{i}_{T} -% \end{array}\right] -% =-\mathbf{A}_{rJ}\mathbf{i}_{J}$$ -% -% \begin{equation} -% \label{mna_eq1} -% \left[\begin{array}{cc} -% \mathbf{A}_{rG}\mathbf{G}\mathbf{A}_{rG}^{T} & \mathbf{A}_{rT} -% \end{array}\right] -% \left[\begin{array}{c} -% \mathbf{v}_{n} \\ -% \mathbf{i}_{T} -% \end{array}\right] -% =-\mathbf{A}_{rJ}\mathbf{i}_{J} -% \end{equation} -% -% Device characteristics of the branches in $T$ be -% $$\left[\begin{array}{cc} -% \mathbf{M} & \mathbf{N} -% \end{array}\right] -% \left[\begin{array}{c} -% \mathbf{i}_{T} \\ -% \mathbf{v}_{T} -% \end{array}\right] -% =\mathbf{S}_{T}$$ -% -% \begin{equation} -% \label{mna_eq2} -% \left[\begin{array}{cc} -% \mathbf{NA}_{rT}^{T} & \mathbf{M} -% \end{array}\right] -% \left[\begin{array}{c} -% \mathbf{v}_{n} \\ -% \mathbf{i}_{T} -% \end{array}\right] -% =\mathbf{S}_{T} -% \end{equation} -% \end{tiny} -% \end{itemize} -% \end{small} -% \end{block} -% \end{frame} -% -% \begin{frame} -% \begin{block}{Example} -% %\begin{minipage}[!b]{0.4\linewidth} % A minipage that covers half the page -% \begin{figure}[!ht] -% \begin{center} -% \includegraphics[scale=0.35]{../figures/modified_figure.eps} -% \caption{ Example for MNA } \label{modifiedfig} -% \end{center} -% \end{figure} -% %\end{minipage} -% %\begin{minipage}[!b]{0.55\linewidth} % A minipage that covers half the page -% \begin{tiny} -% $$\left[ -% \begin{array}{cccccc} -% G_{1}+G_{4} & -G_{1} & -G_{4} & 1 & 0 \\ -% -G_{1} & G_{1}+G_{2}+G_{3} & -G_{3} & 0 & 0 \\ -% -G_{4} & -G_{3} & G_{3}+G_{4} & 0 & 1 \\ -% 1 & 0 & 0 & 0 & 0 \\ -% 0 & 0 & 1 & 0 & 0 -% \end{array} -% \right] \left[ -% \begin{array}{c} -% v_{1}\\ -% v_{2}\\ -% v_{3}\\ -% i_{V_1}\\ -% i_{V_2}\\ -% \end{array} -% \right]= \left[ -% \begin{array}{c} -% 0\\ -% 0\\ -% 0\\ -% V_{1}\\ -% V_{2} -% \end{array} -% \right]$$ -% \end{tiny} -% %\end{minipage} -% \end{block} -% \end{frame} -% -% \begin{frame} -% \frametitle{Controlled Sources} -% \begin{minipage}[!b]{0.47\linewidth} % A minipage that covers half the page -% \begin{figure}[!ht] -% \centering -% \includegraphics[scale=0.6]{../figures/VCCS.eps} -% \caption{Voltage Controlled Current Source (VCCS)} -% \label{vccs} -% \end{figure} -% \end{minipage} -% %\hspace{0.5cm} % To get a little bit of space between the figures -% \begin{minipage}[!b]{0.47\linewidth} -% \begin{figure}[!ht] -% \centering -% \includegraphics[scale=0.6]{../figures/VCVS.eps} -% \caption{Voltage Controlled Voltage Source (VCVS) } -% \label{vcvs} -% \end{figure} -% \end{minipage} -% \begin{minipage}[!b]{0.47\linewidth} % A minipage that covers half the page -% \begin{figure}[!ht] -% \centering -% \includegraphics[scale=0.6]{../figures/CCCS.eps} -% \caption{Current Controlled Current Source (CCCS)} -% \label{cccs} -% \end{figure} -% \end{minipage} -% %\hspace{0.5cm} % To get a little bit of space between the figures -% \begin{minipage}[!b]{0.47\linewidth} -% \begin{figure}[!ht] -% \centering -% \includegraphics[scale=0.6]{../figures/CCVS.eps} -% \caption{Current Controlled Voltage Source (CCVS) } -% \label{ccvs} -% \end{figure} -% \end{minipage} -% \begin{small} -% \begin{itemize} -% \item In voltage controlled devices, we have added a $0A$ current source as controlling branch -% %without disturbing the incidence relationship of existing edges (i.e., the addition is 'soldering type') and its voltage is used for calculating the value of the devices. -% \item In current controlled devices, we have added a $0V$ voltage source as controlling branch -% %by splitting a node (i.e., plier type entry) and the current through it is used for calculating the value of the devices. -% \end{itemize} -% \end{small} -% \end{frame} -% -% \begin{frame} -% \frametitle{Linearization of Nonlinear Elements} -% \begin{minipage}[!b]{0.5\linewidth} -% Diode characteristics, -% $$I_D=I_S(e^{qV/kT}-1)$$ -% $$I_D=I_D|_{V=V_0} + (V-V_0)\frac{I_D}{V}|_{V=V_0}$$ -% $$I_D=I_{D0}+(V-V_0)G_{D0}$$ -% \begin{figure}[h] -% \begin{center} -% \includegraphics[scale=0.4]{../figures/diodeI.eps} -% \begin{small}Modeling of Diode\end{small} -% \label{diodeI} -% \end{center} -% \end{figure} -% \end{minipage} -% \begin{minipage}[!b]{0.4\linewidth} -% \begin{figure}[h] -% \begin{center} -% \includegraphics[scale=0.3]{../figures/diodechar1.eps} -% \begin{small}Linearized approximation of diode model\end{small} -% \begin{tiny}$$I_{DN0}=I_{D0}-V_0G_{D0}$$\end{tiny} -% \end{center} -% \end{figure} -% \end{minipage} -% \end{frame} -% -% -% \begin{frame} -% {\bf Procedure:}{Operating Point Analysis} -% \small -% \begin{algorithmic}[1] -% \STATE Find Node Potential and Current through devices whose device characteristic can not be expressed in terms of voltage. -% \STATE Find branch voltage and node potentail. -% \STATE Find branch current from branch voltage using device characteristics. -% \IF{Non-linear component} -% \STATE {\bf NR:} Check device characteristics of non-linear devices. -% \IF {Device characteristics is not satisfied} -% \STATE Call Newton Raphson procedure -% \STATE Find Node Potential and Current through devices whose device characteristic can not be expressed in terms of voltage. -% \STATE Find branch current from branch voltage using device characteristics. -% \STATE Go to {\bf NR} -% \ENDIF -% \STATE Check for KCL -% \ENDIF -% \end{algorithmic} -% \normalsize -% \end{frame} -% -% \begin{frame} -% \frametitle{Full Wave Bridge Rectifier} -% \begin{minipage}[!b]{0.4\linewidth} % A minipage that covers half the page -% \begin{figure}[h] -% \centering -% \includegraphics[scale=0.5]{../figures/bridge.eps} -% \end{figure} -% \end{minipage} -% \hspace{0.5cm} % To get a little bit of space between the figures -% \begin{minipage}[!b]{0.5\linewidth} % A minipage that covers half the page -% \begin{figure}[h] -% \centering -% \includegraphics[scale=0.3]{../figures/bridgeOutput.eps} -% \end{figure} -% \end{minipage} -% \end{frame} -% -% \section{DC Analysis} -% \begin{frame} -% \frametitle{DC Analysis} -% {\bf Procedure:}{DC Analysis} -% \small -% \begin{algorithmic}[1] -% \STATE Modify the value of the sweep source and update Modified Nodal matrix. -% \STATE Do Operating Point Analysis. -% \end{algorithmic} -% \normalsize -% \end{frame} -% -% \begin{frame} -% \frametitle{Voltage Sweep} -% \begin{minipage}[!b]{0.4\linewidth} % A minipage that covers half the page -% \begin{figure}[h] -% \centering -% \includegraphics[scale=0.8]{../figures/V_Sweep.eps} -% \caption{Example of DC Analysis (Vsweep.ckt)} -% \end{figure} -% \end{minipage} -% \hspace{0.5cm} % To get a little bit of space between the figures -% \begin{minipage}[!b]{0.5\linewidth} % A minipage that covers half the page -% \begin{figure}[h] -% \centering -% \includegraphics[scale=0.3]{../figures/V_SweepOutput.eps} -% \end{figure} -% \end{minipage} -% \end{frame} -% -% \section{Transient Analysis} -% \begin{frame} -% \begin{block}{What is Transient Analysis?} -% \begin{itemize} -% \item Computes the response of a circuit as function of time. -% \item Time is discretized and the solution is computed piecewise. -% \end{itemize} -% \end{block} -% \begin{block}{Important factors} -% \begin{itemize} -% \item Proper time Stepping. -% \item Integration methods. -% \end{itemize} -% \end{block} -% \end{frame} -% -% \begin{frame} -% \frametitle{Discreatization} -% Consider, a capacitor -% \begin{tiny} -% $$I_C(t_n)=C\frac{\partial{V}_C(t_n)}{\partial{t}}$$ -% Using Backward Euler's method, -% $$I_C(t_n)=C\frac{V(t_n)-V(t_{n-1})}{t_n-t_{n-1}}$$ -% $$I_C(t_n)=\frac{C}{h}V(t_n)-\frac{C}{h}V(t_{n-1})$$ -% $$I_C(t_n)=G_C^{(k)}V(t_n)-I_C^{(k)}$$ -% \end{tiny} -% \begin{figure}[h] -% \centering -% \includegraphics[scale=0.8]{../figures/Ceq.eps} -% \end{figure} -% \end{frame} -% -% \begin{frame} -% \frametitle{RC Circuit} -% \begin{minipage}[!b]{0.4\linewidth} % A minipage that covers half the page -% \begin{figure}[h] -% \centering -% \includegraphics[scale=0.8]{../figures/RC.eps} -% \end{figure} -% \end{minipage} -% \hspace{0.5cm} % To get a little bit of space between the figures -% \begin{minipage}[!b]{0.5\linewidth} % A minipage that covers half the page -% \begin{figure}[h] -% \centering -% \includegraphics[scale=0.3]{../figures/RCOutput.eps} -% \end{figure} -% \end{minipage} -% \end{frame} -% -% -% \begin{frame} -% \frametitle{PseudoCode} -% {\bf Procedure:}{Transient Analysis} -% \small -% \begin{algorithmic}[1] -% \STATE Discretize time dependent Component and Update Modified Nodal matrix. -% \STATE Do Operating Point Analysis. -% \end{algorithmic} -% \normalsize -% -% {\bf Procedure:}{Discretization} -% \small -% \begin{algorithmic}[1] -% \STATE Compute time dependent source value at time t. -% \STATE Compute the values of static model of dynamic component at time t. -% \STATE Update Modified Nodal matrix. -% \end{algorithmic} -% \normalsize -% \end{frame} -% -% %\begin{frame} -% %\frametitle{CMOS Inverter} -% %\begin{minipage}[!b]{0.4\linewidth} % A minipage that covers half the page -% %\begin{figure}[h] -% %\centering -% %\includegraphics[scale=0.4]{../figures/inverter.eps} -% %\end{figure} -% %\end{minipage} -% %\hspace{0.5cm} % To get a little bit of space between the figures -% %\begin{minipage}[!b]{0.5\linewidth} % A minipage that covers half the page -% %\begin{figure}[h] -% %\centering -% %\includegraphics[scale=0.3]{../figures/inverterOutput.eps} -% %\end{figure} -% %\end{minipage} -% %\end{frame} -% -\end{document} - |