summaryrefslogtreecommitdiff
path: root/OSCAD/LPCSim/report/presentation/SMCSim_SFD.tex
diff options
context:
space:
mode:
Diffstat (limited to 'OSCAD/LPCSim/report/presentation/SMCSim_SFD.tex')
-rw-r--r--OSCAD/LPCSim/report/presentation/SMCSim_SFD.tex737
1 files changed, 737 insertions, 0 deletions
diff --git a/OSCAD/LPCSim/report/presentation/SMCSim_SFD.tex b/OSCAD/LPCSim/report/presentation/SMCSim_SFD.tex
new file mode 100644
index 0000000..f2cd6dd
--- /dev/null
+++ b/OSCAD/LPCSim/report/presentation/SMCSim_SFD.tex
@@ -0,0 +1,737 @@
+%$Header: /cvsroot/latex-beamer/latex-beamer/solutions/generic-talks/generic-ornate-15min-45min.en.tex,v 1.4 2004/10/07 20:53:08 tantau Exp $
+\documentclass{beamer}
+\mode<presentation>
+{
+ \usecolortheme{seahorse}
+ \usefonttheme{professionalfonts}
+ \useinnertheme{rounded}
+ \useoutertheme{shadow}
+% \useoutertheme{smoothbars}
+}
+%\setbeamertemplate{background canvas}[vertical shading][bottom=white!10,top=blue!5]
+\usepackage{verbatim}
+\usepackage[english]{babel}
+\usepackage[latin1]{inputenc}
+\usepackage{pgf,pgfarrows,pgfnodes,pgfautomata,pgfheaps,pgfshade}
+\usepackage{amsmath,amsfonts,amsthm,amssymb}
+\usepackage{times}
+\usepackage[T1]{fontenc}
+\usepackage{graphics}
+\usepackage{graphicx}
+%\usepackage{psfig}
+\usepackage{algorithmic}
+
+\title
+{Scilab based Mini Circuit Simulator}
+
+\author[]
+{Yogesh Dilip Save}
+\institute
+{
+ Department of Electrical Engineering\\
+ Indian Institute of Technology, Bombay
+}
+%\pgfdeclareimage[height=0.7cm]{university-logo}{iitblogo.eps}
+%\logo{\pgfuseimage{university-logo}}
+
+
+\date[seminar] % (optional)
+{Sept., 2011 / \small{Software Freedom Day}}
+
+
+\begin{document}
+%***************************************************************************************
+\begin{frame}
+ \titlepage
+\end{frame}
+%***************************************************************************************
+%\begin{frame}
+% \frametitle{Presentation Outline}
+% \setcounter{tocdepth}{1}
+% \tableofcontents
+%\end{frame}
+%***************************************************************************************
+
+\section{Introduction}
+\begin{frame}
+ \frametitle{Motivation}
+\begin{block}{Objective}
+To assist students in improving their knowledge in field of circuit simulation.
+\end{block}
+\begin{block}{Problem with commercial simulators}
+\begin{itemize}
+\item Generally software codes are not available.
+\item Software codes are written in higher level language (C Programming and Fortran....).
+\item Complex due to implementation of many features and complex modelling.
+\end{itemize}
+\end{block}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Motivation}
+\begin{block}{Objective}
+To assist students in improving their knowledge in field of circuit simulation.
+\end{block}
+\begin{block}{Mini simulator}
+\begin{itemize}
+\item used Scilab for coding.
+\item integrated least number of component.
+\item different versions for add-on features.
+\end{itemize}
+\end{block}
+\end{frame}
+
+\section{Features}
+\begin{frame}
+ \frametitle{Features}
+\begin{itemize}
+ \item {\color{red} Various Analysis options.}
+ \begin{itemize}
+ \item Operating Point Analysis
+ \item DC Analysis
+ \item Transient Analysis
+ \item AC Analysis
+ \end{itemize}
+ \item Facility to define a new component.
+ \item Provides circuit equations for debugging as well as learning circuit simulator.
+ \item Easy to integrate and test a new method such as convergence technique, integration method etc.
+\end{itemize}
+\end{frame}
+
+\begin{frame}
+\frametitle{Full Wave Bridge Rectifier with Filter}
+\begin{minipage}[!b]{0.47\linewidth} % A minipage that covers half the page
+ \begin{small} {\bf Circuit Diagram and Netlist} \end{small}
+\vspace{-0.5cm}
+\begin{figure}[h]
+\centering
+\includegraphics[scale=0.47]{../figures/bridgeFilter.eps}
+\end{figure}
+\vspace{-0.5cm}
+\begin{tiny}
+* Full Wave Bridge Rectifier
+\newline
+\vspace{-0.1cm}
+V1 1 2 sine (5 50)
+\newline
+\vspace{-0.1cm}
+D1 1 3 mymodel (1e-8 0.026)
+\newline
+\vspace{-0.1cm}
+D2 2 3 mymodel (1e-8 0.026)
+\newline
+\vspace{-0.1cm}
+D3 0 1 mymodel (1e-8 0.026)
+\newline
+\vspace{-0.1cm}
+D4 0 2 mymodel (1e-8 0.026)
+\newline
+\vspace{-0.1cm}
+R1 3 0 10000
+\newline
+\vspace{-0.1cm}
+C1 3 0 1e-2
+\newline
+\vspace{-0.1cm}
+.tran 0 100 0.5
+\newline
+\vspace{-0.1cm}
+.plot v(1)-v(2) v(3)
+\newline
+\vspace{-0.1cm}
+.end
+\end{tiny}
+\end{minipage}
+\hspace{0.1cm} % To get a little bit of space between the figures
+\begin{minipage}[!b]{0.47\linewidth} % A minipage that covers half the page
+\begin{figure}[h]
+\centering
+\includegraphics[scale=0.3]{../figures/bridgeFilterOutput.eps}
+\caption{Input-Output Waveform}
+\end{figure}
+\end{minipage}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Features}
+\begin{itemize}
+ \item Various Analysis options.
+ \begin{itemize}
+ \item Operating Point Analysis
+ \item DC Analysis
+ \item Transient Analysis
+ \item AC Analysis
+ \end{itemize}
+ \item {\color{red} Facility to define a new component.}
+ \item Provides circuit equations for debugging as well as learning circuit simulator.
+ \item Easy to integrate and test a new method such as convergence technique, integration method etc.
+\end{itemize}
+\end{frame}
+
+\begin{frame}
+\frametitle{User defined Components}
+Consider, a non-linear resistance,
+$$I=\frac{1}{R}V^3$$
+
+\begin{itemize}
+\item Create a file \$CompName.sci
+\item Define
+\begin{itemize}
+\item Function in the $i=g(v)$ form
+\item Jacobian of the function
+\end{itemize}
+\end{itemize}
+
+%{\bf Syntax:-}
+%\newline
+%function I=\$CompName\_func(voltage,parameter)
+%\$par\_2=parameter(2)
+%\$par\_3=parameter(3)
+\end{frame}
+
+\begin{frame}
+\frametitle{Non-linear Resistance}
+\begin{minipage}[!b]{0.43\linewidth} % A minipage that covers half the page
+\begin{figure}[h]
+\centering
+\includegraphics[scale=0.7]{../figures/myR.eps}
+\end{figure}
+\begin{tiny}
+function I=myR\_func(voltage,param)\newline
+\hspace*{1cm}R=param(2); \newline
+\hspace*{1cm}I=1/R*(voltage$^3$);\newline
+endfunction
+
+function Gj=myR\_Jacobian(voltage,param)\newline
+\hspace*{1cm}R=param(2); \newline
+\hspace*{1cm}Gj=3/R*(voltage$^2$);\newline
+endfunction
+\end{tiny}
+\end{minipage}
+\hspace{0.5cm} % To get a little bit of space between the figures
+\begin{minipage}[!b]{0.5\linewidth} % A minipage that covers half the page
+\begin{figure}[h]
+\centering
+\includegraphics[scale=0.3]{../figures/myROutput.eps}
+\end{figure}
+\end{minipage}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Features}
+\begin{itemize}
+ \item Various Analysis options.
+ \begin{itemize}
+ \item Operating Point Analysis
+ \item DC Analysis
+ \item Transient Analysis
+ \item AC Analysis
+ \end{itemize}
+ \item Facility to define a new component.
+ \item {\color{red} Provides circuit equations for debugging as well as learning circuit simulator.}
+ \item Easy to integrate and test a new method such as convergence technique, integration method etc.
+\end{itemize}
+\end{frame}
+
+\begin{frame}
+\begin{block}{Example}
+%\begin{minipage}[!b]{0.4\linewidth} % A minipage that covers half the page
+\begin{figure}[!ht]
+\begin{center}
+\includegraphics[scale=0.35]{../figures/modified_figure.eps}
+\caption{ Example for MNA } \label{modifiedfig}
+\end{center}
+\end{figure}
+%\end{minipage}
+%\begin{minipage}[!b]{0.55\linewidth} % A minipage that covers half the page
+\begin{tiny}
+$$\left[
+\begin{array}{cccccc}
+G_{1}+G_{4} & -G_{1} & -G_{4} & 1 & 0 \\
+-G_{1} & G_{1}+G_{2}+G_{3} & -G_{3} & 0 & 0 \\
+-G_{4} & -G_{3} & G_{3}+G_{4} & 0 & 1 \\
+1 & 0 & 0 & 0 & 0 \\
+0 & 0 & 1 & 0 & 0
+\end{array}
+\right] \left[
+\begin{array}{c}
+v_{1}\\
+v_{2}\\
+v_{3}\\
+i_{V_1}\\
+i_{V_2}\\
+\end{array}
+\right]= \left[
+\begin{array}{c}
+0\\
+0\\
+0\\
+V_{1}\\
+V_{2}
+\end{array}
+\right]$$
+\end{tiny}
+%\end{minipage}
+\end{block}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Features}
+\begin{itemize}
+ \item Various Analysis options.
+ \begin{itemize}
+ \item Operating Point Analysis
+ \item DC Analysis
+ \item Transient Analysis
+ \item AC Analysis
+ \end{itemize}
+ \item Facility to define a new component.
+ \item Provides circuit equations for debugging as well as learning circuit simulator.
+ \item {\color{red} Easy to integrate and test a new method such as convergence technique, integration method etc.}
+\end{itemize}
+\end{frame}
+
+\begin{frame}
+ \begin{center}
+ {\Huge Thank You}
+\end{center}
+% \smiley
+\end{frame}
+%
+% \section{Operating Point Analysis}
+% \begin{frame}
+% \begin{block}{Operating Point (OP) Analysis}
+% \begin{itemize}
+% \item OP Analysis is the central part of a circuit simulator.
+% \item The equations that describe the electrical system are nonlinear and algebraic and their solution gives operating point.
+% \item Systems of nonlinear equations are solved by iteratively formulating and solving systems of linear algebraic equations.
+% \item The overall efficiency of a circuit simulator is dependent upon the performance of the linear DC analyzer.
+% %\item Thus, our work is towards improving the performance of linear DC Analyzers and handling convergence issues related to large size nonlinear circuits.
+% \end{itemize}
+% \end{block}
+% \end{frame}
+%
+% \begin{frame}
+% \begin{block}{\small Nodal Analysis}
+% \begin{itemize}
+% \begin{small}
+% \item Applicable when the network has only current sources and conductances type devices i.e., $i=g(v)$.
+% \item Let, $\mathbf{A}_r$ be the reduced incidence matrix of $\cal{G}$ which is a representative matrix of $V_v(\cal{G})$. \\
+% \end{small}
+% \begin{tiny}
+% The KCL constraints are
+% $$\mathbf{A_ri}=\mathbf{0}$$
+% $$\left[\begin{array}{cc}
+% \mathbf{A}_{rG} & \mathbf{A}_{rJ}
+% \end{array}\right]
+% \left[\begin{array}{c}
+% \mathbf{i}_{G} \\
+% \mathbf{i}_{J}
+% \end{array}\right]
+% =\mathbf{0}$$
+% $$\mathbf{A}_{rG}\mathbf{i}_{G}=-\mathbf{A}_{rJ}\mathbf{i}_{J}$$
+%
+% $$\mathbf{A}_{rG}\mathbf{G}\mathbf{v}_{G}=-\mathbf{A}_{rJ}\mathbf{i}_{J}\ \ \ \ \ \ \ \ (As, \mathbf{i}_{G}=\mathbf{G}\mathbf{v}_{G})$$
+%
+% The KVE constraints are
+% $$\left[\begin{array}{c}
+% \mathbf{v}_{G} \\
+% \mathbf{v}_{J}
+% \end{array}\right]
+% =
+% \left[\begin{array}{c}
+% \mathbf{A}_{rG}^T \\
+% \mathbf{A}_{rJ}^T
+% \end{array}\right]
+% \mathbf{v}_n$$
+%
+% \begin{equation}
+% \mathbf{A}_{rG}\mathbf{G}\mathbf{A}_{rG}^{T}\mathbf{v}_{n}=-\mathbf{A}_{rJ}\mathbf{i}_{J}
+% \label{nodal_equation}
+% \end{equation}
+% \end{tiny}
+% \end{itemize}
+% \end{block}
+% \end{frame}
+%
+% \begin{frame}
+% \begin{block}{Matrix Formulation}
+% \begin{itemize}
+% \item The diagonal entries of the matrix are the sum of conductances incident on the corresponding nodes.
+% \item The off diagonal entries $(i,j)^{th}$ of the matrix is the negative of conductances between node $i$ and $j$.
+% \item The $\mathbf{A}_{rJ}\mathbf{i}_{J}$ is the sum of current sources leaving the nodes.
+% \end{itemize}
+% \end{block}
+% \begin{block}{Example}
+% \end{block}
+% \begin{minipage}[!b]{0.4\linewidth} % A minipage that covers half the page
+% \begin{figure}[h]
+% \centering
+% \includegraphics[scale=0.35]{../figures/nodal_figure.eps}
+% \end{figure}
+% \end{minipage}
+% \begin{minipage}[!b]{0.55\linewidth} % A minipage that covers half the page
+% \begin{tiny}
+% $$\left[
+% \begin{array}{ccc}
+% G_{1}+G_{2} & -G_{2} & 0\\
+% -G_{2} & G_{2}+G_{3}+G_{4} & -G_{4}\\
+% 0 & -G_{4} & G_{4}+G_{5}
+% \end{array}
+% \right] \left[
+% \begin{array}{c}
+% v_{1}\\
+% v_{2}\\
+% v_{3}
+% \end{array}
+% \right]= \left[
+% \begin{array}{c}
+% I_{1}\\
+% 0\\
+% I_{2}
+% \end{array}
+% \right]$$
+% \end{tiny}
+% \end{minipage}
+% \end{frame}
+%
+%
+% \begin{frame}
+% \begin{block}{Modified Nodal Analysis}
+% \begin{small}
+% \begin{itemize}
+% \item applicable to all kinds of networks.
+% \item Let $\mathbf{A}_{r}$ be the reduced incidence matrix of ${\cal{G}}$
+% By Tellegan's theorem,
+% \begin{tiny}
+% $$\mathbf{A_ri}=\mathbf{0}$$
+% $$\left[\begin{array}{ccc}
+% \mathbf{A}_{rG} & \mathbf{A}_{rT} & \mathbf{A}_{rJ}
+% \end{array}\right]
+% \left[\begin{array}{c}
+% \mathbf{i}_{G} \\
+% \mathbf{i}_{T} \\
+% \mathbf{i}_{J}
+% \end{array}\right]
+% =\mathbf{0}$$
+%
+% $$\left[\begin{array}{cc}
+% \mathbf{A}_{rG}\mathbf{G} & \mathbf{A}_{rT}
+% \end{array}\right]
+% \left[\begin{array}{c}
+% \mathbf{v}_{G} \\
+% \mathbf{i}_{T}
+% \end{array}\right]
+% =-\mathbf{A}_{rJ}\mathbf{i}_{J}$$
+%
+% \begin{equation}
+% \label{mna_eq1}
+% \left[\begin{array}{cc}
+% \mathbf{A}_{rG}\mathbf{G}\mathbf{A}_{rG}^{T} & \mathbf{A}_{rT}
+% \end{array}\right]
+% \left[\begin{array}{c}
+% \mathbf{v}_{n} \\
+% \mathbf{i}_{T}
+% \end{array}\right]
+% =-\mathbf{A}_{rJ}\mathbf{i}_{J}
+% \end{equation}
+%
+% Device characteristics of the branches in $T$ be
+% $$\left[\begin{array}{cc}
+% \mathbf{M} & \mathbf{N}
+% \end{array}\right]
+% \left[\begin{array}{c}
+% \mathbf{i}_{T} \\
+% \mathbf{v}_{T}
+% \end{array}\right]
+% =\mathbf{S}_{T}$$
+%
+% \begin{equation}
+% \label{mna_eq2}
+% \left[\begin{array}{cc}
+% \mathbf{NA}_{rT}^{T} & \mathbf{M}
+% \end{array}\right]
+% \left[\begin{array}{c}
+% \mathbf{v}_{n} \\
+% \mathbf{i}_{T}
+% \end{array}\right]
+% =\mathbf{S}_{T}
+% \end{equation}
+% \end{tiny}
+% \end{itemize}
+% \end{small}
+% \end{block}
+% \end{frame}
+%
+% \begin{frame}
+% \begin{block}{Example}
+% %\begin{minipage}[!b]{0.4\linewidth} % A minipage that covers half the page
+% \begin{figure}[!ht]
+% \begin{center}
+% \includegraphics[scale=0.35]{../figures/modified_figure.eps}
+% \caption{ Example for MNA } \label{modifiedfig}
+% \end{center}
+% \end{figure}
+% %\end{minipage}
+% %\begin{minipage}[!b]{0.55\linewidth} % A minipage that covers half the page
+% \begin{tiny}
+% $$\left[
+% \begin{array}{cccccc}
+% G_{1}+G_{4} & -G_{1} & -G_{4} & 1 & 0 \\
+% -G_{1} & G_{1}+G_{2}+G_{3} & -G_{3} & 0 & 0 \\
+% -G_{4} & -G_{3} & G_{3}+G_{4} & 0 & 1 \\
+% 1 & 0 & 0 & 0 & 0 \\
+% 0 & 0 & 1 & 0 & 0
+% \end{array}
+% \right] \left[
+% \begin{array}{c}
+% v_{1}\\
+% v_{2}\\
+% v_{3}\\
+% i_{V_1}\\
+% i_{V_2}\\
+% \end{array}
+% \right]= \left[
+% \begin{array}{c}
+% 0\\
+% 0\\
+% 0\\
+% V_{1}\\
+% V_{2}
+% \end{array}
+% \right]$$
+% \end{tiny}
+% %\end{minipage}
+% \end{block}
+% \end{frame}
+%
+% \begin{frame}
+% \frametitle{Controlled Sources}
+% \begin{minipage}[!b]{0.47\linewidth} % A minipage that covers half the page
+% \begin{figure}[!ht]
+% \centering
+% \includegraphics[scale=0.6]{../figures/VCCS.eps}
+% \caption{Voltage Controlled Current Source (VCCS)}
+% \label{vccs}
+% \end{figure}
+% \end{minipage}
+% %\hspace{0.5cm} % To get a little bit of space between the figures
+% \begin{minipage}[!b]{0.47\linewidth}
+% \begin{figure}[!ht]
+% \centering
+% \includegraphics[scale=0.6]{../figures/VCVS.eps}
+% \caption{Voltage Controlled Voltage Source (VCVS) }
+% \label{vcvs}
+% \end{figure}
+% \end{minipage}
+% \begin{minipage}[!b]{0.47\linewidth} % A minipage that covers half the page
+% \begin{figure}[!ht]
+% \centering
+% \includegraphics[scale=0.6]{../figures/CCCS.eps}
+% \caption{Current Controlled Current Source (CCCS)}
+% \label{cccs}
+% \end{figure}
+% \end{minipage}
+% %\hspace{0.5cm} % To get a little bit of space between the figures
+% \begin{minipage}[!b]{0.47\linewidth}
+% \begin{figure}[!ht]
+% \centering
+% \includegraphics[scale=0.6]{../figures/CCVS.eps}
+% \caption{Current Controlled Voltage Source (CCVS) }
+% \label{ccvs}
+% \end{figure}
+% \end{minipage}
+% \begin{small}
+% \begin{itemize}
+% \item In voltage controlled devices, we have added a $0A$ current source as controlling branch
+% %without disturbing the incidence relationship of existing edges (i.e., the addition is 'soldering type') and its voltage is used for calculating the value of the devices.
+% \item In current controlled devices, we have added a $0V$ voltage source as controlling branch
+% %by splitting a node (i.e., plier type entry) and the current through it is used for calculating the value of the devices.
+% \end{itemize}
+% \end{small}
+% \end{frame}
+%
+% \begin{frame}
+% \frametitle{Linearization of Nonlinear Elements}
+% \begin{minipage}[!b]{0.5\linewidth}
+% Diode characteristics,
+% $$I_D=I_S(e^{qV/kT}-1)$$
+% $$I_D=I_D|_{V=V_0} + (V-V_0)\frac{I_D}{V}|_{V=V_0}$$
+% $$I_D=I_{D0}+(V-V_0)G_{D0}$$
+% \begin{figure}[h]
+% \begin{center}
+% \includegraphics[scale=0.4]{../figures/diodeI.eps}
+% \begin{small}Modeling of Diode\end{small}
+% \label{diodeI}
+% \end{center}
+% \end{figure}
+% \end{minipage}
+% \begin{minipage}[!b]{0.4\linewidth}
+% \begin{figure}[h]
+% \begin{center}
+% \includegraphics[scale=0.3]{../figures/diodechar1.eps}
+% \begin{small}Linearized approximation of diode model\end{small}
+% \begin{tiny}$$I_{DN0}=I_{D0}-V_0G_{D0}$$\end{tiny}
+% \end{center}
+% \end{figure}
+% \end{minipage}
+% \end{frame}
+%
+%
+% \begin{frame}
+% {\bf Procedure:}{Operating Point Analysis}
+% \small
+% \begin{algorithmic}[1]
+% \STATE Find Node Potential and Current through devices whose device characteristic can not be expressed in terms of voltage.
+% \STATE Find branch voltage and node potentail.
+% \STATE Find branch current from branch voltage using device characteristics.
+% \IF{Non-linear component}
+% \STATE {\bf NR:} Check device characteristics of non-linear devices.
+% \IF {Device characteristics is not satisfied}
+% \STATE Call Newton Raphson procedure
+% \STATE Find Node Potential and Current through devices whose device characteristic can not be expressed in terms of voltage.
+% \STATE Find branch current from branch voltage using device characteristics.
+% \STATE Go to {\bf NR}
+% \ENDIF
+% \STATE Check for KCL
+% \ENDIF
+% \end{algorithmic}
+% \normalsize
+% \end{frame}
+%
+% \begin{frame}
+% \frametitle{Full Wave Bridge Rectifier}
+% \begin{minipage}[!b]{0.4\linewidth} % A minipage that covers half the page
+% \begin{figure}[h]
+% \centering
+% \includegraphics[scale=0.5]{../figures/bridge.eps}
+% \end{figure}
+% \end{minipage}
+% \hspace{0.5cm} % To get a little bit of space between the figures
+% \begin{minipage}[!b]{0.5\linewidth} % A minipage that covers half the page
+% \begin{figure}[h]
+% \centering
+% \includegraphics[scale=0.3]{../figures/bridgeOutput.eps}
+% \end{figure}
+% \end{minipage}
+% \end{frame}
+%
+% \section{DC Analysis}
+% \begin{frame}
+% \frametitle{DC Analysis}
+% {\bf Procedure:}{DC Analysis}
+% \small
+% \begin{algorithmic}[1]
+% \STATE Modify the value of the sweep source and update Modified Nodal matrix.
+% \STATE Do Operating Point Analysis.
+% \end{algorithmic}
+% \normalsize
+% \end{frame}
+%
+% \begin{frame}
+% \frametitle{Voltage Sweep}
+% \begin{minipage}[!b]{0.4\linewidth} % A minipage that covers half the page
+% \begin{figure}[h]
+% \centering
+% \includegraphics[scale=0.8]{../figures/V_Sweep.eps}
+% \caption{Example of DC Analysis (Vsweep.ckt)}
+% \end{figure}
+% \end{minipage}
+% \hspace{0.5cm} % To get a little bit of space between the figures
+% \begin{minipage}[!b]{0.5\linewidth} % A minipage that covers half the page
+% \begin{figure}[h]
+% \centering
+% \includegraphics[scale=0.3]{../figures/V_SweepOutput.eps}
+% \end{figure}
+% \end{minipage}
+% \end{frame}
+%
+% \section{Transient Analysis}
+% \begin{frame}
+% \begin{block}{What is Transient Analysis?}
+% \begin{itemize}
+% \item Computes the response of a circuit as function of time.
+% \item Time is discretized and the solution is computed piecewise.
+% \end{itemize}
+% \end{block}
+% \begin{block}{Important factors}
+% \begin{itemize}
+% \item Proper time Stepping.
+% \item Integration methods.
+% \end{itemize}
+% \end{block}
+% \end{frame}
+%
+% \begin{frame}
+% \frametitle{Discreatization}
+% Consider, a capacitor
+% \begin{tiny}
+% $$I_C(t_n)=C\frac{\partial{V}_C(t_n)}{\partial{t}}$$
+% Using Backward Euler's method,
+% $$I_C(t_n)=C\frac{V(t_n)-V(t_{n-1})}{t_n-t_{n-1}}$$
+% $$I_C(t_n)=\frac{C}{h}V(t_n)-\frac{C}{h}V(t_{n-1})$$
+% $$I_C(t_n)=G_C^{(k)}V(t_n)-I_C^{(k)}$$
+% \end{tiny}
+% \begin{figure}[h]
+% \centering
+% \includegraphics[scale=0.8]{../figures/Ceq.eps}
+% \end{figure}
+% \end{frame}
+%
+% \begin{frame}
+% \frametitle{RC Circuit}
+% \begin{minipage}[!b]{0.4\linewidth} % A minipage that covers half the page
+% \begin{figure}[h]
+% \centering
+% \includegraphics[scale=0.8]{../figures/RC.eps}
+% \end{figure}
+% \end{minipage}
+% \hspace{0.5cm} % To get a little bit of space between the figures
+% \begin{minipage}[!b]{0.5\linewidth} % A minipage that covers half the page
+% \begin{figure}[h]
+% \centering
+% \includegraphics[scale=0.3]{../figures/RCOutput.eps}
+% \end{figure}
+% \end{minipage}
+% \end{frame}
+%
+%
+% \begin{frame}
+% \frametitle{PseudoCode}
+% {\bf Procedure:}{Transient Analysis}
+% \small
+% \begin{algorithmic}[1]
+% \STATE Discretize time dependent Component and Update Modified Nodal matrix.
+% \STATE Do Operating Point Analysis.
+% \end{algorithmic}
+% \normalsize
+%
+% {\bf Procedure:}{Discretization}
+% \small
+% \begin{algorithmic}[1]
+% \STATE Compute time dependent source value at time t.
+% \STATE Compute the values of static model of dynamic component at time t.
+% \STATE Update Modified Nodal matrix.
+% \end{algorithmic}
+% \normalsize
+% \end{frame}
+%
+% %\begin{frame}
+% %\frametitle{CMOS Inverter}
+% %\begin{minipage}[!b]{0.4\linewidth} % A minipage that covers half the page
+% %\begin{figure}[h]
+% %\centering
+% %\includegraphics[scale=0.4]{../figures/inverter.eps}
+% %\end{figure}
+% %\end{minipage}
+% %\hspace{0.5cm} % To get a little bit of space between the figures
+% %\begin{minipage}[!b]{0.5\linewidth} % A minipage that covers half the page
+% %\begin{figure}[h]
+% %\centering
+% %\includegraphics[scale=0.3]{../figures/inverterOutput.eps}
+% %\end{figure}
+% %\end{minipage}
+% %\end{frame}
+%
+\end{document}
+