summaryrefslogtreecommitdiff
path: root/FSF-2020/calculus/series-and-transformations/Taylor Series/script1.py
blob: e83eff862f3af11a19db037180c2538745a6cf84 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
from manimlib.imports import*
import math

def formFormula(coeff_list,variable_list):
    coeff_list=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
    variable_list=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")]
    coeff_list[0].shift(2.2*UP+1.6*LEFT)    
    for i in range(0,3):
        coeff_list[i].set_color(GOLD_A)
        variable_list[i].next_to(coeff_list[i],buff=0.1)
        if i!=2:
            coeff_list[i+1].next_to(variable_list[i],buff=0.1)
    dots=TextMobject("...")
    dots.next_to(variable_list[2])
    expansion=VGroup(coeff_list[0],coeff_list[1],coeff_list[2],variable_list[0],variable_list[1],variable_list[2],dots)
    #expansion.scale(0.7)
    return expansion,coeff_list

class intro(Scene):
    def construct(self):
        equation=TextMobject("$f(x)=$","${ e }^{ -x^{ 2 } }$")
        equation.scale(2)
        equation.set_color_by_tex_to_color_map({"${ e }^{ -x^{ 2 } }$":RED})
        text=TextMobject("let $a=0$")
        text.scale(0.7)
        text.shift(DOWN)

        self.play(Write(equation))
        self.wait(0.5)
        self.play(FadeIn(text))
        self.wait(0.7)
        self.play(FadeOut(equation),FadeOut(text))

class graphScene(GraphScene):
    CONFIG = {
        "x_min": -8,
        "x_max": 8,
        "y_min": -8,
        "y_max": 8,
        "graph_origin": ORIGIN,
        "function_color": RED,
        "axes_color": GREEN,
        "x_axis_label": "$x$",
        "y_axis_label": "$y$",
        "exclude_zero_label": True,
        "x_labeled_nums": range(-8, 8, 1),
    }
    def construct(self):
        x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
        y_each_unit = self.y_axis_height / (self.y_max - self.y_min)   

        generalized_eq_coeff=[]
        variables_eq=[]
        eq,generalized_eq_coeff=formFormula(generalized_eq_coeff,variables_eq)
        trText1=TextMobject("let $T_{ n }(x)$:=")
        eq.next_to(trText1)
        trTextGrup=VGroup(trText1,eq)
        trTextGrup.scale(0.5)
        trTextGrup.to_corner(UP+RIGHT)
        self.play(Write(trTextGrup))
        self.setup_axes(animate=True)
        
        fx=TextMobject("${ e }^{ -x^{ 2 } }$")
        fx.scale(0.5)
        fx.shift(ORIGIN+x_each_unit*7.5*RIGHT+y_each_unit*0.5*UP)
        mainfunction=self.get_graph(lambda x:math.exp(-1*pow(x,2)),color=RED,x_min=-8,x_max=8)
        self.play(ShowCreation(mainfunction))
        self.play(FadeIn(fx))
        self.wait(1.4)

        coeff=[TextMobject("$1$"),TextMobject("$f'(x)$"),TextMobject("$\\frac { f''(x) }{ 2! } $")]
        coeff[0].shift(3.39*UP+4.88*RIGHT)
        coeff[0].scale(0.5)
        coeff[1].shift(3.39*UP+5.3*RIGHT)
        coeff[1].scale(0.275)
        coeff[2].shift(3.39*UP+5.98*RIGHT)
        coeff[2].scale(0.28)

        for obj in coeff:
            obj.set_color(GOLD_A)

        firstApprox=[self.get_graph(lambda x:1,color=BLUE)]
        secondApprox=[self.get_graph(lambda x:1,color=BLUE),
                    self.get_graph(lambda x:x+1,color=BLUE),
                    self.get_graph(lambda x:-x+1,color=BLUE)]
        thirdApprox=[self.get_graph(lambda x:1-2*math.pow(x,2),color=BLUE),
                    self.get_graph(lambda x:1-0.1*math.pow(x,2),color=BLUE),
                    self.get_graph(lambda x:1,color=BLUE),
                    self.get_graph(lambda x:1+0.1*math.pow(x,2),color=BLUE),
                    self.get_graph(lambda x:1+math.pow(x,2),color=BLUE)]
                    
        firstGraph=self.get_graph(lambda x:1,color=BLUE)
        secondGraph=self.get_graph(lambda x:1-math.pow(x,2),color=BLUE)

        bottomText1=TextMobject("The polynomial should","satisfy","the function at $x=0$")
        bottomText2=TextMobject("This gives","$a_{ 0 }=1$")
        bottomText3=TextMobject("Now it could be of","any slope!")
        #show graphs of second approx
        bottomText4=TextMobject("Hence the","slopes","should","even match")
        #final graph
        bottomText5=TextMobject("This gives","$a_{ 1 }=0$")
        bottomText6=TextMobject("Since the rate of change of this slope","could vary")
        #show third approx graphs
        bottomText7=TextMobject("Hence the","rate of change of these slopes","should also be","same!")
        #final graph
        bottomText8=TextMobject("This gives","$a_{ 2 }=-1$")

        bottomText1.set_color_by_tex_to_color_map({"satisfy":YELLOW})
        bottomText2.set_color_by_tex_to_color_map({"$a_{ 0 }=1$":BLUE})
        bottomText3.set_color_by_tex_to_color_map({"any slope!":YELLOW})
        bottomText4.set_color_by_tex_to_color_map({"slopes":BLUE,"even match":YELLOW})
        bottomText5.set_color_by_tex_to_color_map({"$a_{ 1 }=0$":BLUE})
        bottomText6.set_color_by_tex_to_color_map({"could vary":YELLOW})
        bottomText7.set_color_by_tex_to_color_map({"rate of change of these slopes":BLUE,"same!":YELLOW})
        bottomText8.set_color_by_tex_to_color_map({"$a_{ 2 }=-1$":BLUE})

        bottomText1.scale(0.4)
        bottomText2.scale(0.5)
        bottomText3.scale(0.4)
        bottomText4.scale(0.4)
        bottomText5.scale(0.5)
        bottomText6.scale(0.4)
        bottomText7.scale(0.4)
        bottomText8.scale(0.5)

        bottomText1.shift(4.5*RIGHT+2.5*DOWN)
        bottomText2.shift(4.5*RIGHT+2.5*DOWN)
        bottomText3.shift(4.5*RIGHT+2.5*DOWN)
        bottomText4.shift(4.5*RIGHT+2.5*DOWN)
        bottomText5.shift(4.5*RIGHT+2.5*DOWN)
        bottomText6.shift(4.5*RIGHT+2.5*DOWN)
        bottomText7.shift(4.5*RIGHT+2.5*DOWN)
        bottomText8.shift(4.5*RIGHT+2.5*DOWN)

        self.play(Write(bottomText1))
        self.wait(1)
        self.play(ShowCreation(firstApprox[0]),ReplacementTransform(bottomText1,bottomText2))
        #change coeff in tn(x)
        self.play(ReplacementTransform(generalized_eq_coeff[0],coeff[0]))
        self.wait(1.5)
        self.play(ReplacementTransform(bottomText2,bottomText3))
        self.wait(0.5)
        self.play(ReplacementTransform(firstApprox[0],secondApprox[1]))
        self.wait(0.5)
        self.play(ReplacementTransform(secondApprox[1],secondApprox[0]))
        self.wait(0.5)
        self.play(ReplacementTransform(secondApprox[0],secondApprox[2]))
        self.wait(1)
        self.play(ReplacementTransform(bottomText3,bottomText4),FadeOut(secondApprox[2]))
        self.wait(1)
        self.play(Write(firstGraph),ReplacementTransform(bottomText4,bottomText5))
        #change a1 coeff
        self.play(ReplacementTransform(generalized_eq_coeff[1],coeff[1]))
        self.wait(1.5)
        self.play(ReplacementTransform(bottomText5,bottomText6))
        self.play(ReplacementTransform(firstGraph,thirdApprox[0]))
        self.wait(0.6)
        self.play(ReplacementTransform(thirdApprox[0],thirdApprox[1]))
        self.wait(0.6)
        self.play(ReplacementTransform(thirdApprox[1],thirdApprox[2]))
        self.wait(0.6)
        self.play(ReplacementTransform(thirdApprox[2],thirdApprox[3]))
        self.wait(0.6)
        self.play(ReplacementTransform(thirdApprox[3],thirdApprox[4]))       
        self.wait(1.5)
        self.play(ReplacementTransform(bottomText6,bottomText7))
        self.wait(1.5)
        self.play(ReplacementTransform(bottomText7,bottomText8),ReplacementTransform(thirdApprox[4],secondGraph))
        self.play(ReplacementTransform(generalized_eq_coeff[2],coeff[2]))
        self.wait(2)

        textFinal=TextMobject("And so on..!")
        textFinal.scale(0.7)
        textFinal.shift(4.5*RIGHT+2.5*DOWN)
        self.play(ReplacementTransform(bottomText8,textFinal))
        self.wait(2.5)

        finalFormula=TextMobject("Hence","$T_{ n }(x)$","=","$f(0)+f'(0)x+\\frac { f''(0) }{ 2! }x^2+..+\\frac { { f }^{ n }(0) }{ n! } { x }^{ n }$")
        finalFormula.scale(0.8)
        finalFormula.set_color_by_tex_to_color_map({"$T_{ n }(x)$":GREEN,"$f(0)+f'(0)x+\\frac { f''(0) }{ 2! }x^2+..+\\frac { { f }^{ n }(0) }{ n! } { x }^{ n }$":RED})        

        self.play(FadeOut(self.axes),FadeOut(textFinal),FadeOut(secondGraph),FadeOut(trTextGrup),FadeOut(mainfunction),FadeOut(fx),FadeOut(coeff[0]),FadeOut(coeff[1]),FadeOut(coeff[2]))
        self.play(Write(finalFormula))
        self.wait(2)
        # self.play(ReplacementTransform(secondApprox[2],secondApprox[3]))
        # self.wait(0.5)
        # self.play(ReplacementTransform(secondApprox[3],secondApprox[4]))
        # self.wait(0.5)
        # self.play(ReplacementTransform(secondApprox[4],secondApprox[5]))
        # self.wait(0.5)
        # self.play(ReplacementTransform(secondApprox[0],secondApprox[0]))
        # self.wait(0.5)
        # self.play(ReplacementTransform(secondApprox[0],secondApprox[0]))
        # self.wait(0.5)