summaryrefslogtreecommitdiff
path: root/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file1_surface1.py
blob: a590a53388e88816516c5527d567b2c4a2921199 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
from manimlib.imports import *

class SurfacesAnimation(ThreeDScene):

    CONFIG = {
        "axes_config": {
            "x_min": 0,
            "x_max": 4,
            "y_min": 0,
            "y_max": 4,
            "z_min": -4,
            "z_max": 4,
            "a":0 ,"b": 4, "c":0 , "d":4,
            "axes_shift":IN+LEFT,
            "x_axis_config": {
                "tick_frequency": 1,
                "include_tip": False,
            },
            "y_axis_config": {
                "tick_frequency": 1,
                "include_tip": False,
            },
            "z_axis_config": {
                "tick_frequency": 1,
             #   "include_tip": False,
            },
            "num_axis_pieces": 1,
        },
        "default_graph_style": {
            "stroke_width": 2,
            "stroke_color": WHITE,
        },
        "default_surface_config": {
            "fill_opacity": 0.5,
            "checkerboard_colors": [LIGHT_GREY],
            "stroke_width": 0.5,
            "stroke_color": WHITE,
            "stroke_opacity": 0.5,
        },
    "Func": lambda x,y: 5*(x**2-y**2)/((1e-4+x**2+y**2)**2)
    }


    def construct(self):

        self.setup_axes()
        self.set_camera_orientation(#distance=10,
            phi=80 * DEGREES,
            theta=35 * DEGREES,
        )
        
        fn_text=TextMobject("$z=\dfrac{x^2-y^2}{(x^2+y^2)^2}$").set_color(BLUE)
        fn_text.to_corner(UR,buff=1)
        self.add_fixed_in_frame_mobjects(fn_text) 
        
        R=TextMobject("R").set_color(BLACK).scale(2).rotate(180*DEGREES , OUT)
        R.move_to(self.axes.input_plane,IN)
        self.add(R)
        
        #get the surface
        surface= self.get_surface(
            self.axes, lambda x , y: 
            self.Func(x,y)
        )
        surface.set_style(
            fill_opacity=0.6,
            fill_color=BLUE_E,
            stroke_width=0.8,
            stroke_color=WHITE,
        )
        
        
        self.begin_ambient_camera_rotation(rate=0.2)
        self.play(Write(surface))
        
        self.get_lines()
        self.wait(4)
      
    def get_surface(self,axes, func, **kwargs):
        config = {
            "u_min": axes.x_max,
            "u_max": axes.x_min,
            "v_min": axes.y_max,
            "v_max": axes.y_min,
            "resolution": (10,10),
        }
        
        config.update(self.default_surface_config)
        config.update(kwargs)
        return ParametricSurface(
            lambda  x,y : axes.c2p(
                x, y, func(x, y)
            ),
            **config
        )
        
    def get_lines(self):
        axes = self.axes
        labels=[axes.x_axis.n2p(axes.a), axes.x_axis.n2p(axes.b), axes.y_axis.n2p(axes.c),       
            axes.y_axis.n2p(axes.d)]
        
        
        surface_corners=[]
        for x,y,z in self.region_corners:
            surface_corners.append([x,y,self.Func(x,y)])
            
        lines=VGroup()
        for start , end in zip(surface_corners,
        self.region_corners):
            lines.add(self.draw_lines(start,end,"YELLOW"))
            
        for start , end in zip(labels,
        self.region_corners):
         #   lines.add(self.draw_lines(start,end,"BLUE"))
         #   print (start,end)
         pass
        self.play(ShowCreation(lines))
        
             
    def draw_lines(self,start,end,color):
        start=self.axes.c2p(*start)
        end=self.axes.c2p(*end)
        line=DashedLine(start,end,color=color)
        
        return line
            
    def get_three_d_axes(self, include_labels=True, include_numbers=True, **kwargs):
        config = dict(self.axes_config)
        config.update(kwargs)
        axes = ThreeDAxes(**config)
        axes.set_stroke(width=2)

        if include_numbers:
            self.add_axes_numbers(axes)

        if include_labels:
            self.add_axes_labels(axes)

        # Adjust axis orientation
        axes.x_axis.rotate(
            90 * DEGREES, LEFT,
            about_point=axes.c2p(0, 0, 0),
        )
        axes.y_axis.rotate(
            90 * DEGREES, UP,
            about_point=axes.c2p(0, 0, 0),
        )

        # Add xy-plane
        input_plane = self.get_surface(
            axes, lambda x, t: 0
        )
        input_plane.set_style(
            fill_opacity=0.3,
            fill_color=PINK,
            stroke_width=.2,
            stroke_color=WHITE,
        )

        axes.input_plane = input_plane

        self.region_corners=[ 
        input_plane.get_corner(pos) for pos in (DL,DR,UR,UL)]
        
        return axes
        
        
    def setup_axes(self):
        axes = self.get_three_d_axes(include_labels=True)
        axes.add(axes.input_plane)
        axes.scale(1)
     #   axes.center()
        axes.shift(axes.axes_shift)

        self.add(axes)
        self.axes = axes
        
    def add_axes_numbers(self, axes):
        x_axis = axes.x_axis
        y_axis = axes.y_axis
        tex_vals_x = [
            ("a", axes.a+.4),
            ("b", axes.b),
        ]
        tex_vals_y=[
            ("c", axes.c+.4),
            ("d", axes.d)
        ]
        x_labels = VGroup()
        y_labels = VGroup()
        for tex, val in tex_vals_x:
            label = TexMobject(tex)
            label.scale(1)
            label.next_to(x_axis.n2p(val), DOWN)
            label.rotate(180 * DEGREES)
            x_labels.add(label)
        x_axis.add(x_labels)
        x_axis.numbers = x_labels

        for tex, val in tex_vals_y:
            label = TexMobject(tex)
            label.scale(1)
            label.next_to(y_axis.n2p(val), LEFT)
            label.rotate(90 * DEGREES)
            y_labels.add(label)
            
        y_axis.add(y_labels)
        y_axis.numbers = y_labels
        
        return axes
    
    def add_axes_labels(self, axes):
        x_label = TexMobject("x")
        x_label.next_to(axes.x_axis.get_end(), RIGHT)
        axes.x_axis.label = x_label

        y_label = TextMobject("y")
        y_label.rotate(90 * DEGREES, OUT)
        y_label.next_to(axes.y_axis.get_end(), UP)
        axes.y_axis.label = y_label

        z_label = TextMobject("z")
        z_label.rotate(90 * DEGREES, LEFT)
        z_label.next_to(axes.z_axis.get_zenith(), LEFT)
        axes.z_axis.label = z_label
        for axis in axes:
            axis.add(axis.label)
        return axes    
        
#uploaded by Somnath Pandit.FSF2020_Fubini's_Theorem