summaryrefslogtreecommitdiff
path: root/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/file4_non_rect_region.py
blob: 793a0004929a4620780497a1343569841c81844f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
from manimlib.imports import *

class AreaUnderCurve(GraphScene):
    CONFIG = {
        "x_min" : -1,
        "x_max" : 8,
        "y_min" : -1,
        "y_max" : 5, 
        "y_axis_label": "$y$",
        "x_tick_frequency" : 1,
        "y_tick_frequency" : 1,
        "x_labeled_nums": list(np.arange(-1, 9)),
	    "y_labeled_nums": list(np.arange(-1, 6)),
	    "y_axis_height":5.5,
        "graph_origin": ORIGIN+4*LEFT+2.5*DOWN,    
    }

    def construct(self):
        X = RIGHT*self.x_axis_width/(self.x_max- self.x_min)
        Y = UP*self.y_axis_height/(self.y_max- self.y_min)
        
        sofar_text=TextMobject(r"So far we have integrated  over \\ rectangular regions")
        self.play(Write(sofar_text))
        self.play(sofar_text.to_edge,UP)
        
        self.setup_axes(animate=False)
        
        rect= self.get_graph(
            lambda x : 3,
            x_min = 0,
            x_max = 5,
            color = GREEN)
            
        rect_region = self.get_riemann_rectangles(
            rect, 
            x_min = 0,
            x_max = 5,
            dx =.01,
            start_color = GREEN,
            end_color = GREEN,
            fill_opacity = 0.75,
            stroke_width = 0,
        )
        
        self.play(ShowCreation(rect_region))
        self.wait(.5)
        
        rect_int=TextMobject(r"Here the integration limits are set as").to_edge(UP)
        rect_lim=TextMobject(r"$$\int_{x=0}^{5}\int_{y=0}^{3}$$").next_to(rect_int,DOWN) 
        const_text=TextMobject(r"$\longleftarrow $ \textsf the limits are\\ constant values").next_to(rect_lim,RIGHT)
        
        self.play(ReplacementTransform(sofar_text,rect_int))
        self.wait(1.5)
        self.play(FadeIn(rect_lim))
        self.wait(2)
        self.play(Write(const_text))
        self.wait(2)
        self.play(FadeOut(rect_int), FadeOut(rect_lim),FadeOut(const_text))
        
        
        non_rect_text=TextMobject(r"Now we see how to integrate over \\ non-rectangular regions")
        non_rect_text.to_edge(UP)
        self.play(Write(non_rect_text))
        self.wait(1.5)
        self.play(FadeOut(rect_region))
        
        c1= self.get_graph(
            lambda x : x**2/4,
            x_min = 0,
            x_max = 4,
            color = RED)
            
        c1_region = self.get_riemann_rectangles(
            c1, 
            x_min = 0,
            x_max = 4,
            dx =.01,
            start_color = BLUE,
            end_color = BLUE,
            fill_opacity = 0.75,
            stroke_width = 0,
        )
        self.add(c1,c1_region)
 #       self.wait(2)
        
        c2= self.get_graph(
            lambda x :12-2*x,
            x_min = 4,
            x_max = 6,
            color = RED)
            
        c2_region = self.get_riemann_rectangles(
            c2, 
            x_min = 4,
            x_max = 6,
            dx =.01,
            start_color = BLUE,
            end_color = BLUE,
            fill_opacity = .75,
            stroke_width = 0,
        )
        self.add(c2_region,c2)
        self.wait(1.5)
        c=VGroup(*[c1,c2])
        
        no_func_text=TextMobject(r"The whole region can't be expressed as\\ bounded by a single $f(x)$").next_to(c2,UP,buff=LARGE_BUFF)
        
        self.play(ReplacementTransform(non_rect_text,no_func_text))
        self.wait(1)
        self.play(Indicate(c))
        self.wait(2)
        
        div_region_text=TextMobject(r"So the region is divided into two").next_to(c2,UP,buff=MED_LARGE_BUFF)
        self.play(ReplacementTransform(no_func_text,div_region_text))
        
        c2.set_color(YELLOW)
        self.play(c2_region.set_color,YELLOW)
        c1_text=TextMobject("$\dfrac{x^2}{4}$").next_to(c1,IN)
        c2_text=TextMobject("$12-2x$").next_to(c2,IN+2*X)
        c_text=VGroup(*[c1_text,c2_text])
        
        self.play(FadeIn(c_text))
        self.wait(.4)
        self.play(Indicate(c1),Indicate(c1_text))
        self.play(Indicate(c2),Indicate(c2_text))
        
        easy_text=TextMobject(r"Now the limis can be set easily").next_to(c2,UP,buff=.5)
        self.play(ReplacementTransform(div_region_text,easy_text))
        
        c1_int=TextMobject(r"$$\int_{x=0}^{4}\int_{y=0}^{\dfrac{x^2}{4}}$$").next_to(c1,IN).shift(.5*(-X+1.3*Y))
        c2_int=TextMobject(r"$$\int_{x=4}^{6}\int_{y=0}^{12-2x}$$").next_to(c2,IN+X)
        
        self.play(ReplacementTransform(c1_text,c1_int),ReplacementTransform(c2_text,c2_int))
        self.wait(2)
        
        total_int=TextMobject(r"The total integraton= ").to_edge(UP)
        plus=TextMobject("$$+$$").move_to(self.graph_origin+4*X+4.8*Y)
        self.play(ReplacementTransform(easy_text,total_int))
        self.play(c2_region.set_color,BLUE)
        self.play(c1_int.next_to,c1,.1*UP, c2_int.next_to,plus,RIGHT, FadeIn(plus))
        
        region=VGroup(*[c1_region,c2_region])
        region.set_color(GREEN)
        self.play(ShowCreation(region))
        self.wait(3)

        
	
#uploaded by Somnath Pandit.FSF2020_Double_Integral