1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
|
from manimlib.imports import*
import math as m
class DegenerateHessian(ThreeDScene):
def construct(self):
heading = TextMobject("Degenerate Hessian Matrix",color = BLUE)
h_text = TextMobject("For $det \\hspace{1mm} H = 0$, the surface of the function at the critical point would be flat.").scale(0.7)
axes = ThreeDAxes()
label_x = TextMobject("$x$").shift([5.5,-0.3,0]) #---- x axis
label_y = TextMobject("$y$").shift([-0.3,5.5,0]).rotate(-4.5) #---- y axis
#---- function f(x,y)
f_surface = ParametricSurface(
lambda u, v: np.array([
u,
v,
-u**4-v**4
]),u_min = -0.8, u_max = 0.8, v_min = -0.8, v_max = 0.8).set_color(TEAL).shift([0,0,-0.5]).scale(2)
f_text= TextMobject("surface of the function").to_corner(UL).scale(0.5)
d = Dot(color = "#800000").shift([0,0,-0.5]) #---- critical point
plane = Square(color = YELLOW,fill_opacity= 0.2).shift([0,0,-0.5]).scale(1.3)
self.set_camera_orientation(phi = 70*DEGREES, theta = 45*DEGREES)
self.add_fixed_in_frame_mobjects(heading)
self.wait(1)
self.play(FadeOut(heading))
self.add_fixed_in_frame_mobjects(h_text)
self.wait(2)
self.play(FadeOut(h_text))
self.wait(1)
self.add(axes)
self.add(label_x)
self.add(label_y)
self.play(Write(f_surface))
self.add_fixed_in_frame_mobjects(f_text)
self.wait(1)
self.play(Write(d))
self.wait(1)
self.play(Write(plane))
self.wait(1)
|