1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
|
from manimlib.imports import*
#---- tangent plane is parallel to the surface of the funtion at a point
class firstScene(ThreeDScene):
def construct(self):
s1_text=TextMobject("Suppose, the point $(x,y)$ lies on the surface of the function.").scale(0.5).shift(2*UP)
s2_text=TextMobject("When zooming on that point, the surface would appear more and more like a plane.").scale(0.5).shift(1*UP)
s3_text=TextMobject("This plane is called the tangent plane.").scale(0.5)
#---- graph of function f(x,y) = -x^2-y^2
f = ParametricSurface(
lambda u, v: np.array([
u,
v,
-u**2-v**2
]),v_min = -1, v_max = 1, u_min = -1, u_max = 1, checkerboard_colors = [YELLOW_B,YELLOW_C,YELLOW_D, YELLOW_E]).shift([0,0,0]).scale(1)
d = Dot([0,0,0],color = '#800000') #---- critical point
r = Rectangle(color = PURPLE,fill_opacity=0.2).shift([0.1,0,0]).scale(0.3) #---- tangent plane
s = ParametricSurface(
lambda u, v: np.array([
u,
v,
-u**2-v**2
]),v_min = -1, v_max = 1, u_min = -1, u_max = 1, checkerboard_colors = [YELLOW_B,YELLOW_C,YELLOW_D, YELLOW_E]).shift([0,0,0]).scale(3.5)
d2 = Dot([0,0,2.5],color = '#800000') #---- changing position of critical point
r2 = Rectangle(color = PURPLE,fill_opacity=0.5).shift([0.1,0,2.5]).scale(0.3) #---- changing position of tangent plane
self.set_camera_orientation(phi = 50 * DEGREES, theta = 45 * DEGREES)
self.add_fixed_in_frame_mobjects(s1_text)
self.add_fixed_in_frame_mobjects(s2_text)
self.add_fixed_in_frame_mobjects(s3_text)
self.wait(2)
self.play(FadeOut(s1_text))
self.play(FadeOut(s2_text))
self.play(FadeOut(s3_text))
self.wait(1)
self.play(Write(f))
self.play(Write(d))
self.play(Write(r))
self.wait(2)
self.play(ReplacementTransform(f,s),ReplacementTransform(d,d2),ReplacementTransform(r,r2))
self.wait(2)
|