summaryrefslogtreecommitdiff
path: root/FSF-2020/linear-algebra
diff options
context:
space:
mode:
Diffstat (limited to 'FSF-2020/linear-algebra')
-rwxr-xr-xFSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file_before_matrix.py70
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/square.py246
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/CSasImage.py168
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/null_space.py91
4 files changed, 543 insertions, 32 deletions
diff --git a/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file_before_matrix.py b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file_before_matrix.py
index e0476a3..96e456d 100755
--- a/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file_before_matrix.py
+++ b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file_before_matrix.py
@@ -27,37 +27,37 @@ class Linear(GraphScene):
self.wait()
before = TextMobject("Before Linear Transformation")
- before.set_color(DARK_BLUE)
+ before.set_color(ORANGE)
before.move_to(3*UP+4*RIGHT)
before.scale(0.75)
dot1 = Dot().shift(self.graph_origin+1*XTD*RIGHT+1*YTD*UP)
dot2 = Dot().shift(self.graph_origin+2*XTD*RIGHT+1*YTD*UP)
- dot1.set_color(DARK_BLUE)
- dot2.set_color(DARK_BLUE)
+ dot1.set_color(ORANGE)
+ dot2.set_color(ORANGE)
p1 = TextMobject(r"$P_1$")
p1.scale(0.75)
- p1.set_color(DARK_BLUE)
+ p1.set_color(ORANGE)
p1.move_to(self.graph_origin+1*XTD*RIGHT+1.5*YTD*UP)
p2 = TextMobject(r"$P_2$")
- p2.set_color(DARK_BLUE)
+ p2.set_color(ORANGE)
p2.scale(0.75)
p2.move_to(self.graph_origin+2*XTD*RIGHT+1.5*YTD*UP)
after = TextMobject("After applying Linear Transformation")
- after.set_color(RED)
+ after.set_color(YELLOW)
after.move_to(3*UP+4.5*RIGHT)
after.scale(0.5)
dot3 = Dot().shift(self.graph_origin+3*XTD*RIGHT+0*YTD*UP)
dot4 = Dot().shift(self.graph_origin+4*XTD*RIGHT+1*YTD*UP)
- dot3.set_color(RED)
- dot4.set_color(RED)
+ dot3.set_color(YELLOW)
+ dot4.set_color(YELLOW)
p3 = TextMobject(r"$T(P_1)$")
p3.scale(0.7)
- p3.set_color(RED)
+ p3.set_color(YELLOW)
p3.move_to(self.graph_origin+3*XTD*RIGHT-1.1*YTD*UP)
p4 = TextMobject(r"$T(P_2)$")
p4.scale(0.7)
- p4.set_color(RED)
+ p4.set_color(YELLOW)
p4.move_to(self.graph_origin+4*XTD*RIGHT+1.5*YTD*UP)
self.play(Write(before), ShowCreation(dot1), ShowCreation(dot2),Write(p1), Write(p2))
@@ -76,52 +76,54 @@ class withgrid(LinearTransformationScene):
self.wait()
before = TextMobject("Before Linear Transformation")
- before.set_color(DARK_BLUE)
+ before.set_color(ORANGE)
before.move_to(3.5*UP+4*RIGHT)
before.scale(0.75)
dot1 = Dot().shift(1*RIGHT+1*UP)
dot2 = Dot().shift(2*RIGHT+1*UP)
- dot1.set_color(DARK_BLUE)
- dot2.set_color(DARK_BLUE)
+ dot1.set_color(ORANGE)
+ dot2.set_color(ORANGE)
dot1_c = Dot(radius = 0.05).shift(1*RIGHT+1*UP)
dot2_c = Dot(radius = 0.05).shift(2*RIGHT+1*UP)
- dot1_c.set_color(RED)
- dot2_c.set_color(RED)
+ dot1_c.set_color(YELLOW)
+ dot2_c.set_color(YELLOW)
self.add_transformable_mobject(dot1_c)
self.add_transformable_mobject(dot2_c)
p1 = TextMobject(r"$P_1$")
p1.scale(0.75)
- p1.set_color(DARK_BLUE)
+ p1.set_color(ORANGE)
p1.move_to(1*RIGHT+1.5*UP)
p2 = TextMobject(r"$P_2$")
p2.scale(0.75)
- p2.set_color(DARK_BLUE)
+ p2.set_color(ORANGE)
p2.move_to(2*RIGHT+1.5*UP)
after = TextMobject("After applying Linear Transformation")
- after.set_color(RED)
+ after.set_color(YELLOW)
after.move_to(3.5*UP+3.5*RIGHT)
after.scale(0.75)
dot3 = Dot().shift(3*RIGHT+0*UP)
dot4 = Dot().shift(4*RIGHT+1*UP)
- dot3.set_color(RED)
- dot4.set_color(RED)
+ dot3.set_color(YELLOW)
+ dot4.set_color(YELLOW)
p3 = TextMobject(r"$T(P_1)$")
p3.scale(0.75)
- p3.set_color(RED)
+ p3.set_color(YELLOW)
p3.move_to(3*RIGHT-0.6*UP)
p4 = TextMobject(r"$T(P_2)$")
p4.scale(0.75)
- p4.set_color(RED)
+ p4.set_color(YELLOW)
p4.move_to(4*RIGHT+1.5*UP)
self.play(Write(before), ShowCreation(dot1), ShowCreation(dot2),Write(p1), Write(p2))
self.wait(3)
matrix = [[1,2],[1,-1]]
+ dot1.set_color(GREY)
+ dot2.set_color(GREY)
+ self.play(FadeIn(dot1),FadeIn(dot2))
self.apply_matrix(matrix)
- self.play(FadeOut(dot1),FadeOut(dot2))
self.play(Transform(before,after), Transform(p2,p4), Transform(p1,p3))
self.play(Transform(before,after))
self.wait(3)
@@ -145,7 +147,7 @@ class ThreeDExplanation(ThreeDScene):
before = TextMobject("Before Linear Transformation")
self.add_fixed_in_frame_mobjects(before)
- before.set_color(YELLOW)
+ before.set_color(ORANGE)
before.move_to(3.5*UP+4*RIGHT)
before.scale(0.75)
@@ -158,9 +160,9 @@ class ThreeDExplanation(ThreeDScene):
dot1 = Dot().shift(1*RIGHT+1*UP)
dot2 = Dot().shift(2*RIGHT+1*UP)
dot3 = Dot().shift(1*RIGHT+1*DOWN)
- dot1.set_color(YELLOW)
- dot2.set_color(YELLOW)
- dot3.set_color(YELLOW)
+ dot1.set_color(ORANGE)
+ dot2.set_color(ORANGE)
+ dot3.set_color(ORANGE)
self.play(ShowCreation(before))
p1.move_to(1*RIGHT+1*UP+[0,0,0.5])
@@ -170,9 +172,9 @@ class ThreeDExplanation(ThreeDScene):
dot1_c = Dot(radius = 0.05).shift(1*RIGHT+1*UP)
dot2_c = Dot(radius = 0.05).shift(0*RIGHT+2*UP)
dot3_c = Dot(radius = 0.05).shift(1*RIGHT-1*UP)
- dot1_c.set_color(RED)
- dot2_c.set_color(RED)
- dot3_c.set_color(RED)
+ dot1_c.set_color(YELLOW)
+ dot2_c.set_color(YELLOW)
+ dot3_c.set_color(YELLOW)
axes = ThreeDAxes(x_min = -7,x_max=7,y_min=-4,y_max=4,z_min=-4,z_max=4)
self.play(ShowCreation(axes))
@@ -191,7 +193,7 @@ class ThreeDExplanation(ThreeDScene):
self.play(FadeOut(before))
after = TextMobject("After applying Linear Transformation")
self.add_fixed_in_frame_mobjects(after)
- after.set_color(RED)
+ after.set_color(YELLOW)
after.move_to(3.5*UP+3.5*RIGHT)
after.scale(0.75)
@@ -223,4 +225,8 @@ class ThreeDExplanation(ThreeDScene):
self.add_fixed_in_frame_mobjects(ending)
self.play(FadeOut(plane))
- self.wait(9)
+ self.wait(3)
+
+ self.begin_ambient_camera_rotation(rate=0.5)
+ self.wait(5)
+ self.stop_ambient_camera_rotation()
diff --git a/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/square.py b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/square.py
new file mode 100644
index 0000000..e828de4
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/square.py
@@ -0,0 +1,246 @@
+from manimlib.imports import *
+
+class Linear(GraphScene):
+ CONFIG = {
+ "x_min": -5,
+ "x_max": 5,
+ "y_min": -5,
+ "y_max": 5,
+ "graph_origin": ORIGIN,
+ "x_labeled_nums": list(range(-5, 6)),
+ "y_labeled_nums": list(range(-5, 6)),
+ "x_axis_width": 7,
+ "y_axis_height": 7,
+ }
+ def construct(self):
+
+ text = TextMobject("T(x,y) = T(x+y,y)")
+ text.scale(0.75)
+ text.set_color(PURPLE)
+ text.move_to(3*UP+5*LEFT)
+ self.play(Write(text))
+
+ XTD = self.x_axis_width/(self.x_max- self.x_min)
+ YTD = self.y_axis_height/(self.y_max- self.y_min)
+
+ self.setup_axes(animate = True)
+
+ text1 = TextMobject("Before Linear Transformation")
+ text1.scale(0.6)
+ text1.move_to(UP*3+3*RIGHT)
+
+ a = TextMobject("(1,1)")
+ b = TextMobject("(3,1)")
+ c = TextMobject("(3,2)")
+ d = TextMobject("(1,2)")
+ a.scale(0.5)
+ b.scale(0.5)
+ c.scale(0.5)
+ d.scale(0.5)
+ a.move_to(self.graph_origin+0.6*UP+0.6*RIGHT)
+ b.move_to(self.graph_origin+0.6*UP+3.4*RIGHT)
+ c.move_to(self.graph_origin+2.4*UP+3.4*RIGHT)
+ d.move_to(self.graph_origin+2.6*UP+0.6*RIGHT)
+
+ square = Polygon(self.graph_origin+UP+RIGHT,self.graph_origin+UP+3*RIGHT,self.graph_origin+2*UP+3*RIGHT,self.graph_origin+2*UP+RIGHT)
+
+ self.play(Write(text1), Write(a), Write(b), Write(c), Write(d), ShowCreation(square))
+ self.wait(2)
+ self.play(FadeOut(text1), FadeOut(a), FadeOut(b), FadeOut(c), FadeOut(d), ApplyMethod(square.apply_matrix,[[1,1],[0,1]]))
+
+ a = TextMobject("(2,1)")
+ b = TextMobject("(4,1)")
+ c = TextMobject("(3,2)")
+ d = TextMobject("(5,2)")
+ a.scale(0.5)
+ b.scale(0.5)
+ c.scale(0.5)
+ d.scale(0.5)
+ a.move_to(self.graph_origin+0.6*UP+1.6*RIGHT)
+ b.move_to(self.graph_origin+0.6*UP+4.4*RIGHT)
+ d.move_to(self.graph_origin+2.4*UP+5.4*RIGHT)
+ c.move_to(self.graph_origin+2.4*UP+2.6*RIGHT)
+
+ text1 = TextMobject("After Linear Transformation")
+ text1.scale(0.6)
+ text1.move_to(UP*3+3*RIGHT)
+
+ self.play(Write(text1), Write(a), Write(b), Write(c), Write(d))
+
+ self.wait(2)
+
+class grid(LinearTransformationScene):
+ def construct(self):
+
+ text = TextMobject("Now, consider all the vectors.")
+ text.scale(0.75)
+ text.set_color(PURPLE)
+ text.move_to(2.5*UP+3*LEFT)
+ self.play(Write(text))
+
+ text1 = TextMobject("Before Linear Transformation")
+ text1.scale(0.6)
+ text1.move_to(UP*3.5+3.5*RIGHT)
+
+ square = Polygon(UP+RIGHT,UP+3*RIGHT,2*UP+3*RIGHT,2*UP+RIGHT)
+ square.set_color(YELLOW)
+
+ self.play(Write(text1), ShowCreation(square))
+ self.wait(2)
+ self.play(FadeOut(text1))
+ self.add_transformable_mobject(square)
+
+ text1 = TextMobject("After Linear Transformation")
+ text1.scale(0.6)
+ text1.move_to(UP*3.5+3.5*RIGHT)
+
+ matrix = [[1,1],[0,1]]
+
+ self.apply_matrix(matrix)
+ self.play(Write(text1))
+
+ self.wait()
+
+class grid2(LinearTransformationScene):
+ CONFIG = {
+ "include_background_plane": True,
+ "include_foreground_plane": False,
+ "show_coordinates": True,
+ "show_basis_vectors": True,
+ "basis_vector_stroke_width": 3,
+ "i_hat_color": X_COLOR,
+ "j_hat_color": Y_COLOR,
+ "leave_ghost_vectors": True,
+ }
+
+ def construct(self):
+
+ text = TextMobject("Now, let us focus only on the standard basis")
+ text.scale(0.7)
+ text.set_color(PURPLE)
+ text.move_to(2.5*UP+3.5*LEFT)
+ self.play(Write(text))
+
+ text1 = TextMobject("Before Linear Transformation")
+ text1.scale(0.6)
+ text1.move_to(UP*3.5+3.5*RIGHT)
+
+ square = Polygon(UP+RIGHT,UP+3*RIGHT,2*UP+3*RIGHT,2*UP+RIGHT)
+ square.set_color(YELLOW)
+
+ self.play(Write(text1), ShowCreation(square))
+ self.wait(2)
+ self.play(FadeOut(text1))
+ self.add_transformable_mobject(square)
+
+ text1 = TextMobject("After Linear Transformation")
+ text1.scale(0.6)
+ text1.move_to(UP*3.5+3.5*RIGHT)
+
+ matrix = [[1,1],[0,1]]
+
+ self.apply_matrix(matrix)
+ self.play(Write(text1))
+
+ self.play(FadeOut(square), FadeOut(text1))
+
+ cor_x = TextMobject("(1,0)")
+ cor_y = TextMobject("(1,1)")
+ cor_x.scale(0.65)
+ cor_y.scale(0.65)
+ cor_y.move_to(1.25*RIGHT+1.5*UP)
+ cor_x.move_to(0.75*RIGHT-0.5*UP)
+ cor_x.set_color(GREEN)
+ cor_y.set_color(RED)
+
+ x_cor = TextMobject(r"$\left[\begin{array}{c} 1\\0\end{array}\right]$")
+ x_cor.set_color(GREEN)
+ x_cor.scale(0.5)
+ y_cor = TextMobject(r"$\left[\begin{array}{c} 1\\1\end{array}\right]$")
+ x_cor.move_to(0.75*RIGHT-0.5*UP)
+ y_cor.move_to(1.25*RIGHT+1.5*UP)
+ y_cor.set_color(RED)
+ y_cor.scale(0.5)
+
+ text1 = TextMobject(r"$T(\left[\begin{array}{c} x\\y \end{array}\right]) = $",r"$\left[\begin{array}{c} x+y\\y \end{array}\right]$")
+ text1.scale(0.7)
+ text1.set_color(PURPLE)
+ text1.move_to(1.5*UP+3*LEFT)
+
+ text = TextMobject(r"$T(x,y) = (x+y,y)$")
+ text.scale(0.6)
+ text.set_color(PURPLE)
+ text.move_to(1.5*UP+3*LEFT)
+
+ self.play(FadeIn(text),FadeIn(cor_x), FadeIn(cor_y))
+ self.wait()
+
+ self.play(Transform(text,text1), Transform(cor_x,x_cor), Transform(cor_y,y_cor))
+
+ text3 = TextMobject(r"$\left[\begin{array}{c} x+y\\y \end{array}\right]$")
+ text3.scale(0.7)
+ text3.set_color(PURPLE)
+ text3.move_to(1.5*DOWN+5*LEFT)
+
+ equal = TextMobject("=")
+ equal.move_to(1.5*DOWN+3.5*LEFT)
+
+ text3 = TextMobject("[")
+ text4 = TextMobject(r"$\begin{array}{c} (1)x\\(0)x \end{array}$")
+ text5 = TextMobject(r"$\begin{array}{c} + \\ + \end{array}$")
+ text6 = TextMobject(r"$\begin{array}{c} (1)y\\(1)y \end{array}$")
+ text7 = TextMobject("]")
+ text3.scale(2)
+ text4.scale(0.7)
+ text5.scale(0.7)
+ text6.scale(0.7)
+ text7.scale(2)
+ text4.set_color(GREEN)
+ text5.set_color(PURPLE)
+ text6.set_color(RED)
+ text3.move_to(1.5*DOWN+3*LEFT)
+ text4.move_to(1.5*DOWN+2.5*LEFT)
+ text5.move_to(1.5*DOWN+2*LEFT)
+ text6.move_to(1.5*DOWN+1.5*LEFT)
+ text7.move_to(1.5*DOWN+1*LEFT)
+
+ text1[1].scale(1.2)
+ self.play(FadeOut(text1[0]), ApplyMethod(text1[1].move_to,1.5*DOWN+5*LEFT), FadeIn(text3), FadeIn(equal), FadeIn(text4), FadeIn(text5), FadeIn(text6), FadeIn(text7))
+
+ self.wait()
+ self.play(FadeOut(text1[1]))
+
+ self.play(ApplyMethod(text3.move_to,1.5*DOWN+6*LEFT),
+ ApplyMethod(text4.move_to,1.5*DOWN+5.5*LEFT),
+ ApplyMethod(text5.move_to,1.5*DOWN+5*LEFT),
+ ApplyMethod(text6.move_to,1.5*DOWN+4.5*LEFT),
+ ApplyMethod(text7.move_to,1.5*DOWN+4*LEFT))
+
+ text10 = TextMobject("[")
+ text11 = TextMobject(r"$\begin{array}{c} 1\\0 \end{array}$")
+ text13 = TextMobject(r"$\begin{array}{c} 1\\1 \end{array}$")
+ text14 = TextMobject("]")
+ text10.scale(2)
+ text11.scale(0.7)
+ text13.scale(0.7)
+ text14.scale(2)
+ text11.set_color(GREEN)
+ text13.set_color(RED)
+ text10.move_to(1.5*DOWN+3*LEFT)
+ text11.move_to(1.5*DOWN+2.75*LEFT)
+ text13.move_to(1.5*DOWN+2.25*LEFT)
+ text14.move_to(1.5*DOWN+2*LEFT)
+
+ self.play(FadeIn(text10), Transform(x_cor,text11), Transform(y_cor,text13), FadeIn(text14))
+
+ text15 = TextMobject(r"$\left[\begin{array}{c} x\\y \end{array}\right]$")
+ text15.scale(0.7)
+ text15.set_color(PURPLE)
+ text15.move_to(1.5*DOWN+1.5*LEFT)
+
+ self.play(FadeIn(text15))
+ self.play(FadeOut(text3), FadeOut(text4), FadeOut(text5), FadeOut(text7), FadeOut(text6))
+
+ text1[0].scale(1.2)
+ self.play(ApplyMethod(text1[0].move_to,1.5*DOWN+4.5*LEFT), FadeOut(equal))
+ self.wait(2) \ No newline at end of file
diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/CSasImage.py b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/CSasImage.py
new file mode 100644
index 0000000..fbb3291
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/CSasImage.py
@@ -0,0 +1,168 @@
+from manimlib.imports import *
+
+class Column_Space(Scene):
+ def construct(self):
+
+ A = TextMobject(r"$A = $",r"$\left( \begin{array}{c c c} 1 & 2 & 1 \\ 1 & 3 & 1 \\ 2 & 1 & 4 \\ 3 & 2 & 3 \end{array} \right)$")
+ A.move_to(2*UP)
+ A[1].set_color(color = DARK_BLUE)
+ A.scale(0.75)
+
+ self.play(Write(A),run_time = 1)
+
+ CS_A = TextMobject(r"Column Space of $A = x_{1}$",r"$\left( \begin{array}{c} 1 \\ 1 \\ 2 \\ 3 \end{array} \right)$",r"$+x_{2}$",r"$ \left( \begin{array}{c} 2 \\ 3 \\ 1 \\ 2 \end{array} \right)$",r"$ + x_{3}$",r"$\left( \begin{array}{c} 1 \\ 1 \\ 4 \\ 3 \end{array} \right)$")
+ CS_A.move_to(1.5*LEFT+1*DOWN)
+ CS_A[1].set_color(color = DARK_BLUE)
+ CS_A[3].set_color(color = DARK_BLUE)
+ CS_A[5].set_color(color = DARK_BLUE)
+ CS_A.scale(0.75)
+
+ self.play(Write(CS_A),run_time = 2)
+
+ arrow1 = Arrow(start = 1.25*UP,end = 0.25*DOWN+1.75*LEFT)
+ arrow2 = Arrow(start = 1.35*UP+0.5*RIGHT,end = 0.25*DOWN+0.5*RIGHT)
+ arrow3 = Arrow(start = 1.25*UP+0.75*RIGHT,end = 0.25*DOWN+2.9*RIGHT)
+
+ Defn = TextMobject("Linear Combination of Columns of Matrix")
+ Defn.move_to(3*DOWN)
+
+ self.play(Write(Defn), ShowCreation(arrow1), ShowCreation(arrow2), ShowCreation(arrow3),run_time = 1)
+ self.wait(1)
+
+class solution(LinearTransformationScene):
+ def construct(self):
+
+ self.setup()
+ self.wait()
+
+ o = TextMobject(r"Consider the vector space $R^2$")
+ o.move_to(2*DOWN)
+ o.scale(0.75)
+ o.add_background_rectangle()
+ self.play(Write(o))
+ self.wait()
+ self.play(FadeOut(o))
+
+ A = TextMobject(r"Let $A$(= ",r"$\left[\begin{array}{c c} 1 & -1 \\ 1 & -1 \end{array}\right]$",r")denote the matrix the of this linear transformation.")
+ A.move_to(2*DOWN)
+ A.scale(0.75)
+ A.add_background_rectangle()
+ self.play(Write(A))
+ matrix = [[1,-1],[1,-1]]
+ self.apply_matrix(matrix)
+ self.wait()
+ self.play(FadeOut(A))
+
+ o = TextMobject(r"This is the transformed vector space")
+ o.move_to(2*DOWN)
+ o.scale(0.75)
+ o.add_background_rectangle()
+ self.play(Write(o))
+ self.wait()
+ self.play(FadeOut(o))
+
+ texti = TextMobject(r"$\left[\begin{array}{c}1\\1\end{array}\right]$")
+ textj = TextMobject(r"$\left[\begin{array}{c}-1\\-1\end{array}\right]$")
+ texti.set_color(GREEN)
+ textj.set_color(RED)
+ texti.scale(0.7)
+ textj.scale(0.7)
+ texti.move_to(1.35*RIGHT+0.5*UP)
+ textj.move_to(-(1.5*RIGHT+0.5*UP))
+
+ text1 = TextMobject("[")
+ text2 = TextMobject(r"$\begin{array}{c} 1 \\ 1 \end{array}$")
+ text3 = TextMobject(r"$\begin{array}{c} -1 \\ -1 \end{array}$")
+ text4 = TextMobject("]")
+
+ text2.set_color(GREEN)
+ text3.set_color(RED)
+
+ text1.scale(2)
+ text4.scale(2)
+ text2.scale(0.7)
+ text3.scale(0.7)
+
+ text1.move_to(2.5*UP+6*LEFT)
+ text2.move_to(2.5*UP+5.75*LEFT)
+ text3.move_to(2.5*UP+5.25*LEFT)
+ text4.move_to(2.5*UP+5*LEFT)
+
+ self.play(Write(texti), Write(textj))
+ self.wait()
+ self.play(FadeIn(text1), Transform(texti,text2), Transform(textj,text3), FadeIn(text4))
+ self.wait()
+
+ o = TextMobject(r"Now, you can observe the Image of Linear Transformation")
+ o1 = TextMobject(r"and Column Space(i.e. span of columns of matrix $A$) are same")
+ o.move_to(2.5*DOWN)
+ o1.move_to(3*DOWN)
+ o.scale(0.75)
+ o1.scale(0.75)
+ o.add_background_rectangle()
+ o1.add_background_rectangle()
+ self.play(Write(o))
+ self.play(Write(o1))
+ self.wait()
+ self.play(FadeOut(o),FadeOut(o1))
+
+class solution2nd(LinearTransformationScene):
+ def construct(self):
+
+ self.setup()
+ self.wait()
+
+ arrow1 = Arrow(start = ORIGIN,end = 2*DOWN+RIGHT)
+ arrow2 = Arrow(start = ORIGIN,end = UP+LEFT)
+ arrow3 = Arrow(start = ORIGIN,end = 3*UP+4*RIGHT)
+ arrow1.set_color(YELLOW)
+ arrow2.set_color(YELLOW)
+ arrow3.set_color(YELLOW)
+ arrow1.scale(1.3)
+ arrow2.scale(1.5)
+ arrow3.scale(1.1)
+
+ self.play(ShowCreation(arrow1), ShowCreation(arrow2), ShowCreation(arrow3))
+
+ self.add_transformable_mobject(arrow1)
+ self.add_transformable_mobject(arrow2)
+ self.add_transformable_mobject(arrow3)
+ o = TextMobject(r"Consider any vector in the original vector space $R^2$")
+ o.move_to(2.5*DOWN)
+ o.scale(0.75)
+ o.add_background_rectangle()
+ self.play(Write(o))
+ self.wait()
+ self.play(FadeOut(o))
+
+ A = TextMobject(r"Matrix the of this linear transformation is $A$(= ",r"$\left[\begin{array}{c c} 1 & -1 \\ 1 & -1 \end{array}\right]$",r") again.")
+ A.move_to(2*DOWN)
+ A.scale(0.75)
+ A.add_background_rectangle()
+ self.play(Write(A))
+ matrix = [[1,-1],[1,-1]]
+ self.apply_matrix(matrix)
+ self.wait()
+ self.play(FadeOut(A))
+
+ o = TextMobject(r"This is the transformed vector space")
+ o.move_to(2*DOWN)
+ o.scale(0.75)
+ o.add_background_rectangle()
+ self.play(Write(o))
+ self.wait()
+ self.play(FadeOut(o))
+
+ o = TextMobject(r"Each and every vector of original vector space $R^2$ will transform")
+ o1 = TextMobject(r"to this new vector space which is spanned by $\mathbf{CS}(A)$")
+ o.move_to(2.5*DOWN)
+ o1.move_to(3*DOWN)
+ o.scale(0.75)
+ o1.scale(0.75)
+ o.add_background_rectangle()
+ o1.add_background_rectangle()
+ self.play(Write(o))
+ self.play(Write(o1))
+ self.wait()
+ self.play(FadeOut(o))
+ self.play(FadeOut(o1)) \ No newline at end of file
diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/null_space.py b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/null_space.py
new file mode 100644
index 0000000..dfc3cb4
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/null_space.py
@@ -0,0 +1,91 @@
+from manimlib.imports import *
+class null_space(LinearTransformationScene):
+ def construct(self):
+
+ self.setup()
+ self.wait()
+
+ o = TextMobject(r"This is the original $2D$ vector space(before Linear Transformation)")
+ o.move_to(DOWN)
+ o.scale(0.75)
+ o.add_background_rectangle()
+ self.play(Write(o))
+ self.wait()
+ self.play(FadeOut(o))
+
+ o1 = TextMobject("Consider a set of vectors which are linear")
+ o2 = TextMobject(r"span of a particular vector $\left(\begin{array}{c} 1 \\ 1 \end{array}\right)$")
+ o1.move_to(2*DOWN+3*RIGHT)
+ o2.move_to(2.75*DOWN+3*RIGHT)
+ o1.scale(0.7)
+ o2.scale(0.7)
+ o1.add_background_rectangle()
+ o2.add_background_rectangle()
+ self.play(Write(o1))
+ self.play(Write(o2))
+
+ arrow = Arrow(start = ORIGIN, end = UP+RIGHT)
+ arrow1 = Arrow(start = ORIGIN, end = 2*(UP+RIGHT))
+ arrow2 = Arrow(start = ORIGIN, end = 3*(UP+RIGHT))
+ arrow3 = Arrow(start = ORIGIN, end = 4*(UP+RIGHT))
+ arrow4 = Arrow(start = ORIGIN, end = DOWN+LEFT)
+ arrow5 = Arrow(start = ORIGIN, end = 2*(DOWN+LEFT))
+ arrow6 = Arrow(start = ORIGIN, end = 3*(DOWN+LEFT))
+ arrow7 = Arrow(start = ORIGIN, end = 4*(DOWN+LEFT))
+
+ arrow.scale(1.5)
+ arrow1.scale(1.2)
+ arrow2.scale(1.15)
+ arrow3.scale(1.1)
+ arrow4.scale(1.5)
+ arrow5.scale(1.2)
+ arrow6.scale(1.15)
+ arrow7.scale(1.1)
+
+ self.play(ShowCreation(arrow),
+ ShowCreation(arrow1),
+ ShowCreation(arrow2),
+ ShowCreation(arrow3),
+ ShowCreation(arrow4),
+ ShowCreation(arrow5),
+ ShowCreation(arrow6),
+ ShowCreation(arrow7),
+ )
+
+ self.wait(2)
+ self.play(FadeOut(o1), FadeOut(o2))
+
+ self.add_transformable_mobject(arrow)
+ self.add_transformable_mobject(arrow1)
+ self.add_transformable_mobject(arrow2)
+ self.add_transformable_mobject(arrow3)
+ self.add_transformable_mobject(arrow4)
+ self.add_transformable_mobject(arrow5)
+ self.add_transformable_mobject(arrow6)
+ self.add_transformable_mobject(arrow7)
+
+ o1 = TextMobject("Notice, entire set of vectors which belong to the vector")
+ o2 = TextMobject(r"subspace(Linear Span of $\left(\begin{array}{c} 1 \\ 1 \end{array}\right)$) transforms to zero")
+ o1.move_to(2*DOWN+2.5*RIGHT)
+ o2.move_to(2.75*DOWN+2.5*RIGHT)
+ o1.scale(0.7)
+ o2.scale(0.7)
+ o1.add_background_rectangle()
+ o2.add_background_rectangle()
+ self.play(Write(o1))
+ self.play(Write(o2))
+ self.wait()
+
+ matrix = [[1,-1],[1,-1]]
+ self.apply_matrix(matrix)
+ self.wait()
+
+ self.play(FadeOut(o1), FadeOut(o2))
+
+ o = TextMobject(r"Hence, the vector space formed by linear span of $\left(\begin{array}{c} 1 \\ 1 \end{array}\right)$ is the null space of $A$")
+ o.move_to(DOWN)
+ o.scale(0.75)
+ o.add_background_rectangle()
+ self.play(Write(o))
+ self.wait(2)
+ self.play(FadeOut(o), FadeOut(arrow), FadeOut(arrow1), FadeOut(arrow2), FadeOut(arrow3), FadeOut(arrow4), FadeOut(arrow5), FadeOut(arrow6), FadeOut(arrow7))