summaryrefslogtreecommitdiff
path: root/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces
diff options
context:
space:
mode:
Diffstat (limited to 'FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces')
-rwxr-xr-xFSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/Axb.py77
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/CSasImage.py168
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/null_space.py91
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/solution.py75
4 files changed, 411 insertions, 0 deletions
diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/Axb.py b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/Axb.py
new file mode 100755
index 0000000..95d1021
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/Axb.py
@@ -0,0 +1,77 @@
+from manimlib.imports import *
+
+class Axb(Scene):
+
+ def construct(self):
+
+ text0 = TextMobject("Linear System Of Equations")
+ text1 = TextMobject(r"$x_{1}+x_{2}+x_{3} =b_{1}$")
+ text2 = TextMobject(r"$x_{1}+2x_{2}+x_{3} =b_{2}$")
+ text3 = TextMobject(r"$x_{1}+x_{2}+3x_{3} =b_{3}$")
+ text0.move_to(UP*2+LEFT*2)
+ text0.set_color(DARK_BLUE)
+ text1.move_to(UP)
+ text2.move_to(ORIGIN)
+ text3.move_to(DOWN)
+
+ text0.scale(0.75)
+ text1.scale(0.75)
+ text2.scale(0.75)
+ text3.scale(0.75)
+ self.play(Write(text0))
+ self.play(Write(text1))
+ self.play(Write(text2))
+ self.play(Write(text3))
+ self.play(ApplyMethod(text0.move_to,3*UP+LEFT*2), ApplyMethod(text1.move_to,2.5*UP), ApplyMethod(text2.move_to,2*UP), ApplyMethod(text3.move_to,1.5*UP))
+
+ A = TextMobject(r"$\left( \begin{array}{c c c} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 3 \end{array}\right) \left[ \begin{array} {c} x_{1} \\ x_{2} \\ x_{3} \end{array}\right] =$", r"$\left[ \begin{array}{c} x_{1}+x_{2}+x_{3} \\ x_{1}+2x_{2}+x_{3} \\ x_{1}+x_{2}+3x_{3} \end{array}\right]$")
+ A.scale(0.75)
+ self.play(FadeIn(A))
+
+ textA = TextMobject("A")
+ textx = TextMobject("x")
+ textb = TextMobject("Ax")
+
+ textA.move_to(DOWN+3*LEFT)
+ textx.move_to(1.1*DOWN+0.5*LEFT)
+ textb.move_to(DOWN-2*LEFT)
+
+ self.play(Write(textA), Write(textx), Write(textb))
+
+ circle1 = Circle(radius = 0.24)
+ circle2 = Circle(radius = 0.24)
+ square = Square(side_length = 0.6)
+
+ circle1.move_to(UP*0.5+LEFT*3.05)
+ circle2.move_to(UP*0.4+LEFT*0.5)
+ square.move_to(UP*0.4+RIGHT*1.3)
+
+ self.play(FadeIn(circle1), FadeIn(circle2),FadeIn(square))
+
+ self.play(ApplyMethod(circle1.move_to,UP*0.5+LEFT*2.45), ApplyMethod(circle2.move_to,LEFT*0.5), ApplyMethod(square.move_to,UP*0.4+RIGHT*2.2))
+ self.play(ApplyMethod(circle1.move_to,UP*0.5+LEFT*1.85), ApplyMethod(circle2.move_to,DOWN*0.5+LEFT*0.5), ApplyMethod(square.move_to,UP*0.4+RIGHT*3.1))
+
+ self.play(ApplyMethod(circle1.move_to,LEFT*3.05), ApplyMethod(circle2.move_to,UP*0.4+LEFT*0.5), ApplyMethod(square.move_to,RIGHT*1.3))
+ self.play(ApplyMethod(circle1.move_to,LEFT*2.45), ApplyMethod(circle2.move_to,LEFT*0.5), ApplyMethod(square.move_to,RIGHT*2.2))
+ self.play(ApplyMethod(circle1.move_to,LEFT*1.85), ApplyMethod(circle2.move_to,DOWN*0.5+LEFT*0.5), ApplyMethod(square.move_to,RIGHT*3.1))
+
+ self.play(ApplyMethod(circle1.move_to,0.4*DOWN+LEFT*3.05), ApplyMethod(circle2.move_to,UP*0.4+LEFT*0.5), ApplyMethod(square.move_to,0.4*DOWN+RIGHT*1.3))
+ self.play(ApplyMethod(circle1.move_to,0.4*DOWN+LEFT*2.45), ApplyMethod(circle2.move_to,LEFT*0.5), ApplyMethod(square.move_to,0.4*DOWN+RIGHT*2.2))
+ self.play(ApplyMethod(circle1.move_to,0.4*DOWN+LEFT*1.85), ApplyMethod(circle2.move_to,DOWN*0.5+LEFT*0.5), ApplyMethod(square.move_to,0.4*DOWN+RIGHT*3.1))
+
+ self.play(FadeOut(circle1), FadeOut(circle2), FadeOut(square))
+ self.play(FadeOut(A[0]), ApplyMethod(A[1].move_to,2*LEFT),ApplyMethod(textb.move_to,DOWN+1.7*LEFT), FadeOut(textx), FadeOut(textA))
+ b = TextMobject(r"$=\left[ \begin{array}{c} b_{1} \\ b_{2} \\ b_{3} \end{array}\right]$")
+ b.move_to(RIGHT)
+ textB = TextMobject("b")
+ textB.move_to(1.2*DOWN+1.1*RIGHT)
+ self.play(FadeIn(b),FadeIn(textB))
+
+ self.wait()
+
+ self.play(FadeOut(text0), FadeOut(text1), FadeOut(text2), FadeOut(text3))
+
+ axb = TextMobject("Ax = b")
+ self.play(FadeIn(axb), FadeOut(textb), FadeOut(textB), FadeOut(b), FadeOut(A[1]))
+
+ self.wait() \ No newline at end of file
diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/CSasImage.py b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/CSasImage.py
new file mode 100644
index 0000000..fbb3291
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/CSasImage.py
@@ -0,0 +1,168 @@
+from manimlib.imports import *
+
+class Column_Space(Scene):
+ def construct(self):
+
+ A = TextMobject(r"$A = $",r"$\left( \begin{array}{c c c} 1 & 2 & 1 \\ 1 & 3 & 1 \\ 2 & 1 & 4 \\ 3 & 2 & 3 \end{array} \right)$")
+ A.move_to(2*UP)
+ A[1].set_color(color = DARK_BLUE)
+ A.scale(0.75)
+
+ self.play(Write(A),run_time = 1)
+
+ CS_A = TextMobject(r"Column Space of $A = x_{1}$",r"$\left( \begin{array}{c} 1 \\ 1 \\ 2 \\ 3 \end{array} \right)$",r"$+x_{2}$",r"$ \left( \begin{array}{c} 2 \\ 3 \\ 1 \\ 2 \end{array} \right)$",r"$ + x_{3}$",r"$\left( \begin{array}{c} 1 \\ 1 \\ 4 \\ 3 \end{array} \right)$")
+ CS_A.move_to(1.5*LEFT+1*DOWN)
+ CS_A[1].set_color(color = DARK_BLUE)
+ CS_A[3].set_color(color = DARK_BLUE)
+ CS_A[5].set_color(color = DARK_BLUE)
+ CS_A.scale(0.75)
+
+ self.play(Write(CS_A),run_time = 2)
+
+ arrow1 = Arrow(start = 1.25*UP,end = 0.25*DOWN+1.75*LEFT)
+ arrow2 = Arrow(start = 1.35*UP+0.5*RIGHT,end = 0.25*DOWN+0.5*RIGHT)
+ arrow3 = Arrow(start = 1.25*UP+0.75*RIGHT,end = 0.25*DOWN+2.9*RIGHT)
+
+ Defn = TextMobject("Linear Combination of Columns of Matrix")
+ Defn.move_to(3*DOWN)
+
+ self.play(Write(Defn), ShowCreation(arrow1), ShowCreation(arrow2), ShowCreation(arrow3),run_time = 1)
+ self.wait(1)
+
+class solution(LinearTransformationScene):
+ def construct(self):
+
+ self.setup()
+ self.wait()
+
+ o = TextMobject(r"Consider the vector space $R^2$")
+ o.move_to(2*DOWN)
+ o.scale(0.75)
+ o.add_background_rectangle()
+ self.play(Write(o))
+ self.wait()
+ self.play(FadeOut(o))
+
+ A = TextMobject(r"Let $A$(= ",r"$\left[\begin{array}{c c} 1 & -1 \\ 1 & -1 \end{array}\right]$",r")denote the matrix the of this linear transformation.")
+ A.move_to(2*DOWN)
+ A.scale(0.75)
+ A.add_background_rectangle()
+ self.play(Write(A))
+ matrix = [[1,-1],[1,-1]]
+ self.apply_matrix(matrix)
+ self.wait()
+ self.play(FadeOut(A))
+
+ o = TextMobject(r"This is the transformed vector space")
+ o.move_to(2*DOWN)
+ o.scale(0.75)
+ o.add_background_rectangle()
+ self.play(Write(o))
+ self.wait()
+ self.play(FadeOut(o))
+
+ texti = TextMobject(r"$\left[\begin{array}{c}1\\1\end{array}\right]$")
+ textj = TextMobject(r"$\left[\begin{array}{c}-1\\-1\end{array}\right]$")
+ texti.set_color(GREEN)
+ textj.set_color(RED)
+ texti.scale(0.7)
+ textj.scale(0.7)
+ texti.move_to(1.35*RIGHT+0.5*UP)
+ textj.move_to(-(1.5*RIGHT+0.5*UP))
+
+ text1 = TextMobject("[")
+ text2 = TextMobject(r"$\begin{array}{c} 1 \\ 1 \end{array}$")
+ text3 = TextMobject(r"$\begin{array}{c} -1 \\ -1 \end{array}$")
+ text4 = TextMobject("]")
+
+ text2.set_color(GREEN)
+ text3.set_color(RED)
+
+ text1.scale(2)
+ text4.scale(2)
+ text2.scale(0.7)
+ text3.scale(0.7)
+
+ text1.move_to(2.5*UP+6*LEFT)
+ text2.move_to(2.5*UP+5.75*LEFT)
+ text3.move_to(2.5*UP+5.25*LEFT)
+ text4.move_to(2.5*UP+5*LEFT)
+
+ self.play(Write(texti), Write(textj))
+ self.wait()
+ self.play(FadeIn(text1), Transform(texti,text2), Transform(textj,text3), FadeIn(text4))
+ self.wait()
+
+ o = TextMobject(r"Now, you can observe the Image of Linear Transformation")
+ o1 = TextMobject(r"and Column Space(i.e. span of columns of matrix $A$) are same")
+ o.move_to(2.5*DOWN)
+ o1.move_to(3*DOWN)
+ o.scale(0.75)
+ o1.scale(0.75)
+ o.add_background_rectangle()
+ o1.add_background_rectangle()
+ self.play(Write(o))
+ self.play(Write(o1))
+ self.wait()
+ self.play(FadeOut(o),FadeOut(o1))
+
+class solution2nd(LinearTransformationScene):
+ def construct(self):
+
+ self.setup()
+ self.wait()
+
+ arrow1 = Arrow(start = ORIGIN,end = 2*DOWN+RIGHT)
+ arrow2 = Arrow(start = ORIGIN,end = UP+LEFT)
+ arrow3 = Arrow(start = ORIGIN,end = 3*UP+4*RIGHT)
+ arrow1.set_color(YELLOW)
+ arrow2.set_color(YELLOW)
+ arrow3.set_color(YELLOW)
+ arrow1.scale(1.3)
+ arrow2.scale(1.5)
+ arrow3.scale(1.1)
+
+ self.play(ShowCreation(arrow1), ShowCreation(arrow2), ShowCreation(arrow3))
+
+ self.add_transformable_mobject(arrow1)
+ self.add_transformable_mobject(arrow2)
+ self.add_transformable_mobject(arrow3)
+ o = TextMobject(r"Consider any vector in the original vector space $R^2$")
+ o.move_to(2.5*DOWN)
+ o.scale(0.75)
+ o.add_background_rectangle()
+ self.play(Write(o))
+ self.wait()
+ self.play(FadeOut(o))
+
+ A = TextMobject(r"Matrix the of this linear transformation is $A$(= ",r"$\left[\begin{array}{c c} 1 & -1 \\ 1 & -1 \end{array}\right]$",r") again.")
+ A.move_to(2*DOWN)
+ A.scale(0.75)
+ A.add_background_rectangle()
+ self.play(Write(A))
+ matrix = [[1,-1],[1,-1]]
+ self.apply_matrix(matrix)
+ self.wait()
+ self.play(FadeOut(A))
+
+ o = TextMobject(r"This is the transformed vector space")
+ o.move_to(2*DOWN)
+ o.scale(0.75)
+ o.add_background_rectangle()
+ self.play(Write(o))
+ self.wait()
+ self.play(FadeOut(o))
+
+ o = TextMobject(r"Each and every vector of original vector space $R^2$ will transform")
+ o1 = TextMobject(r"to this new vector space which is spanned by $\mathbf{CS}(A)$")
+ o.move_to(2.5*DOWN)
+ o1.move_to(3*DOWN)
+ o.scale(0.75)
+ o1.scale(0.75)
+ o.add_background_rectangle()
+ o1.add_background_rectangle()
+ self.play(Write(o))
+ self.play(Write(o1))
+ self.wait()
+ self.play(FadeOut(o))
+ self.play(FadeOut(o1)) \ No newline at end of file
diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/null_space.py b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/null_space.py
new file mode 100644
index 0000000..dfc3cb4
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/null_space.py
@@ -0,0 +1,91 @@
+from manimlib.imports import *
+class null_space(LinearTransformationScene):
+ def construct(self):
+
+ self.setup()
+ self.wait()
+
+ o = TextMobject(r"This is the original $2D$ vector space(before Linear Transformation)")
+ o.move_to(DOWN)
+ o.scale(0.75)
+ o.add_background_rectangle()
+ self.play(Write(o))
+ self.wait()
+ self.play(FadeOut(o))
+
+ o1 = TextMobject("Consider a set of vectors which are linear")
+ o2 = TextMobject(r"span of a particular vector $\left(\begin{array}{c} 1 \\ 1 \end{array}\right)$")
+ o1.move_to(2*DOWN+3*RIGHT)
+ o2.move_to(2.75*DOWN+3*RIGHT)
+ o1.scale(0.7)
+ o2.scale(0.7)
+ o1.add_background_rectangle()
+ o2.add_background_rectangle()
+ self.play(Write(o1))
+ self.play(Write(o2))
+
+ arrow = Arrow(start = ORIGIN, end = UP+RIGHT)
+ arrow1 = Arrow(start = ORIGIN, end = 2*(UP+RIGHT))
+ arrow2 = Arrow(start = ORIGIN, end = 3*(UP+RIGHT))
+ arrow3 = Arrow(start = ORIGIN, end = 4*(UP+RIGHT))
+ arrow4 = Arrow(start = ORIGIN, end = DOWN+LEFT)
+ arrow5 = Arrow(start = ORIGIN, end = 2*(DOWN+LEFT))
+ arrow6 = Arrow(start = ORIGIN, end = 3*(DOWN+LEFT))
+ arrow7 = Arrow(start = ORIGIN, end = 4*(DOWN+LEFT))
+
+ arrow.scale(1.5)
+ arrow1.scale(1.2)
+ arrow2.scale(1.15)
+ arrow3.scale(1.1)
+ arrow4.scale(1.5)
+ arrow5.scale(1.2)
+ arrow6.scale(1.15)
+ arrow7.scale(1.1)
+
+ self.play(ShowCreation(arrow),
+ ShowCreation(arrow1),
+ ShowCreation(arrow2),
+ ShowCreation(arrow3),
+ ShowCreation(arrow4),
+ ShowCreation(arrow5),
+ ShowCreation(arrow6),
+ ShowCreation(arrow7),
+ )
+
+ self.wait(2)
+ self.play(FadeOut(o1), FadeOut(o2))
+
+ self.add_transformable_mobject(arrow)
+ self.add_transformable_mobject(arrow1)
+ self.add_transformable_mobject(arrow2)
+ self.add_transformable_mobject(arrow3)
+ self.add_transformable_mobject(arrow4)
+ self.add_transformable_mobject(arrow5)
+ self.add_transformable_mobject(arrow6)
+ self.add_transformable_mobject(arrow7)
+
+ o1 = TextMobject("Notice, entire set of vectors which belong to the vector")
+ o2 = TextMobject(r"subspace(Linear Span of $\left(\begin{array}{c} 1 \\ 1 \end{array}\right)$) transforms to zero")
+ o1.move_to(2*DOWN+2.5*RIGHT)
+ o2.move_to(2.75*DOWN+2.5*RIGHT)
+ o1.scale(0.7)
+ o2.scale(0.7)
+ o1.add_background_rectangle()
+ o2.add_background_rectangle()
+ self.play(Write(o1))
+ self.play(Write(o2))
+ self.wait()
+
+ matrix = [[1,-1],[1,-1]]
+ self.apply_matrix(matrix)
+ self.wait()
+
+ self.play(FadeOut(o1), FadeOut(o2))
+
+ o = TextMobject(r"Hence, the vector space formed by linear span of $\left(\begin{array}{c} 1 \\ 1 \end{array}\right)$ is the null space of $A$")
+ o.move_to(DOWN)
+ o.scale(0.75)
+ o.add_background_rectangle()
+ self.play(Write(o))
+ self.wait(2)
+ self.play(FadeOut(o), FadeOut(arrow), FadeOut(arrow1), FadeOut(arrow2), FadeOut(arrow3), FadeOut(arrow4), FadeOut(arrow5), FadeOut(arrow6), FadeOut(arrow7))
diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/solution.py b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/solution.py
new file mode 100644
index 0000000..fb31881
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/solution.py
@@ -0,0 +1,75 @@
+from manimlib.imports import *
+class solution(LinearTransformationScene):
+ def construct(self):
+
+ self.setup()
+ self.wait()
+
+ o = TextMobject(r"This is the original $2D$ vector space(before Linear Transformation)")
+ o.move_to(DOWN)
+ o.scale(0.75)
+ o.add_background_rectangle()
+ self.play(Write(o))
+ self.wait()
+ self.play(FadeOut(o))
+
+ A = TextMobject("Let $A$ denote the matrix the of this linear transformation.")
+ A.move_to(DOWN)
+ A.scale(0.75)
+ A.add_background_rectangle()
+ self.play(Write(A))
+ matrix = [[1,-1],[1,-1]]
+ self.apply_matrix(matrix)
+ self.wait()
+ self.play(FadeOut(A))
+
+ o = TextMobject(r"This is the transformed vector space i.e. a line ($1D$)")
+ o.move_to(DOWN)
+ o.scale(0.75)
+ o.add_background_rectangle()
+ self.play(Write(o))
+ self.wait()
+ self.play(FadeOut(o))
+
+ arrow2 = Arrow(start = ORIGIN, end = 2*DOWN+2*LEFT)
+ arrow2.set_color(DARK_BLUE)
+ arrow2.scale(1.2)
+ self.play(ShowCreation(arrow2))
+ self.wait()
+
+ o1 = TextMobject("If the vector lies in the transformed vector space")
+ o2 = TextMobject("(the line) then the solution exist")
+ o1.move_to(2*DOWN+2*RIGHT)
+ o2.move_to(2.5*DOWN+2*RIGHT)
+ o1.scale(0.75)
+ o2.scale(0.75)
+ o1.add_background_rectangle()
+ o2.add_background_rectangle()
+ self.play(Write(o1))
+ self.play(Write(o2))
+ self.wait()
+ self.play(FadeOut(o1), FadeOut(o2))
+
+ self.play(FadeOut(arrow2))
+
+ arrow1 = Arrow(start = ORIGIN, end = 2*UP+RIGHT)
+ arrow1.set_color(DARK_BLUE)
+ arrow1.scale(1.3)
+ self.play(ShowCreation(arrow1))
+ self.wait()
+
+ o1 = TextMobject("If the vector does lies in the transformed")
+ o2 = TextMobject("vector space then the does not solution exist")
+ o1.move_to(2*DOWN+2*RIGHT)
+ o2.move_to(2.5*DOWN+2*RIGHT)
+ o1.scale(0.75)
+ o2.scale(0.75)
+ o1.add_background_rectangle()
+ o2.add_background_rectangle()
+ self.play(Write(o1))
+ self.play(Write(o2))
+ self.wait()
+ self.play(FadeOut(o1), FadeOut(o2))
+
+ self.play(FadeOut(arrow1))
+ \ No newline at end of file