summaryrefslogtreecommitdiff
path: root/FSF-2020/calculus
diff options
context:
space:
mode:
Diffstat (limited to 'FSF-2020/calculus')
-rw-r--r--FSF-2020/calculus/intro-to-calculus/README.md8
-rw-r--r--FSF-2020/calculus/series-and-transformations/Fourier Transform/README.md17
-rw-r--r--FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file1.gifbin0 -> 828501 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file2a.gifbin0 -> 622617 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file2b.gifbin0 -> 635274 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file3.gifbin0 -> 558677 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file4.gifbin0 -> 660267 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file5.gifbin0 -> 177766 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Fourier Transform/video1_DividingAToneIntoItsConstituents.py90
-rw-r--r--FSF-2020/calculus/series-and-transformations/Fourier Transform/video2_ColorsAnalogyForFourierSeries.py165
-rw-r--r--FSF-2020/calculus/series-and-transformations/Fourier Transform/video3_seriesVSTransform.py133
-rw-r--r--FSF-2020/calculus/series-and-transformations/Fourier Transform/video4_FourierSeriesOfSquarePulse.py92
-rw-r--r--FSF-2020/calculus/series-and-transformations/Fourier Transform/video5_CoinsAnalogy.py225
-rw-r--r--FSF-2020/calculus/series-and-transformations/Laplace Transformations/README.md21
-rw-r--r--FSF-2020/calculus/series-and-transformations/Laplace Transformations/file1_laplaceTransformBasic.py67
-rw-r--r--FSF-2020/calculus/series-and-transformations/Laplace Transformations/file2_differentialEqSimplification.py78
-rw-r--r--FSF-2020/calculus/series-and-transformations/Laplace Transformations/file3_unitStepFunction.py168
-rw-r--r--FSF-2020/calculus/series-and-transformations/Laplace Transformations/file4_diracBasic.py61
-rw-r--r--FSF-2020/calculus/series-and-transformations/Laplace Transformations/file5_formationDiracDeltaFunction.py142
-rw-r--r--FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/DiracFunction.gifbin0 -> 60841 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/DiracFunctionFormation.gifbin0 -> 315096 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/LtransformDiracFunction.gifbin0 -> 99703 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/LtransformUnitStepFunction.gifbin0 -> 151025 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/UnitStepFunctionExample.gifbin0 -> 192755 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/basicIntuition.gifbin0 -> 113203 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/solvingDEintuition.gifbin0 -> 196162 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/unitStepFunction.gifbin0 -> 56604 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/PowerSeriesQuestions.pdfbin112622 -> 118730 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/README.md14
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/gifs/file1_convergence_Intuition.gifbin0 -> 254804 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/gifs/file1a_convergence_Intuition.gifbin0 -> 123534 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/gifs/file2_convergence_of_a_function.gifbin0 -> 503569 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/gifs/file3_radius_and_intervalOfConvergence.gifbin0 -> 441251 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/gifs/file4_UniformConvergence.gifbin0 -> 261713 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/script1.py128
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/video1_convergence_Intuition.py (renamed from FSF-2020/calculus/series-and-transformations/Power Series/script2.py)37
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/video2_convergence_of_a_function.py (renamed from FSF-2020/calculus/series-and-transformations/Power Series/script3.py)12
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/video3_radius_and_intervalOfConvergence.py (renamed from FSF-2020/calculus/series-and-transformations/Power Series/script4.py)25
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/video4_UniformConvergence.py (renamed from FSF-2020/calculus/series-and-transformations/Power Series/script5.py)59
-rw-r--r--FSF-2020/calculus/series-and-transformations/Taylor Series/README.md11
-rw-r--r--FSF-2020/calculus/series-and-transformations/Taylor Series/TaylorSeriesQuestions.pdfbin119804 -> 125254 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file1_Example_TaylorExpansion.gifbin0 -> 667237 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file2_TaylorExpansionGeneralForm.gifbin0 -> 308980 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file3_radiusOfConvergence.gifbin0 -> 609653 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file4_DivergentRemainder.gifbin0 -> 400593 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Taylor Series/video1_Example_TaylorExpansion.py (renamed from FSF-2020/calculus/series-and-transformations/Taylor Series/script1.py)80
-rw-r--r--FSF-2020/calculus/series-and-transformations/Taylor Series/video2_TaylorExpansionGeneralForm.py (renamed from FSF-2020/calculus/series-and-transformations/Taylor Series/script2.py)12
-rw-r--r--FSF-2020/calculus/series-and-transformations/Taylor Series/video3_radiusOfConvergence.py (renamed from FSF-2020/calculus/series-and-transformations/Taylor Series/script3.py)22
-rw-r--r--FSF-2020/calculus/series-and-transformations/Taylor Series/video4_DivergentRemainder.py (renamed from FSF-2020/calculus/series-and-transformations/Taylor Series/script4.py)0
-rw-r--r--FSF-2020/calculus/series-and-transformations/Z-Transform/README.md9
-rw-r--r--FSF-2020/calculus/series-and-transformations/Z-Transform/gifs/file1.gifbin0 -> 408025 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Z-Transform/gifs/file2.gifbin0 -> 643692 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Z-Transform/gifs/file3.gifbin0 -> 585127 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Z-Transform/video1_Sampling.py81
-rw-r--r--FSF-2020/calculus/series-and-transformations/Z-Transform/video2_ZTransformOfDelta.py121
-rw-r--r--FSF-2020/calculus/series-and-transformations/Z-Transform/video3_RegionOfConvergence.py144
56 files changed, 1823 insertions, 199 deletions
diff --git a/FSF-2020/calculus/intro-to-calculus/README.md b/FSF-2020/calculus/intro-to-calculus/README.md
index e69de29..a417361 100644
--- a/FSF-2020/calculus/intro-to-calculus/README.md
+++ b/FSF-2020/calculus/intro-to-calculus/README.md
@@ -0,0 +1,8 @@
+Contributor: Aryan Singh
+Subtopics covered
+ - When do limits exist?
+ - How Fast am I going?-An intro to derivatives
+ - Infinte sums in a nutshell(Riemann integrals)
+ - Fundamental Theorem of calculus
+ - Volume and surface area of Gabriel's Horn
+ - Infinite sequences and series
diff --git a/FSF-2020/calculus/series-and-transformations/Fourier Transform/README.md b/FSF-2020/calculus/series-and-transformations/Fourier Transform/README.md
new file mode 100644
index 0000000..c5d8389
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Fourier Transform/README.md
@@ -0,0 +1,17 @@
+### Dividing a tone into its constituents
+![GIF1](gifs/file1.gif)
+
+### Colors Analogy
+![GIF2](gifs/file2a.gif)
+
+### Applying the same on Graphs
+![GIF3](gifs/file2b.gif)
+
+### Fourier series for non-periodic functions
+![GIF4](gifs/file3.gif)
+
+### Fourier Series of Square pulse
+![GIF5](gifs/file4.gif)
+
+### Coins Analogy
+![GIF6](gifs/file5.gif)
diff --git a/FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file1.gif b/FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file1.gif
new file mode 100644
index 0000000..d4dc9d7
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file1.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file2a.gif b/FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file2a.gif
new file mode 100644
index 0000000..8f83bc4
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file2a.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file2b.gif b/FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file2b.gif
new file mode 100644
index 0000000..d68c405
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file2b.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file3.gif b/FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file3.gif
new file mode 100644
index 0000000..533368b
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file3.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file4.gif b/FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file4.gif
new file mode 100644
index 0000000..36cd61b
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file4.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file5.gif b/FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file5.gif
new file mode 100644
index 0000000..9757bd6
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file5.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Fourier Transform/video1_DividingAToneIntoItsConstituents.py b/FSF-2020/calculus/series-and-transformations/Fourier Transform/video1_DividingAToneIntoItsConstituents.py
new file mode 100644
index 0000000..39db6d8
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Fourier Transform/video1_DividingAToneIntoItsConstituents.py
@@ -0,0 +1,90 @@
+from manimlib.imports import*
+import numpy as np
+
+# def func(t,n):
+# s=0
+# for i in range(1,n+1):
+# s+=((-2/(i*np.pi))*((-1)**i)*np.sin(2*np.pi*i*t))
+# return s
+
+
+class intro(GraphScene):
+ CONFIG = {
+ "x_min": -3,
+ "x_max": 3,
+ "x_axis_width": 6,
+ "y_min": -5,
+ "y_max": 5,
+ "graph_origin": 10.5*LEFT,
+ "axes_color": BLUE,
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-2, 3, 1),
+ }
+ def func(self,t,n1,n2):
+ s=0
+ for i in range(n1,n2+1):
+ s+=((-2/(i*np.pi))*((-1)**i)*np.sin(2*np.pi*i*t))
+ return s
+
+ def construct(self):
+ image=ImageMobject('image.png').shift(5.5*LEFT+2.5*UP).scale(1.5)
+ self.play(ShowCreation(image))
+
+ self.setup_axes(scalee=1)
+
+ mainGraphs=[
+ self.get_graph(lambda x:self.func(x,2,7),x_max=2,x_min=-2).shift(9.3*RIGHT+3*UP).set_color([ORANGE,GREEN_B,RED_E,YELLOW_E,RED_D,YELLOW_D]).scale(1.4),
+ self.get_graph(lambda x:self.func(x,3,7),x_max=2,x_min=-2).shift(10.8*RIGHT+3*UP).set_color([GREEN_B,ORANGE,RED_D,YELLOW_E,YELLOW_D]).scale(1.4),
+ self.get_graph(lambda x:self.func(x,4,7),x_max=2,x_min=-2).shift(10.8*RIGHT+3*UP).set_color([GREEN_B,YELLOW_E,ORANGE,YELLOW_D]).scale(1.4),
+ self.get_graph(lambda x:self.func(x,5,7),x_max=2,x_min=-2).shift(10.8*RIGHT+3*UP).set_color([YELLOW_E,GREEN_B,YELLOW_D]).scale(1.4),
+ self.get_graph(lambda x:self.func(x,6,7),x_max=2,x_min=-2).shift(10.8*RIGHT+3*UP).set_color([YELLOW_D,GREEN_B]).scale(1.4),
+ self.get_graph(lambda x:self.func(x,7,7),x_max=2,x_min=-2,color=GREEN_B).shift(10.8*RIGHT+3*UP).scale(1.4),
+ ]
+ self.play(ApplyMethod(mainGraphs[0].shift,1.5*RIGHT))
+
+ graph1=self.get_graph(lambda x:self.func(x,2,2),x_max=2,x_min=-2,color=RED_E).shift(10.8*RIGHT+3*UP).scale(1.5)
+ graph2=self.get_graph(lambda x:self.func(x,3,3),x_max=2,x_min=-2,color=RED_D).shift(10.8*RIGHT+3*UP).scale(1.5)
+ graph3=self.get_graph(lambda x:self.func(x,4,4),x_max=2,x_min=-2,color=ORANGE).shift(10.8*RIGHT+3*UP).scale(1.5)
+ graph4=self.get_graph(lambda x:self.func(x,5,5),x_max=2,x_min=-2,color=YELLOW_E).shift(10.8*RIGHT+3*UP).scale(1.5)
+ graph5=self.get_graph(lambda x:self.func(x,6,6),x_max=2,x_min=-2,color=YELLOW_D).shift(10.8*RIGHT+3*UP).scale(1.5)
+
+ coeff=[
+ TextMobject("$\\frac { -1 }{ \pi } sin(4\pi t)$").scale(0.5).shift(DOWN+4.6*RIGHT+3*UP).set_color(RED_E),
+ TextMobject("$\\frac { 2 }{ 3\pi } sin(6\pi t)$").scale(0.5).shift(2*DOWN+4.6*RIGHT+3*UP).set_color(RED_D),
+ TextMobject("$\\frac { -1 }{ 2\pi } sin(8\pi t)$").scale(0.5).shift(3*DOWN+4.6*RIGHT+3*UP).set_color(ORANGE),
+ TextMobject("$\\frac { 2 }{ 5\pi } sin(10\pi t)$").scale(0.5).shift(4*DOWN+4.6*RIGHT+3*UP).set_color(YELLOW_E),
+ TextMobject("$\\frac { -1 }{ 3\pi } sin(12\pi t)$").scale(0.5).shift(5*DOWN+4.6*RIGHT+3*UP).set_color(YELLOW_D),
+ TextMobject("$\\frac { 2 }{ 7\pi } sin(14\pi t)$").scale(0.5).shift(6*DOWN+4.6*RIGHT+3*UP).set_color(GREEN_B)
+ ]
+
+ self.wait(0.6)
+ self.play(ApplyMethod(graph1.shift,1*DOWN),ReplacementTransform(mainGraphs[0],mainGraphs[1]))
+ self.play(Write(coeff[0]))
+ self.play(ApplyMethod(graph2.shift,2*DOWN),ReplacementTransform(mainGraphs[1],mainGraphs[2]))
+ self.play(Write(coeff[1]))
+ self.play(ApplyMethod(graph3.shift,3*DOWN),ReplacementTransform(mainGraphs[2],mainGraphs[3]))
+ self.play(Write(coeff[2]))
+ self.play(ApplyMethod(graph4.shift,4*DOWN),ReplacementTransform(mainGraphs[3],mainGraphs[4]))
+ self.play(Write(coeff[3]))
+ self.play(ApplyMethod(graph5.shift,5*DOWN),ReplacementTransform(mainGraphs[4],mainGraphs[5]))
+ self.play(Write(coeff[4]))
+ self.play(ApplyMethod(mainGraphs[5].shift,6*DOWN))
+ self.play(Write(coeff[5]))
+
+ pluses=[TextMobject("+"),TextMobject("+"),TextMobject("+"),TextMobject("+"),TextMobject("+")]
+ for t in pluses:
+ t.scale(0.5).shift((2.2-1.5*pluses.index(t))*LEFT)
+
+ finalGraph=self.get_graph(lambda x:self.func(x,2,7),x_max=2,x_min=-2).shift(10.8*RIGHT+3*UP)
+ finalGraph.set_color([GREEN_B,YELLOW_D,YELLOW_E,ORANGE,RED_D,RED_E])
+ finalGroup=VGroup(graph1,graph2,graph3,graph4,graph5,mainGraphs[5])
+ self.play(ReplacementTransform(finalGroup,finalGraph))
+ self.play(ApplyMethod(coeff[0].scale,0.7),ApplyMethod(coeff[1].scale,0.7),ApplyMethod(coeff[2].scale,0.7),ApplyMethod(coeff[3].scale,0.7),ApplyMethod(coeff[4].scale,0.7),ApplyMethod(coeff[5].scale,0.7))
+ #self.play(ApplyMethod(coeff[0].shift,7*LEFT+1.6*DOWN),ApplyMethod(coeff[1].shift,5.5*LEFT+0.8*DOWN),ApplyMethod(coeff[2].shift,4*LEFT),ApplyMethod(coeff[3].shift,2.5*LEFT+0.8*UP),ApplyMethod(coeff[4].shift,LEFT+1.6*UP),ApplyMethod(coeff[5].shift,0.5*RIGHT+2.4*DOWN))
+ self.play(ApplyMethod(coeff[0].shift,7.6*LEFT+2*DOWN),ApplyMethod(coeff[1].shift,6.1*LEFT+DOWN),ApplyMethod(coeff[2].shift,4.6*LEFT),ApplyMethod(coeff[3].shift,3.1*LEFT+UP),ApplyMethod(coeff[4].shift,1.6*LEFT+2*UP),ApplyMethod(coeff[5].shift,0.1*LEFT+3*UP))
+ equal=TextMobject("=").scale(1.5).shift(1.5*UP)
+ self.play(Write(equal))
+ self.play(Write(pluses[0]),Write(pluses[1]),Write(pluses[2]),Write(pluses[3]),Write(pluses[4]))
+ group=VGroup(pluses[0],pluses[1],pluses[2],pluses[3],pluses[4],coeff[0],coeff[1],coeff[2],coeff[3],coeff[4],coeff[5])
+ self.play(ApplyMethod(group.scale,1.5))
+ self.wait(2)
diff --git a/FSF-2020/calculus/series-and-transformations/Fourier Transform/video2_ColorsAnalogyForFourierSeries.py b/FSF-2020/calculus/series-and-transformations/Fourier Transform/video2_ColorsAnalogyForFourierSeries.py
new file mode 100644
index 0000000..8f3706b
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Fourier Transform/video2_ColorsAnalogyForFourierSeries.py
@@ -0,0 +1,165 @@
+from manimlib.imports import*
+import numpy as np
+
+def func(t,n1,n2):
+ s=0
+ for i in range(n1,n2+1):
+ s+=((-2/(i*np.pi))*((-1)**i)*np.sin(2*np.pi*i*t))
+ return s
+
+class divideColors(GraphScene):
+ CONFIG = {
+ "x_min": -2,
+ "x_max": 2,
+ "y_min": -1,
+ "y_max": 1,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": BLUE,
+ "x_axis_label": "$t$",
+ "y_axis_label": "$y$",
+ "x_labeled_nums": range(-1, 2, 1),
+ "x_axis_width": 3,
+ "y_axis_height": 2
+ }
+ def construct(self):
+ text1a=TextMobject("Consider dividing a","mixture of colors")
+ text1b=TextMobject("into its","components")
+ text1a.scale(0.8)
+ text1b.scale(0.8)
+ text1a.shift(UP)
+ text1b.shift(0.3*UP)
+ text1a.set_color_by_tex_to_color_map({"mixture of colors":[GREEN,RED,BLUE,YELLOW]})
+ text1b.set_color_by_tex_to_color_map({"components":GREEN})
+ self.play(Write(text1a))
+ self.play(FadeIn(text1b))
+ self.wait(0.8)
+
+ self.play(FadeOut(text1a),FadeOut(text1b))
+
+ mainCircle=Circle(radius=1.4,color=BLACK,fill_color=[PURPLE_E,PURPLE_D,RED_B,ORANGE,YELLOW_B,YELLOW_D,GREEN_A,GREEN_C],fill_opacity=0.8)
+ self.play(ShowCreation(mainCircle))
+ self.wait(1)
+ mainCirclea=Circle(radius=1.4,color=BLACK,fill_color=[RED_B,ORANGE,YELLOW_B,YELLOW_D,GREEN_A,GREEN_C],fill_opacity=0.8)
+ mainCircleb=Circle(radius=1.4,color=BLACK,fill_color=[YELLOW_B,YELLOW_D,GREEN_A,GREEN_C],fill_opacity=0.8)
+ mainCirclec=Circle(radius=1.4,color=BLACK,fill_color=[GREEN_A,GREEN_C],fill_opacity=0.8)
+ mainCircled=Circle(radius=1.4,color=BLACK,fill_color=[],fill_opacity=0.8)
+
+ c1=Circle(radius=0.5,color=PURPLE_E,fill_color=PURPLE_E,fill_opacity=0.8)
+ c2=Circle(radius=0.5,color=PURPLE_D,fill_color=PURPLE_D,fill_opacity=0.8)
+ c3=Circle(radius=0.5,color=RED_D,fill_color=RED_B,fill_opacity=0.8)
+ c4=Circle(radius=0.5,color=ORANGE,fill_color=ORANGE,fill_opacity=0.8)
+ c5=Circle(radius=0.5,color=YELLOW_B,fill_color=YELLOW_B,fill_opacity=0.8)
+ c6=Circle(radius=0.5,color=YELLOW_D,fill_color=YELLOW_D,fill_opacity=0.8)
+ c7=Circle(radius=0.5,color=GREEN_A,fill_color=GREEN_A,fill_opacity=0.8)
+ c8=Circle(radius=0.5,color=GREEN_C,fill_color=GREEN_C,fill_opacity=0.8)
+
+ self.play(ApplyMethod(c1.shift,3*UP+LEFT),ApplyMethod(c2.shift,3*UP+RIGHT),ReplacementTransform(mainCircle,mainCirclea))
+ self.wait(0.8)
+
+ self.play(ApplyMethod(c3.shift,UP+3*LEFT),ApplyMethod(c4.shift,DOWN+3*LEFT),ReplacementTransform(mainCirclea,mainCircleb))
+ self.wait(0.8)
+
+ self.play(ApplyMethod(c5.shift,3*DOWN+LEFT),ApplyMethod(c6.shift,3*DOWN+RIGHT),ReplacementTransform(mainCircleb,mainCirclec))
+ self.wait(0.8)
+
+ self.play(ApplyMethod(c7.shift,3*RIGHT+UP),ApplyMethod(c8.shift,3*RIGHT+DOWN),ReplacementTransform(mainCirclec,mainCircled))
+ self.wait(1)
+
+ text2=TextMobject("Similarly,").scale(0.8).shift(UP).set_color(RED)
+
+ self.play(FadeOut(c1),FadeOut(c2),FadeOut(c3),FadeOut(c4),FadeOut(c5),FadeOut(c6),FadeOut(c7),FadeOut(c8))
+ self.play(Write(text2))
+ self.wait(0.8)
+ self.play(FadeOut(text2))
+
+
+ coeff=[
+ TextMobject("$\\frac { -2 }{ \pi } \sum _{ n=1 }^{ 24 }{ \\frac { { -1 }^{ n } }{ n } sin(2\pi nt) }$").scale(0.2).shift(RIGHT+UP),
+ TextMobject("$\\frac { 2 }{ \pi } sin(2\pi t)$").scale(0.3).shift(RIGHT+UP+4*LEFT+UP),
+ TextMobject("$\\frac { -2 }{ \pi } \sum _{ n=2 }^{ 24 }{ \\frac { { -1 }^{ n } }{ n } sin(2\pi nt) }$").scale(0.2).shift(RIGHT+UP),
+ TextMobject("$\\frac { -1 }{ \pi } sin(4\pi t)$").scale(0.3).shift(RIGHT+UP+4*RIGHT+UP),
+ TextMobject("$\\frac { -2 }{ \pi } \sum _{ n=3 }^{ 24 }{ \\frac { { -1 }^{ n } }{ n } sin(2\pi nt) }$").scale(0.2).shift(RIGHT+UP),
+ TextMobject("$\\frac { 2 }{ 3\pi } sin(6\pi t)$").scale(0.3).shift(RIGHT+UP+4*LEFT+2*DOWN),
+ TextMobject("$\\frac { -2 }{ \pi } \sum _{ n=4 }^{ 24 }{ \\frac { { -1 }^{ n } }{ n } sin(2\pi nt) }$").scale(0.2).shift(RIGHT+UP),
+ TextMobject("$\\frac { -1 }{ 2\pi } sin(8\pi t)$").scale(0.3).shift(RIGHT+UP+4*RIGHT+2*DOWN),
+ TextMobject("$\\frac { -2 }{ \pi } \sum _{ n=5 }^{ 24 }{ \\frac { { -1 }^{ n } }{ n } sin(2\pi nt) }$").scale(0.2).shift(RIGHT+UP),
+ TextMobject("$\\frac { 2 }{ 5\pi } sin(10\pi t)$").scale(0.3).shift(RIGHT+UP+2.5*UP),
+ TextMobject("$\\frac { -2 }{ \pi } \sum _{ n=6 }^{ 24 }{ \\frac { { -1 }^{ n } }{ n } sin(2\pi nt) }$").scale(0.2).shift(RIGHT+UP),
+ TextMobject("$\\frac { -1 }{ 3\pi } sin(12\pi t)$").scale(0.3).shift(RIGHT+UP+2.5*DOWN),
+ TextMobject("$\\frac { -2 }{ \pi } \sum _{ n=7 }^{ 24 }{ \\frac { { -1 }^{ n } }{ n } sin(2\pi nt) }$").scale(0.2).shift(RIGHT+UP),
+ ]
+
+ axes=[]
+ self.setup_axes(scalee=1)
+ axes.append(self.axes)
+ graphs=[self.get_graph(lambda x:func(x,1,24),x_min=-1,x_max=1).set_color([DARK_BROWN,GREEN_E,GREEN_C,GOLD_E,GOLD_C,ORANGE,RED_C]),
+ self.get_graph(lambda x:func(x,2,24),x_min=-1,x_max=1).set_color([DARK_BROWN,GREEN_C,GOLD_E,GOLD_C,ORANGE,RED_C]),
+ self.get_graph(lambda x:func(x,3,24),x_min=-1,x_max=1).set_color([DARK_BROWN,GOLD_E,GOLD_C,ORANGE,RED_C]),
+ self.get_graph(lambda x:func(x,4,24),x_min=-1,x_max=1).set_color([DARK_BROWN,GOLD_C,ORANGE,RED_C]),
+ self.get_graph(lambda x:func(x,5,24),x_min=-1,x_max=1).set_color([DARK_BROWN,ORANGE,RED_C]),
+ self.get_graph(lambda x:func(x,6,24),x_min=-1,x_max=1).set_color([DARK_BROWN,RED_C]),
+ self.get_graph(lambda x:func(x,7,24),x_min=-1,x_max=1).set_color(DARK_BROWN)
+ ]
+ #self.y_axis_label="$\\frac { 2 }{ \pi } sin(2\pi t)$"
+ self.setup_axes(scalee=1)
+ axes.append(self.axes)
+ graph1=self.get_graph(lambda x:func(x,1,1),x_min=-1,x_max=1,color=GREEN_E)
+ #self.y_axis_label="$\\frac { -1 }{ \pi } sin(4\pi t)$"
+ self.setup_axes(scalee=1)
+ axes.append(self.axes)
+ graph2=self.get_graph(lambda x:func(x,2,2),x_min=-1,x_max=1,color=GREEN_C)
+ #self.y_axis_label="$\\frac { 2 }{ 3\pi } sin(6\pi t)$"
+ self.setup_axes(scalee=1)
+ axes.append(self.axes)
+ graph3=self.get_graph(lambda x:func(x,3,3),x_min=-1,x_max=1,color=GOLD_E)
+ #self.y_axis_label="$\\frac { -1 }{ 2\pi } sin(8\pi t)$"
+ self.setup_axes(scalee=1)
+ axes.append(self.axes)
+ graph4=self.get_graph(lambda x:func(x,4,4),x_min=-1,x_max=1,color=GOLD_C)
+ #self.y_axis_label="$\\frac { 2 }{ 5\pi } sin(10\pi t)$"
+ self.setup_axes(scalee=1)
+ axes.append(self.axes)
+ graph5=self.get_graph(lambda x:func(x,5,5),x_min=-1,x_max=1,color=ORANGE)
+ #self.y_axis_label="$\\frac { -1 }{ 3\pi } sin(12\pi t)$"
+ self.setup_axes(scalee=1)
+ axes.append(self.axes)
+ graph6=self.get_graph(lambda x:func(x,6,6),x_min=-1,x_max=1,color=RED_C)
+
+ groups=[VGroup(axes[1],graph1),VGroup(axes[2],graph2),VGroup(axes[3],graph3),VGroup(axes[4],graph4),
+ VGroup(axes[5],graph5),VGroup(axes[6],graph6)]
+
+ self.play(ShowCreation(graphs[0]))
+ self.play(Write(coeff[0]))
+ self.wait(1)
+ # self.play(ApplyMethod(axes[0].scale,0.4),ApplyMethod(graphs[0].scale,0.4),ApplyMethod(axes[1].scale,0.4),
+ # ApplyMethod(axes[2].scale,0.4),ApplyMethod(axes[3].scale,0.4),
+ # ApplyMethod(axes[4].scale,0.4),ApplyMethod(axes[5].scale,0.4),ApplyMethod(axes[6].scale,0.4))
+ self.play(ReplacementTransform(graphs[0],graphs[1]),ApplyMethod(groups[0].shift,4*LEFT+UP),ReplacementTransform(coeff[0],coeff[2]),FadeIn(coeff[1]))
+ self.play(ReplacementTransform(graphs[1],graphs[2]),ApplyMethod(groups[1].shift,4*RIGHT+UP),ReplacementTransform(coeff[2],coeff[4]),FadeIn(coeff[3]))
+ self.play(ReplacementTransform(graphs[2],graphs[3]),ApplyMethod(groups[2].shift,4*LEFT+2*DOWN),ReplacementTransform(coeff[4],coeff[6]),FadeIn(coeff[5]))
+ self.play(ReplacementTransform(graphs[3],graphs[4]),ApplyMethod(groups[3].shift,4*RIGHT+2*DOWN),ReplacementTransform(coeff[6],coeff[8]),FadeIn(coeff[7]))
+ self.play(ReplacementTransform(graphs[4],graphs[5]),ApplyMethod(groups[4].shift,2.5*UP),ReplacementTransform(coeff[8],coeff[10]),FadeIn(coeff[9]))
+ self.play(ReplacementTransform(graphs[5],graphs[6]),ApplyMethod(groups[5].shift,2.5*DOWN),ReplacementTransform(coeff[10],coeff[12]),FadeIn(coeff[11]))
+
+ # self.play(ReplacementTransform(graphs[0],graphs[1]),ApplyMethod(groups[0].shift,3*LEFT))
+ # self.play(ReplacementTransform(graphs[0],graphs[1]),)
+ # self.play(ReplacementTransform(graphs[0],graphs[1]),)
+ # self.play(ReplacementTransform(graphs[0],graphs[1]),)
+ # self.play(ReplacementTransform(graphs[0],graphs[1]),)
+ # self.play(ReplacementTransform(graphs[0],graphs[1]),)
+
+
+
+ self.wait(2)
+ # self.play(ReplacementTransform(function,const))
+ # self.play(ShowCreation(sinx),ShowCreation(cosx))
+ # self.play(ShowCreation(sin2x),ShowCreation(cos2x))
+ # self.play(ShowCreation(sin3x),ShowCreation(cos3x))
+ # self.play(ShowCreation(sin4x),ShowCreation(cos4x))
+ # sintext=TextMobject("Infinite","sines").shift(5*RIGHT).set_color_by_tex_to_color_map({"Infinite":[YELLOW,RED],"sines":BLUE})
+ # costext=TextMobject("Infinite","cosines").shift(5*LEFT).set_color_by_tex_to_color_map({"Infinite":[YELLOW,RED],"cosines":BLUE})
+ # sintext.scale(0.6)
+ # costext.scale(0.6)
+ # self.play(FadeIn(sintext),FadeIn(costext))
+ # self.wait(2) \ No newline at end of file
diff --git a/FSF-2020/calculus/series-and-transformations/Fourier Transform/video3_seriesVSTransform.py b/FSF-2020/calculus/series-and-transformations/Fourier Transform/video3_seriesVSTransform.py
new file mode 100644
index 0000000..f23e54f
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Fourier Transform/video3_seriesVSTransform.py
@@ -0,0 +1,133 @@
+from manimlib.imports import *
+import numpy as np
+
+class compare(GraphScene):
+ CONFIG = {
+ "x_min": -3,
+ "x_max": 3,
+ "x_axis_width": 6,
+ "y_min": -5,
+ "y_max": 5,
+ "y_axis_label":"$\\frac { { x }^{ 2 } }{ 2 } $",
+ "graph_origin": ORIGIN,
+ "axes_color": BLUE,
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-2, 3, 1),
+ }
+ def returnPairLines(self,left,right,y_each_unit):
+ lineLeft=DashedLine(start=(0,5*y_each_unit,0),end=(0,-5*y_each_unit,0)).shift(left)
+ lineRight=DashedLine(start=(0,5*y_each_unit,0),end=(0,-5*y_each_unit,0)).shift(right)
+ return lineLeft,lineRight
+
+ def resultFunc(self,x,n,l):
+ s=(l**2)/6
+ for n in range(1,n+1):
+ s+=(2*((-1)**n))*((l**2)*np.cos(n*np.pi*x/l))*(1/((np.pi**2)*(n**2)))
+ return s
+
+ def returnPartFunction(self,left,right):
+ return self.get_graph(lambda x:(x**2)/2,x_min=left,x_max=right,color=RED)
+
+ def returnPartResult(self,l,n):
+ return self.get_graph(lambda x:self.resultFunc(x,n,l),x_min=-3,x_max=3,color=RED)
+
+ def construct(self):
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+ axes=[]
+ self.setup_axes(animate=True,scalee=1)
+ axes.append(self.axes)
+ partFunction1=self.returnPartFunction(-1,1).shift(4*LEFT)
+ partFunction2=self.returnPartFunction(-2,2).shift(4*LEFT)
+ functionText=TextMobject("$\\frac { { x }^{ 2 } }{ 2 } $")
+ function=self.get_graph(lambda x:(x**2)/2,x_min=-3,x_max=3,color=GREEN)
+ text1=TextMobject("Non-Periodic function").scale(0.5).shift(3*DOWN+3*RIGHT).set_color(RED)
+ self.play(ShowCreation(function))
+ self.play(FadeIn(text1))
+ self.wait(1)
+ self.play(FadeOut(text1))
+ self.play(ApplyMethod(axes[0].shift,4*LEFT),ApplyMethod(function.shift,4*LEFT))
+ text2=TextMobject("For a","given","interval of $x$,").scale(0.5).shift(2.5*RIGHT+UP).set_color_by_tex_to_color_map({"given":YELLOW,"interval of $x$,":BLUE})
+ text3=TextMobject("We can get the","Fourier Series","of that","particular part!").scale(0.4).shift(2.5*RIGHT+0.5*UP).set_color_by_tex_to_color_map({"particular part!":YELLOW,"Fourier Series":RED})
+ self.play(Write(text2))
+ left,right=self.returnPairLines((4+x_each_unit)*LEFT,(4-x_each_unit)*LEFT,y_each_unit)
+ self.play(ShowCreation(left),ShowCreation(right))
+ self.play(Write(text3))
+ self.wait(0.5)
+ self.play(FadeOut(text2),FadeOut(text3))
+ self.graph_origin=3.5*RIGHT
+ self.y_axis_label="$\\frac { { l }^{ 2 } }{ 6 } +\sum _{ n=1 }^{ \infty }{ \\frac { 2{ (-1) }^{ n }{ l }^{ 2 }cos(\\frac { n\pi x }{ l } ) }{ { \pi }^{ 2 }{ n }^{ 2 } } }$"
+ self.setup_axes(animate=True,scalee=1)
+ axes.append(self.axes)
+ coeffResult=[
+ TextMobject("$\\frac { { 1 }^{ 2 } }{ 6 } +\sum _{ n=1 }^{ 1 }{ \\frac { 2{ (-1) }^{ n }{ 1 }^{ 2 }cos(\\frac { n\pi x }{ 1 } ) }{ { \pi }^{ 2 }{ n }^{ 2 } } } $").scale(0.3).shift(4.5*RIGHT+UP).set_color(YELLOW),
+ TextMobject("$\\frac { { 1 }^{ 2 } }{ 6 } +\sum _{ n=1 }^{ 3 }{ \\frac { 2{ (-1) }^{ n }{ 1 }^{ 2 }cos(\\frac { n\pi x }{ 1 } ) }{ { \pi }^{ 2 }{ n }^{ 2 } } } $").scale(0.3).shift(4.5*RIGHT+UP).set_color(YELLOW),
+ TextMobject("$\\frac { { 1 }^{ 2 } }{ 6 } +\sum _{ n=1 }^{ 5 }{ \\frac { 2{ (-1) }^{ n }{ 1 }^{ 2 }cos(\\frac { n\pi x }{ 1 } ) }{ { \pi }^{ 2 }{ n }^{ 2 } } } $").scale(0.3).shift(4.5*RIGHT+UP).set_color(YELLOW),
+ TextMobject("$\\frac { { 1 }^{ 2 } }{ 6 } +\sum _{ n=1 }^{ 7 }{ \\frac { 2{ (-1) }^{ n }{ 1 }^{ 2 }cos(\\frac { n\pi x }{ 1 } ) }{ { \pi }^{ 2 }{ n }^{ 2 } } } $").scale(0.3).shift(4.5*RIGHT+UP).set_color(YELLOW),
+ TextMobject("$\\frac { { 1 }^{ 2 } }{ 6 } +\sum _{ n=1 }^{ 9 }{ \\frac { 2{ (-1) }^{ n }{ 1 }^{ 2 }cos(\\frac { n\pi x }{ 1 } ) }{ { \pi }^{ 2 }{ n }^{ 2 } } } $").scale(0.3).shift(4.5*RIGHT+UP).set_color(YELLOW),
+ TextMobject("$\\frac { { 1 }^{ 2 } }{ 6 } +\sum _{ n=1 }^{ 11 }{ \\frac { 2{ (-1) }^{ n }{ 1 }^{ 2 }cos(\\frac { n\pi x }{ 1 } ) }{ { \pi }^{ 2 }{ n }^{ 2 } } }$").scale(0.3).shift(4.5*RIGHT+UP).set_color(YELLOW),
+ TextMobject("$\\frac { { 1 }^{ 2 } }{ 6 } +\sum _{ n=1 }^{ 13 }{ \\frac { 2{ (-1) }^{ n }{ 1 }^{ 2 }cos(\\frac { n\pi x }{ 1 } ) }{ { \pi }^{ 2 }{ n }^{ 2 } } }$").scale(0.3).shift(4.5*RIGHT+UP).set_color(YELLOW)
+ ]
+ result1a=self.returnPartResult(1,1)
+ result1b=self.returnPartResult(1,3)
+ result1c=self.returnPartResult(1,5)
+ result1d=self.returnPartResult(1,7)
+ result1e=self.returnPartResult(1,9)
+ result1f=self.returnPartResult(1,11)
+ result1g=self.returnPartResult(1,13)
+ self.play(ApplyMethod(partFunction1.shift,0.2*UP))
+ self.wait(0.5)
+ self.play(ReplacementTransform(partFunction1,result1a),Write(coeffResult[0]))
+ self.play(ReplacementTransform(result1a,result1b),ReplacementTransform(coeffResult[0],coeffResult[1]))
+ self.play(ReplacementTransform(result1b,result1c),ReplacementTransform(coeffResult[1],coeffResult[2]))
+ self.play(ReplacementTransform(result1c,result1d),ReplacementTransform(coeffResult[2],coeffResult[3]))
+ self.play(ReplacementTransform(result1d,result1e),ReplacementTransform(coeffResult[3],coeffResult[4]))
+ self.play(ReplacementTransform(result1e,result1f),ReplacementTransform(coeffResult[4],coeffResult[5]))
+ self.play(ReplacementTransform(result1f,result1g),ReplacementTransform(coeffResult[5],coeffResult[6]))
+
+ text4=TextMobject("Here the","obtained function","will always be","periodic","with period equal to the chosen interval").scale(0.4).shift(3.3*DOWN).set_color_by_tex_to_color_map({"obtained function":YELLOW,"periodic":RED})
+ self.play(Write(text4))
+
+ self.wait(0.8)
+
+ self.play(FadeOut(text4))
+ text5=TextMobject("As we","increase","the","interval of $x$,").scale(0.5).shift(3*DOWN).set_color_by_tex_to_color_map({"increase":RED,"interval of $x$,":YELLOW})
+ text6=TextMobject("We get","approximation","for","higher intervals!").scale(0.5).shift(3.5*DOWN).set_color_by_tex_to_color_map({"approximation":GREEN,"higher intervals!":YELLOW})
+ self.play(Write(text5))
+ self.play(Write(text6))
+ result2=self.returnPartResult(1.5,20)
+ result3=self.returnPartResult(2,20)
+ result4=self.returnPartResult(2.5,20)
+ result5=self.returnPartResult(3,20)
+ finalCoeff=coeffResult[6]
+ coeffResult=[
+ TextMobject("$\\frac { { 1.5 }^{ 2 } }{ 6 } +\sum _{ n=1 }^{ 20 }{ \\frac { 2{ (-1) }^{ n }{ 1.5 }^{ 2 }cos(\\frac { n\pi x }{ 2 } ) }{ { \pi }^{ 2 }{ n }^{ 2 } } }$").scale(0.3).shift(4.5*RIGHT+1.5*UP).set_color(YELLOW),
+ TextMobject("$\\frac { { 2 }^{ 2 } }{ 6 } +\sum _{ n=1 }^{ 20 }{ \\frac { 2{ (-1) }^{ n }{ 2 }^{ 2 }cos(\\frac { n\pi x }{ 2 } ) }{ { \pi }^{ 2 }{ n }^{ 2 } } } $").scale(0.3).shift(4.5*RIGHT+1.5*UP).set_color(YELLOW),
+ TextMobject("$\\frac { { 2.5 }^{ 2 } }{ 6 } +\sum _{ n=1 }^{ 20 }{ \\frac { 2{ (-1) }^{ n }{ 2.5 }^{ 2 }cos(\\frac { n\pi x }{ 2 } ) }{ { \pi }^{ 2 }{ n }^{ 2 } } } $").scale(0.3).shift(4.5*RIGHT+1.5*UP).set_color(YELLOW),
+ TextMobject("$\\frac { { 3 }^{ 2 } }{ 6 } +\sum _{ n=1 }^{ 20 }{ \\frac { 2{ (-1) }^{ n }{ 3 }^{ 2 }cos(\\frac { n\pi x }{ 2 } ) }{ { \pi }^{ 2 }{ n }^{ 2 } } } $").scale(0.3).shift(4.5*RIGHT+1.5*UP).set_color(YELLOW),
+ ]
+ self.play(ApplyMethod(left.shift,LEFT*x_each_unit*0.5),ApplyMethod(right.shift,RIGHT*x_each_unit*0.5),ReplacementTransform(result1g,result2),ReplacementTransform(finalCoeff,coeffResult[0]))
+ self.play(ApplyMethod(left.shift,LEFT*x_each_unit*0.5),ApplyMethod(right.shift,RIGHT*x_each_unit*0.5),ReplacementTransform(result2,result3),ReplacementTransform(coeffResult[0],coeffResult[1]))
+ self.play(ApplyMethod(left.shift,LEFT*x_each_unit*0.5),ApplyMethod(right.shift,RIGHT*x_each_unit*0.5),ReplacementTransform(result3,result4),ReplacementTransform(coeffResult[1],coeffResult[2]))
+ self.play(ApplyMethod(left.shift,LEFT*x_each_unit*0.5),ApplyMethod(right.shift,RIGHT*x_each_unit*0.5),ReplacementTransform(result4,result5),ReplacementTransform(coeffResult[2],coeffResult[3]))
+
+
+ # coeffResult=[
+ # TextMobject("$\\frac { { 2 }^{ 2 } }{ 6 } +\sum _{ n=1 }^{ 1 }{ \\frac { 2{ (-1) }^{ n }{ 2 }^{ 2 }cos(\\frac { n\pi x }{ 2 } ) }{ { \pi }^{ 2 }{ n }^{ 2 } } }$").scale(0.3).shift(4.5*RIGHT+1.5*UP),
+ # TextMobject("$\\frac { { 2 }^{ 2 } }{ 6 } +\sum _{ n=1 }^{ 4 }{ \\frac { 2{ (-1) }^{ n }{ 2 }^{ 2 }cos(\\frac { n\pi x }{ 2 } ) }{ { \pi }^{ 2 }{ n }^{ 2 } } } $").scale(0.3).shift(4.5*RIGHT+1.5*UP),
+ # TextMobject("$\\frac { { 2 }^{ 2 } }{ 6 } +\sum _{ n=1 }^{ 10 }{ \\frac { 2{ (-1) }^{ n }{ 2 }^{ 2 }cos(\\frac { n\pi x }{ 2 } ) }{ { \pi }^{ 2 }{ n }^{ 2 } } } $").scale(0.3).shift(4.5*RIGHT+1.5*UP),
+ # TextMobject("$\\frac { { 2 }^{ 2 } }{ 6 } +\sum _{ n=1 }^{ 20 }{ \\frac { 2{ (-1) }^{ n }{ 2 }^{ 2 }cos(\\frac { n\pi x }{ 2 } ) }{ { \pi }^{ 2 }{ n }^{ 2 } } } $").scale(0.3).shift(4.5*RIGHT+1.5*UP),
+ # ]
+ # result2a=self.returnPartResult(2,1)
+ # result2b=self.returnPartResult(2,4)
+ # result2c=self.returnPartResult(2,10)
+ # result2d=self.returnPartResult(2,20)
+
+ # self.play(ReplacementTransform(partFunction2,result2a),ReplacementTransform(coeffResult[0],coeffResult[1]))
+ # self.play(ReplacementTransform(result2a,result2b),ReplacementTransform(coeffResult[0],coeffResult[1]))
+ # self.play(ReplacementTransform(result2b,result2c),ReplacementTransform(coeffResult[0],coeffResult[1]))
+ # self.play(ReplacementTransform(result2c,result2d),ReplacementTransform(coeffResult[0],coeffResult[1]))
+ # self.wait(0.5)
+
+
+ self.wait(2) \ No newline at end of file
diff --git a/FSF-2020/calculus/series-and-transformations/Fourier Transform/video4_FourierSeriesOfSquarePulse.py b/FSF-2020/calculus/series-and-transformations/Fourier Transform/video4_FourierSeriesOfSquarePulse.py
new file mode 100644
index 0000000..5d33fbe
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Fourier Transform/video4_FourierSeriesOfSquarePulse.py
@@ -0,0 +1,92 @@
+from manimlib.imports import *
+import numpy as np
+
+def returnSum(k,x):
+ summ=0
+ for i in range(1,k+1,2):
+ summ+=((np.sin(2*np.pi*i*x))/i)
+ return summ
+
+def returnFunc(self,k):
+ graph=self.get_graph(lambda x:(4/np.pi)*returnSum(k,x),color=WHITE,x_max=1,x_min=-1)
+ return graph
+
+class fourierSeries(GraphScene,MovingCameraScene):
+ CONFIG = {
+ "x_min": -3,
+ "x_max": 3,
+ "x_axis_width": 13,
+ "y_min": -3,
+ "y_max": 3,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": BLUE,
+ "x_axis_label": "$x$",
+ "y_axis_label": "$y$",
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-2, 3, 1),
+ }
+ def setup(self):
+ GraphScene.setup(self)
+ MovingCameraScene.setup(self)
+ def construct(self):
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ equation=TextMobject("$f(x)=\\frac { 4 }{ \pi } \sum _{ k=1,3,5.. }^{ \infty }{ \\frac { 1 }{ k } \sin { 2\pi kx } }$").shift(5*RIGHT+3*UP).set_color(RED).scale(0.4)
+ self.add(equation)
+ self.setup_axes(animate=True)
+ line1=Line(start=(-x_each_unit,y_each_unit,0),end=(-(1/2)*x_each_unit,y_each_unit,0),color=RED)
+ line2=Line(start=(-(1/2)*x_each_unit,y_each_unit,0),end=(-(1/2)*x_each_unit,-y_each_unit,0),color=RED)
+ line3=Line(start=(-(1/2)*x_each_unit,-y_each_unit,0),end=(0,-y_each_unit,0),color=RED)
+ line4=Line(start=(0,-y_each_unit,0),end=(0,y_each_unit,0),color=RED)
+ line5=Line(start=(0,y_each_unit,0),end=((1/2)*x_each_unit,y_each_unit,0),color=RED)
+ line6=Line(start=((1/2)*x_each_unit,y_each_unit,0),end=((1/2)*x_each_unit,-y_each_unit,0),color=RED)
+ line7=Line(start=((1/2)*x_each_unit,-y_each_unit,0),end=(x_each_unit,-y_each_unit,0),color=RED)
+ self.play(ShowCreation(line1))
+ self.play(ShowCreation(line2))
+ self.play(ShowCreation(line3))
+ self.play(ShowCreation(line4))
+ self.play(ShowCreation(line5))
+ self.play(ShowCreation(line6))
+ self.play(ShowCreation(line7))
+ self.wait(0.5)
+
+ labels=[
+ TextMobject("$f_{ k=1 }(x)$"),
+ TextMobject("$f_{ k=3 }(x)$"),
+ TextMobject("$f_{ k=5 }(x)$"),
+ TextMobject("$f_{ k=7 }(x)$"),
+ TextMobject("$f_{ k=9 }(x)$"),
+ TextMobject("$f_{ k=11 }(x)$"),
+ TextMobject("$f_{ k=13 }(x)$"),
+ TextMobject("$f_{ k=15 }(x)$"),
+ TextMobject("$f_{ k=17 }(x)$"),
+ TextMobject("$f_{ k=19 }(x)$"),
+ TextMobject("$f_{ k=85 }(x)$")
+ ]
+ p=0
+ for i in range(1,20,2):
+ if(i==1):
+ graphInitial=returnFunc(self,1)
+ label=labels[p].scale(0.5).shift(y_each_unit*1.5*UP+RIGHT*x_each_unit*0.3)
+ self.play(ShowCreation(graphInitial),Write(labels[0]))
+ old=graphInitial
+ oldLabel=label
+ else:
+ graph=returnFunc(self,i)
+ graphLabel=labels[p].scale(0.5).shift(y_each_unit*1.5*UP+RIGHT*x_each_unit*0.3)
+ self.play(ReplacementTransform(old,graph),ReplacementTransform(oldLabel,graphLabel))
+ old=graph
+ oldLabel=graphLabel
+ p+=1
+ graphFinal=returnFunc(self,85)
+ labelFinal=labels[10].scale(0.5).shift(y_each_unit*1.5*UP+RIGHT*x_each_unit*0.3)
+ self.play(FadeOut(old),FadeOut(oldLabel))
+ self.play(ShowCreation(graphFinal),Write(labelFinal))
+ self.wait(1)
+ self.camera_frame.save_state()
+ self.play(self.camera_frame.set_width, 2.25,self.camera_frame.move_to, y_each_unit*UP+RIGHT*x_each_unit*0.3)
+ self.wait(1)
+ self.play(self.camera_frame.set_width,14,self.camera_frame.move_to,0)
+ self.wait(2)
diff --git a/FSF-2020/calculus/series-and-transformations/Fourier Transform/video5_CoinsAnalogy.py b/FSF-2020/calculus/series-and-transformations/Fourier Transform/video5_CoinsAnalogy.py
new file mode 100644
index 0000000..10ee889
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Fourier Transform/video5_CoinsAnalogy.py
@@ -0,0 +1,225 @@
+from manimlib.imports import*
+import math
+import numpy as np
+
+class coinsAnalogy(Scene):
+ def construct(self):
+ text1=TextMobject("Consider we have","Rs 39").shift(2*UP).scale(0.75).set_color_by_tex_to_color_map({"Rs 39":[YELLOW,PURPLE]})
+ text2=TextMobject("and we want to represent them only in terms of","Rs 2","and","Rs 5").shift(UP).scale(0.6).set_color_by_tex_to_color_map({"Rs 2":YELLOW,"Rs 5":PURPLE})
+ text3=TextMobject("How many","Rs 2 coins","and","Rs 5 coins","do","we need?").scale(0.8).set_color_by_tex_to_color_map({"Rs 2 coins":YELLOW,"Rs 5 coins":PURPLE,"we need?":RED})
+ text4=TextMobject("We","perform","the following!").scale(0.75).shift(DOWN).set_color_by_tex_to_color_map({"perform":GREEN})
+
+ self.play(FadeIn(text1))
+ self.wait(0.6)
+ self.play(Write(text2))
+ self.wait(0.5)
+ self.play(Write(text3))
+ self.wait(0.7)
+ self.play(FadeIn(text4))
+ self.wait(1)
+ self.play(FadeOut(text1),FadeOut(text2),FadeOut(text3),FadeOut(text4))
+
+ g1=self.group("Rs 39")
+ g1.shift(3*LEFT+0.75*UP)
+ l1=self.line()
+ l1.shift(4*LEFT)
+ f1=self.fiveGroup()
+ t1=self.twoGroup()
+ f1.shift(3.5*LEFT+0.7*DOWN)
+ andT=TextMobject("and").next_to(f1,buff=-0.1).scale(0.3)
+ t1.next_to(andT,buff=0.2)
+ equal1=TextMobject("$=$")
+ equal1.next_to(l1,buff=0.2)
+
+ self.play(ShowCreation(g1))
+ self.play(ShowCreation(l1))
+ self.play(ShowCreation(f1),Write(andT),ShowCreation(t1))
+ self.play(ShowCreation(equal1))
+ self.wait(0.6)
+
+ f2=self.fiveGroup().next_to(equal1,buff=0.4)
+ multiple1=TextMobject("$X7$","$\quad +$").next_to(f2,buff=0.2).set_color_by_tex_to_color_map({"$X7$":PURPLE})
+ l2=self.line().next_to(multiple1,buff=0.4)
+ g2=self.group("Rs 4").shift(2.75*RIGHT+0.75*UP)
+ t2=self.twoGroup().shift(2.75*RIGHT+0.7*DOWN)
+
+ self.play(ShowCreation(f2))
+ self.play(ShowCreation(multiple1))
+ self.play(ShowCreation(g2))
+ self.play(ShowCreation(l2))
+ self.play(ShowCreation(t2))
+ self.wait(1)
+
+ tempGrup=VGroup(g2,l2,t2)
+
+ t3=self.twoGroup().next_to(multiple1,buff=0.4)
+ multiple2=TextMobject("$X2$").next_to(t3,buff=0.2).set_color_by_tex_to_color_map({"$X2$":YELLOW})
+
+ self.play(ReplacementTransform(tempGrup,t3))
+ self.play(Write(multiple2))
+ self.wait(2)
+
+ def line(self):
+ l=Line(start=[0,0,0],end=[2,0,0])
+ return l
+
+ def twoGroup(self):
+ two=Circle(radius=0.25,color=BLACK,fill_color=YELLOW,fill_opacity=0.7)
+ twoText=TextMobject("Rs 2").scale(0.25).set_color(BLACK)
+ twoGrup=VGroup(two,twoText)
+ return twoGrup
+
+ def fiveGroup(self):
+ five=Circle(radius=0.35,color=BLACK,fill_color=PURPLE,fill_opacity=0.7)
+ fiveText=TextMobject("Rs 5").scale(0.3).set_color(BLACK)
+ fiveGrup=VGroup(five,fiveText)
+ return fiveGrup
+
+ def group(self,money):
+ coins=[
+ Circle(radius=0.35,color=GREY,fill_color=GREY,fill_opacity=0.75),
+ Circle(radius=0.35,color=GREY,fill_color=GREY,fill_opacity=0.8),
+ Circle(radius=0.35,color=GREY,fill_color=GREY,fill_opacity=0.7),
+ Circle(radius=0.35,color=GREY,fill_color=GREY,fill_opacity=0.75),
+ Circle(radius=0.35,color=GREY,fill_color=GREY,fill_opacity=0.8),
+ Circle(radius=0.35,color=GREY,fill_color=GREY,fill_opacity=0.7)
+ ]
+ coinsText=TextMobject(money).set_color(BLACK)
+ coinsText.scale(0.35)
+
+ coins[1].shift(0.2*RIGHT+0.2*UP)
+ coins[2].shift(0.2*RIGHT+0.1*DOWN)
+ coins[3].shift(0.2*DOWN)
+ coins[4].shift(0.2*UP+0.2*LEFT)
+ coins[5].shift(0.2*LEFT+0.1*LEFT)
+
+ coinsGrup=VGroup(coins[0],coins[1],coins[2],coins[3],coins[4],coins[5],coinsText)
+ return coinsGrup
+
+class divideFunction(GraphScene):
+ CONFIG = {
+ "x_min": -6,
+ "x_max": 6,
+ "y_min": -300,
+ "y_max": 300,
+ "x_tick_frequency": 2,
+ "y_tick_frequency": 300,
+ "graph_origin": 3*LEFT+1.5*UP+6*LEFT,
+ "function_color": RED,
+ "axes_color": BLUE,
+ "x_axis_label": "$t$",
+ "y_axis_label": "$y$",
+ "x_labeled_nums": [-6,0,6],
+ "y_labeled_nums": [-300,0,300],
+ "x_axis_width": 1.5,
+ "y_axis_height": 1
+ }
+ def line(self):
+ l=Line(start=[0,0,0],end=[2,0,0])
+ return l
+ def construct(self):
+ text1=TextMobject("Similarly,").scale(0.8).shift(UP).set_color(RED)
+ text2=TextMobject("To find the amount of","each frequency","present in","$f(x)$").scale(0.6).set_color_by_tex_to_color_map({"each frequency":[YELLOW,RED],"$f(x)$":RED})
+ text3=TextMobject("We","perform","the following!").scale(0.7).shift(DOWN).set_color_by_tex_to_color_map({"perform":GREEN})
+
+ self.play(FadeIn(text1))
+ self.wait(0.6)
+ self.play(Write(text2))
+ self.wait(0.7)
+ self.play(FadeIn(text3))
+
+ self.wait(1)
+ self.play(FadeOut(text1),FadeOut(text2),FadeOut(text3))
+
+ boxUP=Square(side_length=1.7,fill_color=BLUE_C,fill_opacity=0.5,color=BLACK).shift(3*LEFT+UP)
+ boxDOWN=Square(side_length=1.7,fill_color=BLUE_C,fill_opacity=0.5,color=BLACK).shift(3*LEFT+DOWN)
+
+ axes=[]
+ self.graph_origin=10*LEFT+1.5*UP
+ self.setup_axes(scalee=1)
+ axes.append(self.axes)
+ fx=self.get_graph(lambda x:math.pow(x,3)-math.pow(x,2)+x-2,x_min=-2*math.pi,x_max=2*math.pi,color=RED).shift(7*RIGHT+0.5*DOWN)
+
+ l=self.line().shift(4*LEFT)
+
+ self.graph_origin=10*LEFT+1.5*DOWN
+ self.y_min=-2
+ self.y_max=1
+ self.y_tick_frequency=1
+ self.y_labeled_nums=[-1,0,1]
+ self.setup_axes(scalee=1)
+ axes.append(self.axes)
+ sinx=self.get_graph(lambda x:np.sin(x),x_min=-2*math.pi,x_max=2*math.pi,color=PURPLE_C).shift(7*RIGHT+0.5*UP)
+
+ equal=TextMobject("$=$").next_to(l,buff=0.3)
+ result1=TextMobject("Amount of").scale(0.6).next_to(equal,buff=0.3)
+ boxRIGHT=Square(side_length=1.7,fill_color=GOLD_B,fill_opacity=0.5,color=BLACK).next_to(result1,buff=0.2)
+ self.graph_origin=10*LEFT
+ sinxResult=self.get_graph(lambda x:np.sin(x),color=PURPLE_C).next_to(result1,buff=0.3)
+ axes.append(self.axes)
+ result2=TextMobject("in","$f(x)$").scale(0.6).next_to(sinxResult,buff=0.2).set_color_by_tex_to_color_map({"$f(x)$":RED})
+
+ self.play(FadeIn(boxUP))
+ self.play(ShowCreation(fx))
+ self.play(ShowCreation(l))
+ self.play(FadeIn(boxDOWN))
+ self.play(ShowCreation(sinx))
+ self.wait(0.4)
+ self.play(Write(equal))
+ self.play(Write(result1))
+ self.play(FadeIn(boxRIGHT))
+ self.play(ShowCreation(sinxResult))
+ self.play(Write(result2))
+ aText1=TextMobject("and").scale(0.65).shift(4*RIGHT+2*DOWN).set_color(GREEN)
+ self.play(Write(aText1))
+ self.wait(0.7)
+
+ self.graph_origin=10*LEFT
+ cos4x=self.get_graph(lambda x:np.cos(4*x),color=PURPLE_A).shift(7*RIGHT+0.5*UP)
+ axes.append(self.axes)
+ self.graph_origin=10*LEFT
+ cos4xResult=self.get_graph(lambda x:np.cos(4*x),color=PURPLE_A).next_to(result1,buff=0.3)
+ axes.append(self.axes)
+ self.play(ReplacementTransform(sinx,cos4x),ReplacementTransform(sinxResult,cos4xResult))
+ self.wait(0.7)
+
+ soText=TextMobject("And so on..!").scale(0.65).shift(4*RIGHT+2*DOWN).set_color(GREEN)
+ self.play(ReplacementTransform(aText1,soText))
+
+ self.graph_origin=10*LEFT
+ cosx=self.get_graph(lambda x:np.cos(x),color=GREEN_E).shift(7*RIGHT+0.5*UP)
+ axes.append(self.axes)
+ self.graph_origin=10*LEFT
+ cosxResult=self.get_graph(lambda x:np.cos(x),color=GREEN_E).next_to(result1,buff=0.3)
+ axes.append(self.axes)
+ self.play(ReplacementTransform(cos4x,cosx),ReplacementTransform(cos4xResult,cosxResult))
+
+ self.graph_origin=10*LEFT
+ cos3x=self.get_graph(lambda x:np.cos(3*x),color=GREEN_C).shift(7*RIGHT+0.5*UP)
+ axes.append(self.axes)
+ self.graph_origin=10*LEFT
+ cos3xResult=self.get_graph(lambda x:np.cos(3*x),color=GREEN_C).next_to(result1,buff=0.3)
+ axes.append(self.axes)
+ self.play(ReplacementTransform(cosx,cos3x),ReplacementTransform(cosxResult,cos3xResult))
+
+ self.graph_origin=10*LEFT
+ const=self.get_graph(lambda x:1,color=YELLOW_B).shift(7*RIGHT+0.5*UP)
+ axes.append(self.axes)
+ self.graph_origin=10*LEFT
+ constResult=self.get_graph(lambda x:1,color=YELLOW_B).next_to(result1,buff=0.3)
+ axes.append(self.axes)
+ self.play(ReplacementTransform(cos3x,const),ReplacementTransform(cos3xResult,constResult))
+
+ self.wait(1)
+
+ self.play(FadeOut(soText),FadeOut(const),FadeOut(constResult),FadeOut(l),FadeOut(equal),FadeOut(result1),FadeOut(result2),FadeOut(fx),FadeOut(boxRIGHT),FadeOut(boxUP),FadeOut(boxDOWN))
+
+ finalFormula1=TexMobject(r"Therefore,",r"F(s)",r"=",r"\int _{ -\infty }^{ \infty }",r"{f(t)",r"\over",r"sines",r"\enspace and \enspace",r"cosines}",r"dt }").scale(0.7).set_color_by_tex_to_color_map({"F(s)":RED,"sines":BLUE,"cosines}":YELLOW,"{f(t)":GREEN})
+ finalFormula2=TexMobject(r"F(s)",r"=",r"\int _{ -\infty }^{ \infty }",r"{f(t)",r"\over",r"{ e }^",r"{ i\theta }}",r"dt }").set_color_by_tex_to_color_map({"F(s)":RED,"{f(t)":GREEN})
+ subFinalFormula=TextMobject("where","$\\theta =2\pi st$").scale(0.5).shift(DOWN+2*RIGHT).set_color_by_tex_to_color_map({"$\\theta =2\pi st$":RED})
+
+ self.play(Write(finalFormula1))
+ self.wait(1)
+ self.play(ReplacementTransform(finalFormula1,finalFormula2))
+ self.play(Write(subFinalFormula))
+ self.wait(2)
diff --git a/FSF-2020/calculus/series-and-transformations/Laplace Transformations/README.md b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/README.md
new file mode 100644
index 0000000..d4cd8bc
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/README.md
@@ -0,0 +1,21 @@
+### Basic Intuition
+![GIF1](gifs/basicIntuition.gif)
+
+### Solving D.E.intuition
+![GIF2](gifs/solvingDEintuition.gif)
+
+### Unit Step Function
+#### Part1
+![GIF3](gifs/unitStepFunction.gif)
+#### Part2
+![GIF4](gifs/UnitStepFunctionExample.gif)
+#### Part3
+![GIF5](gifs/LtransformUnitStepFunction.gif)
+
+### Dirac Delta Function
+#### Part1
+![GIF6](gifs/DiracFunction.gif)
+#### Part2
+![GIF7](gifs/DiracFunctionFormation.gif)
+#### Part3
+![GIF8](gifs/LtransformDiracFunction.gif)
diff --git a/FSF-2020/calculus/series-and-transformations/Laplace Transformations/file1_laplaceTransformBasic.py b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/file1_laplaceTransformBasic.py
new file mode 100644
index 0000000..7a37ae8
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/file1_laplaceTransformBasic.py
@@ -0,0 +1,67 @@
+from manimlib.imports import *
+import pylatex
+
+class depict(Scene):
+ def construct(self):
+ square=Square(side_length=2,fill_color=GREEN,fill_opacity=0.7)
+ inputText=TextMobject("$t$")
+ squareText=TextMobject("$f$")
+ outputText=TextMobject("$f($","$t$","$)$")
+
+ inputText.scale(0.8)
+ outputText.scale(0.8)
+ inputText.shift(2.1*LEFT)
+ outputText.shift(1.5*RIGHT)
+ squareText.scale(1.2)
+
+ outputText.set_color_by_tex_to_color_map({"$t$":RED})
+
+ self.play(ShowCreation(square))
+ self.play(FadeIn(squareText))
+ self.add(inputText)
+ self.wait(0.5)
+ self.play(ApplyMethod(inputText.shift,0.9*RIGHT))
+ self.play(FadeOut(inputText),FadeIn(outputText))
+ self.play(ApplyMethod(outputText.shift,1.5*RIGHT))
+ self.wait(1)
+
+ fOutGroup=VGroup(outputText,square,squareText)
+ self.play(ApplyMethod(fOutGroup.scale,0.6))
+ self.play(ApplyMethod(fOutGroup.shift,5*LEFT))
+ self.wait(0.8)
+ laplaceSquare=Square(side_length=3,fill_color=BLUE,fill_opacity=0.6)
+ laplaceText=TextMobject("$\mathscr{L}$")
+ outText=TextMobject("$F($","$s$","$)$")
+ outText.scale(0.8)
+ outText.set_color_by_tex_to_color_map({"$s$":RED})
+ laplaceText.scale(1.5)
+ outText.shift(2*RIGHT)
+ self.play(ShowCreation(laplaceSquare))
+ self.play(FadeIn(laplaceText))
+ self.wait(0.5)
+ self.play(ApplyMethod(outputText.shift,RIGHT))
+ self.play(FadeOut(outputText),FadeIn(outText))
+ self.play(ApplyMethod(outText.shift,2*RIGHT))
+ self.wait(1)
+
+ updatedOutputText=TextMobject("$f($","$t$","$)$")
+ updatedOutputText.shift(2.5*LEFT)
+ updatedOutputText.set_color_by_tex_to_color_map({"$t$":RED})
+ updatedInputText=TextMobject("$t$")
+ updatedInputText.shift(6*LEFT)
+ updatedInputText.scale(0.7)
+ updatedOutputText.scale(0.7)
+
+ self.play(FadeIn(updatedInputText),FadeIn(updatedOutputText))
+ self.wait(0.5)
+
+ timeText=TextMobject("Time Domain")
+ frequencyText=TextMobject("Frequency Domain")
+ timeText.set_color(RED)
+ frequencyText.set_color(RED)
+ timeText.scale(0.35)
+ frequencyText.scale(0.35)
+ timeText.shift(2.5*LEFT+0.5*DOWN)
+ frequencyText.shift(4*RIGHT+0.5*DOWN)
+ self.play(Write(frequencyText),Write(timeText))
+ self.wait(2) \ No newline at end of file
diff --git a/FSF-2020/calculus/series-and-transformations/Laplace Transformations/file2_differentialEqSimplification.py b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/file2_differentialEqSimplification.py
new file mode 100644
index 0000000..33e9173
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/file2_differentialEqSimplification.py
@@ -0,0 +1,78 @@
+from manimlib.imports import *
+import pylatex
+
+class scene(Scene):
+ def construct(self):
+ normalSq=Square(side_length=2,fill_color=BLUE,fill_opacity=0.6)
+ normalSqText=TextMobject("$\mathscr{L}$")
+ inputText=TextMobject("$f($","$y'(t)$","$)$")
+ outputText=TextMobject("$F($","$s$","$)$")
+
+ inputText.scale(0.7)
+ outputText.scale(0.7)
+ inputText.shift(2.5*LEFT)
+ outputText.shift(1.7*RIGHT)
+ normalSq.scale(1.2)
+
+ inputText.set_color_by_tex_to_color_map({"$y'(t)$":RED})
+ outputText.set_color_by_tex_to_color_map({"$s$":RED})
+
+ self.play(ShowCreation(normalSq))
+ self.play(FadeIn(normalSqText))
+ self.add(inputText)
+ self.wait(0.5)
+ self.play(ApplyMethod(inputText.shift,0.7*RIGHT))
+ self.play(FadeOut(inputText),FadeIn(outputText))
+ self.play(ApplyMethod(outputText.shift,RIGHT))
+ self.wait(1)
+
+ group1=VGroup(outputText,normalSq,normalSqText)
+ self.play(ApplyMethod(group1.scale,0.6))
+ self.play(ApplyMethod(group1.shift,4.7*LEFT))
+ self.wait(0.6)
+
+ inverseSq=Square(side_length=3,fill_color=GREEN,fill_opacity=0.6)
+ inverseSqText=TextMobject("$\mathscr{L}^{ -1 }$")
+ outText=TextMobject("$f($","$y(t)$","$)$")
+ inverseSqText.scale(0.7)
+ outText.scale(0.7)
+ outText.set_color_by_tex_to_color_map({"$y(t)$":RED})
+ self.play(ShowCreation(inverseSq))
+ self.play(FadeIn(inverseSqText))
+ self.wait(0.5)
+ outText.shift(2*RIGHT)
+ self.play(ApplyMethod(outputText.shift,RIGHT))
+ self.play(FadeOut(outputText),FadeIn(outText))
+ self.play(ApplyMethod(outText.shift,2*RIGHT))
+ self.wait(1)
+
+ updatedOutputText=TextMobject("$F($","$s$","$)$")
+ updatedOutputText.shift(2.5*LEFT)
+ updatedInputText=TextMobject("$f($","$y'(t)$","$)$")
+ updatedInputText.shift(6*LEFT)
+ updatedInputText.scale(0.7)
+ updatedOutputText.scale(0.7)
+ updatedOutputText.set_color_by_tex_to_color_map({"$s$":RED})
+ updatedInputText.set_color_by_tex_to_color_map({"$y'(t)$":RED})
+
+ self.play(FadeIn(updatedInputText),FadeIn(updatedOutputText))
+ self.wait(0.5)
+
+ deText=TextMobject("Differential Equation")
+ deinterTexta=TextMobject("Transformed D.E")
+ deinterTextb=TextMobject("(Easy to simplify)!")
+ deOutText=TextMobject("Solution of D.E")
+ deText.set_color(RED)
+ deinterTexta.set_color(RED)
+ deOutText.set_color(RED)
+ deinterTextb.set_color(PURPLE_C)
+ deText.scale(0.35)
+ deinterTexta.scale(0.35)
+ deinterTextb.scale(0.35)
+ deOutText.scale(0.35)
+ deText.shift(6*LEFT+0.5*DOWN)
+ deinterTexta.shift(2.6*LEFT+0.5*DOWN)
+ deinterTextb.shift(2.6*LEFT+0.8*DOWN)
+ deOutText.shift(4*RIGHT+0.5*DOWN)
+ self.play(Write(deText),Write(deinterTexta),Write(deinterTextb),Write(deOutText))
+ self.wait(2)
diff --git a/FSF-2020/calculus/series-and-transformations/Laplace Transformations/file3_unitStepFunction.py b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/file3_unitStepFunction.py
new file mode 100644
index 0000000..53c5f14
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/file3_unitStepFunction.py
@@ -0,0 +1,168 @@
+from manimlib.imports import *
+import math
+import pylatex
+
+class intro(GraphScene,Scene):
+ CONFIG = {
+ "x_min": -8,
+ "x_max": 8,
+ "y_min": -5,
+ "y_max": 5,
+ "graph_origin": ORIGIN+DOWN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$t$",
+ "y_axis_label": "$\mu_{c}(t)$",
+ "exclude_zero_label": True,
+ "y_axis_height":4,
+ "x_axis_width":7
+ }
+ def setup(self):
+ GraphScene.setup(self)
+ Scene.setup(self)
+ def construct(self):
+ introText=TextMobject("Unit","Step","Function")
+ introText.set_color_by_tex_to_color_map({"Unit":BLUE,"Step":YELLOW})
+ introText.scale(0.8)
+ self.play(Write(introText))
+ self.wait(0.5)
+ self.play(ApplyMethod(introText.shift,3*UP))
+ formulaa=TextMobject("$\mu _{ c }(t)=0\quad$","$t<c$")
+ formulab=TextMobject("$\mu _{ c }(t)=1\quad$","$t\ge c$")
+ formulaa.set_color_by_tex_to_color_map({"$t<c$":RED})
+ formulab.set_color_by_tex_to_color_map({"$t\ge c$":RED})
+ formulaa.scale(0.8)
+ formulab.scale(0.8)
+ formulab.shift(0.5*DOWN)
+ self.play(FadeIn(formulaa),FadeIn(formulab))
+ self.wait(1)
+
+ self.play(FadeOut(formulaa),FadeOut(formulab))
+
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ self.setup_axes(animate=True)
+ self.wait(0.8)
+
+ c=TextMobject("c")
+ c.scale(0.5)
+ c.set_color(RED)
+ c.shift(self.graph_origin+3*x_each_unit*RIGHT+y_each_unit*0.4*DOWN)
+ self.play(Write(c))
+ smallCircle=Circle(radius=0.03,fill_color=WHITE,color=WHITE)
+ smallCircle.shift(self.graph_origin+3*x_each_unit*RIGHT)
+ downLine=Line(start=self.graph_origin,end=self.graph_origin+RIGHT*3*x_each_unit,color=BLUE)
+ upLine=Line(start=self.graph_origin+3*x_each_unit*RIGHT+y_each_unit*UP,end=self.graph_origin+8*x_each_unit*RIGHT+y_each_unit*UP,color=BLUE)
+
+ self.play(Write(downLine))
+ self.play(Write(smallCircle))
+ self.play(Write(upLine))
+ self.wait(1.5)
+ self.play(FadeOut(self.axes),FadeOut(smallCircle),FadeOut(c),FadeOut(upLine),FadeOut(downLine),FadeOut(introText))
+ self.wait(0.5)
+
+
+class example(GraphScene):
+ CONFIG = {
+ "x_min": -3,
+ "x_max": 8,
+ "y_min": -4,
+ "y_max": 5,
+ "graph_origin": ORIGIN+LEFT+DOWN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$t$",
+ "y_axis_label": "$y$",
+ "exclude_zero_label": True,
+ "y_axis_height":4,
+ "x_axis_width":6
+ }
+ def construct(self):
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ text1=TextMobject("Consider the","formation","of","following graph!"," (a part of $f(t))$")
+ text1.set_color_by_tex_to_color_map({"following graph!":BLUE,"formation":YELLOW})
+ text1.scale(0.6)
+ ft=TextMobject("$f(t)$")
+ ftminusc=TextMobject("$f(t-c)$")
+ final=TextMobject("$\mu_{c}(t)f(t-c)$")
+ ft.set_color(PURPLE_C)
+ ftminusc.set_color(PURPLE_C)
+ final.set_color(PURPLE_C)
+ c=TextMobject("c")
+ c.scale(0.5)
+ c.set_color(RED)
+ c.shift(self.graph_origin+RIGHT*x_each_unit*3+DOWN*y_each_unit*0.5)
+ ft.scale(0.5)
+ ftminusc.scale(0.5)
+ final.scale(0.5)
+
+ self.play(Write(text1))
+ self.play(ApplyMethod(text1.shift,3*UP))
+
+ self.setup_axes(animate=True)
+ y=self.get_graph(lambda x:(math.pow((x-3),3)/3)-math.pow((x-3),2)-(x-3)+3,x_min=3,x_max=7,color=RED)
+ f=self.get_graph(lambda x:(math.pow(x,3)/3)-math.pow(x,2)-x+3,x_min=-2,x_max=4,color=RED)
+ yFull=self.get_graph(lambda x:(math.pow((x-3),3)/3)-math.pow((x-3),2)-(x-3)+3,x_min=1,x_max=7,color=RED)
+
+ self.play(Write(c))
+ self.play(ShowCreation(y))
+ self.wait(1)
+ self.play(FadeOut(self.axes),FadeOut(y),FadeOut(c))
+
+ belowText1=TextMobject("Consider its","normal form",", $f(t)$")
+ belowText1.set_color_by_tex_to_color_map({"normal form":BLUE})
+ belowText2=TextMobject("Shift it to","x=c")
+ belowText2.set_color_by_tex_to_color_map({"x=c":RED})
+ belowText3a=TextMobject("Now to remove the","left part","of","$c$,")
+ belowText3a.set_color_by_tex_to_color_map({"left part":YELLOW,"$c$,":YELLOW})
+ belowText3b=TextMobject("multiply it with the","unit step function",", $\mu_{c}(t)$")
+ belowText3b.set_color_by_tex_to_color_map({"unit step function":BLUE})
+ belowText1.scale(0.4)
+ belowText2.scale(0.4)
+ belowText3a.scale(0.4)
+ belowText3b.scale(0.4)
+ belowText1.shift(2.7*DOWN+4*RIGHT)
+ belowText2.shift(2.7*DOWN+4*RIGHT)
+ belowText3a.shift(2.7*DOWN+4*RIGHT)
+ belowText3b.shift(3.1*DOWN+4*RIGHT)
+ self.setup_axes(animate=True)
+ self.play(Write(belowText1))
+ self.play(ShowCreation(f))
+ ft.shift(1.5*RIGHT+UP*0.8)
+ self.play(FadeIn(ft))
+ self.play(ReplacementTransform(belowText1,belowText2))
+ ftminusc.shift(3.5*RIGHT+UP*0.8)
+ self.play(ReplacementTransform(f,yFull),ReplacementTransform(ft,ftminusc),Write(c))
+ self.wait(1)
+
+ self.play(ReplacementTransform(belowText2,belowText3a))
+ self.play(Write(belowText3b))
+ final.shift(3.7*RIGHT+UP*0.8)
+ self.play(ReplacementTransform(ftminusc,final),ReplacementTransform(yFull,y))
+
+ finalText=TextMobject("We got our required Graph!")
+ finalText.scale(0.55)
+ finalText.shift(2.7*DOWN+4*RIGHT)
+ self.play(FadeOut(belowText3b),ReplacementTransform(belowText3a,finalText))
+ self.wait(1.5)
+
+ self.play(FadeOut(finalText),FadeOut(text1))
+
+ graphGrup=VGroup(self.axes,c,final,y)
+ self.play(ApplyMethod(graphGrup.scale,0.45))
+ box=Square(side_length=2,fill_color=BLUE,fill_opacity=0.7)
+ boxtext=TextMobject("$\mathscr{L}$")
+ boxtext.scale(0.8)
+ self.play(ApplyMethod(graphGrup.shift,5.5*LEFT+UP))
+ self.play(ShowCreation(box),Write(boxtext))
+ outText=TextMobject("${ e }^{ -cs }F(s)$")
+ outText.set_color(GREEN)
+ outText.scale(0.65)
+ outText.shift(2*RIGHT)
+ self.play(ApplyMethod(graphGrup.shift,2*RIGHT))
+ self.play(FadeOut(graphGrup),FadeIn(outText))
+ self.play(ApplyMethod(outText.shift,RIGHT))
+ self.wait(2)
diff --git a/FSF-2020/calculus/series-and-transformations/Laplace Transformations/file4_diracBasic.py b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/file4_diracBasic.py
new file mode 100644
index 0000000..0c7f8e4
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/file4_diracBasic.py
@@ -0,0 +1,61 @@
+from manimlib.imports import *
+import math
+import pylatex
+
+class intro(GraphScene,Scene):
+ CONFIG = {
+ "x_min": -9,
+ "x_max": 9,
+ "y_min": -5,
+ "y_max": 5,
+ "graph_origin": ORIGIN+DOWN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$x$",
+ "y_axis_label": "$\delta (x)$",
+ "y_axis_height":4,
+ "x_axis_width":7
+ }
+ def setup(self):
+ GraphScene.setup(self)
+ Scene.setup(self)
+ def construct(self):
+ introText=TextMobject("Dirac","Delta","Function")
+ introText.set_color_by_tex_to_color_map({"Dirac":BLUE,"Delta":YELLOW})
+ introText.scale(0.8)
+ self.play(Write(introText))
+ self.wait(0.5)
+ self.play(ApplyMethod(introText.shift,3*UP))
+ formulaa=TextMobject("$\delta (x)=\infty$","$x=0$")
+ formulab=TextMobject("$\delta (x)=0$","$x\\neq 0$")
+ formulaa.set_color_by_tex_to_color_map({"$x=0$":RED})
+ formulab.set_color_by_tex_to_color_map({"$x\\neq 0$":RED})
+ formulaa.scale(0.8)
+ formulab.scale(0.8)
+ formulab.shift(0.5*DOWN)
+ self.play(FadeIn(formulaa),FadeIn(formulab))
+ self.wait(1)
+
+ self.play(FadeOut(formulaa),FadeOut(formulab))
+
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ self.setup_axes(animate=True)
+ self.wait(0.8)
+
+ functionUpLine=Line(start=self.graph_origin,end=self.graph_origin+UP*y_each_unit*5,color=RED)
+ functionDownLine=Line(start=self.graph_origin+UP*y_each_unit*5,end=self.graph_origin,color=RED)
+ functinLeftLine=Line(start=self.graph_origin+LEFT*x_each_unit*9,end=self.graph_origin,color=RED)
+ functionRightLine=Line(start=self.graph_origin,end=self.graph_origin+RIGHT*x_each_unit*9,color=RED)
+ functionUpLine.shift(0.02*LEFT)
+ functionRightLine.shift(0.02*RIGHT)
+
+ self.play(ShowCreation(functinLeftLine))
+ self.play(ShowCreation(functionUpLine))
+ self.play(ShowCreation(functionDownLine))
+ self.play(ShowCreation(functionRightLine))
+ self.wait(1.5)
+
+ self.play(FadeOut(self.axes),FadeOut(introText),FadeOut(functinLeftLine),FadeOut(functionRightLine),FadeOut(functionUpLine),FadeOut(functionDownLine))
+ self.wait(0.5)
diff --git a/FSF-2020/calculus/series-and-transformations/Laplace Transformations/file5_formationDiracDeltaFunction.py b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/file5_formationDiracDeltaFunction.py
new file mode 100644
index 0000000..565a7cb
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/file5_formationDiracDeltaFunction.py
@@ -0,0 +1,142 @@
+from manimlib.imports import *
+import math
+import pylatex
+
+def func(x,t):
+ if(x>-t and x<t):
+ return 1/(2*t)
+ else:
+ return 0
+
+
+class formation(GraphScene):
+ CONFIG = {
+ "x_min": -7,
+ "x_max": 7,
+ "y_min": -2,
+ "y_max": 2,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$t$",
+ "y_axis_label": "$y$",
+ "y_labeled_nums":range(-2,3),
+ "y_axis_height":4,
+ "x_axis_width":7
+ }
+ def construct(self):
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ text1=TextMobject("Consider the","following function's graph!")
+ text1.set_color_by_tex_to_color_map({"following function's graph!":BLUE})
+ text1.scale(0.6)
+
+ equation1=TextMobject("$\delta _{ \\tau }(t)=\\frac { 1 }{ 2\\tau } \quad$","$-\\tau <t<\\tau$")
+ equation2=TextMobject("$\delta _{ \\tau }(t)=0\quad \quad$","$t\in (-\infty ,-\\tau ]\cup [\\tau ,\infty )$")
+ equation1.scale(0.7)
+ equation2.scale(0.7)
+ equation1.shift(0.2*UP)
+ equation2.shift(0.4*DOWN+RIGHT*0.8)
+ equation1.set_color_by_tex_to_color_map({"$-\\tau <t<\\tau$":RED})
+ equation2.set_color_by_tex_to_color_map({"$t\in (-\infty ,-\\tau ]\cup [\\tau ,\infty )$":RED})
+
+ self.play(Write(text1))
+ self.play(ApplyMethod(text1.shift,3*UP))
+ self.play(Write(equation1))
+ self.play(Write(equation2))
+ self.wait(1)
+
+ self.play(FadeOut(equation1),FadeOut(equation2))
+ self.wait(0.5)
+
+ pointes1=TextMobject("$-\\tau$")
+ pointes2=TextMobject("$\\tau$")
+ pointes1.set_color(RED)
+ pointes2.set_color(RED)
+ pointes1.scale(0.65)
+ pointes2.scale(0.65)
+
+ bottomText1=TextMobject("Here","$\int _{ -\infty }^{ \infty }{ \delta _{ \\tau }(t)dt }$","=","$1$")
+ bottomText2=TextMobject("Now as","$\\tau \\rightarrow 0$")
+ bottomText3=TextMobject("We get our","Dirac Function!")
+ bottomText4=TextMobject("i.e.","$\lim _{ \\tau \\rightarrow 0 }{ \delta _{ \\tau }(t)}$","$=$","$\delta (t)$")
+ textFinal=TextMobject("Area=1")
+ bottomText1.set_color_by_tex_to_color_map({"$\int _{ -\infty }^{ \infty }{ \delta _{ \\tau }(t)dt }$":BLUE,"$1$":YELLOW})
+ textFinal.set_color(PURPLE_B)
+ bottomText2.set_color_by_tex_to_color_map({"$\\tau \\rightarrow 0$":YELLOW})
+ bottomText3.set_color_by_tex_to_color_map({"Dirac Function!":RED})
+ bottomText4.set_color_by_tex_to_color_map({"$\lim _{ \\tau \\rightarrow 0 }{ \delta _{ \\tau }(t)}$":BLUE,"$\delta (t)$":YELLOW})
+
+ bottomText1.scale(0.6)
+ bottomText2.scale(0.6)
+ bottomText3.scale(0.6)
+ bottomText4.scale(0.6)
+ textFinal.scale(0.9)
+
+ bottomText1.shift(4*RIGHT+3*DOWN)
+ bottomText2.shift(4*RIGHT+3*DOWN)
+ bottomText3.shift(4*RIGHT+3*DOWN)
+ bottomText4.shift(4*RIGHT+3*DOWN)
+ textFinal.shift(5*RIGHT+2*UP)
+
+ self.setup_axes(animate=True)
+
+ graphs=[
+ self.get_graph(lambda x:func(x,3),x_min=-7,x_max=7,color=RED),
+ self.get_graph(lambda x:func(x,2),x_min=-7,x_max=7,color=RED),
+ self.get_graph(lambda x:func(x,1),x_min=-7,x_max=7,color=RED),
+ self.get_graph(lambda x:func(x,0.5),x_min=-7,x_max=7,color=RED),
+ self.get_graph(lambda x:func(x,0.3),x_min=-7,x_max=7,color=RED),
+ self.get_graph(lambda x:func(x,0.15),x_min=-7,x_max=7,color=RED),
+ self.get_graph(lambda x:func(x,0.05),x_min=-7,x_max=7,color=RED),
+ self.get_graph(lambda x:func(x,0.01),x_min=-7,x_max=7,color=RED)
+ ]
+ pointes1.shift(self.graph_origin+3*LEFT*x_each_unit+0.4*DOWN*y_each_unit)
+ pointes2.shift(self.graph_origin+3*RIGHT*x_each_unit+0.4*DOWN*y_each_unit)
+
+ functionUpLine=Line(start=self.graph_origin,end=self.graph_origin+UP*y_each_unit*2,color=RED)
+ functionDownLine=Line(start=self.graph_origin+UP*y_each_unit*2,end=self.graph_origin,color=RED)
+ functinLeftLine=Line(start=self.graph_origin+LEFT*x_each_unit*7,end=self.graph_origin,color=RED)
+ functionRightLine=Line(start=self.graph_origin,end=self.graph_origin+RIGHT*x_each_unit*7,color=RED)
+ functionUpLine.shift(0.02*LEFT)
+ functionRightLine.shift(0.02*RIGHT)
+
+ self.play(Write(pointes1),Write(pointes2),ShowCreation(graphs[0]))
+ self.play(Write(bottomText1))
+ self.wait(0.7)
+
+ self.play(ReplacementTransform(bottomText1,bottomText2),Write(textFinal))
+ self.wait(0.5)
+ self.play(ReplacementTransform(graphs[0],graphs[1]),ApplyMethod(pointes2.shift,LEFT*x_each_unit),ApplyMethod(pointes1.shift,RIGHT*x_each_unit))
+ self.play(ReplacementTransform(graphs[1],graphs[2]),ApplyMethod(pointes2.shift,LEFT*x_each_unit),ApplyMethod(pointes1.shift,RIGHT*x_each_unit))
+ self.wait(0.5)
+ self.play(ReplacementTransform(graphs[2],graphs[3]),FadeOut(pointes1),FadeOut(pointes2))
+ self.play(ReplacementTransform(graphs[3],graphs[4]))
+ self.wait(1)
+ self.play(ReplacementTransform(bottomText2,bottomText3))
+ self.wait(1)
+ self.play(FadeOut(graphs[4]),ReplacementTransform(bottomText3,bottomText4))
+ self.wait(0.5)
+ self.play(ShowCreation(functinLeftLine))
+ self.play(ShowCreation(functionUpLine))
+ self.play(ShowCreation(functionDownLine))
+ self.play(ShowCreation(functionRightLine))
+ self.wait(2)
+
+ self.play(FadeOut(bottomText4),FadeOut(textFinal))
+ graphGrup=VGroup(self.axes,functinLeftLine,functionDownLine,functionRightLine,functionUpLine)
+ self.play(ApplyMethod(graphGrup.scale,0.5))
+ box=Square(side_length=2,fill_color=BLUE,fill_opacity=0.6)
+ boxtext=TextMobject("$\mathscr{L}$")
+ boxtext.scale(0.8)
+ self.play(ApplyMethod(graphGrup.shift,4.9*LEFT))
+ self.play(ShowCreation(box),Write(boxtext))
+ outText=TextMobject("$f(0)$")
+ outText.set_color(GREEN)
+ outText.scale(0.65)
+ outText.shift(1.5*RIGHT)
+ self.play(ApplyMethod(graphGrup.shift,2*RIGHT))
+ self.play(FadeOut(graphGrup),FadeIn(outText))
+ self.play(ApplyMethod(outText.shift,RIGHT))
+ self.wait(2) \ No newline at end of file
diff --git a/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/DiracFunction.gif b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/DiracFunction.gif
new file mode 100644
index 0000000..cb62ed2
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/DiracFunction.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/DiracFunctionFormation.gif b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/DiracFunctionFormation.gif
new file mode 100644
index 0000000..23acbe9
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/DiracFunctionFormation.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/LtransformDiracFunction.gif b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/LtransformDiracFunction.gif
new file mode 100644
index 0000000..b1d50b5
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/LtransformDiracFunction.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/LtransformUnitStepFunction.gif b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/LtransformUnitStepFunction.gif
new file mode 100644
index 0000000..ccbd791
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/LtransformUnitStepFunction.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/UnitStepFunctionExample.gif b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/UnitStepFunctionExample.gif
new file mode 100644
index 0000000..2b1c38f
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/UnitStepFunctionExample.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/basicIntuition.gif b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/basicIntuition.gif
new file mode 100644
index 0000000..3b974bb
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/basicIntuition.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/solvingDEintuition.gif b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/solvingDEintuition.gif
new file mode 100644
index 0000000..9883a8c
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/solvingDEintuition.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/unitStepFunction.gif b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/unitStepFunction.gif
new file mode 100644
index 0000000..16757e1
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/unitStepFunction.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/PowerSeriesQuestions.pdf b/FSF-2020/calculus/series-and-transformations/Power Series/PowerSeriesQuestions.pdf
index 04ed6d5..9fc409b 100644
--- a/FSF-2020/calculus/series-and-transformations/Power Series/PowerSeriesQuestions.pdf
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/PowerSeriesQuestions.pdf
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/README.md b/FSF-2020/calculus/series-and-transformations/Power Series/README.md
new file mode 100644
index 0000000..6885837
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/README.md
@@ -0,0 +1,14 @@
+#### Convergence Intuition
+![GIF1a](gifs/file1_convergence_Intuition.gif)
+
+#### Convergence Intuition
+![GIF1b](gifs/file1a_convergence_Intuition.gif)
+
+#### Convergence of a function
+![GIF2](gifs/file2_convergence_of_a_function.gif)
+
+#### Radius and IntervalOfConvergence
+![GIF3](gifs/file3_radius_and_intervalOfConvergence.gif)
+
+#### Uniform Convergence
+![GIF4](gifs/file4_UniformConvergence.gif)
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file1_convergence_Intuition.gif b/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file1_convergence_Intuition.gif
new file mode 100644
index 0000000..292d19d
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file1_convergence_Intuition.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file1a_convergence_Intuition.gif b/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file1a_convergence_Intuition.gif
new file mode 100644
index 0000000..287cbd1
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file1a_convergence_Intuition.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file2_convergence_of_a_function.gif b/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file2_convergence_of_a_function.gif
new file mode 100644
index 0000000..78d6014
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file2_convergence_of_a_function.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file3_radius_and_intervalOfConvergence.gif b/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file3_radius_and_intervalOfConvergence.gif
new file mode 100644
index 0000000..a45c75e
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file3_radius_and_intervalOfConvergence.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file4_UniformConvergence.gif b/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file4_UniformConvergence.gif
new file mode 100644
index 0000000..7b635d7
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file4_UniformConvergence.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/script1.py b/FSF-2020/calculus/series-and-transformations/Power Series/script1.py
deleted file mode 100644
index 28eb07c..0000000
--- a/FSF-2020/calculus/series-and-transformations/Power Series/script1.py
+++ /dev/null
@@ -1,128 +0,0 @@
-from manimlib.imports import *
-
-
-def formFormula(coeff_list,variable_list):
- coeff_list=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
- variable_list=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")]
- coeff_list[0].shift(2.2*UP+1.6*LEFT)
- for i in range(0,3):
- coeff_list[i].set_color(GOLD_A)
- variable_list[i].next_to(coeff_list[i],buff=0.1)
- if i!=2:
- coeff_list[i+1].next_to(variable_list[i],buff=0.1)
- dots=TextMobject("...")
- dots.next_to(variable_list[2])
- expansion=VGroup(coeff_list[0],coeff_list[1],coeff_list[2],variable_list[0],variable_list[1],variable_list[2],dots)
- expansion.scale(0.7)
- return expansion
-
-class pieChart(Scene):
- def construct(self):
- circle1=Circle(radius=3,color=BLUE)
- powerText=TextMobject("Power Series")
- powerText.scale(0.8)
- self.play(FadeIn(powerText))
- self.play(ShowCreation(circle1))
- self.wait(1)
-
- powerGroup=VGroup(circle1,powerText)
-
- self.play(ApplyMethod(powerGroup.scale,0.5))
- self.play(ApplyMethod(powerGroup.move_to,2.2*UP))
- self.wait(0.5)
- expansion_power_coeff=[]
- variables_power=[]
- expansion_power=formFormula(expansion_power_coeff,variables_power)
- self.play(ReplacementTransform(powerText,expansion_power))
- self.wait(1)
-
- circle2=Circle(radius=1.5)
- circle2.shift(2.2*UP)
- expansion_geo_coeff=[0]*3
- variables_geo=[0]*3
- arrow1_2=Line(start=0.7*UP,end=2.5*LEFT)
- expansion_geo_coeff=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
- for i in range(0,3):
- expansion_geo_coeff[i].set_color(GOLD_A)
- variables_geo=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")]
- expansion_geo_coeff[0].shift(2.2*UP+1.6*LEFT)
- for i in range(0,3):
- variables_geo[i].next_to(expansion_geo_coeff[i],buff=0.1)
- if i!=2:
- expansion_geo_coeff[i+1].next_to(variables_geo[i],buff=0.1)
- dots=TextMobject("...")
- dots.next_to(variables_geo[2])
- expansion_geo=VGroup(expansion_geo_coeff[0],expansion_geo_coeff[1],expansion_geo_coeff[2],variables_geo[0],variables_geo[1],variables_geo[2],dots)
- expansion_geo.scale(0.7)
-
- self.play(ApplyMethod(circle2.shift,4*LEFT+2.5*DOWN),ApplyMethod(expansion_geo.shift,4*LEFT+2.5*DOWN))
- self.add(arrow1_2)
- self.wait(1)
-
- ones=[TextMobject("1"),TextMobject("1"),TextMobject("1")]
- for i in range(0,3):
- ones[i].set_color(GOLD_A)
- ones[0].shift(0.3*DOWN,5*LEFT)
- ones[1].next_to(ones[0],buff=0.5)
- ones[2].next_to(ones[1],buff=0.7)
- self.play(ReplacementTransform(expansion_geo_coeff[0],ones[0]),ReplacementTransform(expansion_geo_coeff[1],ones[1]),ReplacementTransform(expansion_geo_coeff[2],ones[2]))
- self.wait(1)
- expansion_geo=VGroup(ones[0],ones[1],ones[2],variables_geo[0],variables_geo[1],variables_geo[2],dots)
-
- expansion_geo_final=TextMobject("$1+x+{ x }^{ 2 }..$")
- expansion_geo_final.scale(0.8)
- expansion_geo_final.shift(0.3*DOWN+4*LEFT)
- self.play(ReplacementTransform(expansion_geo,expansion_geo_final))
- self.wait(1)
-
- circle3=Circle(radius=1.5,color=GREEN)
- circle3.shift(2.2*UP)
- expansion_taylor_coeff=[0]*3
- variables_taylor=[0]*3
- arrow1_3=Line(start=0.7*UP,end=DOWN*0.3)
- expansion_taylor_coeff=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
- for i in range(0,3):
- expansion_taylor_coeff[i].set_color(GOLD_A)
- variables_taylor=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")]
- expansion_taylor_coeff[0].shift(2.2*UP+1.6*LEFT)
- for i in range(0,3):
- variables_taylor[i].next_to(expansion_taylor_coeff[i],buff=0.1)
- if i!=2:
- expansion_taylor_coeff[i+1].next_to(variables_taylor[i],buff=0.1)
- dots=TextMobject("...")
- dots.next_to(variables_taylor[2])
- expansion_taylor=VGroup(expansion_taylor_coeff[0],expansion_taylor_coeff[1],expansion_taylor_coeff[2],variables_taylor[0],variables_taylor[1],variables_taylor[2],dots)
- expansion_taylor.scale(0.7)
-
- self.play(ApplyMethod(circle3.shift,4*DOWN),ApplyMethod(expansion_taylor.shift,4*DOWN))
- self.add(arrow1_3)
- self.wait(1)
-
- differentials=[TextMobject("$f(0)$"),TextMobject("${ f'\left( 0 \\right) }$"),TextMobject("$\\frac { f''\left( 0 \\right) }{ 2! }$")]
- for i in range(0,3):
- differentials[i].set_color(GOLD_A)
- differentials[0].shift(1.8*DOWN+1.15*LEFT)
- differentials[1].shift(1.8*DOWN+0.45*LEFT)
- differentials[2].shift(1.8*DOWN+0.45*RIGHT)
- differentials[0].scale(0.35)
- differentials[1].scale(0.35)
- differentials[2].scale(0.35)
- self.play(ReplacementTransform(expansion_taylor_coeff[0],differentials[0]),ReplacementTransform(expansion_taylor_coeff[1],differentials[1]),ReplacementTransform(expansion_taylor_coeff[2],differentials[2]))
- self.wait(2)
- expansion_taylor_final=VGroup(differentials[0],differentials[1],differentials[2],variables_taylor[0],variables_taylor[1],variables_taylor[2],dots)
-
- self.play(FadeOut(expansion_geo_final),FadeOut(expansion_taylor_final))
- geoText=TextMobject("Geometric Series")
- geoText.scale(0.7)
- geoText.shift(4*LEFT+0.3*DOWN)
- taylorText=TextMobject("Taylor Series")
- taylorText.scale(0.7)
- taylorText.shift(1.8*DOWN)
- self.play(FadeIn(geoText),FadeIn(taylorText))
- self.wait(1)
-
- soOntext=TextMobject("So on..!")
- soOntext.shift(4*RIGHT)
- soOntext.scale(0.8)
- self.play(FadeIn(soOntext))
- self.wait(2)
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/script2.py b/FSF-2020/calculus/series-and-transformations/Power Series/video1_convergence_Intuition.py
index 72356c6..66f48f9 100644
--- a/FSF-2020/calculus/series-and-transformations/Power Series/script2.py
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/video1_convergence_Intuition.py
@@ -11,23 +11,36 @@ class convergence(Scene):
self.play(ApplyMethod(originalFormula.shift,2.7*UP))
self.wait(1)
- terms=["$a_{ 0 }$","$a_{ 1 }x$","$a_{ 2 }x^{ 2 }$","$a_{ 3 }x^{ 3 }$","$a_{ 4 }x^{ 4 }$","$a_{ 5 }x^{ 5 }$","$a_{ 6 }x^{ 6 }$","$a_{ 7 }x^{ 7 }$","$a_{ 8 }x^{ 8 }$","$a_{ 9 }x^{ 9 }$","$a_{ 10 }x^{ 10 }$","$a_{ 11 }x^{ 11 }$"]
+ colors=[PURPLE_E,PURPLE_D,MAROON_D,RED_E,RED_D,RED_C,ORANGE,YELLOW_E,YELLOW_D,YELLOW_B]
+ terms=["$a_{ 0 }$","$a_{ 1 }x$","$a_{ 2 }x^{ 2 }$","$a_{ 3 }x^{ 3 }$","$a_{ 4 }x^{ 4 }$","$a_{ 5 }x^{ 5 }$","$a_{ 6 }x^{ 6 }$","$a_{ 7 }x^{ 7 }$","$a_{ 8 }x^{ 8 }$","$a_{ 9 }x^{ 9 }$"]
termsTogetherString="+".join(terms)
- termsTogether=TextMobject(termsTogetherString+"...")
+ #termsTogether=TextMobject(termsTogetherString+"...")
+ termsTogether=TextMobject("$a_{ 0 }$","+","$a_{ 1 }x$","+","$a_{ 2 }x^{ 2 }$","+","$a_{ 3 }x^{ 3 }$","+","$a_{ 4 }x^{ 4 }$","+","$a_{ 5 }x^{ 5 }$","+","$a_{ 6 }x^{ 6 }$","+","$a_{ 7 }x^{ 7 }$","+","$a_{ 8 }x^{ 8 }$","+","$a_{ 9 }x^{ 9 }$","+..")
+ termsTogether.set_color_by_tex_to_color_map({"$a_{ 0 }$":colors[0],
+ "$a_{ 1 }x$":colors[1],
+ "$a_{ 2 }x^{ 2 }$":colors[2],
+ "$a_{ 3 }x^{ 3 }$":colors[3],
+ "$a_{ 4 }x^{ 4 }$":colors[4],
+ "$a_{ 5 }x^{ 5 }$":colors[5],
+ "$a_{ 6 }x^{ 6 }$":colors[6],
+ "$a_{ 7 }x^{ 7 }$":colors[7],
+ "$a_{ 8 }x^{ 8 }$":colors[8],
+ "$a_{ 9 }x^{ 9 }$":colors[9]})
termsTogether.scale(0.8)
termsTogether.shift(2.7*UP)
self.play(ReplacementTransform(originalFormula,termsTogether))
self.wait(1)
- termMobjectRect=[0]*12
- termMobject=TextMobject(terms[0])
+ termMobjectRect=[0]*10
+ termMobject=TextMobject(terms[0]).set_color(colors[0])
termMobject.shift(2.7*UP+6.2*LEFT)
- for i in range(1,13):
+ for i in range(1,11):
termMobjectOld=termMobject
termMobjectOld.scale(0.8)
- if(i<12):
+ if(i<10):
termMobject=TextMobject(terms[i])
- termMobject.next_to(termMobjectOld)
+ termMobject.set_color(colors[i])
+ termMobject.next_to(termMobjectOld,buff=0.5)
if(i==1):
rectDefine=TextMobject("Here","each rectangle","represents the","value of the term")
rectDefine.set_color_by_tex_to_color_map({"each rectangle":BLUE,"value of the term":YELLOW})
@@ -50,7 +63,7 @@ class convergence(Scene):
self.play(ReplacementTransform(ratio,inequality))
self.wait(1)
#self.play(ApplyMethod(termMobjectOld.move_to,(2-0.3*i)*DOWN+RIGHT*0.2*i))
- termMobjectRect[i-1]=Rectangle(height=0.1,width=(5-0.4*i))
+ termMobjectRect[i-1]=Rectangle(height=0.1,width=(4.2-0.4*i),color=colors[i-1])
termMobjectRect[i-1].move_to((2-0.2*i)*DOWN+RIGHT*0.2*i)
#rectangles[p] = termMobjectRect
#p+=1
@@ -58,8 +71,8 @@ class convergence(Scene):
uparrow=TextMobject("$\\uparrow$")
uparrow.set_color(GREEN)
- uparrow.scale(6)
- uparrow.shift(4*RIGHT+0.5*DOWN)
+ uparrow.scale(5)
+ uparrow.shift(4*RIGHT+0.7*DOWN)
self.play(ShowCreation(uparrow))
self.wait(1)
@@ -72,9 +85,9 @@ class convergence(Scene):
self.play(FadeOut(converges),FadeOut(uparrow),FadeOut(inequality))
self.wait(0.5)
- rect=VGroup(termMobjectRect[0],termMobjectRect[1],termMobjectRect[2],termMobjectRect[3],termMobjectRect[4],termMobjectRect[5],termMobjectRect[6],termMobjectRect[7],termMobjectRect[8],termMobjectRect[9],termMobjectRect[10],termMobjectRect[11])
+ rect=VGroup(termMobjectRect[0],termMobjectRect[1],termMobjectRect[2],termMobjectRect[3],termMobjectRect[4],termMobjectRect[5],termMobjectRect[6],termMobjectRect[7],termMobjectRect[8],termMobjectRect[9])
self.play(ApplyMethod(rect.scale,0.2))
- for i in range(0,12):
+ for i in range(0,10):
self.play(ApplyMethod(termMobjectRect[i].shift,i*0.04*DOWN+(11-(3-0.11*i)*i)*LEFT*0.3))
func=TextMobject("$\\approx$","$f(x)$")
func.set_color_by_tex_to_color_map({"$f(x)$":RED})
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/script3.py b/FSF-2020/calculus/series-and-transformations/Power Series/video2_convergence_of_a_function.py
index f710f42..19b8b8b 100644
--- a/FSF-2020/calculus/series-and-transformations/Power Series/script3.py
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/video2_convergence_of_a_function.py
@@ -69,10 +69,10 @@ class graphScene(GraphScene):
eqText[i].scale(0.6)
eqText[i].set_color(BLUE)
eqText[i].shift(ORIGIN+UP*2*y_each_unit+RIGHT*3.3*x_each_unit)
- eqTextTerm=TextMobject("And so on..!")
- eqTextTerm.set_color(BLUE)
- eqTextTerm.scale(0.6)
- eqTextTerm.shift(ORIGIN+UP*2*y_each_unit+3*RIGHT*x_each_unit)
+ # eqTextTerm=TextMobject("And so on..!")
+ # eqTextTerm.set_color(BLUE)
+ # eqTextTerm.scale(0.6)
+ # eqTextTerm.shift(ORIGIN+UP*2*y_each_unit+3*RIGHT*x_each_unit)
equation1 = self.get_graph(lambda x : 1,color = RED,x_min = -8,x_max=8)
equation2 = self.get_graph(lambda x : 1-math.pow(x,2),color = RED,x_min = -1.7,x_max=1.7)
equation3 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4),color = RED,x_min = -1.6,x_max=1.6)
@@ -106,7 +106,7 @@ class graphScene(GraphScene):
self.play(ReplacementTransform(equation3,equation4),ReplacementTransform(eqText[2],eqText[3]))
self.wait(0.3)
self.play(FadeOut(eqText[3]))
- self.play(FadeIn(eqTextTerm))
+ #self.play(FadeIn(eqTextTerm))
self.play(Write(textBtwAnim1),Write(textBtwAnim2))
self.play(FadeIn(textBtwAnim3))
self.play(ReplacementTransform(equation4,equation5))
@@ -122,7 +122,7 @@ class graphScene(GraphScene):
self.play(ReplacementTransform(equation9,equation10))
self.wait(1)
- self.play(FadeOut(textBtwAnim1),FadeOut(textBtwAnim2),FadeOut(textBtwAnim3),FadeOut(equation10),FadeOut(eqTextTerm))
+ self.play(FadeOut(textBtwAnim1),FadeOut(textBtwAnim2),FadeOut(textBtwAnim3),FadeOut(equation10))
self.wait(1)
convergeLine=Line(start=ORIGIN+x_each_unit*LEFT,end=ORIGIN+x_each_unit*RIGHT,color=WHITE)
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/script4.py b/FSF-2020/calculus/series-and-transformations/Power Series/video3_radius_and_intervalOfConvergence.py
index 412d20c..f35fea8 100644
--- a/FSF-2020/calculus/series-and-transformations/Power Series/script4.py
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/video3_radius_and_intervalOfConvergence.py
@@ -3,7 +3,7 @@ import math
class intro(Scene):
def construct(self):
- introText1=TextMobject("Consider the","above","example..")
+ introText1=TextMobject("Consider the example","above",)
introText1.scale(0.8)
introText1.set_color_by_tex_to_color_map({"above":YELLOW})
self.play(Write(introText1))
@@ -24,12 +24,13 @@ class graphScene(GraphScene,MovingCameraScene):
"x_labeled_nums": range(-1, 2, 1),
"y_labeled_nums": range(0,2,1),
"y_axis_height":7,
- "x_axis_width":7
+ "x_axis_width":7,
}
def setup(self):
GraphScene.setup(self)
MovingCameraScene.setup(self)
+
def construct(self):
x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
@@ -74,15 +75,14 @@ class graphScene(GraphScene,MovingCameraScene):
radiusText=TextMobject("Radius of convergence")
radiusText.scale(0.14)
radiusText.shift(ORIGIN+RIGHT*x_each_unit*0.45+DOWN*y_each_unit*0.2)
-
+ #self.activate_zooming(animate=True)
self.play(Write(radiusText))
self.wait(0.6)
self.camera_frame.save_state()
- self.camera_frame.set_width(5.5)
- self.play(self.camera_frame.move_to, ORIGIN)
+ self.play(self.camera_frame.set_width,5.5)
self.wait(1)
- self.camera_frame.set_width(14)
+ self.play(self.camera_frame.set_width,14)
self.wait(1.3)
self.play(FadeOut(radiusText),FadeOut(circle),FadeOut(movingPoint))
@@ -101,8 +101,13 @@ class graphScene(GraphScene,MovingCameraScene):
self.wait(0.6)
self.camera_frame.save_state()
- self.camera_frame.set_width(5.5)
- self.play(self.camera_frame.move_to, ORIGIN)
+ self.play(self.camera_frame.set_width,5.5)
self.wait(1)
- self.camera_frame.set_width(14)
- self.wait(1.5)
+ self.play(self.camera_frame.set_width,14)
+ self.wait(1.3)
+ # self.camera_frame.save_state()
+ # self.camera_frame.set_width(5.5)
+ # self.play(self.camera_frame.move_to, ORIGIN)
+ # self.wait(1)
+ # self.camera_frame.set_width(14)
+ # self.wait(1.5)
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/script5.py b/FSF-2020/calculus/series-and-transformations/Power Series/video4_UniformConvergence.py
index e9681aa..1f3e26c 100644
--- a/FSF-2020/calculus/series-and-transformations/Power Series/script5.py
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/video4_UniformConvergence.py
@@ -3,19 +3,19 @@ import math
class uniformlyConvergent(Scene):
def construct(self):
- introText1=TextMobject("Again consider the","above","example")
+ #introText1=TextMobject("Again consider the","above","example")
introText2=TextMobject("Let","$g(x)=\\frac { 1 }{ 1+{ x }^{ 2 } }$","and","x=0.5 $\in$(-1,1)")
introText3=TextMobject("Lets analyse..","!")
- introText1.scale(0.8)
+ #introText1.scale(0.8)
introText2.scale(0.7)
introText3.scale(0.9)
introText3.shift(DOWN)
- introText1.set_color_by_tex_to_color_map({"above":YELLOW})
+ #introText1.set_color_by_tex_to_color_map({"above":YELLOW})
introText2.set_color_by_tex_to_color_map({"$g(x)=\\frac { 1 }{ 1+{ x }^{ 2 } }$":BLUE,"x=0.5 $\in$(-1,1)":YELLOW})
introText3.set_color_by_tex_to_color_map({"!":GREEN})
- self.play(Write(introText1))
- self.wait(0.5)
- self.play(FadeOut(introText1))
+ #self.play(Write(introText1))
+ #self.wait(0.5)
+ #self.play(FadeOut(introText1))
self.play(Write(introText2))
self.play(FadeIn(introText3))
self.wait(2)
@@ -45,7 +45,7 @@ def makeLines(x,numPoints,x_each_unit,y_each_unit):
lines[i]=Line(start=ORIGIN+RIGHT*x_each_unit*i+UP*y_each_unit*y,end=ORIGIN+RIGHT*x_each_unit*(i+1)+UP*y_each_unit*y_next,color=RED)
return lines
-class graphScene(GraphScene,MovingCameraScene):
+class graphScene(GraphScene,ZoomedScene):
CONFIG = {
"x_min": -6,
"x_max": 6,
@@ -58,12 +58,15 @@ class graphScene(GraphScene,MovingCameraScene):
"y_axis_label": "$f(\\frac{1}{2})_k$",
"exclude_zero_label": True,
"x_axis_width":7,
- "y_axis_height":7
+ "y_axis_height":7,
+ "zoomed_camera_frame_starting_position": 0.5*UP+0.5*RIGHT,
+ "zoom_factor": 0.4,
}
def setup(self):
GraphScene.setup(self)
- MovingCameraScene.setup(self)
+ #MovingCameraScene.setup(self)
+ ZoomedScene.setup(self)
def construct(self):
@@ -87,6 +90,14 @@ class graphScene(GraphScene,MovingCameraScene):
makeSeries(0.5,points,x_each_unit,y_each_unit)
lines=makeLines(0.5,6,x_each_unit,y_each_unit)
+ func1=TextMobject("$g(x)=\\frac { 1 }{ 1+{ x }^{ 2 } }$")
+ func2=TextMobject("x=0.5 $\in$(-1,1)")
+ func1.scale(0.4)
+ func2.scale(0.4)
+ func1.shift(5.3*LEFT+3.3*UP)
+ func2.shift(5.3*LEFT+2.9*UP)
+ self.add(func1)
+ self.add(func2)
self.add(sequence)
self.add(formula)
@@ -95,22 +106,26 @@ class graphScene(GraphScene,MovingCameraScene):
self.add(fLineText)
for p in points:
self.add(p)
+ self.setup()
+ self.activate_zooming(animate=True)
for p in range(0,5):
self.play(Write(lines[p]))
- self.wait(0.5)
- self.camera_frame.save_state()
- self.camera_frame.set_width(0.6)
- self.play(self.camera_frame.move_to, points[0])
- self.wait(0.4)
- self.play(self.camera_frame.move_to, points[1])
- self.wait(0.4)
- self.play(self.camera_frame.move_to, points[2])
- self.wait(0.3)
- self.play(self.camera_frame.move_to, points[3])
- self.wait(1)
- self.play(self.camera_frame.move_to,ORIGIN)
- self.camera_frame.set_width(14)
+ # self.wait(0.5)
+ # self.camera_frame.save_state()
+ # self.camera_frame.set_width(0.6)
+ # self.play(self.camera_frame.move_to, points[0])
+ # self.wait(0.4)
+ # self.play(self.camera_frame.move_to, points[1])
+ # self.wait(0.4)
+ # self.play(self.camera_frame.move_to, points[2])
+ # self.wait(0.3)
+ # self.play(self.camera_frame.move_to, points[3])
+ # self.wait(1)
+ # self.play(self.camera_frame.move_to,ORIGIN)
+ # self.camera_frame.set_width(14)
+
self.wait(1)
+ self.get_zoomed_display_pop_out_animation()
explanation1=TextMobject("Since the series","converges","to")
explanation1.set_color_by_tex_to_color_map({"converges":YELLOW})
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/README.md b/FSF-2020/calculus/series-and-transformations/Taylor Series/README.md
new file mode 100644
index 0000000..ce3b088
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/README.md
@@ -0,0 +1,11 @@
+#### Example of Taylors expansion
+![GIF1](gifs/file1_Example_TaylorExpansion.gif)
+
+#### Taylor Series GeneralForm
+![GIF2](gifs/file2_TaylorExpansionGeneralForm.gif)
+
+#### Radius Of Convergence
+![GIF3](gifs/file3_radiusOfConvergence.gif)
+
+#### Divergence of a Remainder
+![GIF4](gifs/file4_DivergentRemainder.gif)
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/TaylorSeriesQuestions.pdf b/FSF-2020/calculus/series-and-transformations/Taylor Series/TaylorSeriesQuestions.pdf
index 2096f52..46d46e1 100644
--- a/FSF-2020/calculus/series-and-transformations/Taylor Series/TaylorSeriesQuestions.pdf
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/TaylorSeriesQuestions.pdf
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file1_Example_TaylorExpansion.gif b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file1_Example_TaylorExpansion.gif
new file mode 100644
index 0000000..4272d84
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file1_Example_TaylorExpansion.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file2_TaylorExpansionGeneralForm.gif b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file2_TaylorExpansionGeneralForm.gif
new file mode 100644
index 0000000..e6d9171
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file2_TaylorExpansionGeneralForm.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file3_radiusOfConvergence.gif b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file3_radiusOfConvergence.gif
new file mode 100644
index 0000000..9e53cfb
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file3_radiusOfConvergence.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file4_DivergentRemainder.gif b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file4_DivergentRemainder.gif
new file mode 100644
index 0000000..0bc8b65
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file4_DivergentRemainder.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/script1.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/video1_Example_TaylorExpansion.py
index e83eff8..b132811 100644
--- a/FSF-2020/calculus/series-and-transformations/Taylor Series/script1.py
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/video1_Example_TaylorExpansion.py
@@ -31,7 +31,7 @@ class intro(Scene):
self.wait(0.7)
self.play(FadeOut(equation),FadeOut(text))
-class graphScene(GraphScene):
+class graphScene(GraphScene,MovingCameraScene):
CONFIG = {
"x_min": -8,
"x_max": 8,
@@ -45,10 +45,25 @@ class graphScene(GraphScene):
"exclude_zero_label": True,
"x_labeled_nums": range(-8, 8, 1),
}
+ def setup(self):
+ GraphScene.setup(self)
+ MovingCameraScene.setup(self)
def construct(self):
x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+ equation=TextMobject("$f(x)=$","${ e }^{ -x^{ 2 } }$")
+ equation.scale(0.55)
+ equation.set_color_by_tex_to_color_map({"${ e }^{ -x^{ 2 } }$":RED})
+ text=TextMobject("$a=0$")
+ text.scale(0.55)
+
+ equation.shift(3.39*UP+5*LEFT)
+ text.shift(2.9*UP+5*LEFT)
+
+ self.add(equation)
+ self.add(text)
+
generalized_eq_coeff=[]
variables_eq=[]
eq,generalized_eq_coeff=formFormula(generalized_eq_coeff,variables_eq)
@@ -58,7 +73,7 @@ class graphScene(GraphScene):
trTextGrup.scale(0.5)
trTextGrup.to_corner(UP+RIGHT)
self.play(Write(trTextGrup))
- self.setup_axes(animate=True)
+ self.setup_axes(animate=True,scalee=1)
fx=TextMobject("${ e }^{ -x^{ 2 } }$")
fx.scale(0.5)
@@ -66,18 +81,21 @@ class graphScene(GraphScene):
mainfunction=self.get_graph(lambda x:math.exp(-1*pow(x,2)),color=RED,x_min=-8,x_max=8)
self.play(ShowCreation(mainfunction))
self.play(FadeIn(fx))
- self.wait(1.4)
+ self.wait(1)
coeff=[TextMobject("$1$"),TextMobject("$f'(x)$"),TextMobject("$\\frac { f''(x) }{ 2! } $")]
coeff[0].shift(3.39*UP+4.88*RIGHT)
coeff[0].scale(0.5)
- coeff[1].shift(3.39*UP+5.3*RIGHT)
+ coeff[1].shift(3.39*UP+5.4*RIGHT)
coeff[1].scale(0.275)
- coeff[2].shift(3.39*UP+5.98*RIGHT)
+ coeff[2].shift(3.39*UP+6*RIGHT)
coeff[2].scale(0.28)
for obj in coeff:
obj.set_color(GOLD_A)
+ group=VGroup(coeff[0],coeff[1],coeff[2])
+
+ #group.shift(2*LEFT+2*DOWN)
firstApprox=[self.get_graph(lambda x:1,color=BLUE)]
secondApprox=[self.get_graph(lambda x:1,color=BLUE),
@@ -124,16 +142,44 @@ class graphScene(GraphScene):
bottomText8.scale(0.5)
bottomText1.shift(4.5*RIGHT+2.5*DOWN)
- bottomText2.shift(4.5*RIGHT+2.5*DOWN)
- bottomText3.shift(4.5*RIGHT+2.5*DOWN)
- bottomText4.shift(4.5*RIGHT+2.5*DOWN)
- bottomText5.shift(4.5*RIGHT+2.5*DOWN)
- bottomText6.shift(4.5*RIGHT+2.5*DOWN)
- bottomText7.shift(4.5*RIGHT+2.5*DOWN)
- bottomText8.shift(4.5*RIGHT+2.5*DOWN)
+ # bottomText2.shift(4.5*RIGHT+2.5*DOWN)
+ # bottomText3.shift(4.5*RIGHT+2.5*DOWN)
+ # bottomText4.shift(4.5*RIGHT+2.5*DOWN)
+ # bottomText5.shift(4.5*RIGHT+2.5*DOWN)
+ # bottomText6.shift(4.5*RIGHT+2.5*DOWN)
+ # bottomText7.shift(4.5*RIGHT+2.5*DOWN)
+ # bottomText8.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText2.shift(3*RIGHT*x_each_unit+2.5*DOWN*y_each_unit)
+ bottomText3.shift(3*RIGHT*x_each_unit+2.5*DOWN*y_each_unit)
+ bottomText4.shift(3*RIGHT*x_each_unit+2.5*DOWN*y_each_unit)
+ bottomText5.shift(3*RIGHT*x_each_unit+2.5*DOWN*y_each_unit)
+ bottomText6.shift(3.7*RIGHT*x_each_unit+2.5*DOWN*y_each_unit)
+ bottomText7.shift(3.7*RIGHT*x_each_unit+2.5*DOWN*y_each_unit)
+ bottomText8.shift(3.7*RIGHT*x_each_unit+2.5*DOWN*y_each_unit)
+
+ bottomText2.scale(0.7)
+ bottomText3.scale(0.7)
+ bottomText4.scale(0.7)
+ bottomText5.scale(0.7)
+ bottomText6.scale(0.7)
+ bottomText7.scale(0.7)
+ bottomText8.scale(0.7)
self.play(Write(bottomText1))
- self.wait(1)
+ self.wait(0.8)
+ #self.activate_zooming(animate=True)
+ self.camera_frame.save_state()
+ group.move_to(4*y_each_unit*UP+4.6*RIGHT*x_each_unit).scale(0.7)
+ self.play(self.camera_frame.set_width, 8,
+ self.camera_frame.move_to, x_each_unit*UP,
+ ApplyMethod(trTextGrup.move_to,4*y_each_unit*UP+4.1*RIGHT*x_each_unit),
+ ApplyMethod(bottomText1.move_to,3.4*RIGHT*x_each_unit+2.5*DOWN*y_each_unit),
+ ApplyMethod(equation.shift,1.39*DOWN+2*RIGHT),
+ ApplyMethod(text.shift,1.39*DOWN+2*RIGHT),)
+ self.play(ApplyMethod(text.scale,0.5),ApplyMethod(equation.scale,0.5),ApplyMethod(bottomText1.scale,0.6),ApplyMethod(trTextGrup.scale,0.7))
+ self.play(ApplyMethod(text.shift,0.3*UP))
+ self.wait(0.6)
+
self.play(ShowCreation(firstApprox[0]),ReplacementTransform(bottomText1,bottomText2))
#change coeff in tn(x)
self.play(ReplacementTransform(generalized_eq_coeff[0],coeff[0]))
@@ -170,10 +216,12 @@ class graphScene(GraphScene):
self.wait(2)
textFinal=TextMobject("And so on..!")
- textFinal.scale(0.7)
- textFinal.shift(4.5*RIGHT+2.5*DOWN)
+ textFinal.scale(0.35)
+ textFinal.shift(3.7*RIGHT*x_each_unit+2.5*DOWN*y_each_unit)
self.play(ReplacementTransform(bottomText8,textFinal))
- self.wait(2.5)
+ self.wait(1)
+ self.play(FadeOut(equation),FadeOut(text))
+ self.play(self.camera_frame.set_width, 15)
finalFormula=TextMobject("Hence","$T_{ n }(x)$","=","$f(0)+f'(0)x+\\frac { f''(0) }{ 2! }x^2+..+\\frac { { f }^{ n }(0) }{ n! } { x }^{ n }$")
finalFormula.scale(0.8)
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/script2.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/video2_TaylorExpansionGeneralForm.py
index b5d0a53..c177ab4 100644
--- a/FSF-2020/calculus/series-and-transformations/Taylor Series/script2.py
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/video2_TaylorExpansionGeneralForm.py
@@ -59,6 +59,18 @@ class graphScene(GraphScene):
x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+ equation=TextMobject("$f(x)=$","${ e }^{ -x^{ 2 } }$")
+ equation.scale(0.55)
+ equation.set_color_by_tex_to_color_map({"${ e }^{ -x^{ 2 } }$":RED})
+ text=TextMobject("$a=1$")
+ text.scale(0.55)
+ equation.shift(3.39*UP+5*LEFT)
+ text.shift(3*UP+5*LEFT)
+
+ self.add(equation)
+ self.add(text)
+
+
generalized_eq_coeff=[]
variables_eq=[]
eq,generalized_eq_coeff=formFormula(generalized_eq_coeff,variables_eq)
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/script3.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/video3_radiusOfConvergence.py
index a2870d4..52f07bb 100644
--- a/FSF-2020/calculus/series-and-transformations/Taylor Series/script3.py
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/video3_radiusOfConvergence.py
@@ -2,7 +2,7 @@ from manimlib.imports import*
import math
-class graphScene(GraphScene):
+class graphScene(GraphScene,MovingCameraScene):
CONFIG = {
"x_min": -8,
"x_max": 8,
@@ -16,12 +16,15 @@ class graphScene(GraphScene):
"exclude_zero_label": True,
"x_labeled_nums": range(-8, 8, 1),
}
+ def setup(self):
+ GraphScene.setup(self)
+ MovingCameraScene.setup(self)
def construct(self):
x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
- self.setup_axes(animate=True)
+ self.setup_axes(animate=True,scalee=1)
lnx=self.get_graph(lambda x:math.log2(x),color=RED,x_min=0.01,x_max=8)
@@ -98,14 +101,23 @@ class graphScene(GraphScene):
circle=Circle(radius=ORIGIN+x_each_unit*2,color=PURPLE_E)
circle.shift(ORIGIN+RIGHT*x_each_unit*2)
- radiusLine=Line(start=ORIGIN+x_each_unit*RIGHT*2,end=ORIGIN+x_each_unit*4*RIGHT,color=PURPLE_E)
+ radiusLine=Line(start=ORIGIN+x_each_unit*RIGHT*2,end=ORIGIN+x_each_unit*2*RIGHT+y_each_unit*3*UP,color=PURPLE_E)
radius=TextMobject("$R$")
radius.set_color(RED)
radius.scale(0.5)
- radius.shift(ORIGIN+RIGHT*x_each_unit*2.45+DOWN*y_each_unit*0.6)
+ radius.shift(ORIGIN+RIGHT*x_each_unit*2.45+UP*y_each_unit*2.2)
+ rText=TextMobject("R",":","Radius of Convergence").scale(0.3).shift(x_each_unit*RIGHT*2+UP*y_each_unit*3.3).set_color_by_tex_to_color_map({"R":RED,"Radius of Convergence":YELLOW})
self.play(FadeOut(equations[6]),Write(circle))
self.wait(0.6)
self.play(Write(radiusLine))
self.play(FadeIn(radius))
- self.wait(2) \ No newline at end of file
+ self.wait(0.7)
+ self.camera_frame.save_state()
+ self.play(self.camera_frame.set_width, 8,
+ self.camera_frame.move_to, y_each_unit*UP+x_each_unit*2*RIGHT)
+ self.play(Write(rText))
+ self.wait(1)
+ self.play(self.camera_frame.set_width, 15,
+ self.camera_frame.move_to,0)
+ self.wait(2) \ No newline at end of file
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/script4.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/video4_DivergentRemainder.py
index 1f41c97..1f41c97 100644
--- a/FSF-2020/calculus/series-and-transformations/Taylor Series/script4.py
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/video4_DivergentRemainder.py
diff --git a/FSF-2020/calculus/series-and-transformations/Z-Transform/README.md b/FSF-2020/calculus/series-and-transformations/Z-Transform/README.md
new file mode 100644
index 0000000..c626bdf
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Z-Transform/README.md
@@ -0,0 +1,9 @@
+#### Sampling
+![GIF1](gifs/file1.gif)
+
+#### Z Transform of a delta function
+![GIF2](gifs/file2.gif)
+
+#### Region of convergence
+![GIF3](gifs/file3.gif)
+
diff --git a/FSF-2020/calculus/series-and-transformations/Z-Transform/gifs/file1.gif b/FSF-2020/calculus/series-and-transformations/Z-Transform/gifs/file1.gif
new file mode 100644
index 0000000..d21aa59
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Z-Transform/gifs/file1.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Z-Transform/gifs/file2.gif b/FSF-2020/calculus/series-and-transformations/Z-Transform/gifs/file2.gif
new file mode 100644
index 0000000..203be8d
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Z-Transform/gifs/file2.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Z-Transform/gifs/file3.gif b/FSF-2020/calculus/series-and-transformations/Z-Transform/gifs/file3.gif
new file mode 100644
index 0000000..0f100f1
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Z-Transform/gifs/file3.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Z-Transform/video1_Sampling.py b/FSF-2020/calculus/series-and-transformations/Z-Transform/video1_Sampling.py
new file mode 100644
index 0000000..47615e3
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Z-Transform/video1_Sampling.py
@@ -0,0 +1,81 @@
+from manimlib.imports import *
+import math
+
+def func(x):
+ return math.pow(x,3)-2*math.pow(x,2)-x+3
+
+class graphScene(GraphScene):
+ CONFIG = {
+ "x_min": -3,
+ "x_max": 3,
+ "y_min": -4,
+ "y_max": 4,
+ "x_tick_frequency": 0.2,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": BLUE,
+ "x_axis_label": "$t$",
+ "y_axis_label": "$f(t)$",
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-3, 4, 1),
+ "y_axis_height": 5,
+ "x_axis_width": 9,
+ }
+
+ def construct(self):
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ fx=TextMobject("$f(t) = { t }^{ 3 }{ -2t }^{ 2 }-t+3$").set_color(RED).to_corner(UP+RIGHT).scale(0.4)
+ self.setup_axes(animate=True,scalee=1)
+ function=self.get_graph(lambda x:math.pow(x,3)-2*math.pow(x,2)-x+3,color=RED,x_min=-1,x_max=2)
+ functionArea=self.get_riemann_rectangles(function,x_min=-1,x_max=2,dx=0.01,start_color=GREEN,end_color=YELLOW,stroke_color=GREEN,fill_opacity=0.8)
+ functionDot=Dot(point=self.graph_origin,radius=0.065,color=WHITE)
+ aboveText1=TextMobject("Continuous","Time Function").shift(4*RIGHT+2*UP).scale(0.4).set_color_by_tex_to_color_map({"Continuous":YELLOW,"Time Function":BLUE})
+ aboveText2=TextMobject("Discrete","Time Function").shift(4*RIGHT+2*UP).scale(0.4).set_color_by_tex_to_color_map({"Time Function":BLUE,"Discrete":YELLOW})
+
+ bottomText1=TextMobject("Instead of considering the","function","over the","entire $t$,").shift(4.5*RIGHT+3*DOWN).scale(0.4).set_color_by_tex_to_color_map({"entire $t$,":RED,"function":YELLOW})
+ bottomText2=TextMobject("We consider only at","certain $t$").shift(4.5*RIGHT+3*DOWN).scale(0.4).set_color_by_tex_to_color_map({"certain $t$":RED})
+
+ self.play(ShowCreation(function),Write(fx),FadeIn(aboveText1))
+ self.wait(0.7)
+ self.play(Write(bottomText1))
+ self.play(ShowCreation(functionArea),MoveAlongPath(functionDot,function))
+ self.wait(0.7)
+ self.play(FadeOut(bottomText1))
+ self.play(Write(bottomText2),FadeOut(aboveText1))
+
+ dots=[Dot(radius=0.05) for i in range(10)]
+ dotShifts=[-1,-0.7,-0.4,0,0.3,0.6,1,1.3,1.6,2]
+ lines=[]
+ for x in dotShifts:
+ lines.append(Line(start=(x*x_each_unit,func(x)*y_each_unit,0),end=(x*x_each_unit,0,0),color=GREEN))
+ for i in range(10):
+ dots[i].shift(ORIGIN+RIGHT*x_each_unit*dotShifts[i]+y_each_unit*UP*func(dotShifts[i]))
+ updatedGraph=VGroup(dots[0],
+ dots[1],
+ dots[2],
+ dots[3],
+ dots[4],
+ dots[5],
+ dots[6],
+ dots[7],
+ dots[8],
+ dots[9])
+ updatedGraph1=VGroup(
+ lines[0],
+ lines[1],
+ lines[2],
+ lines[3],
+ lines[4],
+ lines[5],
+ lines[6],
+ lines[7],
+ lines[8],
+ lines[9])
+
+ self.play(FadeOut(functionDot))
+ self.play(FadeOut(function),FadeIn(updatedGraph))
+ self.play(FadeOut(functionArea),FadeIn(updatedGraph1))
+ self.play(FadeOut(bottomText2),FadeIn(aboveText2))
+ self.wait(2) \ No newline at end of file
diff --git a/FSF-2020/calculus/series-and-transformations/Z-Transform/video2_ZTransformOfDelta.py b/FSF-2020/calculus/series-and-transformations/Z-Transform/video2_ZTransformOfDelta.py
new file mode 100644
index 0000000..3063aa6
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Z-Transform/video2_ZTransformOfDelta.py
@@ -0,0 +1,121 @@
+from manimlib.imports import *
+import numpy as np
+import math
+
+class deltaTransformation(GraphScene):
+ CONFIG = {
+ "x_min": -3,
+ "x_max": 3,
+ "y_min": -5,
+ "y_max": 5,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": BLUE,
+ "x_axis_label": "$t$",
+ "y_axis_label": "$f(t)$",
+ "x_labeled_nums": range(-3, 4, 1),
+ # "y_axis_height": 4,
+ # "x_axis_width": 6,
+ }
+ def construct(self):
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+ self.setup_axes(animate=True,scalee=0.8)
+ function=TextMobject("$f(t) = 2{ \delta }_{ 0 }(t)+3{ \delta }_{ 1 }(t)+4{ \delta }_{ 2 }(t)$").scale(0.4).shift(5*RIGHT+3*UP).set_color(RED)
+ self.play(FadeIn(function))
+ twoDGraph=[
+ Line(start=(0,0,0),end=(0,2*y_each_unit,0),color=GREEN),
+ Line(start=(1*x_each_unit,0,0),end=(x_each_unit,3*y_each_unit,0),color=GREEN),
+ Line(start=(2*x_each_unit,0,0),end=(2*x_each_unit,4*y_each_unit,0),color=GREEN)
+ ]
+ groupGraph=VGroup(twoDGraph[1],twoDGraph[2],self.axes,twoDGraph[0])
+ self.play(Write(twoDGraph[0]),ShowCreation(twoDGraph[1]),ShowCreation(twoDGraph[2]))
+ self.wait(1.2)
+ self.play(ApplyMethod(groupGraph.scale,0.7))
+ self.play(ApplyMethod(groupGraph.shift,5*LEFT),ApplyMethod(function.move_to,5*LEFT+3*UP))
+ self.graph_origin=2*RIGHT+2.5*DOWN
+ self.x_axis_width=6
+ self.x_axis_label="$|z|$"
+ self.y_axis_label="$|F(t)|$"
+ self.x_min=-3
+ self.x_max=6
+ self.y_min=-1
+ self.y_max=7
+ self.x_labeled_nums=range(-3,7,1)
+ self.setup_axes(animate=True,scalee=0.6)
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+ rightSideGraphs=[
+ self.get_graph(lambda x:2,x_min=0,x_max=6,color=GREEN),
+ self.get_graph(lambda x:2+3/x,x_min=0.6,x_max=6,color=GREEN),
+ self.get_graph(lambda x:2+(3/x)+(4/x**2),x_min=1.24,x_max=6,color=GREEN)
+ ]
+ graphCoeff=[
+ TextMobject("$2$").scale(0.4).shift(self.graph_origin+x_each_unit*RIGHT*2+UP*y_each_unit*2+DOWN*y_each_unit*0.5).set_color(RED),
+ TextMobject("$2+\\frac { 3 }{ |z| }$").scale(0.4).shift(self.graph_origin+x_each_unit*RIGHT*3+UP*y_each_unit*2).set_color(RED),
+ TextMobject("$2+\\frac { 3 }{ |z| } +\\frac { 4 }{ { |z| }^{ 2 } } $").scale(0.4).shift(self.graph_origin+x_each_unit*RIGHT*3.5+UP*y_each_unit*2).set_color(RED)
+ ]
+ self.play(ReplacementTransform(twoDGraph[0],rightSideGraphs[0]),FadeIn(graphCoeff[0]))
+ self.wait(0.5)
+ self.play(FadeOut(rightSideGraphs[0]),ReplacementTransform(twoDGraph[1],rightSideGraphs[1]),ReplacementTransform(graphCoeff[0],graphCoeff[1]))
+ self.wait(0.5)
+ self.play(FadeOut(rightSideGraphs[1]),ReplacementTransform(twoDGraph[2],rightSideGraphs[2]),ReplacementTransform(graphCoeff[1],graphCoeff[2]))
+
+ self.wait(2)
+
+
+class graphCont(GraphScene,MovingCameraScene):
+ CONFIG = {
+ "x_min": -3,
+ "x_max": 6,
+ "y_min": -1,
+ "y_max": 7,
+ "graph_origin": 2*RIGHT+2.5*DOWN,
+ "function_color": RED,
+ "axes_color": BLUE,
+ "x_axis_label": "$|z|$",
+ "y_axis_label": "$|F(t)|$",
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-3, 7, 1),
+ "x_axis_width": 6,
+ }
+ def setup(self):
+ GraphScene.setup(self)
+ MovingCameraScene.setup(self)
+
+ def construct(self):
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ coeff=TextMobject("$2+\\frac { 3 }{ |z| } +\\frac { 4 }{ { |z| }^{ 2 } } $").scale(0.4).shift(self.graph_origin+x_each_unit*RIGHT*3.5+UP*y_each_unit*2).set_color(RED)
+ self.setup_axes(scalee=0.6)
+ graph=self.get_graph(lambda x:2+(3/x)+(4/x**2),x_min=1.24,x_max=6,color=GREEN)
+ xAxis=self.get_graph(lambda x:0,x_min=1.24,x_max=6).shift(3*LEFT)
+ self.add(graph)
+ self.add(coeff)
+ self.play(ApplyMethod((self.axes).shift,3*LEFT),ApplyMethod(coeff.shift,3*LEFT),ApplyMethod(graph.shift,3*LEFT))
+ topText=TextMobject("Here we get","output","for","any value of $|z|$").scale(0.4).shift(3*UP+3*RIGHT).set_color_by_tex_to_color_map({"output":YELLOW,"any value of $|z|$":BLUE})
+ topText1=TextMobject("Except for $|z|=0$").scale(0.7).shift(2.5*UP+3*RIGHT).set_color(RED)
+ dot1=Dot(color=WHITE,radius=0.06)
+ dot2=Dot(color=WHITE,radius=0.06)
+ self.play(Write(topText))
+ self.play(MoveAlongPath(dot1,graph),MoveAlongPath(dot2,xAxis),run_time=2)
+ self.play(Write(topText1))
+ self.play(FadeOut(dot1),FadeOut(dot2))
+ self.wait(0.5)
+ path=self.get_graph(lambda x:2+(3/x)+(4/x**2),x_min=1.24,x_max=0.8)
+ path1=self.get_graph(lambda x:0,x_min=1.24,x_max=0.8)
+ graphUpdated=self.get_graph(lambda x:2+(3/x)+(4/x**2),x_min=0.8,x_max=6,color=GREEN)
+ self.camera_frame.save_state()
+ self.play(FadeOut(graph),Write(graphUpdated))
+ self.play(self.camera_frame.set_width, 30,
+ MoveAlongPath(dot1,path),MoveAlongPath(dot2,path1),run_time=2)
+ self.wait(1)
+
+ self.play(FadeOut(dot1),FadeOut(dot2),FadeOut(graphUpdated),FadeIn(graph),self.camera_frame.set_width,15)
+ self.wait(1)
+
+
+
+
+
diff --git a/FSF-2020/calculus/series-and-transformations/Z-Transform/video3_RegionOfConvergence.py b/FSF-2020/calculus/series-and-transformations/Z-Transform/video3_RegionOfConvergence.py
new file mode 100644
index 0000000..bdfd8b3
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Z-Transform/video3_RegionOfConvergence.py
@@ -0,0 +1,144 @@
+from manimlib.imports import *
+import numpy as np
+import math
+
+class graph1(GraphScene):
+ CONFIG = {
+ "x_min": -3,
+ "x_max": 5,
+ "y_min": -1,
+ "y_max": 1,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": BLUE,
+ "x_axis_label": "$n$",
+ "y_axis_label": "$x(n)$",
+ "x_labeled_nums": range(-3, 6, 1),
+ "y_axis_height": 7,
+ "y_tick_frequency": 0.1,
+ }
+ def func(self,x,n):
+ summ=0
+ for i in range(n+1):
+ summ+=(1/(math.pow(x,i)))
+ return summ
+
+ def finalFunc(self,x):
+ if(x!=0):
+ return 1/(1-(1/(2*x)))
+
+
+ def construct(self):
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+ self.setup_axes(animate=True,scalee=0.8)
+ function=TextMobject("$X(t)=\sum _{ n=0 }^{ \infty }{ { (0.5) }^{ n }{ z }^{ -n } }$").scale(0.4).shift(5*RIGHT+3*UP).set_color(RED)
+ self.play(FadeIn(function))
+ twoDGraph=[]
+ for i in range(5):
+ twoDGraph.append(Line(start=(i*x_each_unit,0,0),end=(i*x_each_unit,math.pow(0.5,i)*y_each_unit,0),color=GREEN))
+
+ groupGraph=VGroup(self.axes,twoDGraph[0],twoDGraph[1],twoDGraph[2],twoDGraph[3],twoDGraph[4])
+ self.play(Write(twoDGraph[0]),ShowCreation(twoDGraph[1]),ShowCreation(twoDGraph[2]),ShowCreation(twoDGraph[3]),ShowCreation(twoDGraph[4]))
+ self.wait(1.2)
+
+ self.play(ApplyMethod(groupGraph.scale,0.7))
+ self.play(ApplyMethod(groupGraph.shift,6*LEFT),ApplyMethod(function.move_to,5*LEFT+3*UP))
+
+ someText1=TextMobject("Since it is a","summation","of","infinite terms",", it might").shift(2*RIGHT+2*UP).scale(0.5).set_color_by_tex_to_color_map({"summation":YELLOW,"infinite terms":BLUE})
+ someText2=TextMobject("Converge","or","Diverge").shift(2*RIGHT+0.5*DOWN+2*UP).scale(0.7).set_color_by_tex_to_color_map({"Converge":GREEN,"Diverge":RED})
+ someText3=TextMobject("depending upon","$|z|$").shift(2*RIGHT+UP).scale(0.5).set_color_by_tex_to_color_map({"$|z|$":YELLOW})
+ self.play(Write(someText1))
+ self.play(FadeIn(someText2))
+ self.play(Write(someText3))
+ self.wait(1)
+ self.play(FadeOut(someText1),FadeOut(someText2),FadeOut(someText3))
+
+ self.graph_origin=2*RIGHT+DOWN
+ self.x_axis_width=6
+ self.y_axis_height=5
+ self.y_tick_frequency=1
+ self.x_axis_label="$|z|$"
+ self.y_axis_label="$|X(n)|$"
+ self.x_min=-3
+ self.x_max=5
+ self.y_min=-1
+ self.y_max=5
+ self.x_labeled_nums=range(-3,6,1)
+ self.setup_axes(animate=True,scalee=0.6)
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+ rightSideGraphs=[]
+ xmins=[0,0.25,0.65,0.9,1]
+ for i in range(5):
+ rightSideGraphs.append(self.get_graph(lambda x:self.func(x,i),x_min=xmins[i],x_max=5,color=GREEN))
+ rightSideGraphs.append(self.get_graph(lambda x:1/(1-(1/(2*x))),x_min=0.63,x_max=5,color=GREEN))
+
+ graphCoeff=[
+ TextMobject("$1$").scale(0.4).shift(self.graph_origin+x_each_unit*RIGHT*2+0.65*UP*y_each_unit*2+DOWN*y_each_unit*0.5).set_color(RED),
+ TextMobject("$1+\\frac { 1 }{ 2|z| }$").scale(0.4).shift(self.graph_origin+x_each_unit*RIGHT*2+UP*y_each_unit).set_color(RED),
+ TextMobject("$1+\\frac { 1 }{ 2|z| } +\\frac { 1 }{ { 2|z| }^{ 2 } } $").scale(0.4).shift(self.graph_origin+x_each_unit*RIGHT*2+UP*y_each_unit).set_color(RED),
+ TextMobject("$1+\\frac { 1 }{ 2|z| } +\\frac { 1 }{ { (2|z|) }^{ 2 } } +\\frac { 1 }{ { (2|z|) }^{ 3 } }$").scale(0.4).shift(self.graph_origin+x_each_unit*RIGHT*2+UP*y_each_unit).set_color(RED),
+ TextMobject("$1+\\frac { 1 }{ 2|z| } +\\frac { 1 }{ { (2|z|) }^{ 2 } } +\\frac { 1 }{ { (2|z|) }^{ 3 } } +\\frac { 1 }{ (2|z|)^{ 4 } } $").scale(0.4).shift(self.graph_origin+x_each_unit*RIGHT*2+UP*y_each_unit).set_color(RED),
+ TextMobject("$\\frac { 1 }{ (1-\\frac { 1 }{ 2z } ) } $").scale(0.4).shift(self.graph_origin+x_each_unit*RIGHT*2+UP*y_each_unit).set_color(RED)
+ ]
+
+ self.play(ReplacementTransform(twoDGraph[0],rightSideGraphs[0]),FadeIn(graphCoeff[0]))
+ self.wait(0.5)
+ self.play(FadeOut(rightSideGraphs[0]),ReplacementTransform(twoDGraph[1],rightSideGraphs[1]),ReplacementTransform(graphCoeff[0],graphCoeff[1]))
+ self.wait(0.5)
+ self.play(FadeOut(rightSideGraphs[1]),ReplacementTransform(twoDGraph[2],rightSideGraphs[2]),ReplacementTransform(graphCoeff[1],graphCoeff[2]))
+ self.wait(0.5)
+ self.play(FadeOut(rightSideGraphs[2]),ReplacementTransform(twoDGraph[3],rightSideGraphs[3]),ReplacementTransform(graphCoeff[2],graphCoeff[3]))
+ self.wait(0.5)
+ self.play(FadeOut(rightSideGraphs[3]),ReplacementTransform(twoDGraph[4],rightSideGraphs[4]),ReplacementTransform(graphCoeff[3],graphCoeff[4]))
+ self.wait(0.5)
+ self.play(FadeOut(rightSideGraphs[4]),ShowCreation(rightSideGraphs[5]),ReplacementTransform(graphCoeff[4],graphCoeff[5]))
+
+ self.wait(2)
+ # #self.play(FadeOut(self.axes),FadeOut(function),FadeOut(twoDGraph[0]),FadeOut(twoDGraph[1]),FadeOut(twoDGraph[2]))
+
+
+class graphCont(GraphScene,MovingCameraScene):
+ CONFIG = {
+ "x_min": -3,
+ "x_max": 5,
+ "y_min": -1,
+ "y_max": 5,
+ "graph_origin": 2*RIGHT+DOWN,
+ "function_color": RED,
+ "axes_color": BLUE,
+ "x_axis_label": "$|z|$",
+ "y_axis_label": "$|X(n)|$",
+ "x_labeled_nums": range(-3, 6, 1),
+ "x_axis_width": 6,
+ "y_axis_height": 5
+ }
+ def setup(self):
+ GraphScene.setup(self)
+ MovingCameraScene.setup(self)
+
+ def construct(self):
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ coeff=TextMobject("$\\frac { 1 }{ (1-\\frac { 1 }{ 2z } ) } $").scale(0.4).shift(self.graph_origin+x_each_unit*RIGHT*2+UP*y_each_unit).set_color(RED)
+ self.setup_axes(scalee=0.6)
+ graph=self.get_graph(lambda x:1/(1-(1/(2*x))),x_min=0.63,x_max=5,color=GREEN)
+
+ self.add(graph)
+ self.add(coeff)
+
+ self.play(ApplyMethod((self.axes).shift,3*LEFT),ApplyMethod(coeff.shift,3*LEFT),ApplyMethod(graph.shift,3*LEFT))
+ self.wait(1)
+
+ dashLine=DashedLine(start=self.graph_origin+3*LEFT+0.5*x_each_unit*RIGHT,end=self.graph_origin+3*LEFT+0.5*x_each_unit*RIGHT+y_each_unit*UP*5,color=YELLOW)
+ pt=TextMobject("0.5").scale(0.3).shift(self.graph_origin+3*LEFT+0.5*x_each_unit*RIGHT+DOWN*y_each_unit*0.3)
+ self.play(Write(dashLine))
+ self.play(Write(pt))
+ self.wait(0.6)
+ rectRegion=Rectangle(height=y_each_unit*5,width=x_each_unit*5,fill_color=WHITE,fill_opacity=0.3,opacity=0.3,color=BLACK).shift(1.6*RIGHT*x_each_unit+0.5*DOWN*y_each_unit+1.5*UP)
+ self.play(ShowCreation(rectRegion))
+ text=TextMobject("Region Of Convergence!").scale(0.4).shift(4.6*RIGHT+1.5*UP).set_color(GREEN)
+ self.play(FadeIn(text))
+ self.wait(2)