summaryrefslogtreecommitdiff
path: root/FSF-2020/calculus
diff options
context:
space:
mode:
Diffstat (limited to 'FSF-2020/calculus')
-rw-r--r--FSF-2020/calculus/intro-to-calculus/README.md8
-rw-r--r--FSF-2020/calculus/series-and-transformations/Laplace Transformations/README.md21
-rw-r--r--FSF-2020/calculus/series-and-transformations/Laplace Transformations/file1_laplaceTransformBasic.py67
-rw-r--r--FSF-2020/calculus/series-and-transformations/Laplace Transformations/file2_differentialEqSimplification.py78
-rw-r--r--FSF-2020/calculus/series-and-transformations/Laplace Transformations/file3_unitStepFunction.py168
-rw-r--r--FSF-2020/calculus/series-and-transformations/Laplace Transformations/file4_diracBasic.py61
-rw-r--r--FSF-2020/calculus/series-and-transformations/Laplace Transformations/file5_formationDiracDeltaFunction.py142
-rw-r--r--FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/DiracFunction.gifbin0 -> 60841 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/DiracFunctionFormation.gifbin0 -> 315096 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/LtransformDiracFunction.gifbin0 -> 99703 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/LtransformUnitStepFunction.gifbin0 -> 151025 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/UnitStepFunctionExample.gifbin0 -> 192755 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/basicIntuition.gifbin0 -> 113203 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/solvingDEintuition.gifbin0 -> 196162 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/unitStepFunction.gifbin0 -> 56604 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/PowerSeriesQuestions.pdfbin0 -> 118730 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/README.md14
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/gifs/file1_pieChart.gifbin0 -> 347111 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/gifs/file2_convergence_Intuition.gifbin0 -> 98910 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/gifs/file3_convergence_of_a_function.gifbin0 -> 415313 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/gifs/file4_radius_and_intervalOfConvergence.gifbin0 -> 213252 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/gifs/file5_UniformConvergence.gifbin0 -> 276475 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/video1_pieChart.py128
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/video2_convergence_Intuition.py94
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/video3_convergence_of_a_function.py156
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/video4_radius_and_intervalOfConvergence.py108
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/video5_UniformConvergence.py136
-rw-r--r--FSF-2020/calculus/series-and-transformations/README.md13
-rw-r--r--FSF-2020/calculus/series-and-transformations/Taylor Series/README.md11
-rw-r--r--FSF-2020/calculus/series-and-transformations/Taylor Series/TaylorSeriesQuestions.pdfbin0 -> 125254 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file1_Example_TaylorExpansion.gifbin0 -> 446111 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file2_TaylorExpansionGeneralForm.gifbin0 -> 308980 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file3_radiusOfConvergence.gifbin0 -> 391510 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file4_DivergentRemainder.gifbin0 -> 160149 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Taylor Series/video1_Example_TaylorExpansion.py198
-rw-r--r--FSF-2020/calculus/series-and-transformations/Taylor Series/video2_TaylorExpansionGeneralForm.py195
-rw-r--r--FSF-2020/calculus/series-and-transformations/Taylor Series/video3_radiusOfConvergence.py111
-rw-r--r--FSF-2020/calculus/series-and-transformations/Taylor Series/video4_DivergentRemainder.py82
38 files changed, 1791 insertions, 0 deletions
diff --git a/FSF-2020/calculus/intro-to-calculus/README.md b/FSF-2020/calculus/intro-to-calculus/README.md
new file mode 100644
index 0000000..a417361
--- /dev/null
+++ b/FSF-2020/calculus/intro-to-calculus/README.md
@@ -0,0 +1,8 @@
+Contributor: Aryan Singh
+Subtopics covered
+ - When do limits exist?
+ - How Fast am I going?-An intro to derivatives
+ - Infinte sums in a nutshell(Riemann integrals)
+ - Fundamental Theorem of calculus
+ - Volume and surface area of Gabriel's Horn
+ - Infinite sequences and series
diff --git a/FSF-2020/calculus/series-and-transformations/Laplace Transformations/README.md b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/README.md
new file mode 100644
index 0000000..d4cd8bc
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/README.md
@@ -0,0 +1,21 @@
+### Basic Intuition
+![GIF1](gifs/basicIntuition.gif)
+
+### Solving D.E.intuition
+![GIF2](gifs/solvingDEintuition.gif)
+
+### Unit Step Function
+#### Part1
+![GIF3](gifs/unitStepFunction.gif)
+#### Part2
+![GIF4](gifs/UnitStepFunctionExample.gif)
+#### Part3
+![GIF5](gifs/LtransformUnitStepFunction.gif)
+
+### Dirac Delta Function
+#### Part1
+![GIF6](gifs/DiracFunction.gif)
+#### Part2
+![GIF7](gifs/DiracFunctionFormation.gif)
+#### Part3
+![GIF8](gifs/LtransformDiracFunction.gif)
diff --git a/FSF-2020/calculus/series-and-transformations/Laplace Transformations/file1_laplaceTransformBasic.py b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/file1_laplaceTransformBasic.py
new file mode 100644
index 0000000..7a37ae8
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/file1_laplaceTransformBasic.py
@@ -0,0 +1,67 @@
+from manimlib.imports import *
+import pylatex
+
+class depict(Scene):
+ def construct(self):
+ square=Square(side_length=2,fill_color=GREEN,fill_opacity=0.7)
+ inputText=TextMobject("$t$")
+ squareText=TextMobject("$f$")
+ outputText=TextMobject("$f($","$t$","$)$")
+
+ inputText.scale(0.8)
+ outputText.scale(0.8)
+ inputText.shift(2.1*LEFT)
+ outputText.shift(1.5*RIGHT)
+ squareText.scale(1.2)
+
+ outputText.set_color_by_tex_to_color_map({"$t$":RED})
+
+ self.play(ShowCreation(square))
+ self.play(FadeIn(squareText))
+ self.add(inputText)
+ self.wait(0.5)
+ self.play(ApplyMethod(inputText.shift,0.9*RIGHT))
+ self.play(FadeOut(inputText),FadeIn(outputText))
+ self.play(ApplyMethod(outputText.shift,1.5*RIGHT))
+ self.wait(1)
+
+ fOutGroup=VGroup(outputText,square,squareText)
+ self.play(ApplyMethod(fOutGroup.scale,0.6))
+ self.play(ApplyMethod(fOutGroup.shift,5*LEFT))
+ self.wait(0.8)
+ laplaceSquare=Square(side_length=3,fill_color=BLUE,fill_opacity=0.6)
+ laplaceText=TextMobject("$\mathscr{L}$")
+ outText=TextMobject("$F($","$s$","$)$")
+ outText.scale(0.8)
+ outText.set_color_by_tex_to_color_map({"$s$":RED})
+ laplaceText.scale(1.5)
+ outText.shift(2*RIGHT)
+ self.play(ShowCreation(laplaceSquare))
+ self.play(FadeIn(laplaceText))
+ self.wait(0.5)
+ self.play(ApplyMethod(outputText.shift,RIGHT))
+ self.play(FadeOut(outputText),FadeIn(outText))
+ self.play(ApplyMethod(outText.shift,2*RIGHT))
+ self.wait(1)
+
+ updatedOutputText=TextMobject("$f($","$t$","$)$")
+ updatedOutputText.shift(2.5*LEFT)
+ updatedOutputText.set_color_by_tex_to_color_map({"$t$":RED})
+ updatedInputText=TextMobject("$t$")
+ updatedInputText.shift(6*LEFT)
+ updatedInputText.scale(0.7)
+ updatedOutputText.scale(0.7)
+
+ self.play(FadeIn(updatedInputText),FadeIn(updatedOutputText))
+ self.wait(0.5)
+
+ timeText=TextMobject("Time Domain")
+ frequencyText=TextMobject("Frequency Domain")
+ timeText.set_color(RED)
+ frequencyText.set_color(RED)
+ timeText.scale(0.35)
+ frequencyText.scale(0.35)
+ timeText.shift(2.5*LEFT+0.5*DOWN)
+ frequencyText.shift(4*RIGHT+0.5*DOWN)
+ self.play(Write(frequencyText),Write(timeText))
+ self.wait(2) \ No newline at end of file
diff --git a/FSF-2020/calculus/series-and-transformations/Laplace Transformations/file2_differentialEqSimplification.py b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/file2_differentialEqSimplification.py
new file mode 100644
index 0000000..33e9173
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/file2_differentialEqSimplification.py
@@ -0,0 +1,78 @@
+from manimlib.imports import *
+import pylatex
+
+class scene(Scene):
+ def construct(self):
+ normalSq=Square(side_length=2,fill_color=BLUE,fill_opacity=0.6)
+ normalSqText=TextMobject("$\mathscr{L}$")
+ inputText=TextMobject("$f($","$y'(t)$","$)$")
+ outputText=TextMobject("$F($","$s$","$)$")
+
+ inputText.scale(0.7)
+ outputText.scale(0.7)
+ inputText.shift(2.5*LEFT)
+ outputText.shift(1.7*RIGHT)
+ normalSq.scale(1.2)
+
+ inputText.set_color_by_tex_to_color_map({"$y'(t)$":RED})
+ outputText.set_color_by_tex_to_color_map({"$s$":RED})
+
+ self.play(ShowCreation(normalSq))
+ self.play(FadeIn(normalSqText))
+ self.add(inputText)
+ self.wait(0.5)
+ self.play(ApplyMethod(inputText.shift,0.7*RIGHT))
+ self.play(FadeOut(inputText),FadeIn(outputText))
+ self.play(ApplyMethod(outputText.shift,RIGHT))
+ self.wait(1)
+
+ group1=VGroup(outputText,normalSq,normalSqText)
+ self.play(ApplyMethod(group1.scale,0.6))
+ self.play(ApplyMethod(group1.shift,4.7*LEFT))
+ self.wait(0.6)
+
+ inverseSq=Square(side_length=3,fill_color=GREEN,fill_opacity=0.6)
+ inverseSqText=TextMobject("$\mathscr{L}^{ -1 }$")
+ outText=TextMobject("$f($","$y(t)$","$)$")
+ inverseSqText.scale(0.7)
+ outText.scale(0.7)
+ outText.set_color_by_tex_to_color_map({"$y(t)$":RED})
+ self.play(ShowCreation(inverseSq))
+ self.play(FadeIn(inverseSqText))
+ self.wait(0.5)
+ outText.shift(2*RIGHT)
+ self.play(ApplyMethod(outputText.shift,RIGHT))
+ self.play(FadeOut(outputText),FadeIn(outText))
+ self.play(ApplyMethod(outText.shift,2*RIGHT))
+ self.wait(1)
+
+ updatedOutputText=TextMobject("$F($","$s$","$)$")
+ updatedOutputText.shift(2.5*LEFT)
+ updatedInputText=TextMobject("$f($","$y'(t)$","$)$")
+ updatedInputText.shift(6*LEFT)
+ updatedInputText.scale(0.7)
+ updatedOutputText.scale(0.7)
+ updatedOutputText.set_color_by_tex_to_color_map({"$s$":RED})
+ updatedInputText.set_color_by_tex_to_color_map({"$y'(t)$":RED})
+
+ self.play(FadeIn(updatedInputText),FadeIn(updatedOutputText))
+ self.wait(0.5)
+
+ deText=TextMobject("Differential Equation")
+ deinterTexta=TextMobject("Transformed D.E")
+ deinterTextb=TextMobject("(Easy to simplify)!")
+ deOutText=TextMobject("Solution of D.E")
+ deText.set_color(RED)
+ deinterTexta.set_color(RED)
+ deOutText.set_color(RED)
+ deinterTextb.set_color(PURPLE_C)
+ deText.scale(0.35)
+ deinterTexta.scale(0.35)
+ deinterTextb.scale(0.35)
+ deOutText.scale(0.35)
+ deText.shift(6*LEFT+0.5*DOWN)
+ deinterTexta.shift(2.6*LEFT+0.5*DOWN)
+ deinterTextb.shift(2.6*LEFT+0.8*DOWN)
+ deOutText.shift(4*RIGHT+0.5*DOWN)
+ self.play(Write(deText),Write(deinterTexta),Write(deinterTextb),Write(deOutText))
+ self.wait(2)
diff --git a/FSF-2020/calculus/series-and-transformations/Laplace Transformations/file3_unitStepFunction.py b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/file3_unitStepFunction.py
new file mode 100644
index 0000000..53c5f14
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/file3_unitStepFunction.py
@@ -0,0 +1,168 @@
+from manimlib.imports import *
+import math
+import pylatex
+
+class intro(GraphScene,Scene):
+ CONFIG = {
+ "x_min": -8,
+ "x_max": 8,
+ "y_min": -5,
+ "y_max": 5,
+ "graph_origin": ORIGIN+DOWN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$t$",
+ "y_axis_label": "$\mu_{c}(t)$",
+ "exclude_zero_label": True,
+ "y_axis_height":4,
+ "x_axis_width":7
+ }
+ def setup(self):
+ GraphScene.setup(self)
+ Scene.setup(self)
+ def construct(self):
+ introText=TextMobject("Unit","Step","Function")
+ introText.set_color_by_tex_to_color_map({"Unit":BLUE,"Step":YELLOW})
+ introText.scale(0.8)
+ self.play(Write(introText))
+ self.wait(0.5)
+ self.play(ApplyMethod(introText.shift,3*UP))
+ formulaa=TextMobject("$\mu _{ c }(t)=0\quad$","$t<c$")
+ formulab=TextMobject("$\mu _{ c }(t)=1\quad$","$t\ge c$")
+ formulaa.set_color_by_tex_to_color_map({"$t<c$":RED})
+ formulab.set_color_by_tex_to_color_map({"$t\ge c$":RED})
+ formulaa.scale(0.8)
+ formulab.scale(0.8)
+ formulab.shift(0.5*DOWN)
+ self.play(FadeIn(formulaa),FadeIn(formulab))
+ self.wait(1)
+
+ self.play(FadeOut(formulaa),FadeOut(formulab))
+
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ self.setup_axes(animate=True)
+ self.wait(0.8)
+
+ c=TextMobject("c")
+ c.scale(0.5)
+ c.set_color(RED)
+ c.shift(self.graph_origin+3*x_each_unit*RIGHT+y_each_unit*0.4*DOWN)
+ self.play(Write(c))
+ smallCircle=Circle(radius=0.03,fill_color=WHITE,color=WHITE)
+ smallCircle.shift(self.graph_origin+3*x_each_unit*RIGHT)
+ downLine=Line(start=self.graph_origin,end=self.graph_origin+RIGHT*3*x_each_unit,color=BLUE)
+ upLine=Line(start=self.graph_origin+3*x_each_unit*RIGHT+y_each_unit*UP,end=self.graph_origin+8*x_each_unit*RIGHT+y_each_unit*UP,color=BLUE)
+
+ self.play(Write(downLine))
+ self.play(Write(smallCircle))
+ self.play(Write(upLine))
+ self.wait(1.5)
+ self.play(FadeOut(self.axes),FadeOut(smallCircle),FadeOut(c),FadeOut(upLine),FadeOut(downLine),FadeOut(introText))
+ self.wait(0.5)
+
+
+class example(GraphScene):
+ CONFIG = {
+ "x_min": -3,
+ "x_max": 8,
+ "y_min": -4,
+ "y_max": 5,
+ "graph_origin": ORIGIN+LEFT+DOWN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$t$",
+ "y_axis_label": "$y$",
+ "exclude_zero_label": True,
+ "y_axis_height":4,
+ "x_axis_width":6
+ }
+ def construct(self):
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ text1=TextMobject("Consider the","formation","of","following graph!"," (a part of $f(t))$")
+ text1.set_color_by_tex_to_color_map({"following graph!":BLUE,"formation":YELLOW})
+ text1.scale(0.6)
+ ft=TextMobject("$f(t)$")
+ ftminusc=TextMobject("$f(t-c)$")
+ final=TextMobject("$\mu_{c}(t)f(t-c)$")
+ ft.set_color(PURPLE_C)
+ ftminusc.set_color(PURPLE_C)
+ final.set_color(PURPLE_C)
+ c=TextMobject("c")
+ c.scale(0.5)
+ c.set_color(RED)
+ c.shift(self.graph_origin+RIGHT*x_each_unit*3+DOWN*y_each_unit*0.5)
+ ft.scale(0.5)
+ ftminusc.scale(0.5)
+ final.scale(0.5)
+
+ self.play(Write(text1))
+ self.play(ApplyMethod(text1.shift,3*UP))
+
+ self.setup_axes(animate=True)
+ y=self.get_graph(lambda x:(math.pow((x-3),3)/3)-math.pow((x-3),2)-(x-3)+3,x_min=3,x_max=7,color=RED)
+ f=self.get_graph(lambda x:(math.pow(x,3)/3)-math.pow(x,2)-x+3,x_min=-2,x_max=4,color=RED)
+ yFull=self.get_graph(lambda x:(math.pow((x-3),3)/3)-math.pow((x-3),2)-(x-3)+3,x_min=1,x_max=7,color=RED)
+
+ self.play(Write(c))
+ self.play(ShowCreation(y))
+ self.wait(1)
+ self.play(FadeOut(self.axes),FadeOut(y),FadeOut(c))
+
+ belowText1=TextMobject("Consider its","normal form",", $f(t)$")
+ belowText1.set_color_by_tex_to_color_map({"normal form":BLUE})
+ belowText2=TextMobject("Shift it to","x=c")
+ belowText2.set_color_by_tex_to_color_map({"x=c":RED})
+ belowText3a=TextMobject("Now to remove the","left part","of","$c$,")
+ belowText3a.set_color_by_tex_to_color_map({"left part":YELLOW,"$c$,":YELLOW})
+ belowText3b=TextMobject("multiply it with the","unit step function",", $\mu_{c}(t)$")
+ belowText3b.set_color_by_tex_to_color_map({"unit step function":BLUE})
+ belowText1.scale(0.4)
+ belowText2.scale(0.4)
+ belowText3a.scale(0.4)
+ belowText3b.scale(0.4)
+ belowText1.shift(2.7*DOWN+4*RIGHT)
+ belowText2.shift(2.7*DOWN+4*RIGHT)
+ belowText3a.shift(2.7*DOWN+4*RIGHT)
+ belowText3b.shift(3.1*DOWN+4*RIGHT)
+ self.setup_axes(animate=True)
+ self.play(Write(belowText1))
+ self.play(ShowCreation(f))
+ ft.shift(1.5*RIGHT+UP*0.8)
+ self.play(FadeIn(ft))
+ self.play(ReplacementTransform(belowText1,belowText2))
+ ftminusc.shift(3.5*RIGHT+UP*0.8)
+ self.play(ReplacementTransform(f,yFull),ReplacementTransform(ft,ftminusc),Write(c))
+ self.wait(1)
+
+ self.play(ReplacementTransform(belowText2,belowText3a))
+ self.play(Write(belowText3b))
+ final.shift(3.7*RIGHT+UP*0.8)
+ self.play(ReplacementTransform(ftminusc,final),ReplacementTransform(yFull,y))
+
+ finalText=TextMobject("We got our required Graph!")
+ finalText.scale(0.55)
+ finalText.shift(2.7*DOWN+4*RIGHT)
+ self.play(FadeOut(belowText3b),ReplacementTransform(belowText3a,finalText))
+ self.wait(1.5)
+
+ self.play(FadeOut(finalText),FadeOut(text1))
+
+ graphGrup=VGroup(self.axes,c,final,y)
+ self.play(ApplyMethod(graphGrup.scale,0.45))
+ box=Square(side_length=2,fill_color=BLUE,fill_opacity=0.7)
+ boxtext=TextMobject("$\mathscr{L}$")
+ boxtext.scale(0.8)
+ self.play(ApplyMethod(graphGrup.shift,5.5*LEFT+UP))
+ self.play(ShowCreation(box),Write(boxtext))
+ outText=TextMobject("${ e }^{ -cs }F(s)$")
+ outText.set_color(GREEN)
+ outText.scale(0.65)
+ outText.shift(2*RIGHT)
+ self.play(ApplyMethod(graphGrup.shift,2*RIGHT))
+ self.play(FadeOut(graphGrup),FadeIn(outText))
+ self.play(ApplyMethod(outText.shift,RIGHT))
+ self.wait(2)
diff --git a/FSF-2020/calculus/series-and-transformations/Laplace Transformations/file4_diracBasic.py b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/file4_diracBasic.py
new file mode 100644
index 0000000..0c7f8e4
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/file4_diracBasic.py
@@ -0,0 +1,61 @@
+from manimlib.imports import *
+import math
+import pylatex
+
+class intro(GraphScene,Scene):
+ CONFIG = {
+ "x_min": -9,
+ "x_max": 9,
+ "y_min": -5,
+ "y_max": 5,
+ "graph_origin": ORIGIN+DOWN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$x$",
+ "y_axis_label": "$\delta (x)$",
+ "y_axis_height":4,
+ "x_axis_width":7
+ }
+ def setup(self):
+ GraphScene.setup(self)
+ Scene.setup(self)
+ def construct(self):
+ introText=TextMobject("Dirac","Delta","Function")
+ introText.set_color_by_tex_to_color_map({"Dirac":BLUE,"Delta":YELLOW})
+ introText.scale(0.8)
+ self.play(Write(introText))
+ self.wait(0.5)
+ self.play(ApplyMethod(introText.shift,3*UP))
+ formulaa=TextMobject("$\delta (x)=\infty$","$x=0$")
+ formulab=TextMobject("$\delta (x)=0$","$x\\neq 0$")
+ formulaa.set_color_by_tex_to_color_map({"$x=0$":RED})
+ formulab.set_color_by_tex_to_color_map({"$x\\neq 0$":RED})
+ formulaa.scale(0.8)
+ formulab.scale(0.8)
+ formulab.shift(0.5*DOWN)
+ self.play(FadeIn(formulaa),FadeIn(formulab))
+ self.wait(1)
+
+ self.play(FadeOut(formulaa),FadeOut(formulab))
+
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ self.setup_axes(animate=True)
+ self.wait(0.8)
+
+ functionUpLine=Line(start=self.graph_origin,end=self.graph_origin+UP*y_each_unit*5,color=RED)
+ functionDownLine=Line(start=self.graph_origin+UP*y_each_unit*5,end=self.graph_origin,color=RED)
+ functinLeftLine=Line(start=self.graph_origin+LEFT*x_each_unit*9,end=self.graph_origin,color=RED)
+ functionRightLine=Line(start=self.graph_origin,end=self.graph_origin+RIGHT*x_each_unit*9,color=RED)
+ functionUpLine.shift(0.02*LEFT)
+ functionRightLine.shift(0.02*RIGHT)
+
+ self.play(ShowCreation(functinLeftLine))
+ self.play(ShowCreation(functionUpLine))
+ self.play(ShowCreation(functionDownLine))
+ self.play(ShowCreation(functionRightLine))
+ self.wait(1.5)
+
+ self.play(FadeOut(self.axes),FadeOut(introText),FadeOut(functinLeftLine),FadeOut(functionRightLine),FadeOut(functionUpLine),FadeOut(functionDownLine))
+ self.wait(0.5)
diff --git a/FSF-2020/calculus/series-and-transformations/Laplace Transformations/file5_formationDiracDeltaFunction.py b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/file5_formationDiracDeltaFunction.py
new file mode 100644
index 0000000..565a7cb
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/file5_formationDiracDeltaFunction.py
@@ -0,0 +1,142 @@
+from manimlib.imports import *
+import math
+import pylatex
+
+def func(x,t):
+ if(x>-t and x<t):
+ return 1/(2*t)
+ else:
+ return 0
+
+
+class formation(GraphScene):
+ CONFIG = {
+ "x_min": -7,
+ "x_max": 7,
+ "y_min": -2,
+ "y_max": 2,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$t$",
+ "y_axis_label": "$y$",
+ "y_labeled_nums":range(-2,3),
+ "y_axis_height":4,
+ "x_axis_width":7
+ }
+ def construct(self):
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ text1=TextMobject("Consider the","following function's graph!")
+ text1.set_color_by_tex_to_color_map({"following function's graph!":BLUE})
+ text1.scale(0.6)
+
+ equation1=TextMobject("$\delta _{ \\tau }(t)=\\frac { 1 }{ 2\\tau } \quad$","$-\\tau <t<\\tau$")
+ equation2=TextMobject("$\delta _{ \\tau }(t)=0\quad \quad$","$t\in (-\infty ,-\\tau ]\cup [\\tau ,\infty )$")
+ equation1.scale(0.7)
+ equation2.scale(0.7)
+ equation1.shift(0.2*UP)
+ equation2.shift(0.4*DOWN+RIGHT*0.8)
+ equation1.set_color_by_tex_to_color_map({"$-\\tau <t<\\tau$":RED})
+ equation2.set_color_by_tex_to_color_map({"$t\in (-\infty ,-\\tau ]\cup [\\tau ,\infty )$":RED})
+
+ self.play(Write(text1))
+ self.play(ApplyMethod(text1.shift,3*UP))
+ self.play(Write(equation1))
+ self.play(Write(equation2))
+ self.wait(1)
+
+ self.play(FadeOut(equation1),FadeOut(equation2))
+ self.wait(0.5)
+
+ pointes1=TextMobject("$-\\tau$")
+ pointes2=TextMobject("$\\tau$")
+ pointes1.set_color(RED)
+ pointes2.set_color(RED)
+ pointes1.scale(0.65)
+ pointes2.scale(0.65)
+
+ bottomText1=TextMobject("Here","$\int _{ -\infty }^{ \infty }{ \delta _{ \\tau }(t)dt }$","=","$1$")
+ bottomText2=TextMobject("Now as","$\\tau \\rightarrow 0$")
+ bottomText3=TextMobject("We get our","Dirac Function!")
+ bottomText4=TextMobject("i.e.","$\lim _{ \\tau \\rightarrow 0 }{ \delta _{ \\tau }(t)}$","$=$","$\delta (t)$")
+ textFinal=TextMobject("Area=1")
+ bottomText1.set_color_by_tex_to_color_map({"$\int _{ -\infty }^{ \infty }{ \delta _{ \\tau }(t)dt }$":BLUE,"$1$":YELLOW})
+ textFinal.set_color(PURPLE_B)
+ bottomText2.set_color_by_tex_to_color_map({"$\\tau \\rightarrow 0$":YELLOW})
+ bottomText3.set_color_by_tex_to_color_map({"Dirac Function!":RED})
+ bottomText4.set_color_by_tex_to_color_map({"$\lim _{ \\tau \\rightarrow 0 }{ \delta _{ \\tau }(t)}$":BLUE,"$\delta (t)$":YELLOW})
+
+ bottomText1.scale(0.6)
+ bottomText2.scale(0.6)
+ bottomText3.scale(0.6)
+ bottomText4.scale(0.6)
+ textFinal.scale(0.9)
+
+ bottomText1.shift(4*RIGHT+3*DOWN)
+ bottomText2.shift(4*RIGHT+3*DOWN)
+ bottomText3.shift(4*RIGHT+3*DOWN)
+ bottomText4.shift(4*RIGHT+3*DOWN)
+ textFinal.shift(5*RIGHT+2*UP)
+
+ self.setup_axes(animate=True)
+
+ graphs=[
+ self.get_graph(lambda x:func(x,3),x_min=-7,x_max=7,color=RED),
+ self.get_graph(lambda x:func(x,2),x_min=-7,x_max=7,color=RED),
+ self.get_graph(lambda x:func(x,1),x_min=-7,x_max=7,color=RED),
+ self.get_graph(lambda x:func(x,0.5),x_min=-7,x_max=7,color=RED),
+ self.get_graph(lambda x:func(x,0.3),x_min=-7,x_max=7,color=RED),
+ self.get_graph(lambda x:func(x,0.15),x_min=-7,x_max=7,color=RED),
+ self.get_graph(lambda x:func(x,0.05),x_min=-7,x_max=7,color=RED),
+ self.get_graph(lambda x:func(x,0.01),x_min=-7,x_max=7,color=RED)
+ ]
+ pointes1.shift(self.graph_origin+3*LEFT*x_each_unit+0.4*DOWN*y_each_unit)
+ pointes2.shift(self.graph_origin+3*RIGHT*x_each_unit+0.4*DOWN*y_each_unit)
+
+ functionUpLine=Line(start=self.graph_origin,end=self.graph_origin+UP*y_each_unit*2,color=RED)
+ functionDownLine=Line(start=self.graph_origin+UP*y_each_unit*2,end=self.graph_origin,color=RED)
+ functinLeftLine=Line(start=self.graph_origin+LEFT*x_each_unit*7,end=self.graph_origin,color=RED)
+ functionRightLine=Line(start=self.graph_origin,end=self.graph_origin+RIGHT*x_each_unit*7,color=RED)
+ functionUpLine.shift(0.02*LEFT)
+ functionRightLine.shift(0.02*RIGHT)
+
+ self.play(Write(pointes1),Write(pointes2),ShowCreation(graphs[0]))
+ self.play(Write(bottomText1))
+ self.wait(0.7)
+
+ self.play(ReplacementTransform(bottomText1,bottomText2),Write(textFinal))
+ self.wait(0.5)
+ self.play(ReplacementTransform(graphs[0],graphs[1]),ApplyMethod(pointes2.shift,LEFT*x_each_unit),ApplyMethod(pointes1.shift,RIGHT*x_each_unit))
+ self.play(ReplacementTransform(graphs[1],graphs[2]),ApplyMethod(pointes2.shift,LEFT*x_each_unit),ApplyMethod(pointes1.shift,RIGHT*x_each_unit))
+ self.wait(0.5)
+ self.play(ReplacementTransform(graphs[2],graphs[3]),FadeOut(pointes1),FadeOut(pointes2))
+ self.play(ReplacementTransform(graphs[3],graphs[4]))
+ self.wait(1)
+ self.play(ReplacementTransform(bottomText2,bottomText3))
+ self.wait(1)
+ self.play(FadeOut(graphs[4]),ReplacementTransform(bottomText3,bottomText4))
+ self.wait(0.5)
+ self.play(ShowCreation(functinLeftLine))
+ self.play(ShowCreation(functionUpLine))
+ self.play(ShowCreation(functionDownLine))
+ self.play(ShowCreation(functionRightLine))
+ self.wait(2)
+
+ self.play(FadeOut(bottomText4),FadeOut(textFinal))
+ graphGrup=VGroup(self.axes,functinLeftLine,functionDownLine,functionRightLine,functionUpLine)
+ self.play(ApplyMethod(graphGrup.scale,0.5))
+ box=Square(side_length=2,fill_color=BLUE,fill_opacity=0.6)
+ boxtext=TextMobject("$\mathscr{L}$")
+ boxtext.scale(0.8)
+ self.play(ApplyMethod(graphGrup.shift,4.9*LEFT))
+ self.play(ShowCreation(box),Write(boxtext))
+ outText=TextMobject("$f(0)$")
+ outText.set_color(GREEN)
+ outText.scale(0.65)
+ outText.shift(1.5*RIGHT)
+ self.play(ApplyMethod(graphGrup.shift,2*RIGHT))
+ self.play(FadeOut(graphGrup),FadeIn(outText))
+ self.play(ApplyMethod(outText.shift,RIGHT))
+ self.wait(2) \ No newline at end of file
diff --git a/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/DiracFunction.gif b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/DiracFunction.gif
new file mode 100644
index 0000000..cb62ed2
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/DiracFunction.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/DiracFunctionFormation.gif b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/DiracFunctionFormation.gif
new file mode 100644
index 0000000..23acbe9
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/DiracFunctionFormation.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/LtransformDiracFunction.gif b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/LtransformDiracFunction.gif
new file mode 100644
index 0000000..b1d50b5
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/LtransformDiracFunction.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/LtransformUnitStepFunction.gif b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/LtransformUnitStepFunction.gif
new file mode 100644
index 0000000..ccbd791
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/LtransformUnitStepFunction.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/UnitStepFunctionExample.gif b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/UnitStepFunctionExample.gif
new file mode 100644
index 0000000..2b1c38f
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/UnitStepFunctionExample.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/basicIntuition.gif b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/basicIntuition.gif
new file mode 100644
index 0000000..3b974bb
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/basicIntuition.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/solvingDEintuition.gif b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/solvingDEintuition.gif
new file mode 100644
index 0000000..9883a8c
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/solvingDEintuition.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/unitStepFunction.gif b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/unitStepFunction.gif
new file mode 100644
index 0000000..16757e1
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/unitStepFunction.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/PowerSeriesQuestions.pdf b/FSF-2020/calculus/series-and-transformations/Power Series/PowerSeriesQuestions.pdf
new file mode 100644
index 0000000..9fc409b
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/PowerSeriesQuestions.pdf
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/README.md b/FSF-2020/calculus/series-and-transformations/Power Series/README.md
new file mode 100644
index 0000000..85c6fc4
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/README.md
@@ -0,0 +1,14 @@
+#### PieChart
+![GIF1](gifs/file1_pieChart.gif)
+
+#### Convergence Intuition
+![GIF2](gifs/file2_convergence_Intuition.gif)
+
+#### Convergence of a function
+![GIF3](gifs/file3_convergence_of_a_function.gif)
+
+#### Radius and IntervalOfConvergence
+![GIF4](gifs/file4_radius_and_intervalOfConvergence.gif)
+
+#### Uniform Convergence
+![GIF5](gifs/file5_UniformConvergence.gif)
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file1_pieChart.gif b/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file1_pieChart.gif
new file mode 100644
index 0000000..f102f6d
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file1_pieChart.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file2_convergence_Intuition.gif b/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file2_convergence_Intuition.gif
new file mode 100644
index 0000000..9463ac2
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file2_convergence_Intuition.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file3_convergence_of_a_function.gif b/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file3_convergence_of_a_function.gif
new file mode 100644
index 0000000..836e044
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file3_convergence_of_a_function.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file4_radius_and_intervalOfConvergence.gif b/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file4_radius_and_intervalOfConvergence.gif
new file mode 100644
index 0000000..e8dbff4
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file4_radius_and_intervalOfConvergence.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file5_UniformConvergence.gif b/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file5_UniformConvergence.gif
new file mode 100644
index 0000000..44cd78b
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file5_UniformConvergence.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/video1_pieChart.py b/FSF-2020/calculus/series-and-transformations/Power Series/video1_pieChart.py
new file mode 100644
index 0000000..28eb07c
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/video1_pieChart.py
@@ -0,0 +1,128 @@
+from manimlib.imports import *
+
+
+def formFormula(coeff_list,variable_list):
+ coeff_list=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
+ variable_list=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")]
+ coeff_list[0].shift(2.2*UP+1.6*LEFT)
+ for i in range(0,3):
+ coeff_list[i].set_color(GOLD_A)
+ variable_list[i].next_to(coeff_list[i],buff=0.1)
+ if i!=2:
+ coeff_list[i+1].next_to(variable_list[i],buff=0.1)
+ dots=TextMobject("...")
+ dots.next_to(variable_list[2])
+ expansion=VGroup(coeff_list[0],coeff_list[1],coeff_list[2],variable_list[0],variable_list[1],variable_list[2],dots)
+ expansion.scale(0.7)
+ return expansion
+
+class pieChart(Scene):
+ def construct(self):
+ circle1=Circle(radius=3,color=BLUE)
+ powerText=TextMobject("Power Series")
+ powerText.scale(0.8)
+ self.play(FadeIn(powerText))
+ self.play(ShowCreation(circle1))
+ self.wait(1)
+
+ powerGroup=VGroup(circle1,powerText)
+
+ self.play(ApplyMethod(powerGroup.scale,0.5))
+ self.play(ApplyMethod(powerGroup.move_to,2.2*UP))
+ self.wait(0.5)
+ expansion_power_coeff=[]
+ variables_power=[]
+ expansion_power=formFormula(expansion_power_coeff,variables_power)
+ self.play(ReplacementTransform(powerText,expansion_power))
+ self.wait(1)
+
+ circle2=Circle(radius=1.5)
+ circle2.shift(2.2*UP)
+ expansion_geo_coeff=[0]*3
+ variables_geo=[0]*3
+ arrow1_2=Line(start=0.7*UP,end=2.5*LEFT)
+ expansion_geo_coeff=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
+ for i in range(0,3):
+ expansion_geo_coeff[i].set_color(GOLD_A)
+ variables_geo=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")]
+ expansion_geo_coeff[0].shift(2.2*UP+1.6*LEFT)
+ for i in range(0,3):
+ variables_geo[i].next_to(expansion_geo_coeff[i],buff=0.1)
+ if i!=2:
+ expansion_geo_coeff[i+1].next_to(variables_geo[i],buff=0.1)
+ dots=TextMobject("...")
+ dots.next_to(variables_geo[2])
+ expansion_geo=VGroup(expansion_geo_coeff[0],expansion_geo_coeff[1],expansion_geo_coeff[2],variables_geo[0],variables_geo[1],variables_geo[2],dots)
+ expansion_geo.scale(0.7)
+
+ self.play(ApplyMethod(circle2.shift,4*LEFT+2.5*DOWN),ApplyMethod(expansion_geo.shift,4*LEFT+2.5*DOWN))
+ self.add(arrow1_2)
+ self.wait(1)
+
+ ones=[TextMobject("1"),TextMobject("1"),TextMobject("1")]
+ for i in range(0,3):
+ ones[i].set_color(GOLD_A)
+ ones[0].shift(0.3*DOWN,5*LEFT)
+ ones[1].next_to(ones[0],buff=0.5)
+ ones[2].next_to(ones[1],buff=0.7)
+ self.play(ReplacementTransform(expansion_geo_coeff[0],ones[0]),ReplacementTransform(expansion_geo_coeff[1],ones[1]),ReplacementTransform(expansion_geo_coeff[2],ones[2]))
+ self.wait(1)
+ expansion_geo=VGroup(ones[0],ones[1],ones[2],variables_geo[0],variables_geo[1],variables_geo[2],dots)
+
+ expansion_geo_final=TextMobject("$1+x+{ x }^{ 2 }..$")
+ expansion_geo_final.scale(0.8)
+ expansion_geo_final.shift(0.3*DOWN+4*LEFT)
+ self.play(ReplacementTransform(expansion_geo,expansion_geo_final))
+ self.wait(1)
+
+ circle3=Circle(radius=1.5,color=GREEN)
+ circle3.shift(2.2*UP)
+ expansion_taylor_coeff=[0]*3
+ variables_taylor=[0]*3
+ arrow1_3=Line(start=0.7*UP,end=DOWN*0.3)
+ expansion_taylor_coeff=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
+ for i in range(0,3):
+ expansion_taylor_coeff[i].set_color(GOLD_A)
+ variables_taylor=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")]
+ expansion_taylor_coeff[0].shift(2.2*UP+1.6*LEFT)
+ for i in range(0,3):
+ variables_taylor[i].next_to(expansion_taylor_coeff[i],buff=0.1)
+ if i!=2:
+ expansion_taylor_coeff[i+1].next_to(variables_taylor[i],buff=0.1)
+ dots=TextMobject("...")
+ dots.next_to(variables_taylor[2])
+ expansion_taylor=VGroup(expansion_taylor_coeff[0],expansion_taylor_coeff[1],expansion_taylor_coeff[2],variables_taylor[0],variables_taylor[1],variables_taylor[2],dots)
+ expansion_taylor.scale(0.7)
+
+ self.play(ApplyMethod(circle3.shift,4*DOWN),ApplyMethod(expansion_taylor.shift,4*DOWN))
+ self.add(arrow1_3)
+ self.wait(1)
+
+ differentials=[TextMobject("$f(0)$"),TextMobject("${ f'\left( 0 \\right) }$"),TextMobject("$\\frac { f''\left( 0 \\right) }{ 2! }$")]
+ for i in range(0,3):
+ differentials[i].set_color(GOLD_A)
+ differentials[0].shift(1.8*DOWN+1.15*LEFT)
+ differentials[1].shift(1.8*DOWN+0.45*LEFT)
+ differentials[2].shift(1.8*DOWN+0.45*RIGHT)
+ differentials[0].scale(0.35)
+ differentials[1].scale(0.35)
+ differentials[2].scale(0.35)
+ self.play(ReplacementTransform(expansion_taylor_coeff[0],differentials[0]),ReplacementTransform(expansion_taylor_coeff[1],differentials[1]),ReplacementTransform(expansion_taylor_coeff[2],differentials[2]))
+ self.wait(2)
+ expansion_taylor_final=VGroup(differentials[0],differentials[1],differentials[2],variables_taylor[0],variables_taylor[1],variables_taylor[2],dots)
+
+ self.play(FadeOut(expansion_geo_final),FadeOut(expansion_taylor_final))
+ geoText=TextMobject("Geometric Series")
+ geoText.scale(0.7)
+ geoText.shift(4*LEFT+0.3*DOWN)
+ taylorText=TextMobject("Taylor Series")
+ taylorText.scale(0.7)
+ taylorText.shift(1.8*DOWN)
+ self.play(FadeIn(geoText),FadeIn(taylorText))
+ self.wait(1)
+
+ soOntext=TextMobject("So on..!")
+ soOntext.shift(4*RIGHT)
+ soOntext.scale(0.8)
+ self.play(FadeIn(soOntext))
+ self.wait(2)
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/video2_convergence_Intuition.py b/FSF-2020/calculus/series-and-transformations/Power Series/video2_convergence_Intuition.py
new file mode 100644
index 0000000..72356c6
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/video2_convergence_Intuition.py
@@ -0,0 +1,94 @@
+from manimlib.imports import *
+import numpy as np
+
+
+class convergence(Scene):
+ def construct(self):
+ originalFormula=TextMobject("$\sum _{ n=0 }^{ \infty }{ { a }_{ n }{ x }^{ n } }$")
+ originalFormula.set_color(RED)
+ self.play(Write(originalFormula))
+ self.wait(1)
+ self.play(ApplyMethod(originalFormula.shift,2.7*UP))
+ self.wait(1)
+
+ terms=["$a_{ 0 }$","$a_{ 1 }x$","$a_{ 2 }x^{ 2 }$","$a_{ 3 }x^{ 3 }$","$a_{ 4 }x^{ 4 }$","$a_{ 5 }x^{ 5 }$","$a_{ 6 }x^{ 6 }$","$a_{ 7 }x^{ 7 }$","$a_{ 8 }x^{ 8 }$","$a_{ 9 }x^{ 9 }$","$a_{ 10 }x^{ 10 }$","$a_{ 11 }x^{ 11 }$"]
+ termsTogetherString="+".join(terms)
+ termsTogether=TextMobject(termsTogetherString+"...")
+ termsTogether.scale(0.8)
+ termsTogether.shift(2.7*UP)
+ self.play(ReplacementTransform(originalFormula,termsTogether))
+ self.wait(1)
+
+ termMobjectRect=[0]*12
+ termMobject=TextMobject(terms[0])
+ termMobject.shift(2.7*UP+6.2*LEFT)
+ for i in range(1,13):
+ termMobjectOld=termMobject
+ termMobjectOld.scale(0.8)
+ if(i<12):
+ termMobject=TextMobject(terms[i])
+ termMobject.next_to(termMobjectOld)
+ if(i==1):
+ rectDefine=TextMobject("Here","each rectangle","represents the","value of the term")
+ rectDefine.set_color_by_tex_to_color_map({"each rectangle":BLUE,"value of the term":YELLOW})
+ rectDefine.scale(0.7)
+ rectDefine.shift(3.2*DOWN)
+ self.play(Write(rectDefine))
+ self.wait(1)
+ if(i==2):
+ ratio=TextMobject("If $\\frac { a_{ n+1 } }{ { a }_{ n } } < 1$")
+ ratio.set_color(RED)
+ ratio.scale(0.7)
+ ratio.move_to(3.2*DOWN)
+ inequality=TextMobject("$a_{ n+1 } < a_{ n }$")
+ inequality.set_color(RED)
+ inequality.scale(0.7)
+ inequality.move_to(3.2*DOWN)
+ self.play(FadeOut(rectDefine))
+ self.play(Write(ratio))
+ self.wait(1)
+ self.play(ReplacementTransform(ratio,inequality))
+ self.wait(1)
+ #self.play(ApplyMethod(termMobjectOld.move_to,(2-0.3*i)*DOWN+RIGHT*0.2*i))
+ termMobjectRect[i-1]=Rectangle(height=0.1,width=(5-0.4*i))
+ termMobjectRect[i-1].move_to((2-0.2*i)*DOWN+RIGHT*0.2*i)
+ #rectangles[p] = termMobjectRect
+ #p+=1
+ self.play(ReplacementTransform(termMobjectOld,termMobjectRect[i-1]))
+
+ uparrow=TextMobject("$\\uparrow$")
+ uparrow.set_color(GREEN)
+ uparrow.scale(6)
+ uparrow.shift(4*RIGHT+0.5*DOWN)
+ self.play(ShowCreation(uparrow))
+ self.wait(1)
+
+ converges=TextMobject("Converges!")
+ converges.set_color(RED)
+ converges.scale(0.6)
+ converges.next_to(uparrow)
+ self.play(FadeIn(converges))
+ self.wait(2)
+
+ self.play(FadeOut(converges),FadeOut(uparrow),FadeOut(inequality))
+ self.wait(0.5)
+ rect=VGroup(termMobjectRect[0],termMobjectRect[1],termMobjectRect[2],termMobjectRect[3],termMobjectRect[4],termMobjectRect[5],termMobjectRect[6],termMobjectRect[7],termMobjectRect[8],termMobjectRect[9],termMobjectRect[10],termMobjectRect[11])
+ self.play(ApplyMethod(rect.scale,0.2))
+ for i in range(0,12):
+ self.play(ApplyMethod(termMobjectRect[i].shift,i*0.04*DOWN+(11-(3-0.11*i)*i)*LEFT*0.3))
+ func=TextMobject("$\\approx$","$f(x)$")
+ func.set_color_by_tex_to_color_map({"$f(x)$":RED})
+ func.scale(0.8)
+ func.shift(DOWN+4.5*RIGHT+0.1*UP)
+ self.play(FadeIn(func))
+
+ rightarrow=TextMobject("$\\rightarrow$")
+ rightarrow.set_color(GREEN)
+ rightarrow.scale(4)
+ rightarrow.shift(2*DOWN)
+ converges=TextMobject("Hence even the","sum converges!")
+ converges.set_color_by_tex_to_color_map({"sum converges!":RED})
+ converges.move_to(3*DOWN)
+ converges.scale(0.7)
+ self.play(Write(rightarrow),FadeIn(converges))
+ self.wait(2)
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/video3_convergence_of_a_function.py b/FSF-2020/calculus/series-and-transformations/Power Series/video3_convergence_of_a_function.py
new file mode 100644
index 0000000..f710f42
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/video3_convergence_of_a_function.py
@@ -0,0 +1,156 @@
+from manimlib.imports import*
+import math
+
+class intro(Scene):
+ def construct(self):
+ introText1=TextMobject("Let's analyse")
+ introText2=TextMobject("for")
+ function_main=TextMobject("$\sum { { (-1) }^{ n }{ x }^{ 2n } }$")
+ function_main.set_color(GREEN)
+ introText1.scale(1.2)
+ introText1.shift(2*UP)
+ introText2.scale(0.7)
+ introText2.shift(UP)
+ function_main.scale(2)
+ function_main.shift(DOWN)
+ function_expan=TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }-{ x }^{ 6 }+{ x }^{ 8 }+..$")
+ function_expan.set_color(RED)
+ function_expan.scale(1.2)
+ function_expan.shift(2*UP)
+
+ self.play(Write(introText1))
+ self.play(FadeIn(introText2))
+ self.wait(0.5)
+ self.play(Write(function_main))
+ self.wait(1)
+
+ self.play(FadeOut(introText1),FadeOut(introText2))
+ self.play(ApplyMethod(function_main.shift,3*UP))
+ self.wait(0.5)
+ self.play(ReplacementTransform(function_main,function_expan))
+ self.wait(1)
+ self.play(ApplyMethod(function_expan.scale,0.5))
+ function_expan.to_edge(UP+RIGHT)
+ self.play(ReplacementTransform(function_expan,function_expan))
+ self.wait(1)
+
+
+class graphScene(GraphScene):
+ CONFIG = {
+ "x_min": -8,
+ "x_max": 8,
+ "y_min": -8,
+ "y_max": 8,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$x$",
+ "y_axis_label": "$y$",
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-1, 2, 1),
+ "y_labeled_nums": range(0,2,1)
+ }
+
+ def construct(self):
+
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ function_expan=TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }-{ x }^{ 6 }+{ x }^{ 8 }+..$")
+ function_expan.set_color(RED)
+ function_expan.scale(0.6)
+ function_expan.to_edge(UP+RIGHT)
+ self.add(function_expan)
+
+ self.setup_axes(animate=True)
+
+ eqText=[TextMobject("$1$"),TextMobject("$1-{ x }^{ 2 }$"),TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }$"),TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }-{ x }^{ 6 }$")]
+ for i in range(0,len(eqText)):
+ eqText[i].scale(0.6)
+ eqText[i].set_color(BLUE)
+ eqText[i].shift(ORIGIN+UP*2*y_each_unit+RIGHT*3.3*x_each_unit)
+ eqTextTerm=TextMobject("And so on..!")
+ eqTextTerm.set_color(BLUE)
+ eqTextTerm.scale(0.6)
+ eqTextTerm.shift(ORIGIN+UP*2*y_each_unit+3*RIGHT*x_each_unit)
+ equation1 = self.get_graph(lambda x : 1,color = RED,x_min = -8,x_max=8)
+ equation2 = self.get_graph(lambda x : 1-math.pow(x,2),color = RED,x_min = -1.7,x_max=1.7)
+ equation3 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4),color = RED,x_min = -1.6,x_max=1.6)
+ equation4 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6),color = RED,x_min = -1.45,x_max=1.45)
+ equation5 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8),color = RED,x_min = -1.35,x_max=1.35)
+ equation6 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10),color = RED,x_min = -1.3,x_max=1.3)
+ equation7 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12),color = RED,x_min = -1.25,x_max=1.25)
+ equation8 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14),color = RED,x_min = -1.2,x_max=1.2)
+ equation9 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14)+math.pow(x,16),color = RED,x_min = -1.15,x_max=1.15)
+ equation10 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14)+math.pow(x,16)-math.pow(x,18),color = RED,x_min = -1.15,x_max=1.15)
+
+ textBtwAnim1=TextMobject("Here the graph just","oscilates")
+ textBtwAnim1.set_color_by_tex_to_color_map({"oscilates":BLUE})
+ textBtwAnim2=TextMobject("after","the","point","(as we add higher order terms)")
+ textBtwAnim2.set_color_by_tex_to_color_map({"after":BLUE,"point":YELLOW})
+ textBtwAnim3=TextMobject("$x=1$")
+ textBtwAnim1.scale(0.4)
+ textBtwAnim2.scale(0.4)
+ textBtwAnim3.scale(1.2)
+ textBtwAnim1.shift(2.1*DOWN+4.3*RIGHT)
+ textBtwAnim2.shift(2.4*DOWN+4.1*RIGHT)
+ textBtwAnim3.shift(2.9*DOWN+4.3*RIGHT)
+
+ self.play(ShowCreation(equation1),run_time=0.8)
+ self.add(eqText[0])
+ self.wait(1)
+ self.play(ReplacementTransform(equation1,equation2),ReplacementTransform(eqText[0],eqText[1]))
+ self.wait(0.5)
+ self.play(ReplacementTransform(equation2,equation3),ReplacementTransform(eqText[1],eqText[2]))
+ self.wait(0.4)
+ self.play(ReplacementTransform(equation3,equation4),ReplacementTransform(eqText[2],eqText[3]))
+ self.wait(0.3)
+ self.play(FadeOut(eqText[3]))
+ self.play(FadeIn(eqTextTerm))
+ self.play(Write(textBtwAnim1),Write(textBtwAnim2))
+ self.play(FadeIn(textBtwAnim3))
+ self.play(ReplacementTransform(equation4,equation5))
+ self.wait(0.2)
+ self.play(ReplacementTransform(equation5,equation6))
+ self.wait(0.2)
+ self.play(ReplacementTransform(equation6,equation7))
+ self.wait(0.2)
+ self.play(ReplacementTransform(equation7,equation8))
+ self.wait(0.2)
+ self.play(ReplacementTransform(equation8,equation9))
+ self.wait(0.2)
+ self.play(ReplacementTransform(equation9,equation10))
+ self.wait(1)
+
+ self.play(FadeOut(textBtwAnim1),FadeOut(textBtwAnim2),FadeOut(textBtwAnim3),FadeOut(equation10),FadeOut(eqTextTerm))
+ self.wait(1)
+
+ convergeLine=Line(start=ORIGIN+x_each_unit*LEFT,end=ORIGIN+x_each_unit*RIGHT,color=WHITE)
+ divergeLineLeft=Line(start=ORIGIN+x_each_unit*LEFT,end=ORIGIN+x_each_unit*LEFT*8,color=RED)
+ divergeLineRight=Line(start=ORIGIN+x_each_unit*RIGHT,end=ORIGIN+x_each_unit*8*RIGHT,color=RED)
+ circle1=Circle(radius=0.01,color=PURPLE_E)
+ circle2=Circle(radius=0.01,color=PURPLE_E)
+ circle1.shift(ORIGIN+LEFT*x_each_unit)
+ circle2.shift(ORIGIN+RIGHT*x_each_unit)
+ convergeText=TextMobject("Converges")
+ divergeText1=TextMobject("Diverges")
+ divergeText2=TextMobject("Diverges")
+ convergeText.set_color(GREEN)
+ divergeText1.set_color(RED)
+ divergeText2.set_color(RED)
+ convergeText.scale(0.5)
+ divergeText1.scale(0.5)
+ divergeText2.scale(0.5)
+ convergeText.shift(1.6*UP)
+ divergeText1.shift(0.3*UP+1.5*LEFT)
+ divergeText2.shift(0.3*UP+1.5*RIGHT)
+ self.play(Write(divergeLineLeft),Write(divergeLineRight))
+ self.play(FadeIn(convergeLine))
+ self.wait(0.5)
+ self.play(FadeOut(self.axes))
+ self.play(Write(circle1),Write(circle2))
+ self.wait(0.5)
+ self.play(ApplyMethod(convergeLine.shift,1.3*UP),ApplyMethod(function_expan.shift,5*LEFT+DOWN))
+ self.play(FadeIn(convergeText),FadeIn(divergeText1),FadeIn(divergeText2))
+ self.wait(2)
+
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/video4_radius_and_intervalOfConvergence.py b/FSF-2020/calculus/series-and-transformations/Power Series/video4_radius_and_intervalOfConvergence.py
new file mode 100644
index 0000000..412d20c
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/video4_radius_and_intervalOfConvergence.py
@@ -0,0 +1,108 @@
+from manimlib.imports import *
+import math
+
+class intro(Scene):
+ def construct(self):
+ introText1=TextMobject("Consider the","above","example..")
+ introText1.scale(0.8)
+ introText1.set_color_by_tex_to_color_map({"above":YELLOW})
+ self.play(Write(introText1))
+ self.wait(1)
+
+class graphScene(GraphScene,MovingCameraScene):
+ CONFIG = {
+ "x_min": -5,
+ "x_max": 5,
+ "y_min": -5,
+ "y_max": 5,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$x$",
+ "y_axis_label": "$y$",
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-1, 2, 1),
+ "y_labeled_nums": range(0,2,1),
+ "y_axis_height":7,
+ "x_axis_width":7
+ }
+
+ def setup(self):
+ GraphScene.setup(self)
+ MovingCameraScene.setup(self)
+
+ def construct(self):
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ function_expan=TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }-{ x }^{ 6 }+{ x }^{ 8 }+..$")
+ function_expan.scale(0.6)
+ function_expan.set_color(RED)
+ function_expan.to_edge(UP+RIGHT)
+ self.add(function_expan)
+
+ self.setup_axes()
+
+ equation = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14)+math.pow(x,16)-math.pow(x,18),color = RED,x_min = -1.1,x_max=1.1)
+ self.play(ShowCreation(equation))
+ self.wait(1)
+
+ dashLineLeft=DashedLine(start=ORIGIN+y_each_unit*5*UP,end=ORIGIN+y_each_unit*5*DOWN)
+ dashLineRight=DashedLine(start=ORIGIN+y_each_unit*5*UP,end=ORIGIN+y_each_unit*5*DOWN)
+ dashLineLeft.shift(ORIGIN+LEFT*x_each_unit)
+ dashLineRight.shift(ORIGIN+RIGHT*x_each_unit)
+ radiusLine=Line(start=ORIGIN,end=ORIGIN+RIGHT*x_each_unit)
+ rangeLine=Line(start=ORIGIN+LEFT*x_each_unit,end=ORIGIN+RIGHT*x_each_unit)
+ circle=Circle(radius=x_each_unit)
+ movingPoint=Circle(radius=0.025)
+ movingPoint.shift(ORIGIN+RIGHT*x_each_unit)
+ circleEq1=self.get_graph(lambda x:math.sqrt(1-x**2),color=BLUE,x_max=-1,x_min=1)
+ circleEq2=self.get_graph(lambda x:-math.sqrt(1-x**2),color=BLUE,x_max=1,x_min=-1)
+
+ self.play(Write(dashLineLeft),Write(dashLineRight))
+ self.wait(1)
+
+ equation_updated=self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14)+math.pow(x,16)-math.pow(x,18),color = GREEN,x_min = -1,x_max=1)
+ self.play(FadeOut(self.axes),ReplacementTransform(equation,equation_updated))
+ self.wait(0.5)
+ self.play(Write(radiusLine))
+ self.play(MoveAlongPath(movingPoint,circleEq1))
+ self.play(MoveAlongPath(movingPoint,circleEq2))
+ self.play(FadeIn(circle))
+ self.wait(1)
+
+ radiusText=TextMobject("Radius of convergence")
+ radiusText.scale(0.14)
+ radiusText.shift(ORIGIN+RIGHT*x_each_unit*0.45+DOWN*y_each_unit*0.2)
+
+ self.play(Write(radiusText))
+ self.wait(0.6)
+
+ self.camera_frame.save_state()
+ self.camera_frame.set_width(5.5)
+ self.play(self.camera_frame.move_to, ORIGIN)
+ self.wait(1)
+ self.camera_frame.set_width(14)
+ self.wait(1.3)
+
+ self.play(FadeOut(radiusText),FadeOut(circle),FadeOut(movingPoint))
+ extendLine=Line(start=ORIGIN,end=ORIGIN+x_each_unit*LEFT)
+ self.play(Write(extendLine))
+ doubleArrow=TextMobject("$\longleftrightarrow$")
+ doubleArrow.scale(1.6)
+ doubleArrow.set_color(BLUE)
+ doubleArrow.shift(ORIGIN+DOWN*y_each_unit*0.5)
+ self.play(FadeIn(doubleArrow))
+ self.wait(1)
+ rangeText=TextMobject("Interval of convergence")
+ rangeText.scale(0.15)
+ rangeText.shift(ORIGIN+y_each_unit*DOWN)
+ self.play(Write(rangeText))
+ self.wait(0.6)
+
+ self.camera_frame.save_state()
+ self.camera_frame.set_width(5.5)
+ self.play(self.camera_frame.move_to, ORIGIN)
+ self.wait(1)
+ self.camera_frame.set_width(14)
+ self.wait(1.5)
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/video5_UniformConvergence.py b/FSF-2020/calculus/series-and-transformations/Power Series/video5_UniformConvergence.py
new file mode 100644
index 0000000..e9681aa
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/video5_UniformConvergence.py
@@ -0,0 +1,136 @@
+from manimlib.imports import *
+import math
+
+class uniformlyConvergent(Scene):
+ def construct(self):
+ introText1=TextMobject("Again consider the","above","example")
+ introText2=TextMobject("Let","$g(x)=\\frac { 1 }{ 1+{ x }^{ 2 } }$","and","x=0.5 $\in$(-1,1)")
+ introText3=TextMobject("Lets analyse..","!")
+ introText1.scale(0.8)
+ introText2.scale(0.7)
+ introText3.scale(0.9)
+ introText3.shift(DOWN)
+ introText1.set_color_by_tex_to_color_map({"above":YELLOW})
+ introText2.set_color_by_tex_to_color_map({"$g(x)=\\frac { 1 }{ 1+{ x }^{ 2 } }$":BLUE,"x=0.5 $\in$(-1,1)":YELLOW})
+ introText3.set_color_by_tex_to_color_map({"!":GREEN})
+ self.play(Write(introText1))
+ self.wait(0.5)
+ self.play(FadeOut(introText1))
+ self.play(Write(introText2))
+ self.play(FadeIn(introText3))
+ self.wait(2)
+
+
+def gety(x,n):
+ ans=0
+ for i in range(0,n+1):
+ if(i%2==0):
+ ans+=(math.pow(x,2*i))
+ else:
+ ans-=(math.pow(x,2*i))
+ return ans
+
+def makeSeries(x,points,x_each_unit,y_each_unit):
+ p=0
+ for point in points:
+ y=gety(x,p)
+ point.shift(ORIGIN+RIGHT*x_each_unit*p+UP*y_each_unit*y)
+ p+=1
+
+def makeLines(x,numPoints,x_each_unit,y_each_unit):
+ lines=[0]*numPoints
+ for i in range(0,numPoints-1):
+ y=gety(x,i)
+ y_next=gety(x,i+1)
+ lines[i]=Line(start=ORIGIN+RIGHT*x_each_unit*i+UP*y_each_unit*y,end=ORIGIN+RIGHT*x_each_unit*(i+1)+UP*y_each_unit*y_next,color=RED)
+ return lines
+
+class graphScene(GraphScene,MovingCameraScene):
+ CONFIG = {
+ "x_min": -6,
+ "x_max": 6,
+ "y_min": -5,
+ "y_max": 5,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$k$",
+ "y_axis_label": "$f(\\frac{1}{2})_k$",
+ "exclude_zero_label": True,
+ "x_axis_width":7,
+ "y_axis_height":7
+ }
+
+ def setup(self):
+ GraphScene.setup(self)
+ MovingCameraScene.setup(self)
+
+
+ def construct(self):
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+ sequence=TextMobject("$1$ , $1-(0.5)^2$ , $1-(0.5)^2+(0.5)^4..$")
+ sequence.set_color(RED)
+ sequence.scale(0.35)
+ sequence.to_edge(UP+RIGHT)
+ formula=TextMobject("$f(x)_{ k }=\sum _{ i=0 }^{ k }{ (-1)^{ i }(x)^{ 2i } } $")
+ formula.set_color(PURPLE_C)
+ formula.scale(0.4)
+ formula.shift(5.3*RIGHT+3*UP)
+ fLine=Line(start=ORIGIN+x_each_unit*6*LEFT,end=ORIGIN+x_each_unit*6*RIGHT)
+ fLine.shift(ORIGIN+(4/5)*y_each_unit*UP)
+ fLineText=TextMobject("$g(0.5)=\\frac { 4 }{ 5 } $")
+ fLineText.set_color(RED)
+ fLineText.scale(0.3)
+ fLineText.shift(UP*1.2*y_each_unit+RIGHT*x_each_unit+4*LEFT)
+ points=[Dot(radius=0.03,color=BLUE) for i in range(0,6)]
+ makeSeries(0.5,points,x_each_unit,y_each_unit)
+ lines=makeLines(0.5,6,x_each_unit,y_each_unit)
+
+
+ self.add(sequence)
+ self.add(formula)
+ self.setup_axes(animate=True)
+ self.play(Write(fLine))
+ self.add(fLineText)
+ for p in points:
+ self.add(p)
+ for p in range(0,5):
+ self.play(Write(lines[p]))
+ self.wait(0.5)
+ self.camera_frame.save_state()
+ self.camera_frame.set_width(0.6)
+ self.play(self.camera_frame.move_to, points[0])
+ self.wait(0.4)
+ self.play(self.camera_frame.move_to, points[1])
+ self.wait(0.4)
+ self.play(self.camera_frame.move_to, points[2])
+ self.wait(0.3)
+ self.play(self.camera_frame.move_to, points[3])
+ self.wait(1)
+ self.play(self.camera_frame.move_to,ORIGIN)
+ self.camera_frame.set_width(14)
+ self.wait(1)
+
+ explanation1=TextMobject("Since the series","converges","to")
+ explanation1.set_color_by_tex_to_color_map({"converges":YELLOW})
+ explanation2=TextMobject("$\\frac {4}{5}$")
+ explanation2.set_color(BLUE)
+ explanation3=TextMobject("Hence","$\\forall \epsilon>0$,","$\exists k$","such that,")
+ explanation3.set_color_by_tex_to_color_map({"$\\forall \epsilon>0$":BLUE,"$\exists k$":YELLOW})
+ explanation4=TextMobject("$\left| { f\left( \\frac { 1 }{ 2 } \\right) }_{ k }-\\frac { 4 }{ 5 } \\right| <$","$\epsilon$")
+ explanation4.set_color_by_tex_to_color_map({"$\epsilon$":RED})
+ explanation1.scale(0.5)
+ explanation3.scale(0.5)
+ explanation1.shift(1.8*DOWN+3.5*RIGHT)
+ explanation2.shift(2.4*DOWN+3.5*RIGHT)
+ explanation3.shift(1.8*DOWN+3.5*RIGHT)
+ explanation4.shift(2.4*DOWN+3.5*RIGHT)
+
+ self.play(Write(explanation1))
+ self.play(FadeIn(explanation2))
+ self.wait(1)
+ self.play(FadeOut(explanation1),FadeOut(explanation2))
+ self.play(Write(explanation3))
+ self.play(Write(explanation4))
+ self.wait(2)
diff --git a/FSF-2020/calculus/series-and-transformations/README.md b/FSF-2020/calculus/series-and-transformations/README.md
new file mode 100644
index 0000000..4747205
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/README.md
@@ -0,0 +1,13 @@
+Contributer: <b>G Sri Harsha</b>
+
+GitHub Handle: <a href="https://github.com/GSri30/">GSri30</a>
+
+Sub-Topics Covered:
+ <ul>
+ <li>Power Series
+ <li>Taylor Series
+ <li>Laplace Transformation
+ <li>Fourier Transformation
+ <li>z-Transform
+ <li>Constant-Q transform
+ </ul>
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/README.md b/FSF-2020/calculus/series-and-transformations/Taylor Series/README.md
new file mode 100644
index 0000000..ce3b088
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/README.md
@@ -0,0 +1,11 @@
+#### Example of Taylors expansion
+![GIF1](gifs/file1_Example_TaylorExpansion.gif)
+
+#### Taylor Series GeneralForm
+![GIF2](gifs/file2_TaylorExpansionGeneralForm.gif)
+
+#### Radius Of Convergence
+![GIF3](gifs/file3_radiusOfConvergence.gif)
+
+#### Divergence of a Remainder
+![GIF4](gifs/file4_DivergentRemainder.gif)
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/TaylorSeriesQuestions.pdf b/FSF-2020/calculus/series-and-transformations/Taylor Series/TaylorSeriesQuestions.pdf
new file mode 100644
index 0000000..46d46e1
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/TaylorSeriesQuestions.pdf
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file1_Example_TaylorExpansion.gif b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file1_Example_TaylorExpansion.gif
new file mode 100644
index 0000000..ecd3272
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file1_Example_TaylorExpansion.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file2_TaylorExpansionGeneralForm.gif b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file2_TaylorExpansionGeneralForm.gif
new file mode 100644
index 0000000..e6d9171
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file2_TaylorExpansionGeneralForm.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file3_radiusOfConvergence.gif b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file3_radiusOfConvergence.gif
new file mode 100644
index 0000000..6b22d8d
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file3_radiusOfConvergence.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file4_DivergentRemainder.gif b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file4_DivergentRemainder.gif
new file mode 100644
index 0000000..2bb5185
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file4_DivergentRemainder.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/video1_Example_TaylorExpansion.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/video1_Example_TaylorExpansion.py
new file mode 100644
index 0000000..e83eff8
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/video1_Example_TaylorExpansion.py
@@ -0,0 +1,198 @@
+from manimlib.imports import*
+import math
+
+def formFormula(coeff_list,variable_list):
+ coeff_list=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
+ variable_list=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")]
+ coeff_list[0].shift(2.2*UP+1.6*LEFT)
+ for i in range(0,3):
+ coeff_list[i].set_color(GOLD_A)
+ variable_list[i].next_to(coeff_list[i],buff=0.1)
+ if i!=2:
+ coeff_list[i+1].next_to(variable_list[i],buff=0.1)
+ dots=TextMobject("...")
+ dots.next_to(variable_list[2])
+ expansion=VGroup(coeff_list[0],coeff_list[1],coeff_list[2],variable_list[0],variable_list[1],variable_list[2],dots)
+ #expansion.scale(0.7)
+ return expansion,coeff_list
+
+class intro(Scene):
+ def construct(self):
+ equation=TextMobject("$f(x)=$","${ e }^{ -x^{ 2 } }$")
+ equation.scale(2)
+ equation.set_color_by_tex_to_color_map({"${ e }^{ -x^{ 2 } }$":RED})
+ text=TextMobject("let $a=0$")
+ text.scale(0.7)
+ text.shift(DOWN)
+
+ self.play(Write(equation))
+ self.wait(0.5)
+ self.play(FadeIn(text))
+ self.wait(0.7)
+ self.play(FadeOut(equation),FadeOut(text))
+
+class graphScene(GraphScene):
+ CONFIG = {
+ "x_min": -8,
+ "x_max": 8,
+ "y_min": -8,
+ "y_max": 8,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$x$",
+ "y_axis_label": "$y$",
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-8, 8, 1),
+ }
+ def construct(self):
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ generalized_eq_coeff=[]
+ variables_eq=[]
+ eq,generalized_eq_coeff=formFormula(generalized_eq_coeff,variables_eq)
+ trText1=TextMobject("let $T_{ n }(x)$:=")
+ eq.next_to(trText1)
+ trTextGrup=VGroup(trText1,eq)
+ trTextGrup.scale(0.5)
+ trTextGrup.to_corner(UP+RIGHT)
+ self.play(Write(trTextGrup))
+ self.setup_axes(animate=True)
+
+ fx=TextMobject("${ e }^{ -x^{ 2 } }$")
+ fx.scale(0.5)
+ fx.shift(ORIGIN+x_each_unit*7.5*RIGHT+y_each_unit*0.5*UP)
+ mainfunction=self.get_graph(lambda x:math.exp(-1*pow(x,2)),color=RED,x_min=-8,x_max=8)
+ self.play(ShowCreation(mainfunction))
+ self.play(FadeIn(fx))
+ self.wait(1.4)
+
+ coeff=[TextMobject("$1$"),TextMobject("$f'(x)$"),TextMobject("$\\frac { f''(x) }{ 2! } $")]
+ coeff[0].shift(3.39*UP+4.88*RIGHT)
+ coeff[0].scale(0.5)
+ coeff[1].shift(3.39*UP+5.3*RIGHT)
+ coeff[1].scale(0.275)
+ coeff[2].shift(3.39*UP+5.98*RIGHT)
+ coeff[2].scale(0.28)
+
+ for obj in coeff:
+ obj.set_color(GOLD_A)
+
+ firstApprox=[self.get_graph(lambda x:1,color=BLUE)]
+ secondApprox=[self.get_graph(lambda x:1,color=BLUE),
+ self.get_graph(lambda x:x+1,color=BLUE),
+ self.get_graph(lambda x:-x+1,color=BLUE)]
+ thirdApprox=[self.get_graph(lambda x:1-2*math.pow(x,2),color=BLUE),
+ self.get_graph(lambda x:1-0.1*math.pow(x,2),color=BLUE),
+ self.get_graph(lambda x:1,color=BLUE),
+ self.get_graph(lambda x:1+0.1*math.pow(x,2),color=BLUE),
+ self.get_graph(lambda x:1+math.pow(x,2),color=BLUE)]
+
+ firstGraph=self.get_graph(lambda x:1,color=BLUE)
+ secondGraph=self.get_graph(lambda x:1-math.pow(x,2),color=BLUE)
+
+ bottomText1=TextMobject("The polynomial should","satisfy","the function at $x=0$")
+ bottomText2=TextMobject("This gives","$a_{ 0 }=1$")
+ bottomText3=TextMobject("Now it could be of","any slope!")
+ #show graphs of second approx
+ bottomText4=TextMobject("Hence the","slopes","should","even match")
+ #final graph
+ bottomText5=TextMobject("This gives","$a_{ 1 }=0$")
+ bottomText6=TextMobject("Since the rate of change of this slope","could vary")
+ #show third approx graphs
+ bottomText7=TextMobject("Hence the","rate of change of these slopes","should also be","same!")
+ #final graph
+ bottomText8=TextMobject("This gives","$a_{ 2 }=-1$")
+
+ bottomText1.set_color_by_tex_to_color_map({"satisfy":YELLOW})
+ bottomText2.set_color_by_tex_to_color_map({"$a_{ 0 }=1$":BLUE})
+ bottomText3.set_color_by_tex_to_color_map({"any slope!":YELLOW})
+ bottomText4.set_color_by_tex_to_color_map({"slopes":BLUE,"even match":YELLOW})
+ bottomText5.set_color_by_tex_to_color_map({"$a_{ 1 }=0$":BLUE})
+ bottomText6.set_color_by_tex_to_color_map({"could vary":YELLOW})
+ bottomText7.set_color_by_tex_to_color_map({"rate of change of these slopes":BLUE,"same!":YELLOW})
+ bottomText8.set_color_by_tex_to_color_map({"$a_{ 2 }=-1$":BLUE})
+
+ bottomText1.scale(0.4)
+ bottomText2.scale(0.5)
+ bottomText3.scale(0.4)
+ bottomText4.scale(0.4)
+ bottomText5.scale(0.5)
+ bottomText6.scale(0.4)
+ bottomText7.scale(0.4)
+ bottomText8.scale(0.5)
+
+ bottomText1.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText2.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText3.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText4.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText5.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText6.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText7.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText8.shift(4.5*RIGHT+2.5*DOWN)
+
+ self.play(Write(bottomText1))
+ self.wait(1)
+ self.play(ShowCreation(firstApprox[0]),ReplacementTransform(bottomText1,bottomText2))
+ #change coeff in tn(x)
+ self.play(ReplacementTransform(generalized_eq_coeff[0],coeff[0]))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText2,bottomText3))
+ self.wait(0.5)
+ self.play(ReplacementTransform(firstApprox[0],secondApprox[1]))
+ self.wait(0.5)
+ self.play(ReplacementTransform(secondApprox[1],secondApprox[0]))
+ self.wait(0.5)
+ self.play(ReplacementTransform(secondApprox[0],secondApprox[2]))
+ self.wait(1)
+ self.play(ReplacementTransform(bottomText3,bottomText4),FadeOut(secondApprox[2]))
+ self.wait(1)
+ self.play(Write(firstGraph),ReplacementTransform(bottomText4,bottomText5))
+ #change a1 coeff
+ self.play(ReplacementTransform(generalized_eq_coeff[1],coeff[1]))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText5,bottomText6))
+ self.play(ReplacementTransform(firstGraph,thirdApprox[0]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[0],thirdApprox[1]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[1],thirdApprox[2]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[2],thirdApprox[3]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[3],thirdApprox[4]))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText6,bottomText7))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText7,bottomText8),ReplacementTransform(thirdApprox[4],secondGraph))
+ self.play(ReplacementTransform(generalized_eq_coeff[2],coeff[2]))
+ self.wait(2)
+
+ textFinal=TextMobject("And so on..!")
+ textFinal.scale(0.7)
+ textFinal.shift(4.5*RIGHT+2.5*DOWN)
+ self.play(ReplacementTransform(bottomText8,textFinal))
+ self.wait(2.5)
+
+ finalFormula=TextMobject("Hence","$T_{ n }(x)$","=","$f(0)+f'(0)x+\\frac { f''(0) }{ 2! }x^2+..+\\frac { { f }^{ n }(0) }{ n! } { x }^{ n }$")
+ finalFormula.scale(0.8)
+ finalFormula.set_color_by_tex_to_color_map({"$T_{ n }(x)$":GREEN,"$f(0)+f'(0)x+\\frac { f''(0) }{ 2! }x^2+..+\\frac { { f }^{ n }(0) }{ n! } { x }^{ n }$":RED})
+
+ self.play(FadeOut(self.axes),FadeOut(textFinal),FadeOut(secondGraph),FadeOut(trTextGrup),FadeOut(mainfunction),FadeOut(fx),FadeOut(coeff[0]),FadeOut(coeff[1]),FadeOut(coeff[2]))
+ self.play(Write(finalFormula))
+ self.wait(2)
+ # self.play(ReplacementTransform(secondApprox[2],secondApprox[3]))
+ # self.wait(0.5)
+ # self.play(ReplacementTransform(secondApprox[3],secondApprox[4]))
+ # self.wait(0.5)
+ # self.play(ReplacementTransform(secondApprox[4],secondApprox[5]))
+ # self.wait(0.5)
+ # self.play(ReplacementTransform(secondApprox[0],secondApprox[0]))
+ # self.wait(0.5)
+ # self.play(ReplacementTransform(secondApprox[0],secondApprox[0]))
+ # self.wait(0.5)
+
+
+
+
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/video2_TaylorExpansionGeneralForm.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/video2_TaylorExpansionGeneralForm.py
new file mode 100644
index 0000000..f84cfe9
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/video2_TaylorExpansionGeneralForm.py
@@ -0,0 +1,195 @@
+from manimlib.imports import*
+import math
+
+
+class intro(Scene):
+ def construct(self):
+ equation=TextMobject("$f(x)=$","${ e }^{ -x^{ 2 } }$")
+ equation.scale(2)
+ equation.set_color_by_tex_to_color_map({"${ e }^{ -x^{ 2 } }$":RED})
+ text=TextMobject("at $a=1$")
+ text.scale(0.7)
+ text.shift(DOWN)
+
+ shiftText=TextMobject("(Here we shift the origin to the point $x=1$)")
+ shiftText.scale(0.6)
+ shiftText.shift(2.4*DOWN)
+
+
+ self.play(Write(equation))
+ self.wait(0.5)
+ self.play(FadeIn(text))
+ self.wait(0.7)
+ self.play(Write(shiftText))
+ self.wait(0.7)
+ self.play(FadeOut(equation),FadeOut(text),FadeOut(shiftText))
+
+
+def formFormula(coeff_list,variable_list):
+ coeff_list=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
+ variable_list=[TextMobject("+"),TextMobject("${ (x-1) }$+"),TextMobject("${ (x-1) }^{ 2 }$")]
+ coeff_list[0].shift(2.2*UP+1.6*LEFT)
+ for i in range(0,3):
+ coeff_list[i].set_color(GOLD_A)
+ variable_list[i].next_to(coeff_list[i],buff=0.1)
+ if i!=2:
+ coeff_list[i+1].next_to(variable_list[i],buff=0.1)
+ dots=TextMobject("...")
+ dots.next_to(variable_list[2])
+ expansion=VGroup(coeff_list[0],coeff_list[1],coeff_list[2],variable_list[0],variable_list[1],variable_list[2],dots)
+ #expansion.scale(0.7)
+ return expansion,coeff_list
+
+
+class graphScene(GraphScene):
+ CONFIG = {
+ "x_min": -8,
+ "x_max": 8,
+ "y_min": -8,
+ "y_max": 8,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$x$",
+ "y_axis_label": "$y$",
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-8, 8, 1),
+ }
+ def construct(self):
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ generalized_eq_coeff=[]
+ variables_eq=[]
+ eq,generalized_eq_coeff=formFormula(generalized_eq_coeff,variables_eq)
+ trText1=TextMobject("let $T_{ n }(x)$:=")
+ eq.next_to(trText1)
+ trTextGrup=VGroup(trText1,eq)
+ trTextGrup.scale(0.5)
+ trTextGrup.to_corner(UP+RIGHT)
+ self.play(Write(trTextGrup))
+ self.setup_axes(animate=True)
+
+ fx=TextMobject("${ e }^{ -x^{ 2 } }$")
+ fx.scale(0.5)
+ fx.shift(ORIGIN+x_each_unit*7.5*RIGHT+y_each_unit*0.5*UP)
+ mainfunction=self.get_graph(lambda x:math.exp(-1*pow(x,2)),color=RED,x_min=-8,x_max=8)
+ self.play(ShowCreation(mainfunction))
+ self.play(FadeIn(fx))
+ self.wait(1.4)
+
+ coeff=[TextMobject("$e^{-1}$"),TextMobject("$f'(x)$"),TextMobject("$\\frac { f''(x) }{ 2! } $")]
+ coeff[0].shift(3.33*UP+3.65*RIGHT)
+ coeff[0].scale(0.45)
+ coeff[1].shift(3.33*UP+4.13*RIGHT)
+ coeff[1].scale(0.275)
+ coeff[2].shift(3.33*UP+5.36*RIGHT)
+ coeff[2].scale(0.28)
+
+ for obj in coeff:
+ obj.set_color(GOLD_A)
+
+ firstApprox=[self.get_graph(lambda x:math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)]
+ secondApprox=[self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5),
+ self.get_graph(lambda x:math.exp(-1)+3*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5),
+ self.get_graph(lambda x:math.exp(-1)-4*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)]
+ thirdApprox=[self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)-2*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5),
+ self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)-0.1*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5),
+ self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_max=5.5,x_min=-5.5),
+ self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+0.5*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5),
+ self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+2*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5)]
+
+ firstGraph=self.get_graph(lambda x:math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)
+ secondGraph=self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)
+ thirdGraph=self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5)
+
+ bottomText1=TextMobject("Apply","$f(1)=T_{n}(1)$")
+ bottomText2=TextMobject("This gives","$a_{ 0 }=e^{-1}$")
+ bottomText3=TextMobject("Now it could be of","any slope!")
+ #show graphs of second approx
+ bottomText4=TextMobject("Hence","apply","$f'(1)=T_{n}'(1)$")
+ #final graph
+ bottomText5=TextMobject("This gives","$a_{ 1 }=-2e^{-1}$")
+ bottomText6=TextMobject("Since the rate of change of this slope","could vary")
+ #show third approx graphs
+ bottomText7=TextMobject("Hence also","apply","$f''(1)=T_{ n }''(1)$")
+ #final graph
+ bottomText8=TextMobject("This gives","$a_{ 2 }=e^{-1}$")
+
+ bottomText1.set_color_by_tex_to_color_map({"Apply":YELLOW})
+ bottomText2.set_color_by_tex_to_color_map({"$a_{ 0 }=e^{-1}$":BLUE})
+ bottomText3.set_color_by_tex_to_color_map({"any slope!":YELLOW})
+ bottomText4.set_color_by_tex_to_color_map({"apply":YELLOW})
+ bottomText5.set_color_by_tex_to_color_map({"$a_{ 1 }=-2e^{-1}$":BLUE})
+ bottomText6.set_color_by_tex_to_color_map({"could vary":YELLOW})
+ bottomText7.set_color_by_tex_to_color_map({"apply":YELLOW})
+ bottomText8.set_color_by_tex_to_color_map({"$a_{ 2 }=e^{-1}$":BLUE})
+
+ bottomText1.scale(0.4)
+ bottomText2.scale(0.5)
+ bottomText3.scale(0.4)
+ bottomText4.scale(0.4)
+ bottomText5.scale(0.5)
+ bottomText6.scale(0.4)
+ bottomText7.scale(0.4)
+ bottomText8.scale(0.5)
+
+ bottomText1.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText2.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText3.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText4.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText5.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText6.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText7.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText8.shift(4.5*RIGHT+2.5*DOWN)
+
+ self.play(Write(bottomText1))
+ self.wait(1)
+ self.play(ShowCreation(firstApprox[0]),ReplacementTransform(bottomText1,bottomText2))
+ #change coeff in tn(x)
+ self.play(ReplacementTransform(generalized_eq_coeff[0],coeff[0]))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText2,bottomText3))
+ self.wait(0.5)
+ self.play(ReplacementTransform(firstApprox[0],secondApprox[1]))
+ self.wait(0.5)
+ self.play(ReplacementTransform(secondApprox[1],secondApprox[2]))
+ # self.wait(0.5)
+ # self.play(ReplacementTransform(secondApprox[2],secondApprox[0]))
+ self.wait(1)
+ self.play(ReplacementTransform(bottomText3,bottomText4),FadeOut(secondApprox[2]))
+ self.wait(1)
+ self.play(Write(secondGraph),ReplacementTransform(bottomText4,bottomText5))
+ #change a1 coeff
+ self.play(ReplacementTransform(generalized_eq_coeff[1],coeff[1]))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText5,bottomText6))
+ self.play(ReplacementTransform(secondGraph,thirdApprox[0]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[0],thirdApprox[1]))
+ # self.wait(0.6)
+ # self.play(ReplacementTransform(thirdApprox[1],thirdApprox[2]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[1],thirdApprox[3]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[3],thirdApprox[4]))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText6,bottomText7))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText7,bottomText8),ReplacementTransform(thirdApprox[4],thirdGraph))
+ self.play(ReplacementTransform(generalized_eq_coeff[2],coeff[2]))
+ self.wait(2)
+
+ textFinal=TextMobject("And so on..!")
+ textFinal.scale(0.7)
+ textFinal.shift(4.5*RIGHT+2.5*DOWN)
+ self.play(ReplacementTransform(bottomText8,textFinal))
+ self.wait(2.5)
+
+ finalFormula=TextMobject("Hence","$T_{ n }(x)$","=","$f(1)+f'(1)(x-1)+\\frac { f''(1) }{ 2! }(x-1)^2+..+\\frac { { f }^{ n }(1) }{ n! } { (x-1) }^{ n }$")
+ finalFormula.scale(0.8)
+ finalFormula.set_color_by_tex_to_color_map({"$T_{ n }(x)$":GREEN,"$f(1)+f'(1)(x-1)+\\frac { f''(1) }{ 2! }(x-1)^2+..+\\frac { { f }^{ n }(1) }{ n! } { (x-1) }^{ n }$":RED})
+
+ self.play(FadeOut(self.axes),FadeOut(textFinal),FadeOut(thirdGraph),FadeOut(trTextGrup),FadeOut(mainfunction),FadeOut(fx),FadeOut(coeff[0]),FadeOut(coeff[1]),FadeOut(coeff[2]))
+ self.play(Write(finalFormula))
+ self.wait(2)
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/video3_radiusOfConvergence.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/video3_radiusOfConvergence.py
new file mode 100644
index 0000000..a68afb6
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/video3_radiusOfConvergence.py
@@ -0,0 +1,111 @@
+from manimlib.imports import*
+import math
+
+
+class graphScene(GraphScene):
+ CONFIG = {
+ "x_min": -8,
+ "x_max": 8,
+ "y_min": -8,
+ "y_max": 8,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$x$",
+ "y_axis_label": "$y$",
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-8, 8, 1),
+ }
+ def construct(self):
+
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ self.setup_axes(animate=True)
+
+ lnx=self.get_graph(lambda x:math.log2(x),color=RED,x_min=0.01,x_max=8)
+
+ bottomText1=TextMobject("Apply $f(x)=T_{n}(x)$")
+ bottomText2=TextMobject("Then apply $f'(x)=T_{n}'(x)$")
+ bottomText3=TextMobject("Then apply $f''(x)=T_{n}''(x)$")
+ bottomText4=TextMobject("and so on..")
+
+ bottomText1.scale(0.5)
+ bottomText2.scale(0.5)
+ bottomText3.scale(0.5)
+ bottomText4.scale(0.5)
+
+ bottomText1.shift(3*RIGHT+2*DOWN)
+ bottomText2.shift(3*RIGHT+2*DOWN)
+ bottomText3.shift(3*RIGHT+2*DOWN)
+ bottomText4.shift(3*RIGHT+2*DOWN)
+
+ equations=[self.get_graph(lambda x:math.log2(2),color=BLUE),
+ self.get_graph(lambda x:math.log2(2)+(x-2)/2,color=BLUE),
+ self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8,color=BLUE),
+ self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24,color=BLUE),
+ self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24-((x-2)**4)/64,color=BLUE),
+ self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24-((x-2)**4)/64+((x-2)**5)/160,color=BLUE),
+ self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24-((x-2)**4)/64+((x-2)**5)/160-((x-2)**6)/384,color=BLUE)]
+
+ terms=[TextMobject("$T_{n}:=$"),TextMobject("$ln(2)$"),TextMobject("$+\\frac { x-2 }{ 2 } $"),TextMobject("$-\\frac { (x-2)^{2} }{ 8 }$"),TextMobject("+..")]
+ for obj in terms:
+ obj.scale(0.5)
+
+ terms[0].shift(3*UP+3*RIGHT)
+ terms[1].next_to(terms[0],buff=0.1)
+ terms[2].next_to(terms[1],buff=0.1)
+ terms[3].next_to(terms[2],buff=0.1)
+ terms[4].next_to(terms[3],buff=0.1)
+
+ self.play(ShowCreation(lnx))
+ self.wait(1)
+ self.play(Write(bottomText1))
+ self.wait(0.5)
+ self.play(ShowCreation(equations[0]),Write(terms[0]),Write(terms[1]))
+ self.wait(1)
+ self.play(ReplacementTransform(bottomText1,bottomText2))
+ self.wait(0.5)
+ self.play(ReplacementTransform(equations[0],equations[1]),Write(terms[2]))
+ self.wait(1)
+ self.play(ReplacementTransform(bottomText2,bottomText3))
+ self.wait(0.5)
+ self.play(ReplacementTransform(equations[1],equations[2]),Write(terms[3]))
+ self.wait(1)
+ self.play(ReplacementTransform(bottomText3,bottomText4),Write(terms[4]))
+ self.wait(1.5)
+
+ self.play(FadeOut(terms[0]),FadeOut(terms[1]),FadeOut(terms[2]),FadeOut(terms[3]),FadeOut(terms[4]),FadeOut(bottomText4))
+
+ dline=DashedLine(start=ORIGIN+8*y_each_unit*UP,end=ORIGIN+8*y_each_unit*DOWN)
+ dline.shift(ORIGIN+x_each_unit*4*RIGHT)
+
+ bottomText5=TextMobject("Here","after $x=4$",", the graph","continuously diverges away","from $ln(x)$")
+ bottomText5.scale(0.3)
+ bottomText5.shift(4.5*RIGHT+2*DOWN)
+ bottomText5.set_color_by_tex_to_color_map({"after $x=4$":YELLOW,"continuously diverges away":BLUE})
+
+ self.play(Write(bottomText5),Write(dline))
+ self.wait(1)
+ self.play(ReplacementTransform(equations[2],equations[3]))
+ self.wait(0.3)
+ self.play(ReplacementTransform(equations[3],equations[4]))
+ self.wait(0.3)
+ self.play(ReplacementTransform(equations[4],equations[5]))
+ self.wait(0.3)
+ self.play(ReplacementTransform(equations[5],equations[6]),FadeOut(bottomText5))
+ self.wait(1)
+
+ circle=Circle(radius=ORIGIN+x_each_unit*2,color=PURPLE_E)
+ circle.shift(ORIGIN+RIGHT*x_each_unit*2)
+ radiusLine=Line(start=ORIGIN+x_each_unit*RIGHT*2,end=ORIGIN+x_each_unit*4*RIGHT,color=PURPLE_E)
+ radius=TextMobject("$R$")
+ radius.set_color(RED)
+ radius.scale(0.5)
+ radius.shift(ORIGIN+RIGHT*x_each_unit*2.45+DOWN*y_each_unit*0.6)
+
+ self.play(FadeOut(equations[6]),Write(circle))
+ self.wait(0.6)
+ self.play(Write(radiusLine))
+ self.play(FadeIn(radius))
+ self.wait(2)
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/video4_DivergentRemainder.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/video4_DivergentRemainder.py
new file mode 100644
index 0000000..5389039
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/video4_DivergentRemainder.py
@@ -0,0 +1,82 @@
+from manimlib.imports import*
+import math
+
+
+class graphScene(GraphScene):
+ CONFIG = {
+ "x_min": -8,
+ "x_max": 8,
+ "y_min": -8,
+ "y_max": 8,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$x$",
+ "y_axis_label": "$y$",
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-8, 8, 1),
+ }
+ def construct(self):
+
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ self.setup_axes(animate=True)
+ lnx=self.get_graph(lambda x:math.log2(x),color=RED,x_min=0.01,x_max=8)
+ equation=self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24-((x-2)**4)/64+((x-2)**5)/160-((x-2)**6)/384,color=BLUE)
+
+ terms=[TextMobject("$T_{n}:=$"),TextMobject("$ln(2)$"),TextMobject("$+\\frac { x-2 }{ 2 } $"),TextMobject("$-\\frac { (x-2)^{2} }{ 8 }$"),TextMobject("+..")]
+ for obj in terms:
+ obj.scale(0.5)
+
+ terms[0].shift(3*UP+3*RIGHT)
+ terms[1].next_to(terms[0],buff=0.1)
+ terms[2].next_to(terms[1],buff=0.1)
+ terms[3].next_to(terms[2],buff=0.1)
+ terms[4].next_to(terms[3],buff=0.1)
+
+ self.play(ShowCreation(lnx))
+ self.wait(1)
+ self.play(FadeIn(equation),FadeIn(terms[0]),FadeIn(terms[1]),FadeIn(terms[2]),FadeIn(terms[3]),FadeIn(terms[4]))
+ self.wait(1)
+
+ bottomText1=TextMobject("$R_{n}(x)=\\frac { d }{ dx } ($","area bounded","$)$")
+
+ bottomText1.set_color_by_tex_to_color_map({"area bounded":ORANGE})
+ #bottomText2.set_color_by_tex_to_color_map({"area bounded":BLUE})
+ arrow=TextMobject("$\downarrow$")
+ arrow.scale(2.5)
+ arrow.shift(ORIGIN+x_each_unit*RIGHT*9.5+UP*y_each_unit)
+ increasingText=TextMobject("Increases!")
+ increasingText.set_color(GREEN)
+ followupText=TextMobject("as n increase!")
+ followupText.scale(0.3)
+ followupText.shift(ORIGIN+x_each_unit*11*RIGHT+UP*y_each_unit*1.1)
+ increasingText.shift(ORIGIN+x_each_unit*11*RIGHT+UP*y_each_unit*1.6)
+ increasingText.scale(0.4)
+
+ bottomText1.scale(0.5)
+ #bottomText2.scale(0.5)
+ #bottomText3.scale(0.5)
+
+ bottomText1.shift(3.5*LEFT+2*DOWN)
+ #bottomText2.shift(3.5*LEFT+2.4*DOWN)
+ #bottomText3.shift(3.5*LEFT+2.8*DOWN)
+
+ dline=DashedLine(start=ORIGIN+8*y_each_unit*UP,end=ORIGIN+8*y_each_unit*DOWN)
+ dline.shift(ORIGIN+x_each_unit*4*RIGHT)
+
+ area1=self.get_riemann_rectangles(lnx,x_max=8,x_min=4,dx=0.01,start_color=BLUE,end_color=RED,stroke_width=0,fill_opacity=0.8)
+ area2=self.get_riemann_rectangles(equation,x_max=5.2,x_min=4,dx=0.025,start_color=BLACK,end_color=BLACK,stroke_width=0,fill_opacity=1)
+
+ self.play(Write(dline))
+ self.wait(0.5)
+ self.play(ShowCreation(area1),ShowCreation(area2),Write(bottomText1))
+ # self.play(Write(bottomText2))
+ # self.play(FadeIn(bottomText3))
+ self.play(Write(arrow))
+ self.wait(0.7)
+ self.play(Write(increasingText))
+ self.play(FadeIn(followupText))
+ self.wait(2)
+