diff options
Diffstat (limited to 'FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/file7_partial_deriv_clariant_rule.py')
-rw-r--r-- | FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/file7_partial_deriv_clariant_rule.py | 44 |
1 files changed, 30 insertions, 14 deletions
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/file7_partial_deriv_clariant_rule.py b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/file7_partial_deriv_clariant_rule.py index 313c6cd..b48f172 100644 --- a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/file7_partial_deriv_clariant_rule.py +++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/file7_partial_deriv_clariant_rule.py @@ -12,9 +12,13 @@ class ClariantRule(ThreeDScene): ]),u_min=0,u_max=PI,v_min=0,v_max=2*PI, color = BLUE_C, fill_color = BLUE_C, fill_opacity = 0.1,
resolution=(15, 32)).scale(1)
-
- function_copy1 = function.copy()
- function_copy2 = function.copy()
+ function_x = ParametricSurface(
+ lambda u, v: np.array([
+ 3.5*np.sin(u)*np.cos(v),
+ 3.5*np.sin(u)*np.sin(v),
+ -4*3.5*3.5*3.5*np.sin(u)*np.sin(u)*np.sin(u)*(2*np.sin(v)*np.sin(v))*np.exp(1 - 3.5*3.5*np.sin(u)*np.sin(u))
+ ]),u_min=0,u_max=PI,v_min=0,v_max=2*PI, color = BLUE_C, fill_color = BLUE_C, fill_opacity = 0.1,
+ resolution=(15, 32)).scale(1)
func_x =ParametricFunction(
lambda u : np.array([
@@ -38,8 +42,11 @@ class ClariantRule(ThreeDScene): plane_y = Polygon(np.array([0,-3.5,-3]),np.array([0,3.5,-3]),np.array([0,3.5,3]),np.array([0,-3.5,3]),np.array([0,-3.5,-3]), color = GREEN_E, fill_color = GREEN_B, fill_opacity = 0.1)
plane_text_y = TextMobject(r"$x = 0$", color = GREEN_C).move_to(np.array([0,4,2.7])).scale(0.7)
- surface_eqn = TextMobject("Surface", r"$z = (x^2 + 3y^2)e^{(1 - x^2 - y^2)}$", color = YELLOW_C).scale(0.6).move_to(np.array([4.6*LEFT+3.5*UP]))
+ surface_eqn = TextMobject("Surface", r"$z = f(x,y) = (x^2 + 3y^2)e^{(1 - x^2 - y^2)}$", color = YELLOW_C).scale(0.6).move_to(np.array([4.1*LEFT+3.8*UP]))
surface_eqn[0].set_color(BLUE_C)
+ number_plane = NumberPlane()
+
+ line = Line(np.array([0,-1,3]), np.array([0,-1,-3]), color = PURPLE)
self.set_camera_orientation(phi=60 * DEGREES, theta = 45*DEGREES)
@@ -54,15 +61,20 @@ class ClariantRule(ThreeDScene): self.add_fixed_orientation_mobjects(axis[1])
self.play(ShowCreation(function))
+ self.wait()
+ self.play(ShowCreation(number_plane))
self.add_fixed_in_frame_mobjects(surface_eqn)
- self.play(ShowCreation(plane_x), ShowCreation(plane_y))
+ self.play(ShowCreation(plane_x), ShowCreation(plane_y), ShowCreation(line))
self.add_fixed_orientation_mobjects(plane_text_x, plane_text_y)
- self.play(ShowCreation(func_x), ShowCreation(func_y))
+ self.move_camera(phi=0* DEGREES,theta=45*DEGREES)
+ self.wait(3)
+ self.move_camera(phi=60* DEGREES,theta=45*DEGREES)
+ #self.play(ShowCreation(func_x), ShowCreation(func_y))
- dot_x = Dot().rotate(PI/2).set_color(YELLOW_E)
+ dot_x = Dot().rotate(PI/2).set_color(YELLOW_C)
alpha_x = ValueTracker(0)
vector_x = self.get_tangent_vector(alpha_x.get_value(),func_x,scale=1.5)
dot_x.add_updater(lambda m: m.move_to(vector_x.get_center()))
@@ -92,17 +104,21 @@ class ClariantRule(ThreeDScene): )
self.add(vector_x,dot_x)
- self.play(alpha_x.increment_value, 1, run_time=10, rate_func=linear)
+ self.play(alpha_x.increment_value, 1, run_time=5, rate_func=linear)
self.add(vector_y,dot_y)
- self.play(alpha_y.increment_value, 1, run_time=10, rate_func=linear)
+ self.play(alpha_y.increment_value, 1, run_time=5, rate_func=linear)
self.wait(2)
-
-
-
-
+
-
+ def get_tangent_vector(self, proportion, curve, dx=0.001, scale=1):
+ coord_i = curve.point_from_proportion(proportion)
+ coord_f = curve.point_from_proportion(proportion + dx)
+ reference_line = Line(coord_i,coord_f)
+ unit_vector = reference_line.get_unit_vector() * scale
+ vector = Line(coord_i - unit_vector, coord_i + unit_vector, color = ORANGE, buff=0)
+ return vector
+
|