diff options
Diffstat (limited to 'FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file1_Visualization_of_dz.py')
-rw-r--r-- | FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file1_Visualization_of_dz.py | 59 |
1 files changed, 59 insertions, 0 deletions
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file1_Visualization_of_dz.py b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file1_Visualization_of_dz.py new file mode 100644 index 0000000..1fdd0b9 --- /dev/null +++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file1_Visualization_of_dz.py @@ -0,0 +1,59 @@ +from manimlib.imports import* + +#---- visualization of total differential dz between two points lying on the surface of the function +class differentialdz(ThreeDScene): + + def construct(self): + + axes = ThreeDAxes() + label_x = TextMobject("$x$").shift([5.5,-0.5,0]).fade(0.4) #---- x axis + label_y = TextMobject("$y$").shift([-0.5,5.5,0]).rotate(-4.5).fade(0.4) #---- y axis + + #---- surface of the funtion f(x,y) + surface = ParametricSurface( + lambda u, v: np.array([ + u, + v, + u**2+v**2 + ]),u_min=-1,u_max=1, v_min=-1,v_max=1).set_color("#FF69B4").fade(0.6).scale(2).shift(3*UP+1*LEFT) + + d = Dot([1.4,1.75,1],color = '#00FFFF').rotate(1.571,UP) #---- point on the surface + d2 = Dot([2,2,1],color = '#00FFFF').rotate(1.571,UP) #---- point on the surface + + p1 = TextMobject("$P_1$",color ='#ADFF2F').scale(0.6).shift(2*RIGHT+1*UP) + p2 = TextMobject("$P_2$",color = '#ADFF2F').scale(0.6).shift(2.6*RIGHT+0.9*UP) + + l = DashedLine(color = '#800000').rotate(1.571,UP).scale(1).shift(1.7*UP+1.6*RIGHT) + l2 = DashedLine(color = '#800000').rotate(1.571,UP).scale(0.8).shift(2.26*UP+1.2*RIGHT) + + l_text = TextMobject("$(x_1,y_1)$",color = '#ADFF2F').scale(0.6).shift(2*RIGHT+1.6*DOWN) + l2_text = TextMobject("$(x_2,y_2)$",color = '#ADFF2F').scale(0.6).shift(2.7*RIGHT+1.2*DOWN) + + a = Arrow(color = '#FFFACD').scale(0.7).rotate(1.38,RIGHT).shift(2.5*LEFT+3.1*UP) + + a_text = TextMobject("$dz$",color='#800000').scale(0.5).shift(2.3*RIGHT+0.5*UP) + + plane = Rectangle(color = '#E6E6FA',fill_opacity = 1).scale(3).shift(1*RIGHT+3*UP).fade(0.9) + + label = TextMobject("$z = f(x,y)$").scale(0.6).shift(3.5*RIGHT+1.8*UP) + + self.set_camera_orientation(phi=75*DEGREES,theta=-10*DEGREES) + self.add(axes) + self.add(label_x) + self.add(label_y) + self.wait(1) + self.play(Write(plane)) + self.play(Write(surface)) + self.add_fixed_in_frame_mobjects(label) + self.wait(1) + self.play(ShowCreation(l),ShowCreation(l2),Write(d),Write(d2)) + self.wait(1) + self.add_fixed_in_frame_mobjects(p1) + self.add_fixed_in_frame_mobjects(p2) + self.wait(1) + self.add_fixed_in_frame_mobjects(l_text) + self.add_fixed_in_frame_mobjects(l2_text) + self.play(ShowCreation(a)) + self.wait(1) + self.add_fixed_in_frame_mobjects(a_text) + self.wait(2) |