summaryrefslogtreecommitdiff
path: root/FSF-2020/approximations-and-optimizations
diff options
context:
space:
mode:
Diffstat (limited to 'FSF-2020/approximations-and-optimizations')
-rw-r--r--FSF-2020/approximations-and-optimizations/Critical-Points/README.md32
-rw-r--r--FSF-2020/approximations-and-optimizations/Critical-Points/file1_Critical_Point_of_a_function.gifbin8077401 -> 0 bytes
-rw-r--r--FSF-2020/approximations-and-optimizations/Critical-Points/file1_Critical_Point_of_a_function.py77
-rw-r--r--FSF-2020/approximations-and-optimizations/Critical-Points/file2_Traces_and_Tangent.gifbin2552938 -> 0 bytes
-rw-r--r--FSF-2020/approximations-and-optimizations/Critical-Points/file2_Traces_and_Tangent.py88
-rw-r--r--FSF-2020/approximations-and-optimizations/Critical-Points/file3_Tangent_plane_at_extrema_of_a_function.gifbin2198637 -> 0 bytes
-rw-r--r--FSF-2020/approximations-and-optimizations/Critical-Points/file3_Tangent_plane_at_extrema_of_a_function.py73
-rw-r--r--FSF-2020/approximations-and-optimizations/Critical-Points/file4_Types_of_critical_points.gifbin3864765 -> 0 bytes
-rw-r--r--FSF-2020/approximations-and-optimizations/Critical-Points/file4_Types_of_critical_points.py134
-rw-r--r--FSF-2020/approximations-and-optimizations/Critical-Points/file5_f(x,y)=(y-x)(1-2x-3y).gifbin1522415 -> 0 bytes
-rw-r--r--FSF-2020/approximations-and-optimizations/Critical-Points/file5_f(x,y)=(y-x)(1-2x-3y).py29
-rw-r--r--FSF-2020/approximations-and-optimizations/Tangent-Plane-Approximations/file1_Tangent_Plane.gifbin827096 -> 0 bytes
-rw-r--r--FSF-2020/approximations-and-optimizations/Tangent-Plane-Approximations/file1_Tangent_Plane.py50
-rw-r--r--FSF-2020/approximations-and-optimizations/Tangent-Plane-Approximations/file2_Tangent_plane_approximation_visualization.py34
-rw-r--r--FSF-2020/approximations-and-optimizations/Tangent-Plane-Approximations/file3_non_differentiable_function.py30
-rw-r--r--FSF-2020/approximations-and-optimizations/Tangent-Plane-Approximations/file4_Tangent plane_at_critical_points.py62
-rw-r--r--FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file1_Second_order_partial_derivatives.gifbin3166332 -> 0 bytes
-rw-r--r--FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file1_Second_order_partial_derivatives.py78
-rw-r--r--FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file2_Degenerate_Hessian_Matrix.py52
-rw-r--r--FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file3_Nondegenerate_Hessian_Matrix.py145
-rw-r--r--FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file4_Contour_Diagram.gifbin1150777 -> 0 bytes
-rw-r--r--FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file4_Contour_Diagram.py120
22 files changed, 0 insertions, 1004 deletions
diff --git a/FSF-2020/approximations-and-optimizations/Critical-Points/README.md b/FSF-2020/approximations-and-optimizations/Critical-Points/README.md
deleted file mode 100644
index f0747bb..0000000
--- a/FSF-2020/approximations-and-optimizations/Critical-Points/README.md
+++ /dev/null
@@ -1,32 +0,0 @@
-<h1><div align=”center”><b>SubTopic: Critical Points</b></h1></div>
-<br/></br>
-
-<tab>file1_Critical_Point_of_a_function
-
-![file1_Critical_Point_of_a_function](https://github.com/vnb09/FSF-mathematics-python-code-archive/blob/fsf_tasks/FSF-2020/approximations-and-optimizations/Critical-Points/file1_Critical_Point_of_a_function.gif?raw=true)
-<br/></br>
-<br/></br>
-
-<tab>file2_Traces_and_Tangent
-
-![file2_Traces_and_Tangent](https://github.com/vnb09/FSF-mathematics-python-code-archive/blob/fsf_tasks/FSF-2020/approximations-and-optimizations/Critical-Points/file2_Traces_and_Tangent.gif?raw=true)
-<br/></br>
-<br/></br>
-
-<tab>file3_Tangent_plane_at_extrema_of_a_function
-
-![file3_Tangent_plane_at_extrema_of_a_function](https://github.com/vnb09/FSF-mathematics-python-code-archive/blob/fsf_tasks/FSF-2020/approximations-and-optimizations/Critical-Points/file3_Tangent_plane_at_extrema_of_a_function.gif?raw=true)
-<br/></br>
-<br/></br>
-
-<tab>file4_Types_of_critical_points
-
-![file4_Types_of_critical_points](https://github.com/vnb09/FSF-mathematics-python-code-archive/blob/fsf_tasks/FSF-2020/approximations-and-optimizations/Critical-Points/file4_Types_of_critical_points.gif?raw=true)
-<br/></br>
-<br/></br>
-
-<tab>file5_f(x,y)=(y-x)(1-2x-3y)
-
-![file5_f(x,y)=(y-x)(1-2x-3y)](https://github.com/vnb09/FSF-mathematics-python-code-archive/blob/fsf_tasks/FSF-2020/approximations-and-optimizations/Critical-Points/file5_f(x%2Cy)%3D(y-x)(1-2x-3y).gif?raw=true)
-<br/></br>
-<br/></br>
diff --git a/FSF-2020/approximations-and-optimizations/Critical-Points/file1_Critical_Point_of_a_function.gif b/FSF-2020/approximations-and-optimizations/Critical-Points/file1_Critical_Point_of_a_function.gif
deleted file mode 100644
index ca3989c..0000000
--- a/FSF-2020/approximations-and-optimizations/Critical-Points/file1_Critical_Point_of_a_function.gif
+++ /dev/null
Binary files differ
diff --git a/FSF-2020/approximations-and-optimizations/Critical-Points/file1_Critical_Point_of_a_function.py b/FSF-2020/approximations-and-optimizations/Critical-Points/file1_Critical_Point_of_a_function.py
deleted file mode 100644
index e8cb08d..0000000
--- a/FSF-2020/approximations-and-optimizations/Critical-Points/file1_Critical_Point_of_a_function.py
+++ /dev/null
@@ -1,77 +0,0 @@
-from manimlib.imports import*
-import math as m
-
-#---- case 1: parial derivatives exist at critical point of the function
-class firstScene(ThreeDScene):
- def construct(self):
-
- axes = ThreeDAxes()
- label_x = TextMobject("$x$").shift([5.5,-0.5,0]) #---- x axis
- label_y = TextMobject("$y$").shift([-0.5,5.5,0]).rotate(-4.5) #---- y axis
-
- #---- f(x,y) = e^(-10x^2-10y^2)
- surface = ParametricSurface(
- lambda u, v: np.array([
- u,
- v,
- m.exp(-10*u**2-10*v**2)
- ]),u_min = -1, u_max = 1, v_min = -1, v_max = 1, checkerboard_colors = [TEAL_E,TEAL_D,TEAL_C,TEAL_B]).fade(0.6).scale(3.5).shift([0,0,1.5])
-
- l1 = Line([0,0,3.75],[0,0,0],color = '#800000')
-
- d = Dot([0,0,3.75],color = '#800000') #---- critical point
-
- d_text = TextMobject("$\\frac{\\partial f}{\\partial x}=\\frac{\\partial f}{\\partial y} = 0$").scale(0.8).to_corner(UL)
-
- f_text = TextMobject("Critical Point ",color = YELLOW).shift(3.4*UP).scale(0.5)
-
- self.set_camera_orientation(phi = 45*DEGREES, theta = 40*DEGREES)
- self.add(axes)
- self.add(label_x)
- self.add(label_y)
- self.add_fixed_in_frame_mobjects(d_text)
- self.begin_ambient_camera_rotation(rate = 0.2)
- self.play(Write(surface))
- self.wait(1)
- self.play(Write(l1))
- self.play(Write(d))
- self.wait(1)
- self.add_fixed_in_frame_mobjects(f_text)
- self.wait(3)
- self.play(FadeOut(f_text),FadeOut(surface),FadeOut(axes),FadeOut(d_text),FadeOut(d),FadeOut(l1),FadeOut(label_x),FadeOut(label_y))
-
-
-#---- case 2: parial derivatives do not exist at critical point of the function
-class secondScene(ThreeDScene):
- def construct(self):
- axes = ThreeDAxes()
- label_x = TextMobject("$x$").shift([5.5,-0.5,0]) #---- x axis
- label_y = TextMobject("$y$").shift([-0.5,5.5,0]).rotate(-4.5) #---- y axis
-
- #---- g(x,y)= |x|+|y|
- surface = ParametricSurface(
- lambda u, v: np.array([
- u,
- v,
- abs(u)+abs(v)
- ]),u_min = -1.5, u_max = 1.5, v_min = -1.5, v_max = 1.5, checkerboard_colors = [TEAL_E,TEAL_D,TEAL_C,TEAL_B])
-
- d2 = Dot([0,0,0],color = '#800000') #---- critical point
-
- d2_text = TextMobject("$\\frac{\\partial f}{\\partial x}$ and/or $\\frac{\\partial f}{\\partial y}$ does not exist").scale(0.7).to_corner(UL)
-
- g_text = TextMobject("Critical Point",color = YELLOW).shift(1.2*RIGHT).scale(0.6)
-
- self.set_camera_orientation(phi = 60*DEGREES, theta = 40*DEGREES)
- self.add(axes)
- self.add(label_x)
- self.add(label_y)
- self.add_fixed_in_frame_mobjects(d2_text)
- self.begin_ambient_camera_rotation(rate = 0.2)
- self.wait(1)
- self.play(Write(surface2))
- self.wait(1)
- self.play(Write(d2))
- self.wait(1)
- self.add_fixed_in_frame_mobjects(g_text)
- self.wait(2)
diff --git a/FSF-2020/approximations-and-optimizations/Critical-Points/file2_Traces_and_Tangent.gif b/FSF-2020/approximations-and-optimizations/Critical-Points/file2_Traces_and_Tangent.gif
deleted file mode 100644
index 84acf2e..0000000
--- a/FSF-2020/approximations-and-optimizations/Critical-Points/file2_Traces_and_Tangent.gif
+++ /dev/null
Binary files differ
diff --git a/FSF-2020/approximations-and-optimizations/Critical-Points/file2_Traces_and_Tangent.py b/FSF-2020/approximations-and-optimizations/Critical-Points/file2_Traces_and_Tangent.py
deleted file mode 100644
index 4b020e1..0000000
--- a/FSF-2020/approximations-and-optimizations/Critical-Points/file2_Traces_and_Tangent.py
+++ /dev/null
@@ -1,88 +0,0 @@
-from manimlib.imports import*
-import math as m
-
-#---- tangent to the trace with x constant
-class firstScene(ThreeDScene):
- def construct(self):
-
- axes = ThreeDAxes().scale(1)
- label_x = TextMobject("$x$").shift([5.8,-0.5,0])
- label_y = TextMobject("$y$").shift([-0.5,-5.6,0]).rotate(-4.5)
-
- #---- graph of f(x,y) = -x^2-y^2
- surface = ParametricSurface(
- lambda u, v: np.array([
- u,
- v,
- -u**2-v**2
- ]),u_min=-1,u_max=1, v_min=-1,v_max=1,checkerboard_colors=[PURPLE_C,PURPLE_D,PURPLE_E,PURPLE_B]).scale(1.5).shift([0,0,2]).rotate(0.2)
-
- #---- curve(trace) along y axis
- curve = ParametricSurface(
- lambda u, v: np.array([
- u*0.4,
- v,
- -v**2
- ]),v_min =-1 , v_max =1 , u_min = -0.1, u_max = 0.1).scale(1.6).shift([0.02,0.1,2.3]).set_color("#800000").rotate(0.1)
-
- d = Dot(color =YELLOW).shift([-0.05,-0.2,2.3]) #---- critical point
-
- x_text = TextMobject("Tangent to the trace with $x$ constant at critical point").shift(3*RIGHT+2*UP).scale(0.5).to_corner(UL)
-
- tangent_line = Line([-0.05,-1.5,2.3],[-0.05,1.5,2.3],color = '#228B22')
-
- self.add(axes)
- self.set_camera_orientation(phi = 40 * DEGREES, theta = 55 * DEGREES)
- self.begin_ambient_camera_rotation(rate = 0.1)
- self.add(label_x)
- self.add(label_y)
- self.play(Write(surface))
- self.add_fixed_in_frame_mobjects(x_text)
- self.add(curve)
- self.wait(1)
- self.play(Write(tangent_line),Write(d))
- self.wait(1)
-
-
-
-#---- tangent to the trace with y constant
-class secondScene(ThreeDScene):
- def construct(self):
-
- axes = ThreeDAxes().scale(1)
- label_x = TextMobject("$x$").shift([5.8,-0.5,0])
- label_y = TextMobject("$y$").shift([-0.5,-5.6,0]).rotate(-4.5)
-
- #---- graph of f(x,y) = -x^2-y^2
- surface = ParametricSurface(
- lambda u, v: np.array([
- u,
- v,
- -u**2-v**2
- ]),u_min = -1, u_max = 1, v_min = -1, v_max = 1, checkerboard_colors = [PURPLE_B,PURPLE_C,PURPLE_D,PURPLE_E]).scale(1.5).shift([0,0,2]).rotate(0.2)
-
- #---- curve(trace) along x axis
- curve = ParametricSurface(
- lambda u, v: np.array([
- u,
- v*0.4,
- -u**2
- ]),v_min = -0.1, v_max = 0.1, u_min = -1, u_max = 1).scale(1.6).shift([0.07,0.1,2.3]).set_color("#800000")
-
- d = Dot(color = YELLOW).shift([0,-0.2,2.3]) #---- critical point
-
- tangent_line = Line(color = '#228B22').scale(1).shift([0,-0.2,2.3]).rotate(m.radians(190),LEFT)
-
- y_text = TextMobject("Tangent to the trace with $y$ constant at critical point").shift(3*RIGHT+2*UP).scale(0.5).to_corner(UL)
-
- self.add(axes)
- self.set_camera_orientation(phi = 40 * DEGREES, theta = 55 * DEGREES)
- self.add(label_x)
- self.add(label_y)
- self.begin_ambient_camera_rotation(rate = 0.1)
- self.play(Write(surface))
- self.add_fixed_in_frame_mobjects(y_text)
- self.add(curve)
- self.wait(1.5)
- self.play(Write(tangent_line),Write(d))
- self.wait(0.5)
diff --git a/FSF-2020/approximations-and-optimizations/Critical-Points/file3_Tangent_plane_at_extrema_of_a_function.gif b/FSF-2020/approximations-and-optimizations/Critical-Points/file3_Tangent_plane_at_extrema_of_a_function.gif
deleted file mode 100644
index 14fb318..0000000
--- a/FSF-2020/approximations-and-optimizations/Critical-Points/file3_Tangent_plane_at_extrema_of_a_function.gif
+++ /dev/null
Binary files differ
diff --git a/FSF-2020/approximations-and-optimizations/Critical-Points/file3_Tangent_plane_at_extrema_of_a_function.py b/FSF-2020/approximations-and-optimizations/Critical-Points/file3_Tangent_plane_at_extrema_of_a_function.py
deleted file mode 100644
index e674113..0000000
--- a/FSF-2020/approximations-and-optimizations/Critical-Points/file3_Tangent_plane_at_extrema_of_a_function.py
+++ /dev/null
@@ -1,73 +0,0 @@
-from manimlib.imports import*
-
-#---- tangent plane to minima of the function
-class firstScene(ThreeDScene):
- def construct(self):
-
- axes = ThreeDAxes()
- label_x = TextMobject("$x$").shift([5.5,-0.5,0]) #---- x axis
- label_y = TextMobject("$y$").shift([-0.5,5.5,0]).rotate(-4.5) #---- y axis
-
- #---- parabola: f(x,y) = x**2 + y**2
- parabola = ParametricSurface(
- lambda u, v: np.array([
- u,
- v,
- u**2+v**2
- ]),v_min = -1, v_max = 1, u_min = -1, u_max = 1, checkerboard_colors = [GREEN_E,GREEN_D,GREEN_C,GREEN_B], resolution = (20, 20)).scale(1)
-
- d = Dot(np.array([0,0,0]), color = '#800000') # ---- critical point
-
- tangent_plane = Rectangle(fill_color = '#C0C0C0', fill_opacity = 0.3).move_to(ORIGIN).fade(0.7) # ----tangent plane
-
- parabola_text = TextMobject("Minimum with horizontal tangent plane").scale(0.7).to_corner(UL)
-
- self.set_camera_orientation(phi = 75 * DEGREES, theta = 45 * DEGREES)
- self.begin_ambient_camera_rotation(rate = 0.2)
- self.add(axes)
- self.add(label_x)
- self.add(label_y)
- self.add_fixed_in_frame_mobjects(parabola_text)
- self.wait(1)
- self.play(Write(parabola))
- self.play(ShowCreation(d))
- self.wait(1)
- self.play(ShowCreation(tangent_plane))
- self.wait(2)
- self.play(FadeOut(parabola_text),FadeOut(parabola),FadeOut(tangent_plane),FadeOut(d),FadeOut(label_x),FadeOut(label_y),FadeOut(axes))
-
-
-#---- tangent plane to maxima of the function
-class secondScene(ThreeDScene):
- def construct(self):
-
- axes = ThreeDAxes()
- label_x = TextMobject("$x$").shift([5.5,-0.5,0]) #---- x axis
- label_y = TextMobject("$y$").shift([-0.5,5.5,0]).rotate(-4.5) #---- y axis
-
- #----parabola: g(x,y) = -x**2-y**2
- parabola = ParametricSurface(
- lambda u, v: np.array([
- u,
- v,
- -u**2-v**2
- ]),v_min = -1, v_max = 1, u_min = -1, u_max = 1, checkerboard_colors = [BLUE_E,BLUE_D,BLUE_C,BLUE_B], resolution = (20, 20)).scale(1)
-
- d = Dot(np.array([0,0,0]), color = '#800000') #---- critical point
-
- tangent_plane = Rectangle(fill_color = '#C0C0C0',fill_opacity = 0.3).move_to(ORIGIN).fade(0.7) #---- tangent plane
-
- parabola_text = TextMobject("Maximum with horizontal tangent plane").scale(0.7).to_corner(UL)
-
- self.set_camera_orientation(phi = 75 * DEGREES, theta = 45 * DEGREES)
- self.begin_ambient_camera_rotation(rate = 0.2)
- self.add(axes)
- self.add(label_x)
- self.add(label_y)
- self.add_fixed_in_frame_mobjects(parabola_text)
- self.wait(1)
- self.play(Write(parabola))
- self.play(ShowCreation(d))
- self.wait(1)
- self.play(ShowCreation(tangent_plane))
- self.wait(2)
diff --git a/FSF-2020/approximations-and-optimizations/Critical-Points/file4_Types_of_critical_points.gif b/FSF-2020/approximations-and-optimizations/Critical-Points/file4_Types_of_critical_points.gif
deleted file mode 100644
index 91e7084..0000000
--- a/FSF-2020/approximations-and-optimizations/Critical-Points/file4_Types_of_critical_points.gif
+++ /dev/null
Binary files differ
diff --git a/FSF-2020/approximations-and-optimizations/Critical-Points/file4_Types_of_critical_points.py b/FSF-2020/approximations-and-optimizations/Critical-Points/file4_Types_of_critical_points.py
deleted file mode 100644
index 656fb68..0000000
--- a/FSF-2020/approximations-and-optimizations/Critical-Points/file4_Types_of_critical_points.py
+++ /dev/null
@@ -1,134 +0,0 @@
-from manimlib.imports import*
-
-
-#---- Relative Maxima
-class firstScene(ThreeDScene):
- def construct(self):
-
- r_text = TextMobject("Relative Maximum at ORIGIN",color ='#87CEFA')
-
- axes = ThreeDAxes()
- label_x = TextMobject("$x$").shift([5.5,-0.5,0]) #---- x axis
- label_y = TextMobject("$y$").shift([-0.5,5.5,0]).rotate(-4.5) #---- y axis
-
- #----graph of the function f(x,y) = -x**2-y**2
- surface = ParametricSurface(
- lambda u, v: np.array([
- u,
- v,
- -u**2-v**2
- ]),v_min = -1, v_max = 1, u_min = -1, u_max = 1, checkerboard_colors = [YELLOW_B,YELLOW_C,YELLOW_D, YELLOW_E]).scale(1.5).shift([0,0,-0.51]).fade(0.3)
-
- f_text = TextMobject("$f(x,y) = -x^2-y^2$").to_corner(UL)
-
- d = Dot(color = "#800000").shift([0,0,0]) #---- critical point
-
- self.set_camera_orientation(phi = 75 * DEGREES, theta = 45 * DEGREES)
- self.add_fixed_in_frame_mobjects(r_text)
- self.wait(1)
- self.play(FadeOut(r_text))
- self.begin_ambient_camera_rotation(rate = 0.1)
- self.add(axes)
- self.add(label_x)
- self.add(label_y)
- self.play(Write(surface),Write(d))
- self.add_fixed_in_frame_mobjects(f_text)
- self.wait(2)
- self.play(FadeOut(axes),FadeOut(surface),FadeOut(f_text),FadeOut(d),FadeOut(label_x),FadeOut(label_y))
-
-
-#---- Relative Minima
-class secondScene(ThreeDScene):
- def construct(self):
-
- r2_text = TextMobject("Relative Minimum at ORIGIN",color ='#87CEFA')
-
- axes = ThreeDAxes()
- label_x = TextMobject("$x$").shift([5.5,-0.5,0]) #---- x axis
- label_y = TextMobject("$y$").shift([-0.5,5.5,0]).rotate(-4.5) #---- y axis
-
- #----graph of the function g(x,y) = x**2+y**2
- surface = ParametricSurface(
- lambda u, v: np.array([
- u,
- v,
- u**2+v**2
- ]),v_min = -1, v_max = 1, u_min = -1, u_max = 1, checkerboard_colors =[TEAL_B,TEAL_C,TEAL_D,TEAL_E]).scale(1.5).shift([0,0,0.55]).fade(0.1)
-
- d = Dot(color = "#800000").shift([0,0,0]) #---- critical point
-
- g_text = TextMobject("$f(x,y) = x^2+y^2$").to_corner(UL)
-
- self.set_camera_orientation(phi = 75 * DEGREES, theta = 45 * DEGREES)
- self.add_fixed_in_frame_mobjects(r2_text)
- self.wait(1)
- self.play(FadeOut(r2_text))
- self.begin_ambient_camera_rotation(rate = 0.1)
- self.add(axes)
- self.add(label_x)
- self.add(label_y)
- self.play(Write(surface),Write(d))
- self.add_fixed_in_frame_mobjects(g_text)
- self.wait(2)
- self.play(FadeOut(axes),FadeOut(surface),FadeOut(g_text),FadeOut(d),FadeOut(label_x),FadeOut(label_y))
-
-
-
-#---- Saddle Point
-class thirdScene(ThreeDScene):
- def construct(self):
-
- r3_text = TextMobject("Saddle Point", color = '#87CEFA')
-
- axes = ThreeDAxes()
- label_x = TextMobject("$x$").shift([5.5,-0.5,0]) #---- x axis
- label_y = TextMobject("$y$").shift([-0.5,5.5,0]).rotate(-4.5) #---- y axis
-
- #---- graph of function h(x,y) = -x^2 + y^2
- surface = ParametricSurface(
- lambda u, v: np.array([
- u,
- v,
- -u**2+v**2
- ]),v_min = -1, v_max = 1, u_min = -1, u_max = 1,checkerboard_colors = [PURPLE_B,PURPLE_C,PURPLE_D,PURPLE_E]).scale(1.5).shift([0,0,0])
-
- #---- curve(trace) along x axis
- curve_x = ParametricSurface(
- lambda u, v: np.array([
- u*0.4,
- v,
- v**2
- ]),v_min = -1, v_max = 1, u_min = -0.2, u_max = 0.2).shift([0,0,0.34]).scale(1.5).set_color("#800000")
-
- #---- curve(trace) along y axis
- curve_y = ParametricSurface(
- lambda u, v: np.array([
- u,
- v*0.4,
- -u**2
- ]),v_min = -0.2, v_max = 0.2, u_min = -1, u_max = 1).scale(1.6).shift([0,0,-0.1]).set_color("#800000")
-
- d = Dot(color = GREEN).shift([0,0,0.1]) #---- critical point
-
- h_text = TextMobject("$f(x,y) = -x^2+y^2$").to_corner(UL)
-
- self.add_fixed_in_frame_mobjects(r3_text)
- self.wait(1)
- self.set_camera_orientation(phi = 50 * DEGREES,theta = 45 * DEGREES)
- self.play(FadeOut(r3_text))
- self.add(axes)
- self.add(label_x)
- self.add(label_y)
- self.begin_ambient_camera_rotation(rate = 0.3)
- self.add_fixed_in_frame_mobjects(h_text)
- self.play(Write(surface))
- self.wait(1)
- self.add(curve_y)
- self.add(d)
- self.wait(1)
- self.play(FadeOut(curve_y))
- self.wait(1)
- self.add(curve_x)
- self.wait(1)
- self.add(d)
- self.wait(1)
diff --git a/FSF-2020/approximations-and-optimizations/Critical-Points/file5_f(x,y)=(y-x)(1-2x-3y).gif b/FSF-2020/approximations-and-optimizations/Critical-Points/file5_f(x,y)=(y-x)(1-2x-3y).gif
deleted file mode 100644
index 4bc92f8..0000000
--- a/FSF-2020/approximations-and-optimizations/Critical-Points/file5_f(x,y)=(y-x)(1-2x-3y).gif
+++ /dev/null
Binary files differ
diff --git a/FSF-2020/approximations-and-optimizations/Critical-Points/file5_f(x,y)=(y-x)(1-2x-3y).py b/FSF-2020/approximations-and-optimizations/Critical-Points/file5_f(x,y)=(y-x)(1-2x-3y).py
deleted file mode 100644
index 41c3b61..0000000
--- a/FSF-2020/approximations-and-optimizations/Critical-Points/file5_f(x,y)=(y-x)(1-2x-3y).py
+++ /dev/null
@@ -1,29 +0,0 @@
-from manimlib.imports import*
-
-#---- visualization of the function
-class ExampleAnimation(ThreeDScene):
- def construct(self):
- axes = ThreeDAxes()
- label_x = TextMobject("$x$").shift([5.5,-0.5,0]) #---- x axis
- label_y = TextMobject("$y$").shift([-0.5,5.5,0]).rotate(-4.5) #---- y axis
-
- #---- f(x,y) = (y-x)(1-2x-3y)
- surface = ParametricSurface(
- lambda u, v: np.array([
- u,
- v,
- (v-u)*(1-2*u-3*v)
- ]),v_min = -1, v_max = 1, u_min = -1, u_max = 1, checkerboard_colors = [PURPLE_B,PURPLE_C,PURPLE_D, PURPLE_E]).scale(1).fade(0.2).shift([0.2,0.2,0])
-
- f_text = TextMobject("$f(x,y) = (y-x)(1-2x-3y)$").to_corner(UL)
-
- self.set_camera_orientation(phi = 60 * DEGREES, theta = 75 * DEGREES)
- self.begin_ambient_camera_rotation(rate=0.1)
- self.add_fixed_in_frame_mobjects(f_text)
- self.wait(1)
- self.add(axes)
- self.add(label_x)
- self.add(label_y)
- self.wait(1)
- self.play(Write(f))
- self.wait(4)
diff --git a/FSF-2020/approximations-and-optimizations/Tangent-Plane-Approximations/file1_Tangent_Plane.gif b/FSF-2020/approximations-and-optimizations/Tangent-Plane-Approximations/file1_Tangent_Plane.gif
deleted file mode 100644
index 2b8bf5f..0000000
--- a/FSF-2020/approximations-and-optimizations/Tangent-Plane-Approximations/file1_Tangent_Plane.gif
+++ /dev/null
Binary files differ
diff --git a/FSF-2020/approximations-and-optimizations/Tangent-Plane-Approximations/file1_Tangent_Plane.py b/FSF-2020/approximations-and-optimizations/Tangent-Plane-Approximations/file1_Tangent_Plane.py
deleted file mode 100644
index 4c17f90..0000000
--- a/FSF-2020/approximations-and-optimizations/Tangent-Plane-Approximations/file1_Tangent_Plane.py
+++ /dev/null
@@ -1,50 +0,0 @@
-from manimlib.imports import*
-
-#---- tangent plane is parallel to the surface of the funtion at a point
-class firstScene(ThreeDScene):
- def construct(self):
-
- s1_text=TextMobject("Suppose, the point $(x,y)$ lies on the surface of the function.").scale(0.5).shift(2*UP)
- s2_text=TextMobject("When zooming on that point, the surface would appear more and more like a plane.").scale(0.5).shift(1*UP)
- s3_text=TextMobject("This plane is called the tangent plane.").scale(0.5)
-
- #---- graph of function f(x,y) = -x^2-y^2
-
- f = ParametricSurface(
- lambda u, v: np.array([
- u,
- v,
- -u**2-v**2
- ]),v_min = -1, v_max = 1, u_min = -1, u_max = 1, checkerboard_colors = [YELLOW_B,YELLOW_C,YELLOW_D, YELLOW_E]).shift([0,0,0]).scale(1)
-
-
- d = Dot([0,0,0],color = '#800000') #---- critical point
-
- r = Rectangle(color = PURPLE,fill_opacity=0.2).shift([0.1,0,0]).scale(0.3) #---- tangent plane
-
- s = ParametricSurface(
- lambda u, v: np.array([
- u,
- v,
- -u**2-v**2
- ]),v_min = -1, v_max = 1, u_min = -1, u_max = 1, checkerboard_colors = [YELLOW_B,YELLOW_C,YELLOW_D, YELLOW_E]).shift([0,0,0]).scale(3.5)
-
- d2 = Dot([0,0,2.5],color = '#800000') #---- changing position of critical point
-
- r2 = Rectangle(color = PURPLE,fill_opacity=0.5).shift([0.1,0,2.5]).scale(0.3) #---- changing position of tangent plane
-
- self.set_camera_orientation(phi = 50 * DEGREES, theta = 45 * DEGREES)
- self.add_fixed_in_frame_mobjects(s1_text)
- self.add_fixed_in_frame_mobjects(s2_text)
- self.add_fixed_in_frame_mobjects(s3_text)
- self.wait(2)
- self.play(FadeOut(s1_text))
- self.play(FadeOut(s2_text))
- self.play(FadeOut(s3_text))
- self.wait(1)
- self.play(Write(f))
- self.play(Write(d))
- self.play(Write(r))
- self.wait(2)
- self.play(ReplacementTransform(f,s),ReplacementTransform(d,d2),ReplacementTransform(r,r2))
- self.wait(2)
diff --git a/FSF-2020/approximations-and-optimizations/Tangent-Plane-Approximations/file2_Tangent_plane_approximation_visualization.py b/FSF-2020/approximations-and-optimizations/Tangent-Plane-Approximations/file2_Tangent_plane_approximation_visualization.py
deleted file mode 100644
index 984db16..0000000
--- a/FSF-2020/approximations-and-optimizations/Tangent-Plane-Approximations/file2_Tangent_plane_approximation_visualization.py
+++ /dev/null
@@ -1,34 +0,0 @@
-from manimlib.imports import*
-
-class TangenttoSurface(ThreeDScene):
-
- def construct(self):
- axes = ThreeDAxes()
-
- #----f(x,y): x**2+y**2
- p = ParametricSurface(
- lambda u, v: np.array([
- u,
- v,
- u**2+v**2
- ]),v_min = -1,v_max = 1, u_min = -1, u_max = 1, checkerboard_colors = [GREEN_C,GREEN_D],
- resolution = (20, 20)).scale(1)
- self.set_camera_orientation(phi = 75*DEGREES)
-
- h_text = TextMobject("The graph tends to coincide with its tangent plane").scale(0.5).to_corner(UL)
- d = Dot([0,0,0],color ='#800000') #----critical point
- r = Rectangle(height = 2,breadth = 1,color = YELLOW).scale(0.5) #----tangent plane to critical point
- line1 = DashedLine(color=RED).shift(4*UP+1.3*RIGHT).rotate(1.571,UP).scale(1.2)
- line2 = DashedLine(color=RED).shift(4*UP-1.3*RIGHT).rotate(1.571,UP).scale(1.2)
-
- r2 = Rectangle(height = 2, breadth = 1,color = GREEN, fill_opacity=0.3).scale(0.5)
-
- self.add(axes)
- self.play(Write(r))
- self.play(Write(p),Write(d))
- self.play(ShowCreation(line1),ShowCreation(line2))
- self.wait(2)
-
- self.play(FadeOut(line1),FadeOut(line2),ReplacementTransform(p,r2))
- self.add_fixed_in_frame_mobjects(h_text)
- self.wait(1)
diff --git a/FSF-2020/approximations-and-optimizations/Tangent-Plane-Approximations/file3_non_differentiable_function.py b/FSF-2020/approximations-and-optimizations/Tangent-Plane-Approximations/file3_non_differentiable_function.py
deleted file mode 100644
index 13bd73e..0000000
--- a/FSF-2020/approximations-and-optimizations/Tangent-Plane-Approximations/file3_non_differentiable_function.py
+++ /dev/null
@@ -1,30 +0,0 @@
-from manimlib.imports import*
-import math
-
-#---- tangent plane does not exists for f(x,y): sqrt(x**2+y**2) at origin
-
-class TangenttoSurface(ThreeDScene):
- def construct(self):
- axes = ThreeDAxes()
-
- #----f(x,y): sqrt(x**2+y**2)
- p = ParametricSurface(
- lambda u, v: np.array([
- u,
- v,
- math.sqrt(u**2+v**2)
- ]),v_min = -1,v_max = 1, u_min = -1, u_max = 1, checkerboard_colors = [RED_C,TEAL_D],
- resolution = (20, 20)).scale(1)
-
- self.set_camera_orientation(phi = 75 * DEGREES)
-
- d = Dot([0,0,0],color = '#800000') #----critical point
- d_text = TextMobject("$(0,0)$").scale(0.5).shift(0.2*DOWN)
- f_text = TextMobject("$f$ is not differentiable at origin").scale(0.5).to_corner(UL)
-
- self.begin_ambient_camera_rotation(rate=0.1)
- self.add(axes)
- self.play(Write(p),Write(d))
- self.add_fixed_in_frame_mobjects(d_text)
- self.add_fixed_in_frame_mobjects(f_text)
- self.wait(2)
diff --git a/FSF-2020/approximations-and-optimizations/Tangent-Plane-Approximations/file4_Tangent plane_at_critical_points.py b/FSF-2020/approximations-and-optimizations/Tangent-Plane-Approximations/file4_Tangent plane_at_critical_points.py
deleted file mode 100644
index d129213..0000000
--- a/FSF-2020/approximations-and-optimizations/Tangent-Plane-Approximations/file4_Tangent plane_at_critical_points.py
+++ /dev/null
@@ -1,62 +0,0 @@
-from manimlib.imports import*
-
-class TangenttoSurface(ThreeDScene):
- def construct(self):
- axes = ThreeDAxes()
-
- #----graph of first function f(x,y) = -x**2-y**2
- f = ParametricSurface(
- lambda u, v: np.array([
- u,
- v,
- -u**2-v**2
- ]),v_min = -1, v_max = 1, u_min = -1, u_max = 1, checkerboard_colors = [YELLOW_D, YELLOW_E],
- resolution = (20, 20)).scale(1)
- f_text = TextMobject("Tangent plane at relative maxima").to_corner(UL).scale(0.5)
-
- #----graph of second function f(x,y) = -x**2+y**2
- f2 = ParametricSurface(
- lambda u, v: np.array([
- u,
- v,
- -u**2+v**2
- ]),v_min = -1, v_max = 1, u_min = -1, u_max = 1, checkerboard_colors = [RED_D, RED_E],
- resolution = (20, 20)).scale(1)
- f2_text = TextMobject("Tangent plane at saddle point").to_corner(UL).scale(0.5)
-
- #----graph of third function f(x,y) = x**2+y**2
- f3 = ParametricSurface(
- lambda u, v: np.array([
- u,
- v,
- u**2+v**2
- ]),v_min = -1, v_max = 1, u_min = -1, u_max = 1, checkerboard_colors = [GREEN_D, GREEN_E],
- resolution = (20, 20)).scale(1)
- f3_text = TextMobject("Tangent plane at relative minima").to_corner(UL).scale(0.5)
-
- self.set_camera_orientation(phi = 75 * DEGREES, theta = -45 * DEGREES )
- d = Dot(np.array([0,0,0]), color = '#800000') #---- critical point
-
- r = Rectangle(height = 2,breadth = 1,color = PURPLE).scale(0.5)
-
- self.begin_ambient_camera_rotation(rate = 0.3)
- self.add(axes)
- self.play(Write(f),Write(d))
- self.wait(1)
- self.add_fixed_in_frame_mobjects(f_text)
- self.play(ShowCreation(r))
- self.wait(1)
- self.play(FadeOut(r),FadeOut(f),FadeOut(d),FadeOut(f_text))
- self.wait(1)
- self.play(Write(f2),Write(d))
- self.wait(1)
- self.add_fixed_in_frame_mobjects(f2_text)
- self.play(ShowCreation(r))
- self.wait(1)
- self.play(FadeOut(r),FadeOut(f2),FadeOut(d),FadeOut(f2_text))
- self.wait(1)
- self.play(Write(f3),Write(d))
- self.wait(1)
- self.add_fixed_in_frame_mobjects(f3_text)
- self.play(ShowCreation(r))
- self.wait(1)
diff --git a/FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file1_Second_order_partial_derivatives.gif b/FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file1_Second_order_partial_derivatives.gif
deleted file mode 100644
index 3471e4d..0000000
--- a/FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file1_Second_order_partial_derivatives.gif
+++ /dev/null
Binary files differ
diff --git a/FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file1_Second_order_partial_derivatives.py b/FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file1_Second_order_partial_derivatives.py
deleted file mode 100644
index 84052cc..0000000
--- a/FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file1_Second_order_partial_derivatives.py
+++ /dev/null
@@ -1,78 +0,0 @@
-from manimlib.imports import*
-
-#---- graphs of second-order partial derivatives of a function
-class SurfacesAnimation(ThreeDScene):
- def construct(self):
-
- axes = ThreeDAxes()
- x_label = TextMobject('$x$').shift([5,0.5,0]) #---- x axis
- y_label = TextMobject('$y$').shift([0.5,4,0]).rotate(-4.5) #---- y axis
-
- #---- surface of function: f(x,y) = (x^2+y^2)^2
- surface_f = ParametricSurface(
- lambda u, v: np.array([
- u,
- v,
- ((u**2)+(v**2))**2
- ]),v_min=-1,v_max=1,u_min=-1,u_max=1,checkerboard_colors=[GREEN_D, GREEN_E]).scale(1)
-
- #---- surface of second-order partial derivative f_xx
- surface_fxx = ParametricSurface(
- lambda u, v: np.array([
- u,
- v,
- (3*u**2)+(v**2)
- ]),v_min=-1,v_max=1,u_min=-1,u_max=1,checkerboard_colors=[YELLOW_D, YELLOW_E]).shift([0,0,0]).scale(0.6)
-
- #---- surface of second-order partial derivative f_yy
- surface_fyy = ParametricSurface(
- lambda u, v: np.array([
- u,
- v,
- (u**2)+(3*v**2)
- ]),v_min=-1,v_max=1,u_min=-1,u_max=1,checkerboard_colors=[PURPLE_D, PURPLE_E]).scale(0.6).shift([0,0,0])
-
- #---- surface of second-order partial derivative f_xy = f_yx
- surface_fxy = ParametricSurface(
- lambda u, v: np.array([
- u,
- v,
- 8*u*v
- ]),v_min=-1,v_max=1,u_min=-1,u_max=1,checkerboard_colors=[TEAL_D, TEAL_E]).scale(0.6)
-
- f_text= TextMobject("$f(x,y) = (x^2+y^2)^2$",color = GREEN).scale(0.7).to_corner(UL)
-
- fxx_text= TextMobject("$f_{xx} = 12x^2+4y^2$ (Concavity along x axis)",color = YELLOW).scale(0.5).to_corner(UL)
-
- fyy_text= TextMobject("$f_{yy} = 4x^2+12y^2$(Concavity along y axis)",color = PURPLE).scale(0.5).to_corner(UL)
-
- fxy_text= TextMobject("$f_{xy} = f_{yx} = 8xy$ (Twisting of the function)",color = TEAL).scale(0.5).to_corner(UL)
-
-
- self.set_camera_orientation(phi = 40 * DEGREES, theta = 45 * DEGREES)
- self.begin_ambient_camera_rotation(rate = 0.1)
- self.add_fixed_in_frame_mobjects(f_text)
- self.add(axes)
- self.add(x_label)
- self.add(y_label)
- self.wait(1)
- self.play(Write(surface_f))
- self.wait(2)
- self.play(FadeOut(f_text))
-
-
- self.play(ReplacementTransform(surface_f,surface_fxx))
-
- self.add_fixed_in_frame_mobjects(fxx_text)
- self.wait(2)
- self.play(FadeOut(fxx_text))
-
- self.play(ReplacementTransform(surface_fxx,surface_fyy))
- self.add_fixed_in_frame_mobjects(fyy_text)
- self.wait(2)
- self.play(FadeOut(fyy_text))
-
- self.play(ReplacementTransform(surface_fyy,surface_fxy))
- self.move_camera(phi = 35 * DEGREES, theta = 80 * DEGREES)
- self.add_fixed_in_frame_mobjects(fxy_text)
- self.wait(2)
diff --git a/FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file2_Degenerate_Hessian_Matrix.py b/FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file2_Degenerate_Hessian_Matrix.py
deleted file mode 100644
index c1e3516..0000000
--- a/FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file2_Degenerate_Hessian_Matrix.py
+++ /dev/null
@@ -1,52 +0,0 @@
-from manimlib.imports import*
-
-class firstscene(Scene):
- def construct(self):
-
- h_text = TextMobject("Degenerate Hessian Matrix", color = RED).scale(1).shift(UP)
-
-
- f_text = TextMobject("$f(x,y) = 2x^3+y^3$", color = TEAL).scale(1).to_corner(UL)
- c_text = TextMobject("Critical Point: $(0,0)$", color = TEAL).scale(1).next_to(f_text).shift(DOWN+4.3*LEFT)
- m_text = TextMobject("\\begin{equation*} D_2(x,y)= \\begin{vmatrix} 12x\\space & 0\\space \\\\ 0 & 6y \\end{vmatrix} \\end{equation*}",color = YELLOW)
- d_text = TextMobject("\\begin{equation*} D_2(0,0)= \\begin{vmatrix} 0 \\space & 0\\space \\\\ 0 & 0 \\end{vmatrix} \\end{equation*}",color = PURPLE)
-
-
- t_text = TextMobject("$D_2 = 0$(Inconclusive)", color = TEAL).scale(1).shift(2*DOWN)
-
- self.play(ShowCreation(h_text))
- self.wait(1)
- self.play(FadeOut(h_text))
- self.wait(1)
- self.play(ShowCreation(f_text))
- self.wait(1)
- self.play(ShowCreation(c_text))
- self.wait(1)
- self.play(ShowCreation(m_text))
- self.wait(2)
- self.play(ReplacementTransform(m_text,d_text))
- self.wait(1)
- self.play(ShowCreation(t_text))
- self.wait(2)
-
-
-class SecondScene(ThreeDScene):
- def construct(self):
- axes = ThreeDAxes()
-
- f = ParametricSurface(
- lambda u, v: np.array([
- u,
- v,
- (2*u**3)+v**3
- ]),v_min=-1,v_max=1,u_min=-1,u_max=1,checkerboard_colors=[TEAL_C,YELLOW_D,BLUE_E],
- resolution=(20, 20)).scale(1)
-
- self.set_camera_orientation(phi=25 * DEGREES,theta = 80*DEGREES)
- self.begin_ambient_camera_rotation(rate=0.1)
-
- f_text = TextMobject("$f(x,y) = 2x^3+y^3$",color = ORANGE).shift(2*DOWN+2*RIGHT).scale(0.8)
- self.add_fixed_in_frame_mobjects(f_text)
- self.add(axes)
- self.play(Write(f))
- self.wait(2)
diff --git a/FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file3_Nondegenerate_Hessian_Matrix.py b/FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file3_Nondegenerate_Hessian_Matrix.py
deleted file mode 100644
index 3056842..0000000
--- a/FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file3_Nondegenerate_Hessian_Matrix.py
+++ /dev/null
@@ -1,145 +0,0 @@
-from manimlib.imports import*
-
-class firstScene(Scene):
- def construct(self):
-
- e_text = TextMobject("Case 3: One positive and one negative eigenvalue", color = YELLOW).scale(1).shift(3*UP+1*LEFT)
- f_text = TextMobject("$f(x,y) = x^2-2y^2-2x$").scale(0.8).next_to(e_text).shift(6*LEFT+DOWN)
- c_text = TextMobject("Critical Point: $(1,0)$").scale(0.8).next_to(f_text).shift(DOWN+4*LEFT)
- d_text = TextMobject("\\begin{equation*} D_2(1,0)= \\begin{vmatrix} 2 \\space & 0\\space \\\\ 0 & -4 \\end{vmatrix} \\end{equation*}",color = GREEN).scale(0.9)
-
- t_text = TextMobject("$D_2 = -8<0$ (Saddle Point)", color = BLUE).scale(0.9).shift(2*DOWN)
-
- self.play(ShowCreation(e_text))
- self.wait(1)
- self.play(ShowCreation(f_text))
- self.wait(1)
- self.play(ShowCreation(c_text))
- self.wait(1)
- self.play(ShowCreation(d_text))
- self.wait(1)
- self.play(ShowCreation(t_text))
- self.wait(2)
-
-class SaddlePoint(ThreeDScene):
- def construct(self):
- axes = ThreeDAxes()
- f = ParametricSurface(
- lambda u, v: np.array([
- u,
- v,
- u**2-2*v**2-2*u
- ]),v_min=-1,v_max=1,u_min=-1,u_max=1,checkerboard_colors=[RED_C,PURPLE_D,YELLOW_E],
- resolution=(20, 20)).scale(1)
-
- self.set_camera_orientation(phi=35 * DEGREES,theta=80*DEGREES)
- self.begin_ambient_camera_rotation(rate=0.4)
-
- f_text = TextMobject("$f(x,y) = x^2-2y^2-2x$",color = GREEN).shift(2*DOWN+2*RIGHT).scale(0.8)
- self.add_fixed_in_frame_mobjects(f_text)
- self.add(axes)
- self.play(Write(f))
- self.wait(3)
-
-
-class secondScene(Scene):
- def construct(self):
-
- h_text = TextMobject("NonDegenerate Hessian Matrix", color = GREEN).scale(1).shift(UP)
- e_text = TextMobject("Case 1: Two positive eigenvalues", color = PINK).scale(1).shift(3*UP+2*LEFT)
- f_text = TextMobject("$f(x,y) = 2x^2+3y^2-2yx$",color = TEAL).scale(0.8).next_to(e_text).shift(6*LEFT+DOWN)
- c_text = TextMobject("Critical Point: $(0,0)$",color = TEAL).scale(0.8).next_to(f_text).shift(DOWN+4.5*LEFT)
- d_text = TextMobject("\\begin{equation*} D_2(0,0)= \\begin{vmatrix} 4 \\space & -2\\space \\\\ -2 & 6 \\end{vmatrix} \\end{equation*}",color = PINK).scale(0.9)
-
- t_text = TextMobject("$D_2 = 20>0$ (Relative Maxima or Relative Minima)", color = YELLOW).scale(0.9).shift(1*DOWN)
- tm_text = TextMobject("$D_1 = \\frac{\\partial^2 f}{\\partial x^2} =4 >0$ (Relative Minima)", color = YELLOW).scale(0.9).shift(2*DOWN)
-
-
- self.play(ShowCreation(h_text))
- self.wait(1)
- self.play(FadeOut(h_text))
- self.wait(1)
- self.play(ShowCreation(e_text))
- self.wait(1)
- self.play(ShowCreation(f_text))
- self.wait(1)
- self.play(ShowCreation(c_text))
- self.wait(1)
- self.play(ShowCreation(d_text))
- self.wait(1)
- self.play(ShowCreation(t_text))
- self.wait(1)
- self.play(ShowCreation(tm_text))
- self.wait(2)
- self.play(FadeOut(e_text),FadeOut(f_text),FadeOut(c_text),FadeOut(d_text),FadeOut(t_text),FadeOut(tm_text))
-
-class Minima(ThreeDScene):
- def construct(self):
- axes = ThreeDAxes()
- f = ParametricSurface(
- lambda u, v: np.array([
- u,
- v,
- 2*u**2+3*v**2-2*v*u
- ]),v_min=-1,v_max=1,u_min=-1,u_max=1,checkerboard_colors=[BLUE_C,YELLOW_D,GREEN_E],
- resolution=(20, 20)).scale(1)
-
- self.set_camera_orientation(phi=10 * DEGREES,theta=90*DEGREES)
- self.begin_ambient_camera_rotation(rate=0.2)
-
- f_text = TextMobject("$f(x,y) = 2x^2+3y^2-2yx$",color = PURPLE).shift(2*DOWN+3*RIGHT).scale(0.8)
- self.add_fixed_in_frame_mobjects(f_text)
- self.add(axes)
- self.play(Write(f))
- self.wait(2)
-
-
-class thirdScene(Scene):
- def construct(self):
-
-
- e_text = TextMobject("Case 2: Two negative eigenvalues", color = RED).scale(1).shift(3*UP+2*LEFT)
- f_text = TextMobject("$f(x,y) = -x^2-4y^2$",color = BLUE).scale(0.8).next_to(e_text).shift(6*LEFT+DOWN)
- c_text = TextMobject("Critical Point: $(0,0)$",color = BLUE).scale(0.8).next_to(f_text).shift(DOWN+3.8*LEFT)
- d_text = TextMobject("\\begin{equation*} D_2(0,0)= \\begin{vmatrix} -2 \\space & 0\\space \\\\ 0 & -8 \\end{vmatrix} \\end{equation*}",color = TEAL).scale(0.9)
-
- t_text = TextMobject("$D_2 = 16>0$ (Relative Maxima or Relative Minima)" ).scale(0.9).shift(1*DOWN)
- tm_text = TextMobject("$D_1 = \\frac{\\partial^2 f}{\\partial x^2} =-2 <0$ (Relative Maxima)").scale(0.9).shift(2*DOWN)
-
-
- self.play(ShowCreation(e_text))
- self.wait(1)
- self.play(ShowCreation(f_text))
- self.wait(1)
- self.play(ShowCreation(c_text))
- self.wait(1)
- self.play(ShowCreation(d_text))
- self.wait(1)
- self.play(ShowCreation(t_text))
- self.wait(1)
- self.play(ShowCreation(tm_text))
- self.wait(2)
- self.play(FadeOut(e_text),FadeOut(f_text),FadeOut(c_text),FadeOut(d_text),FadeOut(t_text),FadeOut(tm_text))
-
-
-class Maxima(ThreeDScene):
- def construct(self):
- axes = ThreeDAxes()
- f = ParametricSurface(
- lambda u, v: np.array([
- u,
- v,
- -u**2-4*v**2
- ]),v_min=-1,v_max=1,u_min=-1,u_max=1,checkerboard_colors=[BLUE_C,PURPLE_D,TEAL_E],
- resolution=(20, 20)).scale(1)
-
- self.set_camera_orientation(phi=75 * DEGREES)
- self.begin_ambient_camera_rotation(rate=0.4)
-
- f_text = TextMobject("$f(x,y) = -x^2-4y^2$",color = YELLOW).shift(2*DOWN+3*RIGHT).scale(0.8)
- self.add_fixed_in_frame_mobjects(f_text)
- self.add(axes)
- self.play(Write(f))
- self.wait(1)
- self.move_camera(phi=30*DEGREES,theta=45*DEGREES,run_time=5)
- self.wait(2)
diff --git a/FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file4_Contour_Diagram.gif b/FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file4_Contour_Diagram.gif
deleted file mode 100644
index 129fedc..0000000
--- a/FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file4_Contour_Diagram.gif
+++ /dev/null
Binary files differ
diff --git a/FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file4_Contour_Diagram.py b/FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file4_Contour_Diagram.py
deleted file mode 100644
index d3084e2..0000000
--- a/FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file4_Contour_Diagram.py
+++ /dev/null
@@ -1,120 +0,0 @@
-from manimlib.imports import*
-
-#---- contour diagram animation
-class ContourDiagram(ThreeDScene):
- def construct(self):
-
- heading = TextMobject("CONTOUR DIAGRAM", color = YELLOW).scale(1)
-
- axes = ThreeDAxes()
- label_x = TextMobject("$x$").shift([5.5,-0.5,0]) #---- x axis
- label_y = TextMobject("$y$").shift([-0.5,5.5,0]).rotate(-4.5) #---- y axis
-
- #---- surface of a paraboloid
- surface = ParametricSurface(
- lambda u, v: np.array([
- np.cos(v)*u,
- np.sin(v)*u,
- u**2
- ]),v_min = -2, v_max = 2, u_min = -2, u_max = 2, checkerboard_colors = [GREEN_B,GREEN_C,GREEN_D,GREEN_E]).shift([0,0,0]).scale(0.5)
-
- #---- first contour projection
- contour1 = ParametricSurface(
- lambda u, v: np.array([
- np.cos(TAU * v),
- np.sin(TAU * v),
- 2*(1 - 2.5*u)
- ])).fade(0.5).scale(0.21).shift([0,0,1.01])
-
- #---- first contour line
- c_1 = Circle(color = BLUE).scale(0.21).shift([0,0,0]).rotate(0.1,DOWN)
-
- #-------------------------------------------------
-
- #---- second contour projection
- contour2 = ParametricSurface(
- lambda u, v: np.array([
- np.cos(TAU * v),
- np.sin(TAU * v),
- 2*(1 - 1.6*u)
- ])).fade(0.5).scale(0.41).shift([0,0,0.3]).set_color(RED)
-
- #---- second contour line
- c_2 = Circle(color = RED).scale(0.41).shift([0,0,0]).rotate(0.1,DOWN)
-
- #-------------------------------------------------
-
- #---- third contour projection
- contour3 = ParametricSurface(
- lambda u, v: np.array([
- np.cos(TAU * v),
- np.sin(TAU * v),
- 2*(1 - 1.5*u)
- ])).fade(0.5).scale(0.61).shift([0,0,0.4]).set_color(YELLOW)
-
- #---- third contour line
- c_3 = Circle(color = YELLOW).scale(0.61).shift([0,0,0])
-
- #-------------------------------------------------
-
- #---- fourth contour projection
- contour4 = ParametricSurface(
- lambda u, v: np.array([
- np.cos(TAU * v),
- np.sin(TAU * v),
- 2*(1 - 1.5*u)
- ])).fade(0.7).scale(0.81).shift([0,0,0.7]).set_color(PINK)
-
- #---- fourth contour line
- c_4 = Circle(color = PINK).scale(0.81).shift([0,0,0])
-
- #-------------------------------------------------
-
- #---- fifth contour projection
- contour5 = ParametricSurface(
- lambda u, v: np.array([
- np.cos(TAU * v),
- np.sin(TAU * v),
- 2*(1 - 1.5*u)
- ])).fade(0.7).scale(1.01).shift([0,0,1]).set_color(PURPLE)
-
- #---- fifth contour line
- c_5 = Circle(color = PURPLE).scale(1.01).shift([0,0,0])
-
- c_text= TextMobject("Contour Lines").scale(0.5).shift(2*DOWN)
- s = Square().scale(1.3)
-
- self.set_camera_orientation(phi = 75 * DEGREES, theta = 10 * DEGREES)
- self.add_fixed_in_frame_mobjects(heading)
- self.wait(1)
- self.play(FadeOut(heading))
- self.wait(1)
- self.add(axes)
- self.add(label_x)
- self.add(label_y)
- self.play(Write(surface))
- self.wait(1)
- self.add(contour1)
- self.wait(1)
- self.play(Write(c_1))
- self.play(ReplacementTransform(contour1,contour2))
- self.wait(1)
- self.play(Write(c_2))
- self.play(ReplacementTransform(contour2,contour3))
- self.wait(1)
- self.play(Write(c_3))
- self.play(ReplacementTransform(contour3,contour4))
- self.wait(1)
- self.play(Write(c_4))
- self.play(ReplacementTransform(contour4,contour5))
- self.wait(1)
- self.play(Write(c_5))
- self.wait(1)
- self.play(FadeOut(contour5),FadeOut(axes),FadeOut(label_x),FadeOut(label_y),FadeOut(surface),FadeOut(contour5),FadeOut(contour4),FadeOut(contour3),FadeOut(contour2),FadeOut(contour1))
- self.wait(1)
- self.move_camera(phi=0 * DEGREES,theta= 90*DEGREES)
- self.wait(1)
- self.add_fixed_in_frame_mobjects(c_text)
- self.wait(1)
- self.play(ShowCreation(s),FadeOut(c_text))
- self.wait(1)